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On the Rozansky–Witten weight systems

JUSTIN ROBERTS

SIMON WILLERTON

Ideas of Rozansky and Witten, as developed by Kapranov, show that a complex
symplectic manifold X gives rise to Vassiliev weight systems. In this paper we
study these weight systems by using D.X / , the derived category of coherent sheaves
on X . The main idea (stated here a little imprecisely) is that D.X / is the category
of modules over the shifted tangent sheaf, which is a Lie algebra object in D.X /; the
weight systems then arise from this Lie algebra in a standard way. The other main
results are a description of the symmetric algebra, universal enveloping algebra and
Duflo isomorphism in this context, and the fact that a slight modification of D.X /

has the structure of a braided ribbon category, which gives another way to look at
the associated invariants of links. Our original motivation for this work was to try
to gain insight into the Jacobi diagram algebras used in Vassiliev theory by looking
at them in a new light, but there are other potential applications, in particular to the
rigorous construction of the .1C1C1/–dimensional Rozansky–Witten TQFT, and to
hyperkähler geometry.

57R56, 57M27; 17B70, 14F05, 53D35, 57R27

Introduction

Motivation

The Kontsevich integral is a beautiful and very powerful invariant of framed knots
in S3 . It takes values in a certain graded algebra A of Jacobi diagrams, and is universal
for the class of Vassiliev (finite-type) invariants, as well as determining all the quantum
invariants (the Jones polynomial, etc.) associated to quantum groups. The definitive
exposition is by Bar-Natan [3].

Over the last few years the theory of the Kontsevich integral has been considerably
extended (see Le, Murakami and Ohtsuki [27] and Murakami and Ohtsuki [29]),
resulting in a system of Kontsevich-like invariants for links, graphs and 3–manifolds
possessing much of the functoriality of a topological quantum field theory. Despite
these successes, basic questions about the topological interpretations of the Kontsevich
invariant and of the algebra A itself remain largely unanswered.
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The standard way to study diagram spaces such as A is by means of weight systems, ie
functions on it, which are most easily obtained from Lie algebras. A finite-dimensional
Lie algebra g with an invariant nondegenerate metric defines weight system homo-
morphisms from diagram spaces to spaces of invariant tensors on g; recognisable
formulae often emerge from looking in this way at diagrammatic identities “at the level
of Lie algebras”, as for example in Bar-Natan, Garoufalidis, Rozansky and Thurston [4].
From this has emerged the idea, pursued in particular by Vogel [41], that the diagrams
themselves form some kind of universal Lie-algebra-like structure.

In this paper we propose to study diagram algebras from an alternative point of view
using Rozansky–Witten weight systems [36]. These arise from complex symplectic
manifolds, according to Kapranov [20] and Kontsevich [24], and map diagram algebras
to Dolbeault cohomology groups of such manifolds. Our original motivation for this
study was to try to understand the extent to which diagrams behave like elements
of cohomology; we were seeking to interpret A as some kind of ring of universal
characteristic classes, and had already been studying certain diagrammatic formulae as
if they were cohomological identities.

This is a reasonable point of view: after all, Kontsevich’s formulation of graph coho-
mology [23] shows that indeed, diagrams may be thought of as representing elements
of homology and cohomology, though this combinatorial framework affords little
topological insight. Although Kontsevich has also given interpretations of graph
cohomology via Gelfand–Fuchs cohomology and Lie algebras of formal Hamiltonian
vector fields, we still hope that there is a more direct explanation for much of the theory.
We would like to be able to view graph cohomology as the cohomology of some kind
of interesting and meaningful geometrical classifying space (by analogy with fatgraph
cohomology, which is the cohomology of the moduli space of Riemann surfaces), and
then use the geometry of this space to give new explanations of the existence and
properties of the knot and 3–manifold invariants. There is an obvious candidate, outer
space [23], but it still seems rather too abstract for our purposes, and these goals remain
unfulfilled. Fortunately, Rozansky–Witten theory is a fruitful subject to study in its
own right.

In this paper we deal only with the nature of the Rozansky–Witten weight systems.
That is, we are looking at diagrams “at the level of complex symplectic manifolds”,
and studying the analogies between Lie algebra and Rozansky–Witten weight systems,
in a sense parallelling the paper [4]. An alternative focus would be to use the theory to
derive results about hyperkähler geometry, in the manner of Hitchin and Sawon [19]
and Nieper-Wißkirchen [30], but we will avoid this here. Likewise, though we touch
here on the Rozansky–Witten link invariants, we will for the most part postpone the
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study of the associated topological invariants for a mythical sequel in which we would
apply our techniques to set up the full .1C1C1/–dimensional Rozansky–Witten TQFT.

It is on the face of it very surprising that objects as disparate as Lie algebras and
complex symplectic manifolds give rise to weight systems. The main point of our
paper is to unify these two worlds, showing how to define and handle Rozansky–Witten
weight systems in a way completely analogous to the Lie algebra ones. We show in
fact that a complex symplectic manifold gives rise to something akin to a metric Lie
algebra, and then investigate the ramifications of this analogy. The catch here is that
this something is an object in a category other than the usual category of vector spaces;
in fact, the category must be taken to be the bounded derived category of coherent
sheaves on the manifold.

Now phrases like this used to strike terror into the hearts of the authors, and we presume
some readers will also recoil slightly! But we are really convinced that the use of derived
categories gives the most natural and elegant formulation of the Rozansky–Witten theory,
and hope by our exposition to convince the reader likewise. An additional justification
for their use is that in the construction of the .1C1C1/–dimensional Rozansky–Witten
TQFT, the derived category should be the category associated to a circle.

It is also worth mentioning here a disadvantage of our approach, which is that the
beautiful L1 structure described by Kapranov is thrown away. We would need this if
we were interested in weight systems defined on higher graph cohomology, but these
do not figure in the computation of the usual knot or TQFT invariants, so this is an
acceptable loss.

A brief sketch of the results in this paper appears in the paper by the first author [34],
and further questions appear in the paper by the first author and Sawon [35].

Overview of results

The derived category as a Lie algebra representation category Kapranov showed
that one could use a certain L1–algebra structure to obtain the Rozansky–Witten
weight systems: our approach is to work in the derived category and use Lie algebras
type objects as in Chern–Simons theory. The first step is to identify the derived category
as the representation category of a certain Lie algebra inside it.

Theorem 1 Let X be a complex manifold. The shifted tangent bundle T Œ�1� is a Lie
algebra object in the bounded derived category D.X /, and D.X / is the category of
modules over T Œ�1�.
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To explain this, first note that a Lie algebra object in a additive symmetric tensor
category means an object L in the category with a bracket morphism L˝L! L

which satisfies suitable versions of the Jacobi and antisymmetry relations, so that a Lie
algebra object in the category of vector spaces is a usual Lie algebra and a Lie algebra
object in the category of graded vector spaces is a graded Lie algebra. A module M

over L is then an object of the category with an action morphism M ˝ L ! M

satisfying an appropriate condition. By the statement that D.X / is the category of
modules over T Œ�1� we mean that it acts canonically on every object in the category
and every morphism is a module morphism: this is analogous to L being a Lie algebra
object in its category of modules as the adjoint module.

Next we need to know a little about the derived category. This has as objects bounded
chains complexes of coherent sheaves on X , so in particular for each coherent sheaf E

on X there is the EŒ�i �, consisting of E in degree i and zero elsewhere (we still write
E for EŒ0�). One fundamental fact about the derived category is that hom-sets can be
identified with Ext groups, or equivalently, cohomology groups, so that

HomD.X /.E;FŒi �/Š Exti.E;F/:

The next key ingredient is the Atiyah class ˛E for a coherent sheaf E; this is a
characteristic class which lives in Ext1.E;E˝�/, which we can identify as the hom-
set HomD.X /.E˝T Œ�1�;E/.

Thus the Atiyah class can be thought of as a morphism ˛EW E˝T Œ�1�!E. In particular
the Atiyah class of the tangent bundle gives the Lie bracket T Œ�1�˝T Œ�1�! T Œ�1�,
and the other Atiyah classes ˛E give module maps.

Unfortunately these do not give the action of T Œ�1� on every object of the derived
category. So in fact we take the more elegant approach of realising the action of T Œ�1�

as a natural transformation ˛ from id˝T Œ�1� to the identity functor of D.X /. This
gives for every object A in the derived category a morphism ˛AW A˝T Œ�1�!A, and
naturality ensures that every morphism A! B intertwines the action on A and B .

The natural transformation ˛W id˝T Œ�1�! id is obtained using an integral transform.
It is a standard principle of “correspondences” that objects of D.X�X / define functors
D.X /! D.X /, and that morphisms of D.X �X / define natural transformations
between them: in fact we get a functor from D.X � X / to the functor category
Fun.D.X /;D.X //. Our natural transformation ˛ is obtained from a morphism
O�˝�

�T Œ�1� ! O� in D.X � X / which is essentially one half of the Atiyah
class of the structure sheaf of the diagonal.
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Complex symplectic manifolds and invariant metrics A complex symplectic form
is a nondegenerate holomorphic two-form, that is, an element of H 0.X;

V
2T �/ and

we can identify this with a symmetric element of HomD.X /.T Œ�1�˝T Œ�1�;OX Œ�2�/.
This isn’t quite an invariant metric on the Lie algebra object LD T Œ�1�: such a thing
would be a symmetric L–module map L˝L! 1, but we have an extra shift Œ�2�.
To handle this we can work in the “extended derived category” zD.X / whose hom-set
Hom zD.X /.A;B/ is the graded group Ext�.A;B/, where the shift problem disappears.
Thus:

Theorem 2 Let X be a complex symplectic manifold. The shifted tangent bundle
T Œ�1� is a metric Lie algebra object in the extended bounded derived category zD.X /,
and D.X / is the category of modules over T Œ�1�.

Symmetric and universal enveloping algebras The reader familiar with ideas of
Vassiliev invariants will know that other Lie algebraic concepts such as the universal
enveloping algebra, symmetric algebra, Poincaré–Birkoff–Witt isomorphism and Duflo
isomorphism play important roles. We show that analogues of these makes sense for the
Lie algebra object T Œ�1� on any complex manifold. If we were working in an abelian
category then the symmetric and universal enveloping algebras could be constructed
as quotients or subobjects of the tensor algebra of the Lie algebra object, but as the
derived category is not abelian, we have to work a bit harder. The symmetric algebra of
T Œ�1� is easily identifiable as S D

L
.
V

iT /Œ�i �, the shifted exterior algebra on T .
But the universal enveloping algebra is less obvious: we define U D ��Hom.O�;O�/,
and prove that D.X / can be thought of as the representation category of U also:

Theorem 3 The object U 2D.X / is an associative algebra object. There is a canonical
map L D T Œ�1�! U with respect to which U is the universal enveloping algebra
of L. The algebra U acts on all objects of D.X / in a manner compatible with the
action of T Œ�1�.

The Poincaré–Birkhoff–Witt and Duflo isomorphisms have their analogues in this world.
For standard Lie algebras, the natural symmetrisation map PBWW S.g/! U.g/ is an
isomorphism of g–modules and hence induces an isomorphism on their invariant parts.
The latter can be corrected by a strange automorphism of S.g/g to give Duflo’s algebra
isomorphism between S.g/g and Z.g/D U.g/g .

In our context, there is again an isomorphism of objects PBWW S Š U in D.X /. Our
proof is an elaboration of ideas of Markarian [28]. The correct categorical way to
think of invariants is as homomorphisms from the trivial object, which amounts in the
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derived category to cohomology. Thus the induced map on invariant parts gives an
isomorphism between the polyvector field cohomology

HT�.X /DH�.S/DH�.X;
V
�T /

and the Hochschild cohomology

HH�.X /DH�.U /D Ext�.O�;O�/

first demonstrated by Gerstenhaber and Schack. The analogue of Duflo’s isomorphism
between these algebras is Kontsevich’s “theorem on a complex manifold”. Although
this isomorphism exists for all complex manifolds, in the case of complex symplectic
manifolds it follows from the wheeling theorem of Bar-Natan, Le and Thurston [5].

A corollary of these theorems is the existence, given a complex symplectic manifold X ,
of sheaf-cohomology-valued Vassiliev weight systems defined on all the usual algebras
of Jacobi diagrams, naturally compatible with operations such as gluing of legs, etc.

Ribbon categories and link invariants The theory of the Knizhnik–Zamolodchikov
equation gives a way to produce an interesting ribbon category structure on the category
of representations of U g˝ CŒŒ„��, which by Drinfel 0d’s work is equivalent to the
category of representations of a quantum group. This result has an analogue in our
context.

Theorem 4 The category zD.X / has a natural nonsymmetric ribbon tensor category
structure when X is a complex symplectic manifold.

Ribbon categories automatically define framed link invariants. The ones arising from
zD.X / agree with the invariants obtained by taking the Kontsevich integral and com-

posing with the weight systems; they may be thought of as the “knot polynomial” type
quantum invariants arising from complex symplectic manifolds. We do not however
know of any analogue of Drinfel 0d’s theorem in this context.

Outline of the paper

Part of the intention of this paper is to make this material accessible to knot theorists,
so there is much exposition of material that might be considered “well-known” to
algebraic geometers.

The first two sections of the paper are an exposition of the “standard” approach to
Rozansky–Witten weight systems.

In Section 1 we give a brief description of what weight systems are, and how they are
obtained from finite-dimensional metric Lie algebras.
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In Section 2 we describe, by analogy with Chern–Weil theory, the differential-geometric
formulation of Rozansky–Witten invariants as integrals of suitable curvature forms. The
original treatment of Rozansky and Witten used physics (path integrals) as a motivation
and Riemannian geometry for the actual construction of weight systems for hyperkähler
manifolds. We follow instead Kapranov’s reworking in terms of hermitian differential
geometry, which has the advantage of demonstrating that the construction does not
actually depend on the hyperkähler metric, and will work for any complex symplectic
manifold.

The next sections are essentially reformulations of the first two, introducing the language
in which our theorems are going to be stated.

In Section 3 we reformulate the construction of weight systems from metric Lie algebras
so that it generalises to metric Lie algebras in categories other than the category of
vector spaces. This is all based on work of Vogel [41] and Vaintrob [40].

In Section 4 we explain the language of derived categories (first in a general way and
then with specific reference to sheaf theory), which will be necessary in Section 5 when
we reformulate the relevant differential geometry in terms of sheaf theory, following
Kapranov. The key concept is the Atiyah class, the cohomological version of the
curvature of a holomorphic bundle. In Section 6 we show how it gives a Lie bracket.

In Section 7 we explain various generalisations of the idea of a weight system to other
graph algebras, and how these relate to Lie-theoretic concepts such as symmetric and
universal enveloping algebras. In Section 8 we show how these concepts manifest
themselves in the context of complex symplectic manifolds and how they give more
interesting kinds of weight systems.

In Section 9 we show how to turn D.X / into a ribbon category, thereby giving another
way to explain the associated invariants of links. The paper concludes in Section 10 with
a summary of the analogy between the world of Lie algebras and complex symplectic
manifolds, which should extend to an analogy between Chern–Simons TQFT and
Rozansky–Witten TQFT.
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1 Lie algebra weight systems

We begin with a brief description of the algebra A of Jacobi diagrams used in Vassiliev
theory, and of how it is studied using weight systems arising from finite-dimensional
metric Lie algebras. The more involved parts of the theory are deferred until Section 3.
Apart from our grading convention, this is all standard; see Bar-Natan [3].

1.1 Jacobi diagrams

The Kontsevich integral is an invariant of framed oriented knots in S3 . It takes values
in the complex, graded, algebra A of Jacobi diagrams defined as follows. Consider
all isomorphism classes of connected trivalent graphs containing a preferred oriented
circle and with a choice of cyclic orientation at each vertex not on the preferred circle.
(The ones on the circle are canonically oriented because the circle is oriented.) Define
A to be the complex span of such classes, quotiented by the vertex-antisymmetry, and
IHX relations, pictured below. When the IHX relation involves an edge in the preferred
circle it is called the STU relation. In this paper we will grade A by the total number
of vertices of the graph, which is even. It is important to note that this is twice the
conventional grading.

IHX: � C D 0

STU: � C D 0

Such graphs are usually described using planar pictures, in which the preferred circle
is drawn as an external loop, and the rest of the graph is inscribed. One thinks of it
as a graph “with legs” which is attached to the external circle. One useful function of
such a planar projection is that every vertex may be given the canonical “anticlockwise”
orientation, so the orientations need not be drawn explicitly. Any oriented abstract
graph may be drawn in such a way. The antisymmetry relation then can be denoted by
the following picture:

D �
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The space A is a commutative algebra, whose product # is given by connect-summing
diagrams arbitrarily along their preferred oriented circles.

1.2 Lie algebra weight systems

To obtain numerical knot invariants from the Kontsevich integral, or simply to study
the infinite-dimensional space A, it is necessary to construct linear maps from A to
some better understood rational vector space such as Q. (In fact we will typically work
with complex vector spaces in this paper.) Such a map is called a weight system.

The simplest way to obtain a weight system taking values in C is to pick a finite-
dimensional Lie algebra g with a metric b (a nondegenerate invariant symmetric
bilinear form), and a finite-dimensional representation V of g. This information is
completely encoded by the following three g–module maps:

aD Œ�;��W g˝ g! g; bW g˝ g!C; aV W V ˝ g! V:

Since b induces an isomorphism gŠ g� , we may rewrite the Lie bracket as a skew
trilinear form and think of it as a tensor f 2

V
3g� . Additionally, we may “invert” the

metric to define a Casimir element c 2 S2g. The action aV is usually thought of as a
tensor in V �˝V ˝ g� .

Now, a graph in A defines a way of contracting together these tensors to obtain a scalar
in C . Simply insert f at the internal vertices, aV at the external vertices, and c on the
internal edges, and contract the g–g� pairs and the V –V � pairs as indicated by the
graph. The vertex-orientation corresponds precisely to the information needed to insert
f at a vertex; without it there would be a sign ambiguity. The symmetry of c means
that no orientation on the edge is required. It is easy now to check that the relations
in A are satisfied by this assignment, and that the weight system wg;V W A! C is
well-defined.

2 Rozansky–Witten weight systems

In this section we explain, following Kapranov [20], a construction via hermitian
differential geometry of weight systems from complex symplectic manifolds. We are
not actually going to use this approach in the rest of the paper, but it’s likely that at first
sight it will be more illuminating than the later sheaf cohomology approach; in any
case, Kapranov’s paper is a little terse, and we feel it is worthwhile to expand on his
construction. Actually, his demonstration of the Lie structure only works for Kähler
manifolds, so by extending this to all complex manifolds we are tidying up a little too.
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2.1 Chern–Weil theory

In this context, it is natural to consider Rozansky–Witten theory as an variant of Chern–
Weil theory. Instead of using the curvature of a smooth connection on a smooth complex
vector bundle to give invariants in the de Rham cohomology of the base manifold, we
will use a the curvature of a hermitian connection on a holomorphic vector bundle to
give invariants in the Dolbeault cohomology of the base complex symplectic manifold.

Recall that if E is a smooth complex vector bundle over the smooth manifold X

and �p.X IE/ is the space of smooth p–forms with values in E , then there is no
canonical choice of differential on ��.X IE/. But if we pick a smooth connection
on E , that is a covariant derivative rW �0.X IE/ ! �1.X IE/, then we induce
operators rW �p.X IE/!�pC1.X IE/. It is a standard fact that the composite r2

is given by wedging with the curvature two-form F 2 �2.X IEnd.E//. One can
then use GL.E/–invariant polynomials in F to define cohomology classes which
are independent of the choice of connection. When the bundle E has rank r these
polynomials are spanned by the functions F 7! tr.Fd /, for 0� d � r . The resulting
cohomological invariants of E , suitably normalised, define its Chern classes modulo
torsion; more precisely, the class

chd .E/D

�
1

d!
tr
�
�F

2� i

�d �
2H 2d .X IQ/

is the d –th part of the Chern character of E .

For a holomorphic bundle E on a complex manifold X there is a preferred class
of connections coming from smooth hermitian metrics on the bundle. These define
curvature forms of type .1; 1/. Now an End.E/–valued .1; 1/–form can also be
thought of as a .T �˝ End.E//–valued .0; 1/–form, where T � is the holomorphic
cotangent bundle of X . After this identification we are free to use more complicated
operations to combine the curvature with itself (as well as with the curvature of the
holomorphic tangent bundle and a holomorphic symplectic form, if available), because
the curvature now has three tensorial “indices” rather than the original two. The
different possible combinations, which replace the invariant polynomials used above,
are in fact parametrised by Jacobi diagrams such as those defining A.

2.2 Curvature of a holomorphic bundle

In order to fix the notation, let us recall the basics of complex differential geometry. If
X is a complex manifold then one may decompose the complexified tangent bundle into
holomorphic and antiholomorphic parts: TRX ˝CŠ T ˚ xT . The exterior differential
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likewise splits as d D @Cx@ and the complexified de Rham complex .��.X IC/; d/
may be refined to obtain the Dolbeault complex .��;�.X IC/; x@/, with cohomology
H
�;�
x@
.X IC/. (If X has a Kähler metric then these Dolbeault cohomology groups may

be identified with subspaces of the complexified de Rham cohomology of X , via the
Hodge decomposition, but we will not usually assume X is Kähler in what follows.)

Unlike in the smooth case, if E is a holomorphic vector bundle on X , then there is a
canonical operator x@ on the spaces of smooth E–valued forms �p;q.X IE/. To define
it, write a form locally in terms of a basis of holomorphic sections of E , and apply
the usual Dolbeault x@ operator to the smooth-form coordinates; one obtains a complex
with cohomology H

�;�
x@
.X IE/.

A smooth connection on a holomorphic bundle E , thought of as a covariant derivative
rW �0.X IE/!�1.X IE/, splits into pieces of type .1; 0/ and type .0; 1/. It is said
to be compatible with the holomorphic structure on E if its .0; 1/ part equals the
canonical x@ operator of E . One may then write r D x@Cr1;0 , the last term being a
connection of type .1; 0/, which satisfies a version of the usual Leibniz rule in which
@ replaces d . The resulting curvature two-form F 2�2.X IEnd.E// has no part of
type .0; 2/, because F D .x@Cr1;0/2 and x@2 D 0. In local coordinates, if one writes
the covariant derivative operator r as d CA for some 1–form A 2�1.X IEnd.E//,
this compatibility amounts to saying that A is of type .1; 0/.

If E has a smooth hermitian metric h then we may further require that r is compatible
with h by imposing that for all sections s; t 2�0.X IE/,

dh.s; t/D h.rs; t/C h.s;rt/:

Computing d of this formula using a basis of local covariant-constant sections shows
that the curvature F Dr2 is of type .1; 1/ (and in fact purely imaginary). Therefore
.r1;0/2 D 0 and we can write the operator F as r1;0x@Cx@r1;0 or even as rx@Cx@r .
This second form will be used below. Varying the hermitian form alters the form F by
a x@–coboundary.

If two bundles E1;E2 have connections, then there is an induced connection on
E1˝E2 given by the Leibniz rule, and the resulting curvature is

FE1˝E2
D FE1

˝ idC id˝FE2
:

Similarly, a connection on a bundle E induces one on its dual E� by the formula

hr�; siC h�;rsi D dh�; si;

where s is a section of E , � is a section of E� and the brackets indicate the contractions
to complex valued forms on X . It is useful to think in terms of operators on the space
of sections of E and write FE�� D�� ıFE .
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The Bianchi identity is often written rFD0. The operator rDrEnd.E/ is the covariant
derivative on sections of the bundle End.E/ induced by the original connection r
on E . As an operator on �0.X IE/, rEnd.E/F DrE ıF �F ırE , so its vanishing
amounts to nothing more than the fact that the operators F Dr2

E
and rE commute. In

the holomorphic context, the .1; 0/ part of the identity becomes the equation x@F D 0.

2.3 Complex manifolds and the Jacobi identity

Kapranov discovered that the curvature of a holomorphic bundle on a complex manifold
satisfies a kind of Jacobi identity. This fact (which has nothing to do with hyperkähler
or complex symplectic geometry) is absolutely basic to Rozansky–Witten theory.

Suppose E is a holomorphic bundle on X , with associated Dolbeault operator x@E .
Pick a smooth hermitian metric on E with associated connection rE and curvature
form FE 2 �

1;1.X;End.E//. Do the same for the holomorphic tangent bundle T .
We will from now on drop the redundant “X ” from notation such as ��.X IE/.

We want to think of the curvature as living in a slightly different space. Let ‚ denote
any identification of the form �p;q.�/Š�0;q.

V
p.T �/˝�/. Here we think of the

right hand side as a subspace of �0;q..T �/˝p ˝�/, and explicitly (this will affect
signs in an inevitably messy way) set ‚.dxzI ^ dzJ ˝ s/D dxzI ˝ dzJ ˝ s . Define
RE D‚FE 2�

0;1.T �˝End.E//; this form will also be referred to as the curvature.
Since FE is x@–closed, so is RE , as the appropriate x@ operators commute with ‚.
Define RT similarly.

Kapranov’s result is that a certain three-term quadratic relation in the tensors RE ;RT

is a x@–coboundary. At the level of cohomology it will become the STU relation of
Vassiliev theory, and in the special case EDT the IHX relation. Define three elements
of �0;2.T �˝ T �˝ End.E// called RE ıS RT ;RE ıT RE ;RE ıU RE by taking
the appropriate wedge products of 1–forms and contracting indices according to the
three graphs shown below.

T W U W S W

Explicitly, applying these elements to sections t1 , t2 and e gives elements of �0;2.E/

which may be written RE.RT .t1; t2/; e/;RE.t1;RE.t2; e//;RE.t2;RE.t1; e//.
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Lemma 2.1 (STU relation) If E is a holomorphic bundle over the complex manifold
X , then in �0;2.T �˝T �˝End.E// we have the coboundary formula

RE ıT RE CRE ıU RE CRE ıS RT D�
x@.‚rRE/:

Proof Via the Leibniz formula we obtain the operator identity

FT �˝End.E/ D FT �˝E�˝E D FT � ˝ id˝ idC id˝FE� ˝ idC id˝ id˝FE ;

so that composing with RE and evaluating on sections t; e of T;E we have in �1;2.E/

the identity

.FT �˝End.E/RE/.t; e/D�RE.FT t; e/�RE.t;FEe/CFE.RE.t; e//:

(The signs come from the curvature of the dual bundle; switching the order of 2–form
and 1–form does not give signs.) Now applying ‚ (carefully) to obtain an identity in
�0;2.T �˝T �˝End.E// gives

�‚.FT �˝End.E/RE/DRE ıS RT CRE ıT RE CRE ıU RE :

The result now follows on rewriting the left-hand side using FRE D .x@rCrx@/RE D

x@.rRE/ (because RE is x@–closed) and the fact that ‚ commutes with x@.

Just as important from the point of view of constructing weight systems is the symmetry
of the curvature form RT of the tangent bundle. In fact there are two separate symme-
tries: the first comes from considering the torsion of the connection on T , while the
second appears in the presence of a holomorphic symplectic form, and will be studied
in the next section. Kapranov assumes in his paper that the hermitian metric on X is
Kähler, so that the torsion of rT vanishes (this is one definition of a Kähler metric, in
fact). But the next proposition shows that vanishing of the torsion is unnecessary; one
no longer has an exact symmetry, but symmetry modulo coboundaries, which is still
perfectly acceptable to us.

If r is a smooth connection on the real tangent bundle TR of a smooth manifold, then
the torsion is a 2–form with values in TR given by the formula

�.t1; t2/Drt1
t2�rt2

t1� Œt1; t2�:

For a complex manifold with a smooth hermitian connection r on its holomorphic
tangent bundle T , we can tensor over R with C to obtain a connection all of T Œ�1�CD

T ˚ xT , and use the same formula to define the torsion � 2 �2.TC/. The part �1;0

with values in T turns out to be of type .2; 0/.
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Proposition 2.2 (Partial symmetry) The curvature form RT is symmetric in its two
inputs, up to a x@–coboundary. Specifically,

RT � � ıRT D
x@.‚�1;0/

where ‚�1;0 2�0;0.T �˝T �˝T / is a version of the torsion and � is the permutation
of the two T � factors.

Proof For arbitrary smooth sections t1; t2; t3 of TC we have the straightforward
identityX

F.t1; t2/t3 D
X

dt1
�.t2; t3/C

X
�.t1; Œt2; t3�/D .r�/.t1; t2; t3/;

all sums being over cyclic permutations of the three vector fields. (In the Levi-Civita
case, the vanishing of the right-hand side implies one of the symmetries of the Riemann
curvature.) Now assume t1; t3 are of type .1; 0/ while t2 is of type .0; 1/, and look at
the type .1; 0/ part of this equation:

F.t1; t2/t3CF.t2; t3/t1 D .r�
1;0/.t1; t2; t3/D .x@�

1;0/.t1; t2; t3/:

Applying ‚ we can have an identity in �0;1.T � ˝ T �/ which when evaluated on
t2; t1; t3 says that

RT .t2/.t1; t3/�RT .t2/.t3; t1/D‚.x@�
1;0/.t2/.t1; t3/:

Remark 2.3 The exterior product of forms followed by contraction with RT defines a
degree-one bilinear product on the Dolbeault complex �0;�.T /. This operation satisfies
the graded Jacobi identity up to a coboundary, and in the Kähler case it is exactly
symmetric, making it an “odd Lie bracket up to homotopy”. Kapranov shows that
together with higher-order derivatives of the curvature, it makes the Dolbeault complex
�0;�.T / into an L1–algebra. In the non-Kähler case, the above lemma suggests
that there is an even weaker kind of infinity-structure in which there are also higher
homotopies (controlled by derivatives of the torsion) arising from noncommutativity of
the bracket. Such structures are beautiful and interesting, but we will not need them in
this paper.

2.4 Complex symplectic manifolds

As we have seen, the curvature of a holomorphic vector bundle has a kind of intrinsic
Jacobi identity property. To construct weight systems we also need a metric of some
kind, and in keeping with the “switch of statistics” that has replaced a skew Lie bracket
by a symmetric curvature tensor, we seek a skew rather than symmetric nondegenerate
form.
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A complex symplectic manifold is an (even-dimensional) complex manifold X 2n

together with a nondegenerate holomorphic two-form ! 2 �0.
V

2T �/. The nonde-
generacy implies that ! defines an isomorphism of holomorphic bundles T Š T � .
(An obvious topological obstruction to existence is therefore the vanishing of the odd
rational Chern classes of X .)

Using this isomorphism, we can convert the curvature RT 2�
0;1.T �˝End.T // into

a form CT 2�
0;1.T �˝T �˝T �/:

CT .t1; t2; t3/D !.RT .t1; t2/; t3/:

Since ! is holomorphic, CT too is x@–closed.

Lemma 2.4 (Full symmetry of curvature) The curvature form

CT 2�
0;1.T �˝T �˝T �/

of a complex symplectic manifold is symmetric in its three factors, up to x@–coboundaries.

Proof We already have such symmetry in the first two factors. To show symmetry
in the second and third, consider FT �˝T �! . By the Leibniz rule and the rule for
curvature of dual bundles we can write

FT �˝T �! D�! ı .FT ˝ idT /�! ı .idT ˝FT /:

Applying ‚ and rewriting this identity in terms of elements of �0;1.T �˝T �˝T �/

gives
‚.x@.r!//D�CT CCT ı �23;

where �23 is the permutation of the last two inputs. The left-hand side is the coboundary
x@.‚.r!// and so the symmetry is proved. (Note that r came from an arbitrary choice
of hermitian metric on T ; there is no reason why r! should be zero.)

2.5 Rozansky–Witten weight systems

With the above preliminaries completed, we can now describe briefly the construction
of weight systems on the space A.

Theorem 2.5 If X is a complex symplectic manifold and E is a holomorphic vector
bundle on X , then there is a weight system

RWX ;E W A!H
0;�
x@
.X /

taking values in the Dolbeault cohomology of X .
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Proof If � is a 2v–vertex closed trivalent graph with ordered vertices and oriented
edges, then one can obtain a form in �0;2v.X / by a procedure like that of Section 1:
wedge/tensor one copy of CT for each vertex of � , and contract tensorially with one
copy of !�1 (that is, ! converted into a holomorphic section of T ˝ T ) for each
edge of � . Since all the elements in the construction are x@–closed, so is the result, by
the Leibniz formula. There is clearly a choice of how one attaches CT at a vertex –
a choice of correspondence between the three legs and the three copies of T � – but
differences alter the resulting form by a coboundary, because of the symmetry property
and the Leibniz formula. The choice of hermitian metric used to define CT similarly
only affects the result by a coboundary, so that the result is a well-defined element of
H

0;2v
x@

.X /. This basic construction clearly generalises to the case where the graph has
an oriented Wilson loop: the form RE is inserted at the vertices on the loop, which
are canonically oriented.

Reversing the orientation of any edge or swapping the order of two vertices negates
this element, because !�1 and the cup product of 1–forms are skew. (The following
example may help: If ˛; ˇ are 1–forms with values in vector space V;W , then
˛^ˇD��.ˇ^˛/, where � is the usual permutation. In particular ˛^˛D��.˛^˛/;
“˛ anticommutes with itself”.) Therefore the map is really well-defined on oriented
graphs, where an orientation is an ordering of the vertices and an orientation of the edges,
considered up to an even number of transpositions and reversals. The remarkable fact
is that this notion of orientation is canonically isomorphic to the standard convention
(from Section 1) on Jacobi diagrams, in which each vertex has a cyclic ordering of its
legs.

To see this, let V and E be, respectively, the sets of vertices and edges of � . Let F be
the set of all flags (half-edges) of � , and for each vertex v and for each edge e let Fv
and Fe be the obvious two- and three-element sets of incident flags. For any set S , use
the notation Det.S/ for the top exterior power Det.RS /, so that orienting a vertex or
an edge in the usual sense amounts to orienting the appropriate 1–dimensional vector
space Det.Fv/ or Det.Fe/. Orientations of graphs under the two different conventions
are measured by the spaces Det.V /˝

N
e Det.Fe/ and

N
v Det.Fv/.

The isomorphism now follows by combining three simple natural (equivariant) iso-
morphisms: (i) Det.F / Š Det.V /˝

N
v Det.Fv/; (ii) Det.F / Š

N
e Det.Fe/; and

(iii) Det2 is canonically trivial. The first two isomorphisms come from concatenating
triples of flags according to the vertex order, or pairs of flags according to an arbitrary
(irrelevant) edge order.

The fact that the construction respects the IHX and STU relations now follows from
the earlier proposition about the Jacobi identity for the curvature.
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Remark 2.6 This last check is actually quite nasty, because the two different orienta-
tion conventions we are considering do not agree locally, and the equivalence between
them is not so straightforward even globally. The categorical approach we adopt in
the second half of the paper has a technical advantage in that it matches the correct
orientation conventions locally, bypassing this annoying problem.

2.6 Examples

In many ways the best examples of complex symplectic manifolds are the hyperkähler
manifolds, which were the subject of Rozansky and Witten’s original work. A hy-
perkähler manifold is a real 4n–dimensional manifold with a Riemannian metric of
holonomy Sp.n/. Because this group is contained in GL.n;H/, one can introduce three
parallel (which implies integrable) almost complex structures I , J , and K satisfying
the usual quaternionic relation IJK D �1. Any imaginary unit quaternion q now
defines a complex structure (for which the metric is Kähler, with Kähler form !q ) and
which possesses a holomorphic symplectic form: one only needs to check for example
that the complex two-form ! D !J C i!K is I –holomorphic.

There is a partial converse: a compact complex symplectic manifold which is Kähler
has a hyperkähler metric, by Yau’s solution of the Calabi conjecture; see Beauville [6].
(This is a hard analytical existence theorem, and there is no known simple formula for
the metric.) Kapranov’s approach is therefore only really more general than Rozansky
and Witten’s if we are prepared to consider complex symplectic manifolds which are
noncompact, non-Kähler, or both. There are a few compact non-Kähler examples due
to Beauville and Guan [15], but there are plenty of noncompact hyperkähler manifolds
coming from complex Lie group coadjoint orbits, geometric moduli spaces, etc. (See
Hitchin [18].)

From the point of view of Vassiliev invariants, the compact case is (at least initially)
the most interesting, because for a compact complex symplectic manifold X of real
dimension 4n, one can obtain scalar-valued weight systems of degree 2n. To do
this, integrate the invariants lying in H

0;2n
x@

.X / against the holomorphic volume form
!n 2 H

2n;0
x@

.X /. Further, in the hyperkähler case, Sawon [37] used the interplay
between the Riemannian and hermitian constructions to show that these numbers are
invariant under deformations of the hyperkähler metric and of the complex structure
on X . He also performed some explicit calculations.

The current list of known compact hyperkähler manifolds is not very long. In dimension
four, the K3 surface and 4–torus are the only examples. Each of these generates, via
its Hilbert schemes of points (desingularised versions of its symmetric products), an
infinite family of further examples. These are all irreducible, having holonomy not
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contained in a proper subgroup of Sp.n/, and in particular not being products of lower
dimensional hyperkähler manifolds. The only other known irreducible examples were
both constructed by O’Grady [31; 32].

The relative paucity of examples – two countable families and some exceptions – might
therefore seem to undermine the scope of the Rozansky–Witten weight systems. But in
fact if one looks to Lie algebras one finds exactly the same situation – the two series of
types A and BCD , and a few exceptions! In this sense there are “at least as many”
Rozansky–Witten weight systems as Lie algebra ones. An obviously important issue is
whether the Rozansky–Witten weight systems are really new, lying outside the span of
the Lie algebra ones or not. Because of the difficulties in explicit calculation, we don’t
yet know the answer to this.

3 Lie algebra weight systems revisited

In this section we describe an alternative category-theoretic approach to the construction
of weight systems from metric Lie algebras. It was introduced by Vogel [41] and
Vaintrob [40], whose original motivation was to handle the weight systems arising from
metric Lie superalgebras.

For such an algebra, the tensors f and b used in Section 1.2 have both skew and
symmetric parts, leading to incompatibility with the standard orientation convention
for Jacobi diagrams. The problem can be fixed by picking a direction in the plane and
representing Jacobi diagrams always as Morsified planar graphs, rather than as abstract
graphs. The approach leads inevitably to the idea of constructing weight systems from
metric Lie algebras in any category for which the notion makes sense, and not just in
the category of (super)vector spaces. We will justify all this abstract nonsense later in
the paper by constructing interesting examples of such categories and Lie algebras.

3.1 Symmetric tensor categories

Here we will recall the standard definitions of symmetric tensor categories. For more
detail see Bakalov and Kirillov [2], Chari and Pressley [9] or Kassel [22].

A category C is a tensor (or monoidal) category if it comes with a functor ˝W C � C!C
whose associativity is implemented by a natural isomorphism ˆW ˝ ı .˝� id/ !
˝ı .id�˝/ satisfying the pentagon identity, and has a unit object 1 for tensor product,
again with appropriate natural isomorphisms. We will for the moment ignore all
these isomorphisms notationally, pretending that C is strictly associative, ie that these
isomorphisms are equalities.
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A symmetric tensor category is defined as follows. Let � be the standard flip functor
C � C ! C � C ; A˝B 7! B˝A. The tensor category C is symmetric if there is a
natural isomorphism � W ˝!˝ı � – giving an isomorphism �A;BW A˝B! B˝A

for A;B objects of C – satisfying �B;A ı�A;B D id and satisfying the hexagon relation

�A;B˝C D .idB˝�A;C / ı .�A;B˝ idC /:

The hexagon would be more visible if we hadn’t dropped the associators from the
notation. The natural isomorphism � is sometimes called the symmetry. The standard
example to keep in mind here is the category of supervector spaces, which is symmetric
but in a nontrivial way; the isomorphism � will handle all the signs for us.

The notion of duality between objects in a tensor category C is a little tricky. The basic
definitions are abstracted from properties of finite-dimensional vector spaces, but a
little more is required in order to control double duals properly. An object A� is a
right dual of an object A if there is a right evaluation �AW A�˝A! 1 and a right
co-evaluation �AW 1!A˝A� which satisfy

.idA˝�A/ ı .�A˝ idA/D idA

.�A˝ idA�/ ı .idA� ˝�A/D idA� :

Such an object is unique up to a canonical isomorphism. We can similarly define
a left dual �A with structural maps �0

A
W 1! �A˝A and �0

A
W A˝ �A! 1. A rigid

tensor category is one in which all objects have left and right duals. This is enough
to permit the construction of traces Hom.A;A/! Hom.1; 1/ on endomorphisms of
any object, the construction of adjoints of morphisms, and identifications such as
Hom.A˝B;C /Š Hom.A;C ˝B�/.

Most of the categories we will use in this paper will be at least additive (and probably
C–linear), having abelian groups (or complex vector spaces) for morphism sets, bilinear
composition, a direct sum operation ˚W C � C! C and a zero object 0.

3.2 Penrose calculus

An important tool is Penrose’s diagrammatic representation of the structure of a tensor
category by planar pictures. A tensor product of objects is represented by a collection of
labelled dots on a horizontal level; a morphism from one such to another is represented
by drawing, inside a horizontal strip whose top and bottom edges are labelled appropri-
ately, a box, labelled with the name of the morphism, and connected by strings from
its top and bottom edges to the object dots. Composition of morphisms is represented
by concatenation of diagrams moving up the page; tensor product of morphisms by
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horizontal juxtaposition. (If we were not assuming strict associativity then bracketings
of objects and explicit associator morphisms would also be required.)

Special structural morphisms in the category are represented using special pictures
as a short-hand for labelled boxes. The identity morphism on an object is always
represented by a vertical arc labelled with that object, and the other possible structural
morphisms are pictured below. The point of using these particular pictures is of course
that the rather complicated algebraic relations satisfied by the structural morphisms
now correspond to natural topological identities.

A

B

�

A B

�W A! B � W A˝B! B˝A

(a morphism) (the symmetry)

A A

A A

�AW A
�˝A! 1 �0

A
W A˝A�! 1 �AW 1!A˝A� �0

A
W 1!A�˝A

3.3 Lie algebras and modules

Here we take the usual definitions of a Lie algebra and a Lie algebra module and
abstract them from the category of vector spaces to an arbitrary additive symmetric
tensor category.

Let C be an additive symmetric tensor category. A Lie algebra in C is an object L

equipped with a bracket morphism ˛W L˝ L ! L which is skew-symmetric and
satisfies the Jacobi identity:

˛C˛ ı � D 0;

˛ ı .˛˝ id/C˛ ı .˛˝ id/ ı �123C˛ ı .˛˝ id/ ı �321 D 0;

where �123 and �321 denote the actions on L˝3 of the three-cycles in the symmetric
group S3 . Note that addition of morphisms makes sense because C is additive.

A (right) module over such a Lie algebra is an object M together with an action
morphism ˛M W M ˝L!M satisfying the identity

˛M ı .id˝˛/D ˛M ı .˛M ˝ id/�˛M ı .˛M ˝ id/ ı .id˝�/:
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Pictorially, the bracket and action are represented by the following diagrams, in a way
that turns the above identities into the antisymmetry, IHX and STU relations.

M

˛W L˝L!L ˛M W M ˝L!M

Note any right module M can be given a natural left module structure L̨M W L˝M !

M by L̨M D�˛M ı �L;M .

An L–module morphism is a morphism �W M !N between L–modules such that
� ı˛M D ˛N ı .�˝ id/. Pictorially this is shown below. The collection of L–modules
and L–morphisms form a category mod–L.

�
D

�

The tensor product of two L–modules is an L–module under a Leibniz rule such as
˛M˝N D .˛M ˝ id/ ı .id˝�/C id˝˛N , and therefore mod–L is a tensor-category.
The action on a tensor product is defined and notated as shown below. The crossings
have been drawn in a slightly non-Morse way here, but we hope that the meaning is
clear: they are � morphisms forming an essential part of the correct definition of the
action on tensor products.

D C C � � � C

A metric Lie algebra is a Lie algebra equipped with an abstracted version of a nonde-
generate symmetric invariant bilinear form. Thus, it comes with a metric morphism
ˇW L˝L! 1 and a Casimir  W 1!L˝L, each an L–module morphism satisfying
nondegeneracy and symmetry axioms:

.id˝ˇ/ ı . ˝ id/D idD .ˇ˝ id/ ı .id˝ /;

ˇ D ˇ ı �;  D  ı �:
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In pictures, cup and cap denote these morphisms:

ˇW L˝L! 1  W 1!L˝L

When C is a rigid category, the dual of a module may be made a module by forcing
the evaluation and coevaluation maps to be module maps. This is better defined by a
picture than by a formula:

D �

3.4 Weight systems

With this framework set up, we can state the theorem which will underlie our later
explicit construction of the Rozansky–Witten weight systems:

Theorem 3.1 [40; 41] Let C be a rigid, additive, symmetric tensor category, L a
metric Lie algebra in C , and M a dualizable module over L. Then there is a weight
system

wL;M W A! Hom.1; 1/:

Proof Given any Jacobi diagram in A, first draw it in the plane in a way compatible
with its orientation. Morsify it so that the critical points and trivalent vertices lie at
different levels, and so that the whole diagram is built from the generating morphisms
we gave earlier, together with the Lie bracket and module action. Now compose
the corresponding morphisms in C . The proof of independence of the Morse and
planar structures is the usual Reidemeister-move type argument, for which we refer to
Vaintrob [40].

4 Sheaves and derived categories

Our main goal in this paper is to reinterpret the Rozansky–Witten weight systems in the
context of the category-theoretic framework described above. The basic construction
will be to associate to any complex manifold X a symmetric tensor category D.X /

and a Lie algebra object L in D.X /.
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We begin in this section with a quick general explanation of the salient points about
derived categories and about sheaves. Useful references for derived categories are
Gelfand and Manin [13] and Richard Thomas [38]. For sheaves see Hartshorne [16]
and Kashiwara and Schapira [21].

4.1 Derived categories

Let C be an abelian category; recall that this is an additive category in which every
morphism has a kernel and a cokernel, and the two possible definitions of “image”
(cokernel of kernel, or kernel of cokernel) agree. The standard example is the category
of all (right, say) modules over a ring R, and in practice one may treat any abelian
category as being of this form. From C we can form the category Ch.C/ of chain
complexes of objects of C .

In homological algebra, one works primarily at the level of chain complexes, because
taking homology groups prematurely can destroy some of the information they contain.
For example, the homology-cohomology universal coefficient theorem shows that the
operation of replacing a complex by its homology does not commute with the operation
of taking the dual. When working in Ch.C/, it is clearly reasonable to identify chain-
homotopic maps and thereby to pass to a quotient homotopy category Ho.C/, whose
morphisms are the homotopy classes of maps between complexes.

But it is more sensible to regard in addition any quasi-isomorphism – a map between
complexes which induces isomorphisms on homology – as an isomorphism. Although
chain homotopy equivalences are certainly quasi-isomorphisms, the converse is not
true; there may remain in Ho.C/ quasi-isomorphisms without inverses. This can cause
problems: for example, we often want to view a module as “equivalent” to any of its
projective resolutions (quasi-isomorphic complexes of projective modules), but such
resolutions need not actually be homotopy-equivalent to the original module.

The derived category D.C/ is defined by formally inverting these inside Ho.C/: one in-
troduces a calculus of fractions f=g (for f any morphism and g a quasi-isomorphism)
essentially identical to the Ore localisation for noncommutative rings. Explicitly, any
morphism in D.C/ between the complexes A� and B� may be represented by a
diagram of each of the forms

A�
f
! C �

g
 B� and A�

g
 C �

f
! B�;

for some other complex C � .

Any functor defined on Ch.C/ which takes quasi-isomorphisms to isomorphisms – the
abelian-group-valued homology functors hi W Ch.C/! Ab being the obvious examples
– therefore factors through D.C/, and in fact this universal property characterises D.C/.
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Note that the objects of the derived category are the same as those of Ch.C/, and that
objects of the original category C may be identified with chain complexes whose only
nonzero term lies in degree 0, so that there is an “inclusion” functor C!D.C/.

In D.C/ there are shift functors written Œn�W D.C/!D.C/, for n 2Z. The functor Œn�
acts on a complex A� by shifting it n places to the left, so that A�Œn�i D AiCn and
the differential is d Œn�i D .�1/nd iCn . It acts on chain maps by shifting the constituent
maps compatibly. Any morphism f W A�!B� may be completed by a mapping cone
construction into a 3–periodic sequence

� � � !A�! B�! C �.f /!A�Œ1�! � � �

which becomes an exact sequence upon application of any functor HomD.C/.Z;�/,
and in particular upon taking cohomology. This shows that although D.C/ is not an
abelian category, it is what is known as a triangulated category.

4.2 Derived functors

We are particularly interested here in morphisms in the derived category and in the way
they compose. They turn out to be Ext–groups, with composition being the Yoneda
product. In other words, the derived category is the place one should work if one
wants to view and compose elements of a cohomology group like morphisms – which
is exactly what we propose to do to reformulate Kapranov’s construction of weight
systems.

To explain this we need to consider derived functors. Suppose F W C ! D is an
additive functor between abelian categories. Clearly it induces functors Ch.C/!Ch.C/
and Ho.C/! Ho.D/. But the obvious attempt to induce a functor D.F /W D.C/!
D.D/ between the derived categories fails, because F does not necessarily take quasi-
isomorphisms to quasi-isomorphisms. By considering mapping cones one can see that
this property is equivalent to F taking all acyclic complexes (those quasi-isomorphic
to zero) to acyclic complexes, which only holds for exact functors. To derive more
general functors we need to restrict the kinds of complex under consideration.

Recall that for any object A 2 C , the functor HomC.�;A/W Cop ! Ab is left-exact,
and that if it is also right-exact then A is called injective. Let Inj.C/ denote the full
subcategory of injective objects of C . If every object A 2 C has an injective resolution
– a quasi-isomorphism A! I� to a complex of injective objects I� 2 Ch.Inj.C// –
then we say that C has enough injectives.

Now any quasi-isomorphism out of an injective complex is a homotopy equivalence; that
is, we may construct its inverse in Ho.C/. Consequently, any two injective resolutions
of an object are homotopy-equivalent, and if C has enough injectives then there is an
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equivalence of categories between Ho.Inj.C// and D.C/. In this case one can define
the right-derived functor RF of F W C ! D by just replacing D.C/ by Ho.Inj.C//,
applying F to get to Ho.D/, and then passing to the quotient D.D/. Explicitly, if B�

is an object of D.C/, one simply replaces it by an injective resolution (well-defined up
to homotopy equivalence) and applies F to construct RF.B�/.

The classical derived functors RiF associated to F are just the composites of the
homology functors hi with RF . For the functor F D HomC.A;�/ applied to an
object B 2 C , we have RiF.B/D ExtiC.A;B/, because the procedure above agrees
with the traditional definition of the Ext–groups: namely, take an injective resolution
of B , apply HomC.A;�/, and take cohomology.

4.3 Morphisms in the derived category

Now we can explain the structure on the morphism sets in the derived category which
we need. The key fact is that for objects A;B in C we have

HomD.C/.A;BŒi �/D ExtiC.A;B/:

Here is a sketch proof. First replace B by an injective resolution I� , so that there
is the isomorphism HomD.C/.A;BŒi �/ D HomD.C/.A; I

�Œi �/. Now elements of this
latter group are represented a priori by diagrams A! C � I� whose second map is
a quasi-isomorphism; but because quasi-isomorphisms out of an injective complex are
invertible in Ho.C/, we only need to look at actual homotopy classes of maps A! I� .
Finally, chain homotopy classes of maps between chain complexes A�;B� are given
by the zeroth cohomology of the chain complex Hom�.A�;B�/. Taking the shift into
account gives the result.

One important consequence is that we see that C is embedded in D.C/ as a full subcat-
egory, because HomD.C/.A;B/D Ext0C.A;B/D HomC.A;B/ for objects A;B 2 C .

There is a generalisation of the principle: for general objects of D.C/, complexes
A�;B� , we have

HomD.C/.A
�;B�Œi �/D ExtiC.A

�;B�/

where the right-hand side is a “hyperext” group, computed by taking an injective
resolution of each of the terms of B� , applying Hom.A�;�/ and taking the total
cohomology of the resulting double complex.

It is also possible to show that the Yoneda product on Ext groups of objects of C

ExtiC.A;B/˝ExtjC.B;C /! ExtiCj
C .A;C /

corresponds to the composition of morphisms A! BŒi � and B! C Œj � in D.C/ that
one gets after applying the shift Œi � to the latter.
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4.4 Derived categories of coherent sheaves

In this section we will look specifically at the case of the derived category of OX –
modules on a complex manifold X .

Let X be a finite-dimensional complex manifold X and let OX be the structure sheaf,
that is its sheaf of germs of holomorphic functions. We are interested in the sheaves
taking into account the complex structure on X , these are the sheaves of OX –modules,
in other words sheaves E with a natural map of sheaves OX ˝C E! E. The obvious
example is the sheaf of germs of holomorphic sections of a holomorphic vector bundle.
This example is locally-free in the sense that any point has a neighbourhood U over
which the sections are isomorphic to the sheaf O˚k

U
, for some k . The converse also

holds: any locally-free sheaf is the sheaf of sections of a holomorphic vector bundle.

We restrict the class of sheaves further by considering coherent sheaves. A coherent
sheaf is a sheaf of OX –modules which is locally a quotient of a finite-rank locally-
free sheaf. On a smooth projective variety it actually has a global finite resolution
by locally-free sheaves. The coherent sheaves form an abelian category and it is the
bounded derived category of this that we refer to as the derived category of X and
denote simply by D.X /.

We will use letters such as E;F to denote locally-free sheaves, script letters such
as E;F for general coherent sheaves, and letters such as A;B for typical objects in
D.X /. The tangent sheaf of X will be written T and its dual T � or �. (We abuse
the star to indicate either the dual of a sheaf or a complex of sheaves; it should be clear
from the context which is intended.)

The sheaf cohomology groups H�.�/ are the classical derived functors of the global
section functor � D Hom.OX ;�/, which takes sheaves to abelian groups. Thus, one
computes H�.E/ by taking an injective resolution of E, applying � to obtain a chain
complex of abelian groups, and then taking the cohomology. It can be helpful to
have other points of view: one can compute them using Čech cohomology, and for
a holomorphic vector bundle one can also think differential-geometrically using the
Dolbeault isomorphism H q.E/ Š H

0;q
x@
.E/. For a compact complex manifold, all

cohomology groups are finite-dimensional.

In a similar vein, we can define the groups Ext�.E;F/ by applying the classical derived
functors of Hom.�;�/ to the pair E;F. They can also be computed by taking an
injective resolution of F.

We can use the description of morphism sets from the previous section to state the
following result which is a key point for the construction of the Rozansky–Witten
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weight systems: if X is a complex manifold and E is a coherent sheaf on X then
the sheaf cohomology groups of E are expressible as morphism sets in the derived
category as follows:

H q.E/D Extq.OX ;E/D HomD.X /.OX ;EŒq�/:

As another example of this logic, we can describe the cup product

H i.
Vj

T �/˝H k.
V

lT �/!H iCk.
V

jClT �/

as the Yoneda product operation which, given a pair of morphisms

OX !
V

j T �Œi �; OX !
V

lT �Œk�;

applies the functor �˝
V

j T �Œi � to the second, composes the two, and then performs
exterior multiplication

V
j T �˝

V
lT �!

V
jClT � .

Inside the category of coherent sheaves there is an internal hom-functor: we can define
Hom.E;F/ to be the sheaf of local homomorphisms E!F. This has a right derived
functor which could be written R Hom.�;�/ but which we will denote for simplicity by
Ext.�;�/. The complex of sheaves Ext.E ;F/ can be computed by taking a locally-free
resolution of E and applying Hom.�;F/.

The category of coherent sheaves is a tensor category under the product ˝OX
, and the

left derived functor of this product equips the derived category D.X / with the structure
of a symmetric tensor category. (We use an underline to distinguish the derived functor
˝ from the underived ˝ when applying it to complexes of sheaves, for which such
a distinction is necessary. But in a context where “everything is derived” we often
revert to the notation ˝.) The identity object of D.X / is the structure sheaf and the
symmetry � is the usual graded symmetry for chain complexes. In fact there is a rigid
structure: the dual of an object A is given by A� D Ext.A;OX /. With this definition,
the double dual functor is canonically isomorphic to the identity – something which
is not true for the naive (underived) dualising functor Hom.�;OX / defined on the
category of coherent sheaves.

4.5 Standard operations with sheaves

For full details of these operations and their relations, see Kashiwara and Schapira [21].

If f W X ! Y is a holomorphic map then there are induced pushforward f� and
pullback functors f � defined going between the categories of coherent sheaves of OX –
modules and OY –modules. These functor f � is left-adjoint to f� , and this relationship
is preserved on the level of the derived category: there are natural isomorphisms

HomD.X /.Lf
�A;B/Š HomD.Y /.A;Rf�B/:
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One of the fundamental properties of the derived category of coherent sheaves is that
Rf� also has a right-adjoint f !W D.Y /!D.X /, the Grothendieck–Verdier functor,
so that

HomD.X /.B; f
!A/Š HomD.Y /.Rf�B;A/:

This functor f ! can be defined as Lf �˝Lf �!Y ˝!X Œdim X � dim Y �, where !
denotes the canonical line bundle,

Vdim X T � .

In fact these adjunctions hold “internally” in the derived category: there are natural
isomorphisms

Rf� Ext.Lf �A;B/Š Ext.A;Rf�B/

Ext.Rf �B;A/ŠRf� Ext.B; f !A/:

Other useful functorial identities are the tensoriality of the pullback

Lf �.A˝A0/ŠLf �˝Lf �A0

and the projection formula

Rf�.B˝Lf �A/ŠRf�B˝A:

4.6 Integral transforms

Suppose we have two complex manifolds X and Y . Then there is a functor, integral
transform, from D.X �Y / to the category Fun.D.X /;D.Y // of functors D.X /!

D.Y //. Consider the diagram of projections:

X �Y

�X . & �Y

X Y

We can view an object P of D.X �Y / as a “correspondence” and define a functor
yP W D.X /!D.Y /, by pulling up to D.X �Y /, tensoring with P and then pushing

down to Y :
yP .A/DR�Y �.�

�
X .A/˝P /:

Here the pullback is exact and need not be derived. When yP is an equivalence of
categories, this is called a Fourier–Mukai transform.

Moreover, a morphism ‚W P ! Q in D.X � Y / gives a natural transformation �‚
between the functors yP and yQ. Explicitly, we get for each object A 2 D.X / a
morphism �‚AW R�Y �.�

�
X .A/˝P /!R�Y �.�

�
X .A/˝Q/
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by applying the functors ��
X
.A/˝� and then R�Y � to the morphism ‚. So indeed

we have a functorbW D.X �Y /!Fun.D.X /;D.Y //. In what follows we will usually
drop the hat notation, using for example the same notation for morphisms in D.X �Y /

and their induced natural transformations.

Let us give some simple easily-checked examples of integral transforms in the most
important case, when X D Y . In this case we denote the two projections by �1; �2 ,
and we also consider the diagonal map �W X !X �X .

The structure sheaf of the diagonal is an object O� 2D.X /, given by the pushforward
O� D��OX . This object gives the identity functor D.X /!D.X /. If we look at the
shifted version O�Œn� it defines the shift functor Œn�W D.X /!D.X /.

We can define similarly define objects T� D ��T and �� D ��� of D.X �X /,
which are sheaves supported on the diagonal. It is easy to see that ��

1
T ˝O� Š T� ,

and consequently (by means of the projection formula) that T� defines the “tensor
with T ” functor

id˝T W D.X /!D.X /:

A little more subtly, for any object A 2D.X / we can define the derived pushforward
R��A in D.X �X / and therefore get an integral transform D.X /!D.X /, which
turns out to be just the operation of derived tensor with A (in D.X /). First notice
that there is an isomorphism of functors: R�� Š ��

1
˝ O� . This follows from a

straight-forward use of the projection formula:

��i .�/˝O� Š �
�
i .�/˝R��OX ŠR��.�

���.�/˝OX /

ŠR��.idX .�/˝OX /ŠR��.�/:

Now we can see that indeed there is an isomorphism of functors 2R��A Š id˝A: just
apply again the projection formula:

2R��A.�/DR�2�.�
�
1 .�/˝R��A/ŠR�2�R��.�

���1 .�/˝A/

Š idX .idX .�/˝A/D .�/˝A:

5 The Atiyah class

The construction we are interested in rests on the idea of the Atiyah class, the sheaf-
theoretic (and ultimately derived-categorical) analogue of the curvature of a holomorphic
bundle. It is an extremely attractive and useful concept, so we devote this section to a
thorough explanation of its definition and properties.
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5.1 The Atiyah class for vector bundles

If E is a holomorphic vector bundle on a complex manifold X then we can construct
from a connection the curvature 1–form RE used in Section 2. Under the isomorphisms

H
0;1
x@
.E�˝E˝T �/ŠH 1.E�˝E˝T �/Š Ext1.E˝T;E/

we can view it as a class ˛E 2 Ext1.E˝T;E/. Atiyah [1] showed how to construct
this characteristic class in a purely sheaf-theoretic manner, giving it a more canonical
realisation.

One way to do this is as follows. If E is a vector bundle, the bundle of 1–jets of E is
the sheaf E˚E˝� with the twisted action of OX given by

f � .s; t ˝ �/D .f s; f t ˝ � C s˝ df /

which describes first-order Taylor expansions of sections of E . There is an exact
sequence

0!E˝�! JE!E! 0;

and the Atiyah class ˛E 2 Ext1.E;E˝�/ D Ext1.E˝ T;E/ is defined to be the
extension class. The extension class can be thought of as the obstruction to existence
of a section of the sequence – in the case of a locally-free sheaf E , such a thing would
be a holomorphic connection on E – and may be built in Čech cohomology using
the differences between local holomorphic splittings (which always exist). Another
way to construct it is to work purely homologically: tensoring the sequence with the
dual bundle E� gives another exact sequence whose associated long exact sequence
contains the map

H 0.E�˝E/
ı
!H 1.E�˝E˝�/;

and the Atiyah class is the image under ı of the identity section of End.E/.

The jet sequence/extension class definition also works for general coherent sheaves E,
but the Čech cohomology representation is more complicated in this case, since com-
puting the relevant Ext group requires a resolution. We give a general recipe later in
the section.

5.2 Properties of the Atiyah class

The first important property of the Atiyah class we need is its naturality. Suppose
f W E!F is a map of bundles, and regard each of ˛E and ˛F as a morphism in D.X /.
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Then f Œ1� ı˛E D ˛F ı .f ˝ idT /, in other words the diagram below commutes.

E˝T
˛E
�! EŒ1�

f ˝ idT # f Œ1� #

F ˝T
˛F
�! F Œ1�

One way to prove this is to look at the long exact sequences arising from F� tensor
the jet sequence of E , from E� tensor the jet sequence of E , and from F� tensor
the jet sequence of F . Since f induces maps of jet sequences, the latter two long
exact sequences have maps to the first one, and both identity elements map to f 2
H 0.E�˝F /, proving a commutativity which when written using morphisms is the
one above.

A second important property is the behaviour under tensor product. One can show that
the jet sequence for E˝F is the sum, in the sense of extensions, of the jet sequences
JE˝F CE˝JF . Thus the Atiyah class satisfies a Leibniz rule as one might expect,
which can be written sloppily as

˛E˝F D ˛E ˝ idF C idE ˝˛F

if we view this as an identity among morphisms T ˝E˝F ! E˝F Œ1�. Strictly
speaking, some permutations should be inserted to make this make sense, but there are
no sign problems until we deal with complexes of sheaves.

Finally, the Atiyah class of the tangent bundle ˛T has a symmetry and lies in fact
in Ext1.S2T;T /. This corresponds in differential geometry to the vanishing of the
torsion (see Section 2) and is explained elegantly by Kapranov as follows. If E is a
sheaf on X we can consider sheaves of E–torsors over X , meaning sheaves whose
local sections are affine spaces modelled on the abelian group of local sections of E .
Thus, the sheaf Conn of local holomorphic connections on X is a T �˝T �˝T –torsor.
The torsion defines a map from this sheaf to the sheaf of abelian groups

V
2T �˝T ,

and hence an exact sequence

0! Conntf ! Conn!
V

2T �˝T ! 0;

where the first term is the sheaf of torsion-free connections, a torsor over S2T �˝T .
Each torsor defines an obstruction element in H 1 of its appropriate model sheaf. These
elements are related by the long exact sequence arising from

0! S2T �˝T ! T �˝T �˝T !
V

2T �˝T ! 0;

so the fact that
V

2T �˝T is a trivial torsor means it represents the trivial element,
and so the Atiyah class comes from a symmetric element.
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5.3 Functorial definition of the Atiyah class

We will need to extend the definition of the Atiyah class from bundles to general
objects of the derived category. For each object A, we would like an element ˛A 2

Ext1.A˝T;A/, or equivalently a morphism in D.X /

˛AW A˝T !AŒ1�:

(Remark: Here and subsequently, if a tensor product here is obviously derived, as for
example when we are dealing with D.X / as a tensor category, we do not distinguish
it by an underline.) The naturality square from the previous section suggests that such
morphisms should form the components of a natural transformation

˛W id˝T ! idŒ1�

and this is exactly what we establish below. One way to do this is to build explicitly a
representative for complexes of locally-free sheaves, starting from the above version
for single sheaves. (We will shortly give a Čech description of the Atiyah class which
could be used to do this.) But there is a far more elegant way to construct ˛ directly.

Consider the product X �X , with the two projections �1; �2 and the diagonal ��
X �X . Associated to � is the ideal sheaf I� of holomorphic functions on X �X

vanishing on �, and there is an exact sequence

0! I�=I2
�! OX�X =I2

�! OX�X =I�! 0;

whose three terms are identifiable respectively as: the cotangent sheaf ��Š��1�˝O�
of �; the structure sheaf of the first infinitesimal neighbourhood of �; and the structure
sheaf O� of �. This sequence defines an extension class

˛ 2 Ext1X�X .O�; ��/D HomD.X�X /.O�; ��Œ1�/D HomD.X�X /.T�;O�Œ1�/:

Therefore it gives, by integral transform, a natural transformation

˛W id˝T ! idŒ1�

between the “tensor with T ” and “shift by 1” functors, as required.

We think of the morphism ˛ 2HomD.X�X /.T�;O�Œ1�/ as the “universal Atiyah class”
for X . We should check that from it we can indeed recapture the earlier definition of
the Atiyah class, in the case when ADE is a single locally-free sheaf. For this we
only need to observe that if we apply the functor R�2�.�

�
1

E˝�/ to the sequence

0!��! OX�X =I2
�! O�! 0
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we get the jet sequence for E . Consequently, the universal Atiyah class ˛W O�!��Œ1�,
which extends the first sequence into a distinguished triangle, is sent to the Atiyah
class ˛E , which extends the latter to a distinguished triangle. (Recall that derived
functors preserve distinguished triangles.)

The properties of the Atiyah class that we observed for bundles still hold in this more
general context. The naturality follows automatically from the construction via the
universal class ˛ . The Leibniz tensor product rule still holds for this generalised Atiyah
class, with the symmetry � taking care of the signs, and the symmetry property, which
is special to the tangent sheaf T , is unchanged.

5.4 Explicit representation of the Atiyah class

Although we have tried to define the Atiyah class in the most elegant way possible, the
abstract definition sometimes needs to be supplemented by a way of actually calculating
it in examples. We give here a rather long exposition of how to do this, and most
readers should probably ignore it, since in fact we only need this result at one point in
Section 7.

Recall the construction of the connecting homomorphism in the long exact sequence
of cohomology of sheaves. If

0!E! F !G! 0

is an exact sequence then we take injective resolutions of these three sheaves, obtaining
an exact sequence of complexes of sheaves

0! I�! J�!K�! 0;

apply the section functor � to get an exact sequence of complexes of abelian groups

0! �.I�/! �.J�/! �.K�/! 0:

Then the standard Snake lemma construction defines the coboundaries

H i.G/!H iC1.E/:

A much more tangible version is obtained by using Čech complexes instead. Fix some
good cover of X and let C �.E/D C 0.E/! C 1.E/! � � � be the associated Čech
complex. Then we have an exact sequence of complexes of abelian groups

0! C �.E/! C �.F /! C �.G/! 0:

Via the usual double complex proof (look at C �.I�/ where I� is an injective resolution
of E ) we know that Čech and sheaf cohomology are isomorphic, and since this
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isomorphism is functorial, it follows that the connecting homomorphisms coming from
this exact sequence coincide with the ones from the first construction via injective
resolutions.

If we now generalise to the case of hypercohomology, where we are computing the
cohomology of a complex E� of sheaves, the same arguments go through “with an
additional index” as follows. By definition we compute the hypercohomology by
forming a double complex of injective resolutions of the sheaves of E� , and taking
its total cohomology. But an alternative method of computation is to form a double
complex C �.E�/ of Čech complexes of the sheaves making up E� , and to take its
total cohomology. (The proof that these two methods are functorially isomorphic
uses a triple complex!) The connecting homomorphisms in the long exact sequence
of hypercohomology come from the Snake lemma applied to a three-term sequence
of double complexes (by using their total differentials), and we can construct them
similarly in Čech cohomology.

These principles give us a way to write down representatives of the Atiyah class. We
deal first with the case of a single locally-free sheaf E (this is very easy but it is a great
help in explaining the more complicated case) and then with a complex of locally-free
sheaves. As a general object in the derived category D.X / is quasi-isomorphic to such
a complex, this is all we ever need.

Recall that ˛E 2 Ext1.E;E˝�/ is an obstruction class: it is the image of the identity
under the connecting homomorphism

Ext0.E;E/! Ext1.E;E˝�/

coming from the long exact sequence of classical derived funtcors Exti.E;�/ applied
to the jet exact sequence

0!E˝�! JE!E! 0:

Let’s view Exti in this context as the composite of functors hi ıR HomD hi ıR� ı

R Hom (hi denotes, as usual, the i –th cohomology of a complex). Since E is locally-
free, the functor Hom.E;�/ is exact, and hence R Hom.E;E˝�/ is simply the sheaf
Hom.E;E˝�/. Therefore

Exti.E;E˝�/DH i.Hom.E;E˝�//

can be viewed as simply a sheaf cohomology group.
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The relevant connecting homomorphism ı comes from the diagram of Čech cochain
groups

0 ! C 0.Hom.E;E˝�// ! C 0.Hom.E;JE// ! C 0.Hom.E;E// ! 0

# # #

0 ! C 1.Hom.E;E˝�// ! C 1.Hom.E;JE// ! C 1.Hom.E;E// ! 0:

Let us compute ı.1/. Fix a good cover fUig of X over which E is locally trivial.
Begin with the 0–cochain f1igi in the top right (1i represents the identity of EjUi

).
We lift this to a cochain in the top middle. Since JE D E ˚E ˝� and the top
right map is just projection to E , the lift must be of the form f1i ˚ rigi , where
ri W EjUi

! .E˝�/jUi
satisfies (for f 2 �.OX ;Ui/ and s 2 �.E;Ui/)

ri.f � s/D f � risCf � ds

and is therefore a connection on E over Ui . Since E is trivial on each Ui , such a
thing exists.

Now applying the Čech coboundary and lifting to the bottom left corner, we end up
with the cochain fri � rj gij 2 C 1.Hom.E;E ˝�//. Clearly we have recovered
the fact that the Atiyah class is the obstruction to existence of a global holomorphic
connection.

When .E�; @/ is a complex of locally-free sheaves we modify this construction as
follows. Once more we view Exti as the composite of functors hi ıR HomD hi ıR� ı

R Hom. Since E�˝� is locally-free, the functor Hom.E�˝�;�/ (taking complexes
of sheaves to complexes of sheaves) is exact, and hence R Hom.E�;E�˝�/ is simply
the complex of sheaves Hom.E�;E�˝�/. Therefore

Exti.E�;E�˝�/DH i.Hom.E�;E�˝�//:

is just a hypercohomology group. It can be computed from the total cohomology
of the double complex C �.Hom.E�;E�˝�// (the Čech complex of a complex of
locally-free sheaves).

To compute the connecting homomorphism we use the analogue of the diagram above.
This time the groups are the total cochain groups of double complexes and the vertical
coboundary maps are the total differentials in these double complexes, namely d C

.�1/p@, where d is the Čech differential and @ the differential on the complex E� .
We begin with the collection of identity maps f1i

j g 2 C 0.Hom0.E�;E�//. (Here
the lower index denotes the set of the cover and the upper one the position in the
complex, so that 1i

j is the identity Ei.Uj /!Ei.Uj /.) For each sheaf Ei and open
set of the cover Uj we pick a local connection ri

j so that the lift of the identity is
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f1i
j ˚r

i
j g 2 C 0.Hom0.E�;JE�//. Now apply the vertical coboundary and lift into

the bottom left corner, namely

C 0.Hom1.E�;E�˝�//˚C 1.Hom0.E�;E�˝�//:

The result is that the Atiyah class is represented by

f@ri
j �r

i
j@gj˚fr

i
j �r

i
kgjk 2C 0.Hom1.E�;E�˝�//˚C 1.Hom0.E�;E�˝�//:

Of course in the special extremal case that E� is a single sheaf the first term drops out
and we get back the representative we already computed. In the other extremal case
where the E� are globally trivial (for example on an affine space), the second term
drops out and we just have @r �r@ as representative. We refer to this statement as
Markarian’s lemma 1, since it comes from his paper [28] (in which it is an exercise for
the reader).

Finally we observe that to compute the Atiyah class for an arbitrary (not locally-free)
sheaf or complex of sheaves E� we can just resolve first by a (double) complex of
locally-free ones and then use the above method to obtain a representative of the Atiyah
class.

5.5 Final comments on the Atiyah class

There are a few further comments we will need soon.

The Atiyah class of the diagonal Recall that the universal Atiyah class

˛ 2 Ext1X�X .T�;O�/

comes (after taking an adjoint) from the infinitesimal neighbourhood sequence

0!��! OX�X =I2
�! O�! 0:

This morphism is very closely related to the Atiyah class of O� itself, which lies in
Ext1X�X .O�˝TX�X ;O�/ and is (by definition) the extension class of the jet sequence

0! O�˝�X�X ! J.O�/! O�! 0:

We can decompose �X�X D �
�
1
�X ˚�

�
2
�X and therefore identify

Ext1X�X .O�˝TX�X ;O�/D Ext1X�X .O�˝�
�
1 T;O�/˚Ext1X�X .O�˝�

�
2 T;O�/

D Ext1X�X .T�;O�/˚Ext1X�X .T�;O�/:

It is easy to check that the jet sequence is a Baer sum of two copies of the infinitesimal
neighbourhood sequence and hence that under this identification the Atiyah class ˛O�
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is equal to the sum ˛˚˛ of two copies of the universal Atiyah class. This remark will
be important in understanding the STU relation for the universal Atiyah class ˛ .

Locality From abstract functoriality, or directly from the local representation of the
Atiyah class, one can see the following locality property: if E is an object of D.X /

and U �X is an open set, then the following diagram commutes:

E
˛X
! E˝�X

# #

i�E
˛U
! i�E˝�U

Functoriality under pullback A final property we need is about pullbacks of the
Atiyah class. This is that the diagram

f �E˝TY
f̨ �E

! f �EŒ1�

# #

f �E˝f �TX

f �.˛E/
! f �EŒ1�;

where the left-hand downward map is id˝df , commutes. As an example, consider the
Atiyah class ˛TX�X

2 Ext1.TX�X ˝TX�X ;TX�X /. It can obviously be decomposed
into two pieces via the usual splitting, with the first living in Ext1.��

1
T ˝��

1
T; ��

1
T /.

This piece equals ��
1
˛T , by the above naturality.

6 Rozansky–Witten weight systems revisited

In this section we bring together the abstract nonsense of the previous three sections
and show how it provides an elegant formulation of Rozansky–Witten weight systems.

6.1 The Lie algebra object of a complex manifold

The first main theorem of the paper is the following interpretation of a complex manifold
as “being” in some sense a Lie algebra.

Theorem 6.1 Suppose X is a complex manifold. Then the shifted tangent sheaf
T Œ�1� is a Lie algebra object in the derived category D.X /; furthermore, every object
in D.X / is canonically a module over T Œ�1�, and every morphism in D.X / is a
module map.
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Proof We just need to define the structure morphisms and check the identities for
them. To obtain the bracket, start with the Atiyah class of T , viewed as a morphism
˛T W T ˝T ! T Œ1�. Now apply an additional shift by Œ�2� to each side and the result
is the bracket

T Œ�1�˝T Œ�1�! T Œ�1�:

The module action for any object A 2D.X /, likewise, is just obtained by shifting the
Atiyah class ˛A by Œ�1�; it is a morphism

A˝T Œ�1�!A:

Skew-symmetry of the bracket comes because the unshifted Atiyah class is symmetric,
and the shifts of Œ�1� switch the parity. The Jacobi (IHX) identity and module (STU)
identity are just the fact that the two morphisms above are invariant under the action
of the Atiyah class, which is a consequence of its naturality. Explicitly, for the STU
case: consider the morphism ˛AW A˝T !AŒ1�. This commutes with taking Atiyah
classes on each side, according to the diagram

.A˝T /˝T
˛A˝T

�! .A˝T /Œ1�

˛A˝ id # ˛AŒ1� #

A˝T Œ1�
˛AŒ1�
�! AŒ2�:

Using the Leibniz rule to evaluate the top line, and putting in the shifts (this affects the
signs a little) gives the STU relation. It makes more sense with pictures; naturality and
the Leibniz rule for the Atiyah class amount to the identity

D

for any (boxed) morphism between two tensor products of objects in D.X /. Applying
this naturality to ˛AŒ�1� (the case where the box is actually a trivalent vertex) gives
the familiar

C D ;

and the IHX relation is the special case AD T Œ�1�. Note once more the way that the
signs are locally compatible with the “correct” vertex-oriented orientations of graphs.
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There are two things to note here. Firstly, the Lie algebra structure on X is nilpotent:
an n–fold composition defined using the Atiyah class (corresponding pictorially to
n–vertex tree with nC 1 inputs and 1 output) lies in Extn.T˝nC1;T /, which is zero
for n larger than the complex dimension of X .

Secondly, the bracket ˛W T ˝ T ! T Œ1� induces by composition a bracket on the
vector space

L
n Hom.OX ;T Œn�/ D H�.T /. One might regard this as the simplest

“computable”manifestation of the Atiyah class, but unfortunately it is zero. This is
because the composite of any two elements may be pictured as below, and sliding the
trivalent vertex down past one of the boxes creates the Atiyah class of the structure
sheaf (the unit object) which is zero.

6.2 Metric Lie algebras from complex symplectic manifolds

The second main theorem is the similar interpretation of complex symplectic manifolds
as “being” metric Lie algebras.

A complex symplectic form ! 2 H 0.T � ˝ T �/ may be rewritten as a morphism
T ˝T ! OX and then, by shifting by Œ�2�, as a symmetric morphism

T Œ�1�˝T Œ�1�! OX Œ�2�:

As a morphism in D.X /, this is invariant under the action of T Œ�1� and so satisfies
the identities stated in Section 3. However, it cannot quite be regarded as metric on
T Œ�1� because of the shifts Œ�2� appearing on the right-hand side. A metric on L

is meant to be a morphism L˝ L ! 1, which in our case would be a morphism
T Œ�1�˝T Œ�1�! OX , without the shift. To handle this difficulty we alter D.X / into
a category zD.X /: we define it to have the same objects as D.X / but redefine the
space of morphisms A! B to be the graded vector space Ext�.A;B/ instead of just
Ext0.A;B/. Composition of morphisms is defined in the obvious way and is graded
bilinear. After this extension, the above shifts cease to cause problems. In summary:

Theorem 6.2 If X is a complex symplectic manifold then T Œ�1� is a metric Lie
algebra in the extended derived category zD.X /, and zD.X / is a module category
over T Œ�1�.

Consequently we can apply the general categorical construction of weight systems
from Section 3:
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Theorem 6.3 If X is a complex symplectic manifold and A is an object of D.X /

then there is a weight system

wX ;AW A!H�.OX /:

Remark 6.4 A different way to define zD.X / is as follows. Embed D.X / in the
derived category Du.X / of unbounded complexes using the functor i D

L
n2N Œn�: an

object A 2D.X / is sent to i.A/D
L

n2N AŒn�. The set of morphisms i.A/! i.B/

in Du.X / is the rather large
L

m;n2N HomD.X /.AŒm�;BŒn�/, but the shift functor Œ1�
acts on this space, and the set of morphisms which commute with this action is the very
reasonable M

n2N

HomD.X /.A;BŒn�/D Ext�.A;B/:

By this procedure of essentially looking at the Œ1�–invariant subcategory of Du.X /,
we define zD.X /.

This odd-looking construction has the advantage of being exactly parallel to the
procedure of replacing the category of finite-dimensional complex g–modules with
modules over CŒŒ„��. One replaces every space V with the graded space

L
n2N V � „n

(D V ˝C CŒŒ„��), and uses only the maps of CŒŒ„�� modules, that is the „–equivariant
linear maps between these.

This construction is necessary in the theory of Vassiliev invariants if we want to obtain
from a Lie algebra g a weight system defined on the graded completion of A. In
order to avoid convergence problems we have to multiply the Casimir element by
an indeterminate „2 and the metric by „�2 to obtain weight systems yA! QŒŒ„2��.
Salvaging some of the grading in this way is absolutely essential to the correspondence
between the Kontsevich integral and invariants coming from quantum groups, and to the
deformation of the category of representations of g via the Knizhnik–Zamolodchikov
equation. In Section 9 we will see the parallel deformation for zD.X /.

Remark 6.5 There are weaker geometrical structures we could consider. If X is a
holomorphic Casimir manifold, possessing a holomorphic bivector w 2H 0.ƒ2T / (not
required to be nondegenerate) then T Œ�1� is a Casimir Lie algebra in zD.X /, in an
analogous way. The Casimir is the symmetric morphism OX ! .T Œ�1�˝T Œ�1�/Œ2�.
We can also formulate the even weaker analogue of a vector space with a classical
r –matrix too: this is a complex manifold X with (for example) a sheaf E and an
element r 2 Ext�.E˝E;E˝E/ satisfying the 4T relation of Vassiliev theory. But this
is probably not very useful.
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6.3 The STU relation for the universal Atiyah class

We’ve seen that for any object A 2 D.X /, its Atiyah class ˛AW A˝ T Œ�1� ! A

together with that of the tangent sheaf ˛T W T Œ�1�˝T Œ�1�! T Œ�1� satisfy the STU
relation, which can be written nonpictorially as

˛A ı˛T D Œ˛A; ˛A� 2 HomD.X /.A˝T Œ�1�˝T Œ�1�;A/:

This strongly suggests that the universal Atiyah class morphism ˛W T�Œ�1�! O� in
D.X �X /, together with the pullback ��.˛T /W �

�T Œ�1�˝ ��T Œ�1�! ��T Œ�1�

(the sources of the above morphisms), should satisfy the corresponding “universal”
relation

˛ ı��.˛T /D Œ˛; ˛� 2 HomD.X�X /.O�˝�
�T Œ�1�˝��T Œ�1�;O�/:

This is in fact the case because of the relation between ˛ and the Atiyah class of O� .
Certainly we have the identity

Œ˛O�
; ˛O�

�D ˛O�
ı˛TX�X

;

and if we extract the first component parts of these identities under the usual splitting
of TX�X we get the desired equality.

7 The symmetric and universal enveloping algebras of T Œ�1�

Let g be a Lie algebra. The symmetric algebra S.g/ and the universal enveloping
algebra U.g/ are defined as quotients of the tensor algebra T .g/D

L
g˝n :

S.g/ WD T .g/=hx˝y �y˝xi; U.g/ WD T .g/=hŒx;y��x˝yCy˝xi:

Each inherits an associative algebra structure and g–module structure from the tensor
algebra; the symmetric algebra also inherits a grading. The universal enveloping
algebra has a universal property for Lie algebra homomorphisms from g into associative
algebras, and the representation theory of U.g/ coincides with that of g.

Via symmetrization there is a splitting S.g/ ,! T .g/ and composing this with the
quotient map T .g/ � U.g/ gives a vector space isomorphism called the Poincaré–
Birkhoff–Witt map:

PBWW S.g/! U.g/:

This is a g–module map, so it induces a vector space isomorphism on the invariant
parts:

PBWW S.g/g Š U.g/g:
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We have seen that the object LD T Œ�1� is a Lie algebra for any complex manifold
and that D.X / is a category of modules over L. We now pursue this analogy further:
we construct objects S and U , the symmetric and universal enveloping algebras of L,
and a PBW isomorphism between them. The third main theorem of the paper is:

Theorem 7.1 The object S D
L
.
V

kT /Œ�k� is the symmetric algebra of L, while
U D �� Ext.O�;O�/ is its universal enveloping algebra. These objects satisfy the
expected universal properties, and U acts on all objects of D.X / compatibly with the
action of L. There is a morphism PBWW S ! U , the PBW morphism, which is an
isomorphism of objects (but not of algebras) in D.X /.

The construction of S is straightforward, but verifying the properties of U is quite
difficult, and relies on some ideas of Markarian [28]. Căldăraru [8] independently
explored similar ideas, to a different purpose, and recently Ramadoss [33] studies a
similar problem.

To simplify notation, in this section all functors will be derived, so ˝ means ˝, f �

means Lf � , and f� means Rf� . (With this convention we could write Hom for Ext ,
but we won’t.) We will also write simply � for the projection �1W X �X !X .

7.1 The symmetric algebra

The symmetric power Sk.T Œ�1�/ is actually the object .
V

kT /Œ�k�, because the shift
Œ�1� changes the parity of the flip map � in D.X / and therefore changes symmetrisation
to antisymmetrisation. Thus, the symmetric algebra of T Œ�1� is the object

S D
M�V

kT
�
Œ�k�:

It is a finite sum and is equipped with the commutative algebra structure induced by
exterior multiplication. It is easy to see that it is category-theoretically the symmetric
algebra S.L/ of L. Firstly there is a canonical map L! S . Secondly, given any map
from L to a commutative algebra object A, we get a lift S !A by symmetrisation
(view

V
kT as a subsheaf of the tensor sheaf) followed by multiplication in the normal

way. This gives a commutative algebra homomorphism, uniquely determined by the
original L!A.

7.2 The universal enveloping algebra: plan of attack

The usual construction in the category of vector spaces builds U.g/ as a quotient
of T .g/. We cannot do the same construction in D.X / because it is not an abelian
category, merely triangulated. In any case, we want to have a reasonable description
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of the object U , not simply an abstract definition as a quotient. Our definition U D

�� Ext.O�;O�/ is quite explicit, but it is unfortunately relatively hard to show that
it really is the universal enveloping algebra of L, in the sense of category theory.
(While this isn’t really essential to our study of Rozansky–Witten invariants, it is worth
establishing in its own right and is conceptually important in studying the TQFT.)

Here are the steps we must take to prove the theorem.

(1) Show that U is an associative algebra object.

(2) Construct a natural map L! U which is a Lie algebra homomorphism (with
respect to the commutator bracket on U ).

(3) Show that the universal property holds: every Lie algebra morphism L! A

for some other associative algebra A extends (under L! U ) to an associative
algebra morphism U !A.

(4) Construct a map S ! U which is an isomorphism of objects in D.X /.

(5) Show that U acts on all objects in D.X /, compatibly (under L! U ) with the
action of L.

It is relatively straightforward to perform Steps (1), (2) and (5) and this is handled in
the next subsection.

Step (4), the construction of the PBW morphism, was done by Markarian [28] in
lemma 1 (“proof: left to reader.”) and definition-proposition 1 (“proof: local check is
enough.”). Not being experts, we didn’t find these exercises at all trivial, so we worked
out the details, the first in Section 5 (the local representation of the Atiyah class) and
the second below. (Although these are a bit long-winded, we felt it would be useful to
supply details as an aid to anyone else who has tried to understand Markarian’s paper.)

Step (3) is the most frustrating step: we know of no direct way of constructing the
requisite maps U !A. So instead we fall back on a rather abstract method of proof
which relies on Steps (1), (2) and (4) and a theorem of Hinich and Vaintrob. This is
contained in the penultimate subsection, after which there are some further remarks on
the structure of S and U .

7.3 The construction of U

We define U D �� Ext.O�;O�/, an object of D.X /.

Step (1) This object U is an associative algebra in D.X /. To see this, first observe that
AD Ext.O�;O�/ is an associative algebra in D.X �X /. If we apply the pushforward
to the multiplication map A˝A!A then we get a map

��.A˝A/! ��A
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which is not quite what we want. However, there is a natural map (the adjunction unit)

����A!A

in D.X �X / corresponding to the identity under the adjunction isomorphism

HomD.X�X /.�
���A;A/Š HomD.X /.��A; ��A/

and if we tensor this with itself we get a map

��.��A˝��A/D �
���A˝�

���A!A˝A

whereupon the adjunction isomorphism (reversed) gives us a map

��A˝��A! ��.A˝A/:

Precomposing with this gives us the required multiplication U ˝ U ! U . It is
straightforward to check that it is still associative and unital.

Step (2) Next, we define the canonical Lie algebra homomorphism  W L ! U .
Consider the universal Atiyah class morphism

˛ 2 HomD.X�X /.T�;O�Œ1�/Š HomD.X�X /.�
�T Œ�1�˝O�;O�/

in the adjoint form (moving O� to the RHS)

˛ 2 HomD.X�X /.�
�
1 T Œ�1�;Ext.O�;O�//

and apply the adjunction

HomD.X�X /.�
�
1 T Œ�1�;Ext.O�;O�//Š HomD.X /.T Œ�1�; �� Ext.O�;O�//

to get the required map  W T Œ�1�! �� Ext.O�;O�//.

We must show that this is a morphism of Lie algebras when U is given the commutator
bracket, that is that the diagram

T Œ�1�˝T Œ�1�
˝
! U ˝U

˛T # # Œ ; �

T Œ�1�

! U

commutes. We recall U D �� Ext.O�;O�/ and use again the adjunction

Hom.�;U /Š Hom.��.�/;Ext.O�;O�//

to compute the two sides of this square. Write E for Ext.O�;O�// as a notational
convenience.
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The adjoint to the composition around the top is

��T Œ�1�˝��T Œ�1�
��.˝/
! ��.��E˝��E/

Œ ; �
! E:

The right-hand map here, the commutator, is given in terms of the algebra structure
on U which actually comes from a similar adjunction, so it can be factorised

��.��E˝��E/D �
���E˝�

���E
p˝p
! E˝E! E

where p is the adjunction unit ����E! E. The composite ��T Œ�1�˝��T Œ�1�!

E˝ E obtained is by definition ˛ ˝ ˛ so the whole map can be thought of as the
commutator Œ˛; ˛�.

The lower side of the square is adjoint to

��T Œ�1�˝��T Œ�1�
��.˛T /
! ��T Œ�1�

˛
! E:

Now the equality of these two compositions is just the STU identity for the universal
Atiyah class, proved in the previous section.

Step (5) The object U acts on objects as follows. We define a morphism

O�˝�
�U ! O�

in D.X �X / by taking the composition

O�˝�
���E! O�˝E! O�

using the unit of the adjunction and the natural multiplication action of E on O� . This
morphism induces a natural transformation �˝U !� which makes the algebra U

act on D.X /.

This is compatible with the action of LD T Œ�1� on objects. To see this we need to
show that the diagram

O�˝�
�T Œ�1�

˛
! O�

id˝�� # #

O�˝U ! O�

commutes. But equivalently we can transfer the O� s to the other side and look at

��T Œ�1�
˛
! E

�� # #

����E ! E

whose commutativity is in fact the definition of  .
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7.4 The PBW isomorphism

We can finally construct the PBW isomorphism. Start with the canonical map  W L!U

coming from the Atiyah class. By tensoring it up in the normal way it extends to an
algebra homomorphism from the tensor algebra T .L/ to U , and by composing with
the (non-algebra-morphism) symmetrisation map S ! T .L/ we get our PBW map.

To prove that this is an isomorphism of objects of D.X /, we can work locally: such
objects are just complexes of sheaves, and a map is an isomorphism in D.X / if it
induces an isomorphism of cohomology sheaves. Isomorphisms of sheaves can of
course be checked locally in an affine patch of X . Let i W Y ,!X be an affine chart:
from the above remarks about locality of the Atiyah class (or by an abstract functorial
diagram-chase), we see that restricting PBWX W SX ! UX gives the corresponding
morphism PBWY W SY ! UY . So it is enough to show that the PBW morphism is an
isomorphism when X is affine.

To do this it helps to transfer from the category of coherent sheaves on X to the
equivalent category of (left) A–modules, where AD �.OX /. Of course OX becomes
the left regular module A, �X becomes the module of Kähler differentials �1

A
and TX

becomes the module of derivations Der.A;A/. The object S is therefore represented
by the exterior algebra

V
A Der.A;A/. (All tensor products in this section are over C

unless otherwise noted.)

Extending this dictionary, sheaves on X �X become A�A–bimodules, that is Ae –
modules, where Ae is the enveloping algebra A˝Aop . In particular we have that OX�X

corresponds to A˝A (the free A�A–bimodule of rank 1) whereas O� corresponds
to A as a bimodule. The cotangent sheaf �X�X corresponds to the bimodule

�1
Ae Š�

1
A˝A˚A˝�1

A;

where the two right-hand terms are of course the pullbacks ��
1
�X and ��

2
�X . Taking

pushforward .�1/� simply corresponds to forgetting the right A–module action of a
bimodule, making it just a left A–module.

Computing the object Ext.O�;O�/ is equivalent to computing the bimodule Ext.A;A/,
where the Ext here is the derived functor of internal hom in the category of A�A–
bimodules” (since A is commutative, the set of bimodule homomorphisms is itself a
bimodule). To compute it we can use a resolution of the first factor by free bimodules,
such as the Hochschild (bar) complex:

B.A/D !A˝n
!A˝n�1

! � � � !A˝A:
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Here the A˝n term is taken to be in degree 2� n, so we can in fact write

B�n.A/DA˝A˝n
˝A; n� 0:

(Again, the tensor products are over C and the action of Ae is on the outer factors).
The differentials are the usual Hochschild differentials:

@.a0˝ .a1˝ � � �˝ an/˝ anC1/D

nX
iD0

.�1/ia0˝ � � �˝ ai � aiC1˝ � � �˝ anC1:

The multiplication map B0.A/DA˝A!A gives the resolving quasi-isomorphism
B.A/!A.

The object Ext.A;A/ is thus represented by the complex of bimodules Hom.B.A/;A/,
but in order to see the algebra structure most naturally we should resolve the second
factor too, taking the quasi-isomorphic complex Hom.B.A/;B.A//. We are really
interested in the object U D �� Ext.A;A/, which corresponds to the complex of left
A–modules Hom.B.A/;B.A// (we just forget the right module structure).

Now we can calculate explicitly the canonical map  W T Œ�1�!�� Ext.A;A/, which is
the adjoint of the universal Atiyah class map ˛ . For this, we use Markarian’s lemma 1
(from Section 5).

Since the Hochschild complex corresponds to a complex of trivial sheaves on X �X

(remember that X is still assumed affine), each of them has a global flat connection,
namely the trivial connection. r D d . In the world of A � A–bimodules these
connections are given by the maps

rW B�n.A/! B�n.A/˝Ae �1
Ae

which, using the decomposition of the module �1
Ae , becomes

rW A˝A˝n
˝A! .�1

A˝A˝n
˝A/˚ .A˝A˝n

˝�1
A/

and, viewing the left-hand side as a free Ae –module with basis A˝n , is given by

r.a0˝ .a1˝ � � �˝ an/˝ anC1/

D da0˝ .a1˝ � � �˝ an/˝ anC1C a0˝ .a1˝ � � �˝ an/˝ danC1:

Now the Atiyah class of O� is represented by @r � r@, where @ represents the
Hochschild differential, and we compute explicitly the difference

.@r �r@/.a0˝ .a1˝ � � �˝ an/˝ anC1/:
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It’s easy to see that the terms coming from the Hochschild differential when 1� i �n�1

cancel out, leaving only the outer (i D 0; n) terms, and we get the answer

a0 � da1˝ a2˝ � � �˝ an˝ anC1C .�1/na0˝ a1˝ � � �˝ dan � anC1:

Since the actual universal Atiyah class ˛ is the part involving ��
1

T we get a represen-
tation of

˛ 2 HomAe .B.A/;B.A/˝Ae .�1
A˝AŒ1�//

given by

˛.a0˝ .a1˝ � � �˝ an/˝ anC1/D a0 � da1˝ .a2˝ � � �˝ an/˝ anC1:

Applying the adjunction we see that the map  W T ! U Œ1� is represented by the left
module morphism

Der.A;A/! Hom1.B.A/;B.A//

given by

 .�/.a0˝ .a1˝ � � �˝ an/˝ anC1/D a0 � �.a1/˝ .a2˝ � � �˝ an/˝ anC1:

It follows that ˝nW T˝n! Ext.O�;O�/Œn� is represented by a morphism
nO
A

Der.A;A/! Homn.B.A/;B.A//

such that

˝n.�1˝� � �˝�n/.a0˝.a1˝� � �˝an/˝anC1/Da0 ��1.a1/��2.a2/ � � � �n.an/˝anC1:

If we compose with the quasi-isomorphism Hom.B.A/;B.A//ŠHom.B.A/;A/ given
by composition on B0.A/ with the multiplication map, we see that ˝n.�1˝ � � �˝ �n/

lies in Hom.B�n.A/;A/ and is given by

a0˝ .a1˝ � � �˝ an/˝ anC1 7! a0 � �1.a1/ � �2.a2/ � � � �n.an/ � anC1

Finally we symmetrise over the X �i to obtain the map representing the degree n part
of PBW, V

nT Œ�n�! �� Ext.O�;O�/:

But HomAe .B.A/;A/ is the n–th Hochschild cochain group, and the symmetrised
map we obtain is just the standard Hochschild–Kostant–Rosenberg map which defines
an isomorphism on cohomology

HKRW
V

n
A

Der.A;A//!HH n.A;A/:

This ends the proof that the PBW map is an isomorphism.
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7.5 The universal property of U

To complete the proof of Step (3), we need the following theorem of Hinich and
Vaintrob [17].

Theorem 7.2 Let C be a linear tensor category admitting infinite direct sums and
symmetrisers. Let L be a Lie algebra in C . Then there exists a universal enveloping
algebra L! U.L/ of L in C . Furthermore there is a PBW isomorphism S Š U.L/.

Their proof of this theorem is essentially to start from the symmetric algebra S.L/,
which exists given the conditions on C , and then to redefine its product using a kind of
universal algebraic construction (and the language of operads). See also Deligne and
Morgan [10].

Assuming the properties already proved in steps 1, 2, 4 and this theorem, we can now
complete the proof of the universal property of our object U . By the Hinich–Vaintrob
theorem, we know that in D.X / a universal enveloping algebra U.L/ (with the desired
universal property) does exist. (We don’t need to worry about infinite direct sums: the
symmetric algebra in our case is a finite sum.) All we need to do is prove that our
object U is isomorphic, as an algebra, to the Hinich–Vaintrob object U.L/. This is
done by exploiting the universal property of U.L/ as follows.

Since U is an associative algebra and L! U is a Lie algebra homomorphism, this
map extends to an algebra homomorphism U.L/! U . If we can prove that this is an
isomorphism of objects in D.X / then we are done.

We have also the natural algebra homomorphism T .L/!U.L/ obtained by extending
L ! U.L/ to a map of algebras, and the symmetrisation morphism (viewing the
symmetric algebra as a subspace of the tensor algebra) S.L/! T .L/. Consider the
composition of these with our map U.L/! U :

S.L/! T .L/! U.L/! U:

The composite of the first two maps is the universal PBW isomorphism S Š U.L/

constructed by Hinich and Vaintrob. On the other hand, the composite of the latter two
morphisms is the natural map T .L/!U extending L!U to a map of algebras, and
thus the whole composition is by definition our PBW isomorphism S!U . Therefore
the final map U.L/! U is also an isomorphism.

7.6 Invariant parts

The PBW isomorphism between S and U restricts to their invariant parts. In standard
Lie theory the invariant part of a module can be thought of as V g ŠHomg.C;V /, and
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this gives the right way to generalise the notion to the categorical setting: the invariant
part of an object A 2D.X / is HomD.X /.OX ;A/, which is a cohomology space.

In our context we see that

Hom.OX ;S/DH�.
V
�T /

is the cohomology of polyvector fields on X , called HT�.X / by Kontsevich. The
degree k piece is

HT k.X /D
M

iCjDk

H i.
V

j T /:

It is also worth identifying the invariant part of the symmetric algebra of the dual �Œ1�
of the Lie algebra T Œ�1�, which is the usual Dolbeault cohomology of X but with a
grading shift: in this context its natural part of degree k is

H 0

�M
j

V
j T �ŒkC j �

�
D

M
i�jDk

H i.
V

j T �/:

There is an obvious “cap product” action of this cohomology ring on HT�.X /.

On the other hand, the invariant part of U is

HH�.X /D Ext�X�X .O�;O�/;

the Ext–algebra of the structure sheaf of the diagonal in X �X , with the Yoneda
product as algebra structure. This should be thought of as the Hochschild cohomology
of the manifold X : the usual definition of the Hochschild cohomology of an algebra A

is as Ext�A˝Aop.A;A/ – that is, the Ext–algebra in the category of A�A–bimodules,
and the above definition of HH�.X / is clearly the sheaf-theoretic analogue.

The PBW isomorphism between S and U induces an isomorphism HKRW HT�.X /Š
HH�.X /. This version of the Hochschild–Kostant–Rosenberg theorem is originally
due to Gerstenhaber and Schack [14]. Kontsevich showed how to alter it into an algebra
isomorphism, and we discuss this in Section 8.

Remark 7.3 Using Hinich and Vaintrob’s results [17], the Hochschild cohomology
HH�.X / can also be described “externally” as the quotient of

L
iCjDn H i.X;T˝j /

by relations saying that the action of the Atiyah class equals the commutator (ie the
relations for a universal enveloping algebra).
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7.7 Alternative approach to U

There is a slightly different way to define U using the Grothendieck–Verdier functor.
In some ways this is more natural, but it looks even more abstract.

Recall that �W X!X�X denotes the diagonal embedding and � W X�X!X denotes
projection onto the first factor. Then we can set U D�!O� . (Recall from Section 4.5
that �! is the right adjoint of �� .) Then we can see that there are isomorphisms of
functors:

�� Š O�˝�
�.�/; �!

Š �� Ext.O�;�/:

This follows from the projection formula and the fact that � ı�D id. We have

O�˝�
�.�/Š��.OX ˝�

���.�//Š��.�/:

So we can write �� as the composition .O�˝�/ı�� . By the uniqueness of adjoints we
can write the right adjoint �! as the composite of the right adjoints of the components,
viz:

�!
Š �� ı .Ext.O�;�//D �� Ext.O�;�/:

Note that the adjunctions, such as ���! ! id, translate into the composition of
adjunctions, such as O�˝�

��� Ext.O�;�/! O�˝Ext.O�;�/! id.

In this approach, to give the action of U via a natural transformation �˝U ! id,
it suffices to give a map ��U ! O� . As U D �!O� we take the adjunction
�W ���

!O�! O� . If U is thought of as �� Ext.O�;O�/ then the map is the compo-
sition O�˝�

��� Ext.O�;�/! O�˝Ext.O�;�/! id of the two basic adjunctions.

Similarly, the canonical Lie algebra homomorphism T Œ�1�! U can be defined as the
right adjoint of the universal Atiyah class morphism ˛W ��T Œ�1�! O� .

Remark 7.4 The associative algebra object U which acts on the objects of D.X /

has been constructed from functors on derived categories induced by the diagonal map
�W X!X �X and the projection map � W X �X!X . Starting with a finite group G

an analogous construction can be performed using functors on representation categories
induced by the diagonal map �W G!G �G and the projection map � W G �G!G ,
in this case the resulting algebra object in the representation category of G which acts
on everything in the category is nothing other than the group algebra of G , equipped
with the adjoint action. Details of this will appear elsewhere.
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8 Further weight systems

We now look at the roles played in Vassiliev theory by the symmetric and universal
enveloping algebras of a Lie algebra, and construct weight systems from complex
symplectic manifolds in this context. We begin by introducing a new space of diagrams
resembling A.

Define B to be the vector space spanned by not-necessarily connected unitrivalent
graphs with the same vertex-orientation convention at their trivalent vertices, and subject
to the antisymmetry and IHX relations as before.

Again we use the total number of trivalent and univalent vertices as grading, though
we can also bigrade the algebra and write Bv;l for the part with v internal trivalent
vertices, and l legs. The vector space B is naturally a commutative algebra via q, the
disjoint union of diagrams.

There is an isomorphism of graded, complex vector spaces

�W B!A

given by taking an l –legged diagram in B to the average of the l ! diagrams obtained
by attaching its legs in all possible orders to an oriented circle (see Bar-Natan [3]). The
isomorphism � is not an algebra isomorphism, so it is sometimes convenient to regard
B and A as one space, using �, which has two competing products. However there is
an interesting algebra isomorphism between A and B which is described below.

8.1 Further weight systems from Lie algebras

We can now construct further weight systems, and will encapsulate them all in the
following theorem. We give a proof in this familiar context, as this proof will go over
pretty much exactly to the complex symplectic context in Section 8.3.

Theorem 8.1 (See Bar-Natan [3].) Suppose that g is a finite-dimensional metric
Lie algebra. Let S.g/ be its symmetric algebra, and U.g/ be its universal enveloping
algebra.

(1) There is a graded, multiplicative weight system wgW B! S.g/g .

(2) There is a graded, multiplicative weight system wgW B! S.g�/g .
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(3) Given V a finite-dimensional representation of g, there is a multiplicative weight
system wV W A! End.V /; composing with the trace we get a weight system
wV W A!C .

(4) There is a multiplicative weight system wgW A ! U.g/g . If V is a finite-
dimensional representation of g then composing with the natural map U.g/g!

End.V / gives the weight system in (3) above.

(5) The maps � and PBW correspond in the sense that the following diagram
commutes:

B
�
�! A

wg # # wg

S.g/g
PBW
�! U.g/g

Proof These weight systems are all defined essentially by taking any Morse, planar
projection of a representing graph and viewing it as a morphism in the category of
g–modules. That it will be independent of the choice of projection and Morsification
is due precisely to the axioms of a Lie algebra object in a category and of modules
over it. This is the work of Vogel and Vaintrob. The work here is really in properly
identifying the target.

Parts (1) and (2) are straightforward. Given a diagram in B , represent it in the plane
with all legs pointing upwards (in case (2), point them downwards and make obvious
alterations). The legs will have to be ordered arbitrarily from left to right to do this.
The picture defines an element of Homg.C; T .g//; composing with the canonical map
T .g/! S.g/ gives a result independent of leg ordering. Multiplicativity in the first
case follows by placing diagrams side-by-side. In the second case, the target space can
be thought of as the algebra Homg.C;S.g�// and the map is multiplicative, but this is
less important.

For part (3), cut the diagram in A at some point of its oriented circle, and open it out
to an upward-oriented interval, with attached graph drawn to the right. This picture
defines an element of Homg.V;V /. The result is independent of the location of the
cut by the standard argument from Bar-Natan, which we draw here.

D C
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This expresses the fact that the “oval with legs” (representing any graph with legs) is
an L–module map.

D C

This follows by applying the Casimir and metric, and untangling the pictures suitably.
Note that although Homg.V;V / need not be a commutative algebra, the image of the
weight system is a commutative subalgebra.

Part (4) is only a little different. This time we cut the circle and draw the remaining
interval horizontally, pointing to the right, with the rest of the graph below it. Removing
the oriented interval gives a graph with legs ordered from left to right. This defines an
element of T .g/g which projects to something in U.g/g . The IHX relations in A are
clearly respected, and the STU relations also because of the universal property of the
canonical morphism g! U.g/. Independence of the point of cutting follows from the
same pictorial argument as above.

The comparison with part (3) arises as follows.

7!

Part (5) is now a straightforward check.

The above construction works for any metric Lie algebra object in a category, so the
case of complex symplectic manifolds will follow naturally. One point worth making is
that it is clear from this construction that the notion of “invariant part” of a module M

should be the hom-set HomL.1;M /.

8.2 The Duflo isomorphism and wheeling

We described earlier the PBW isomorphism between spaces of invariants S.g/g and
U.g/g . Each of these spaces is a commutative algebra, but the PBW map is not
generally an algebra isomorphism. There is however an algebra isomorphism, the Duflo
isomorphism, between S.g/g and U.g/g – for semisimple Lie algebras it is equivalent
to Harish-Chandra’s isomorphism, but in the more general form it is due to Duflo [12].
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To define it, consider the invariant polynomial function si.x/ D tr.ad.x/i/ on g as
an element of the dual symmetric algebra S i.g�/g . This space acts on S.g/g by the
symmetrised contraction map. We will think of it as a kind of cap product, and will
write f \� W S�.g/g! S��i.g/g for the action of f 2 S i.g�/g .

Define the modified Bernoulli numbers fb2ig
1
iD1

by the power series

1X
iD1

b2ix
2i
D

1

2
log

sinh.x=2/
x=2

;

and define the Duflo power series

j 1=2
D exp

X
b2is2i

in the completion of S.g�/g .

Remark 8.2 This function plays a very important role in the Weyl character formula,
amongst other things. For a semisimple Lie algebra we could identify the invariant
polynomials S i.g�/g with H 2i.BG/, so that si would correspond to i ! times the i –th
term of the Chern character of the vector bundle on BG corresponding to the adjoint
representation. In H�.BG/, it corresponds to the equivariant yA–genus of the complex
adjoint representation [7].

The Wheeling Theorem of Bar-Natan, Le and Thurston [5] is a strange and deep
property of the algebras A and B which corresponds to the Duflo isomorphism.

The algebra B acts on itself by a leg-gluing operation which we will here denote by a
“cap” notation. Thurston uses a “hat” or “differential operator” notation. This operation
is defined on diagrams C and D by

C \D D
X

all ways of joining all of the legs of C to some of the legs of D .

If C has more legs than D then, C\D is zero. The capping operation �\� W B˝B!
B is not a graded map, but if B is given an alternative “Euler characteristic” grading,
namely Bn D

L
l�vDn Bv;l , then � \� W B�˝B�! B� is graded.

Let wl denote the wheel with l legs and let � 2 B be the wheeling element given by
the following formula.

� WD expq

1X
iD1

b2iw2i 2 B:

It is in the subspace B0 , so that the wheeling map �\� W B�! B� is a graded map.
Note that although � really lives in the completion of B , there is no “convergence
problem” when we define the wheeling map.
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Theorem 8.3 (Wheeling theorem [5]) The composition of the wheeling map �\�
with the symmetrisation map is an algebra isomorphism B!A.

If g is a finite-dimensional metric Lie algebra then we can combine the weight systems
and the above isomorphisms into the following commutative diagram, whose top and
bottom rows are both algebra isomorphisms. (Note in particular that � maps to j 1=2 ,
a fact originally pointed out in [4].)

B �\�
�! B

�
�! A

# # #

S.g/g
j1=2\�
�! S.g/g

PBW
�! U.g/g

Note that this whole diagrammatic method could be used profitably for handling
higher graph cohomology and L1–algebras – Kapranov uses the language of operads.
However, for our present purposes, this extra structure is not important.

8.3 Further weight systems from complex symplectic manifolds

We can now translate Theorem 8.1 directly into the context of complex symplectic
manifolds. Thus the following theorem has a parallel proof to that of Theorem 8.1
using the structures discussed in the above subsection.

Theorem 8.4 Suppose .X; !/ is a complex symplectic manifold.

(1) There is a bigraded, multiplicative weight system RWX W B�;�!H�.
V
�T /.

(2) There is a bigraded, multiplicative weight system RWX
W B�;�!H�.

V
��/.

(3) Given an object A 2 zD.X /, there is a graded multiplicative weight system
A! Ext�.A;A/, and composing with the trace we get a weight system A!
H�.OX /.

(4) There is a graded, multiplicative weight system A! Ext�
D.X�X /

.O�;O�/ D

HH�.X /. If A 2 D.X / and we compose with the natural map HH�.X /!
HomD.X /.A;A/, we recapture the weight system from (3).

(5) The HKR map HT�.X /!HH�.X / induces the following commutative diagram
of vector spaces:

B
�
�! A

# #

HT�.X /
HKR
�! HH�.X /
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8.4 Wheels and wheeling for complex symplectic manifolds

The wheeling theorem for complex symplectic manifolds takes the following form:

Theorem 8.5 Let X be a complex symplectic manifold. Then there is a commutative
diagram

B �\�
�! B

�
�! A

# # #

HT�.X /
yA1=2\�
�! HT�.X /

HKR
�! HH�.X /

in which the two rows are algebra isomorphisms.

Proof The fact that the bottom line is an algebra isomorphism is due to Kontsevich [25].
Note that it holds for any complex manifold.

The intertwining weight system maps are only defined when the manifold is complex
symplectic. That the square on the left commutes follows from the following lemma,
independently computed by Hitchin and Sawon [19].

Lemma 8.6 RW X .�/D yA1=2.TX / 2
L

H 2k.
V

2kT �/.

Proof All we need is that an l –leg wheel wl , with its hub oriented and labelled by a
locally-free sheaf E and legs pointed downwards maps under the weight system to

RWX ;E.wl/D tr. zF l
E/ 2H l.

V
lT �/:

This is a restated lemma of Atiyah [1]: we are using the Dolbeault point of view, in
which zFE 2�

1;1.End.E// is the renormalised curvature form zFE D�1=2� iFE of
a smooth hermitian connection on E .

In particular, wheels in the honest algebra B correspond to the above case when
E D T Œ�1�. The only effect of the degree shift here is to make the trace negative
(it is really the supertrace of an odd object) and thus the l –wheel gives �l ! ch.TX /.
(We did not specify an orientation on the hub of the wheel, but we can introduce one
arbitrarily when comparing the definitions: odd wheels in B are zero, corresponding to
the vanishing of the odd Chern classes of a complex symplectic manifold.)

Now recall that � 2 B is defined as

�D exp
X

b2nw2n

with
X

b2nx2n
D

1

2
log

sinh.x=2/
x=2

:

Algebraic & Geometric Topology, Volume 10 (2010)



1512 Justin Roberts and Simon Willerton

Under the weight system, each 2k –wheel goes to a term � tr. zF2k/, where we take
trace in the fundamental representation. Because the weight system is multiplicative,
disjoint union becomes cup product: we get

exp tr�
1

2
log

sinh. zF=2/
zF=2

;

which is just the Chern–Weil definition of the yA1=2 .

It is worth pointing out that in general, a wheel whose hub is labelled by an object
A2D.X / maps to the characteristic class l ! chl.A/, by which we mean the alternating
sum of the terms chl.E/ for the sheaves in the complex A, multiplied by l !. Evaluations
of this nature will feature in our future work but are not needed for now.

Note that for a complex symplectic manifold, the yA and Todd classes are equal,
because T Š T � means that the line bundles appearing in the splitting principle occur
in conjugate pairs, and the first Chern class is therefore zero. But the yA class is the
correct one to use, as it appears in Kontsevich’s theorem, which holds for any complex
manifold (even if c1 is not zero).

The appearance of the class yA1=2 requires further investigation. Does it have a meaning
in index theory: for example, is there an interesting class of manifolds whose yA1=2 –
genus is integral? According to Sawon [37], it is not integral for compact hyperkähler
manifolds.

9 Ribbon categories and link invariants

In this section we combine the complex symplectic manifold weight systems with the
Kontsevich integral to obtain an interesting ribbon category, from which link invariants
may be obtained by the standard methods of Turaev [39].

9.1 Ribbon categories

In Section 3.1 we introduced symmetric tensor categories; braided tensor categories
are to the braid groups as symmetric tensor categories are to the symmetric groups. A
tensor category is braided if there is a natural isomorphism � , the braiding, between ˝
and ˝ı� (where � is the obvious flip functor C�C! C�C ), satisfying the hexagon
relation

�A;B˝C D .idB˝�A;C / ı .�A;B˝ idC /;
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where the component A˝B! B˝A of the natural isomorphism is written �A;B .
The hexagon would be more visible if we hadn’t dropped the associators from the
notation. The braiding depicted as follows:

A B

Combining the hexagon condition with naturality of � yields the Yang–Baxter (or braid,
or Reidemeister III) equation

.�B;C ˝ id/ ı .id˝�A;C / ı .�A;B˝ id/D .id˝�A;B/ ı .�A;C ˝ id/ ı .id˝�B;C /:

The reader is strongly encouraged to draw the picture. A symmetric tensor category is
a braided tensor category in which the square of � is the identity.

In a braided tensor category, there is an action of the n string braid group on the n–th
tensor power of any object. In a symmetric tensor category, this factors through an
action of the symmetric group.

A ribbon category (or balanced rigid braided tensor category) is a braided tensor
category with a twist � which is a natural automorphism of the identity functor that
commutes with duality and interacts with tensor product according to the formula

�A˝B D �B;A�A;B.�A˝ �B/:

Using this it is possible to make natural isomorphisms AŠA�� and A� Š �A in ways
compatible with tensor product, and which can be neglected notationally.

The idea behind ribbon categories is that morphisms are thought of as being two-sided
ribbons, rather than strings. The twist � represents a full-twist of the ribbon and is
illustrated diagrammatically as below left or sometimes as on the right as it is easier to
draw.

The reader is invited to discover the topological identity lurking in the tensor product
interaction described above. Essentially by definition, a ribbon category gives rise to
invariants of framed links in the following way. If the components of a framed link are
coloured with objects in the ribbon category then any morse diagram of the link can be
interpreted as a morphism from the unit object to itself. This element of Hom.1; 1/ is
an invariant of the coloured, framed, oriented link. Quantum invariants can be obtained
in the this fashion using representation categories of quantum groups.
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9.2 The ribbon structure of zD.X/

The construction of an interesting ribbon structure on zD.X / is parallel to the con-
struction of an interesting braided structure on the category of modules over a finite-
dimensional metric Lie algebra using the Knizhnik–Zamolodchikov equation. One
starts with the usual (symmetric) category g–mod, tensors with CŒŒ„��, and uses the
KZ equation to introduce a new, interesting braiding structure. The resulting category
turns out to be equivalent to the category of representations of the quantum group U„g.
See Drinfel 0d [11] and Bakalov and Kirillov [2], for example.

In our case, we start with the derived category D.X / of a complex symplectic manifold.
We know this is a symmetric tensor category under derived tensor product and the
usual flip map, with the structure sheaf as identity, and is a ribbon category when we
bring in the derived duals of objects and the natural contraction maps. We “tensor with
CŒŒ„��”, replacing D.X / by the extended version zD.X /, in which the shift Œ2� plays
the role of „. Then we use the Kontsevich integral, in the tangle-functor version of
Le and Murakami, to introduce the ribbon structures. The result is that the derived
category of coherent sheaves on an complex symplectic manifold can be quantized in
exactly the same way as the category of representations of a metric Lie algebra. This is
our final main theorem.

Theorem 9.1 For a complex symplectic manifold X , the extended derived category
zD.X / has a natural nonsymmetric ribbon tensor category structure.

Proof All we have to do is define the various structure morphisms and check the
identities. Explicitly, we need to compute the associator ˆA;B;C , the braiding �A;B ,
the duality morphisms �A; �A; �0A; �

0
A

and the twist coefficients �A .

According to Le and Murakami [26], the Kontsevich integral defines a representation
of the category of nonassociative tangles (also known as quasi- or q–tangles). This
category is generated by morphisms corresponding to exactly the things we need above,
and their explicit Kontsevich integrals can be found in Le and Murakami. Each is a
formal power series of diagrams consisting of chords based on an underlying collection
of oriented intervals: three for ˆ, two for � , and one for the other morphisms. For
example, ˆ has an expression as a power series in the two diagrams shown below,
composed vertically and sometimes thought of as noncommuting indeterminates:
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Having obtained these power series, we label the vertical strings of the diagram by
objects of zD.X / and evaluate using the weight systems. In particular, given two objects
A;B of zD.X /, let HA;B 2Hom zD.X /.A˝B;A˝B/ and CA 2Hom zD.X /.A;A/ be
the morphisms corresponding to the following graphs:

Each is really an element of Ext2 , that is HA;B 2 Ext2.A˝B;A˝B/ and CA 2

Ext2.A;A/. These “chord” and “Casimir” elements are really all we need to evaluate
the Kontsevich integrals. For example, the new braiding morphism �A;B may be
described as

�A;B D �old ı exp.HA;B=2/ 2 Ext�.A˝B;B˝A/D Hom zD.X /.A˝B;B˝A/;

where �old is the original symmetric braiding. The associator ˆA;B;C is written as a
polynomial in the noncommuting variables HA;B˝ idC , idA˝HB;C . (Note that the
power series become truncated because of the boundedness of the Ext–groups.) The
other morphisms depend directly on the Casimir. For example the framing twist is

�A D exp.CA=2/ 2 Ext�.A;A/D Hom zD.X /.A;A/:

The fact that all the relations of a ribbon category are satisfied is then automatic from
the topological invariance of the Kontsevich integral of framed oriented tangles.

A few remarks are now in order. Firstly, one can multiply the symplectic form by „ and
then “take the limit „! 0” to recapture the original symmetric structure on zD.X /.

Secondly, we don’t know whether it is possible to make a “gauge transformation” (in the
manner of Drinfel 0d) to a form which is strictly associative but has a more complicated
braiding (as in the case of quantum groups). This theorem (discussed in [2]) does
not seem to have a purely geometrical formulation which can be carried over into our
context.

Thirdly, the above construction actually goes through for a holomorphic Casimir
manifold. In fact, only chord diagrams are used in the construction, so a complex
manifold X with a suitable “r –matrix” would be sufficient.

Finally, we observe that the braided structure is completely different from the braid
group actions on derived categories constructed by Seidel and Thomas or Rouquier.
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10 Conclusion

In the table below we present a dictionary giving a translation between the worlds of
Chern–Simons theory (derived from usual Lie algebras) and Rozansky–Witten theory
(derived from complex symplectic manifolds).

Chern–Simons Rozansky–Witten

Category Vector spaces D.X /, derived category of X

Lie algebra object g T Œ�1�, shifted tangent bundle

Modules �W g! End.V / objects A of D.X /

Invariant part of
enveloping algebra Z.g/Š U.g/g Ext�X�X .O�;O�/

Invariant part of
symmetric algebra S.g/g H�.X;

V
�T /

Wheeling theorem
S.g/g

'
!Z.g/ H�.X;

V
�T /

'
!Ext�X�X .O�;O�/

Duflo Kontsevich

Invariant metric g˝ g!C ! 2 �.
V

2T �/

Universal knot invariant fknotsg !Z.g/ŒŒh�� fknotsg ! Ext�X�X .O�;O�/

Knot invariant
from module

fknotsg !CŒŒh�� fknotsg !H�.X;O/

Ribbon category U„.g/–modules zD.X /

Table 1: Dictionary between Chern–Simons Theory and Rozansky–Witten Theory

This table only goes as far as the knot invariants arising in each theory, but it should
extend into a correspondence between the full TQFTs (a sketch of this appears in [34]).

There are many interesting questions arising from the existence of the Rozansky–
Witten invariants, their similarity with Chern–Simons constructions, and their potential
applications in knot theory. In Roberts and Sawon [35] we mentioned many of these,
so there is little point repeating them here.
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