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Spectra, spectra, spectra –
Tensor triangular spectra versus

Zariski spectra of endomorphism rings

PAUL BALMER

We construct a natural continuous map from the triangular spectrum of a tensor
triangulated category to the algebraic Zariski spectrum of the endomorphism ring
of its unit object. We also consider graded and twisted versions of this construction.
We prove that these maps are quite often surjective but far from injective in general.
For instance, the stable homotopy category of finite spectra has a triangular spectrum
much bigger than the Zariski spectrum of Z . We also give a first discussion of
the spectrum in two new examples, namely equivariant KK –theory and stable A1 –
homotopy theory.

18E30; 14F05, 19K35, 20C20, 55P42, 55U35

Introduction

Algebraic geometers, stable topologists, finite group representation theorists, motivic
theorists, noncommutative geometers and many other mathematicians have triangulated
categories in common: The derived category of sheaves of modules over a scheme,
the stable homotopy category of topological spectra, the derived category or the stable
category of representations of a finite group or finite group scheme, the various motivic
derived categories, Morel and Voevodsky’s stable A1 –homotopy category and equivari-
ant KK –theory or E–theory of C �–algebras are famous examples. In several cases,
a tensor structure is also available and is especially well-behaved on the triangulated
subcategory of compact objects. In the above examples, this leads us to focus on perfect
complexes, finite topological spectra, finite dimensional representations, geometric
motives, etc.

This profusion of examples motivates the study of tensor triangulated categories per se.
Emphasizing the geometric aspects of this unified theory leads us to a subject called
tensor triangular geometry, to which the present paper belongs.

To explain these ideas, let us denote by K one of our tensor triangulated categories
(say, of compact objects), by ˝W K�K�!K the symmetric tensor x˝ y D y˝ x

and by 1 2 K the ˝–unit: 1˝x D x .
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We began our geometric study in [1] with the definition of a topological space

Spc.K/

called the spectrum of K (see also Definition 1.3 below). We call it the triangular
spectrum here, to avoid confusion with other meanings of the word “spectrum”. This
fundamental space Spc.K/ is the canvas on which to draw tensor triangular geometry.
For instance, every object x 2 K has a support, supp.x/� Spc.K/, which is a closed
subset behaving nicely with respect to exact triangles and tensor product. The pair
.Spc.K/; supp/ is indeed the best such pair, for it has a universal property: In the
language of [1, Theorem 3.2], .Spc.K/; supp/ is “the final support datum”.

Although a young subject, tensor triangular geometry has already produced some
interesting results. For instance, in [2, Theorem 2.11], we proved that if an object
x 2 K has a disconnected support, ie supp.x/D Y1[Y2 with Y1 and Y2 closed and
disjoint, then the object is decomposable accordingly: x'x1˚x2 with supp.xi/DYi .
This neat result has applications, like the gluing technique of Balmer–Favi [6] and
its representation theoretic incarnations in Balmer–Benson–Carlson [5] and in our
paper [4]. Another application, this time to algebraic K–theory of schemes, can be
found in our paper [3].

In all applications though, the crucial anchor point is the computation of the triangular
spectrum Spc.K/ in the first place. Without this knowledge, abstract results of tensor
triangular geometry are difficult to translate into concrete terms. It is therefore a major
challenge to compute the spectrum Spc.K/ in as many examples as possible, or at least
to provide some information about that space when the full determination of Spc.K/
lies beyond reach of the community’s current forces.

Actually, by our paper [1, Theorem 4.10, Theorem 5.2] and Buan, Krause and Solberg [9,
Corollary 5.2], we know that the information about K contained in the space Spc.K/
is exactly equivalent to the so-called classification of thick triangulated ˝–ideals of K.
Existing such classifications allow us to compute Spc.K/ and, conversely, given the
space Spc.K/, we obtain a classification of thick triangulated ˝–ideals by assigning to
suitable subsets Y � Spc.K/ the thick triangulated ˝–ideal KY WD fa2K j supp.a/�
Y g of K.

Using preexisting classifications of thick ˝–ideals, some triangular spectra have been
computed in [1; 9]: In algebraic geometry, the spectrum of the derived category of
perfect complexes KDDperf.X / over a quasicompact and quasiseparated scheme X re-
constructs the scheme X itself; this uses Thomason’s classification, initiated by Hopkins
and Neeman in the affine case. In modular representation theory, the spectrum of the
stable category KDkG–stab is the projective support variety VG.k/DProj.H�.G; k//,
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by Benson, Carlson and Rickard’s classification, generalized to finite group schemes
by Friedlander and Pevtsova. See our paper [1] for details and references about these
statements. Recently, Krishna [17] also identified spectra of perfect complexes over
Deligne–Mumford stacks as coarse moduli spaces.

Yet, the precursor of all these classifications is to be found in topology, in the celebrated
work of Hopkins and Smith [15]. Since the reformulation of this original result in terms
of a triangular spectrum has not been written down so far, we provide it in Section 9,
en passant; see also (0-1) further down in this introduction.

Such classifications are usually rather nontrivial. In noncommutative topology little
is known beyond the very first cases, recently treated by Dell’Ambrogio in [11] (see
Example 8.7 below). In A1 –homotopy theory, the classification is not known and the
question is essentially wide open. It would be very interesting to use the theory of
triangular spectra in order to compute the spectrum directly, by independent techniques
and then deduce the classification by [1, Theorem 4.10]. This is actually sometimes
possible. It works for instance in commutative algebra, as we shall see in Remark 8.4.
But more generally, in the new areas where the classification might be too hard for
now, any information about the relevant triangular spectra provides an indication of
the complexity of the triangulated categories involved. Such results are among the
objectives of the present paper, as we shall see below.

Let us stress the point that, to this day, all known homeomorphisms between Spc.K/
and a more explicit topological space X come from the universal property of the pair
.Spc.K/; supp/ as a final support datum. Such maps X ! Spc.K/ are always going
from a candidate-spectrum X towards Spc.K/. The main purpose of the present article
is to construct continuous maps out of Spc.K/, into topological spaces X of “spectral”
nature: Spc.K/!X .

Indeed, by many aspects, the triangular spectrum Spc.K/ resembles the Zariski spec-
trum of a commutative ring; first naively, since points of Spc.K/ are sophisticated
prime ideals; see Definition 1.3. But more rigourously, the space Spc.K/ is always
spectral in the sense of Hochster [14], ie it has a basis of quasicompact opens and any
irreducible closed has a unique generic point. Hochster proved that this characterizes
spectra of commutative rings among topological spaces. So, we might hope for a nice
little commutative ring R such that Spc.K/D Spec.R/. Since the endomorphism ring
of the unit, EndK.1/, provides a natural commutative ring for each tensor triangulated
category K, it is legitimate to ask whether the triangular spectrum Spc.K/ can be
related to the Zariski spectrum Spec.EndK.1//. Alternatively, one can consider the
homogeneous spectrum of the graded endomorphism ring End�K.1/DHomK.1; †�.1//.
Our main construction establishes such links:
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Theorem (Theorem 5.3 and Corollary 5.6) There exist two continuous maps

�KW Spc.K/�! Spec
�
EndK.1/

�
;

��KW Spc.K/�! Spech �End�K.1/
�

which are natural in the tensor triangulated category K.

A direct consequence is that one can produce open covers of the triangular spectrum
Spc.K/ by taking preimages of open covers of the above Zariski spectra, even before
knowing Spc.K/. This will be investigated in subsequent work.

It is interesting to inspect the various incarnations of the maps �K and ��K in the areas
of application of tensor triangular geometry mentioned above. These maps are always
nontrivial but seem especially informative in algebraic examples. In fact, the maps �K

and ��K are often surjective (yet not always; see Example 8.3):

Theorem (Theorem 7.13) Assume that K is connective, ie HomK.†
i.1/; 1/D 0 for

all i < 0. Then the map �KW Spc.K/�! Spec.EndK.1// is surjective.

There is also a rather mild sufficient condition for surjectivity in the graded case:

Theorem (Theorem 7.3 and Corollary 7.4) If the graded ring End�K.1/ is coherent,
for instance if it is noetherian, then both maps ��KW Spc.K/�! Spech.End�K.1// and
�KW Spc.K/�! Spec.EndK.1// are surjective.

On the other hand, these maps �K and ��K are not injective in general, already in
algebraic geometry, that is, for KDDperf.X / over a scheme X . For instance, in the case
of projective n–space X D Pn

k
, we have Spc.K/Š Pn

k
but EndK.1/D End�K.1/D k .

However, such counterexamples are rather weak for the following two reasons. First,
when X D Spec.A/ is affine, the map ��K D �K is actually a homeomorphism (Propo-
sition 8.1), inverse to the one Spec.A/ �! Spc.K/ given in [1, Corollary 5.6]. So,
in algebraic geometry, ��K is at least “locally injective”. Secondly, in examples like
the above X D Pn

k
, one can in fact obtain injectivity of ��K if we twist the graded

endomorphism ring by a line bundle; see Remark 8.2.

In topology, for K D SHfin the (Spanier–Whitehead) stable homotopy category of
finite spectra, the triangular spectrum Spc.SHfin/ and the surjective continuous map
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�SHfin W Spc.SHfin/�! Spec.Z/ look as follows (see Corollary 9.5):

(0-1)

P2;1 P3;1 � � � Pp;1 � � �

Spc.SHfin/D

�SHfin

��

:::
:::

:::

P2;nC1 P3;nC1 � � � Pp;nC1 � � �

P2;n P3;n � � � Pp;n � � �

:::
:::

:::

P2;1 P3;1 � � � Pp;1 � � �

SHfin
tor

Spec.Z/D 2Z 3Z � � � pZ � � �

.0/

Here, p runs through prime numbers and n through positive integers. The notation
in this result (the announced reformulation of Hopkins and Smith’s classification) is
explained in Section 9. The map �SHfin is the obvious vertical projection. Note that its
noninjectivity is more serious than before. Indeed, here, injectivity even fails locally,
that is, for SHfin

.p/ the localization of SHfin at a prime p , despite SHfin
.p/ being a local

tensor triangulated category (in the sense of Section 4).

This simply indicates that endomorphism rings of the unit cannot control the whole
triangulated category K and that Spc.K/ is a richer invariant.

At this stage, I do not know a good general criterion which could guarantee the (local)
injectivity of the map �KW Spc.K/! Spec.EndK.1// or its twisted graded version ��K .
Such a criterion should probably work only for “algebraic enough” triangulated cate-
gories K and seems to be an interesting research challenge.

Finally, here are the announced applications to A1 –homotopy theory and noncom-
mutative topology, where the triangular spectrum is not known yet but some partial
information can be obtained by the techniques of this paper:

Theorem (Corollary 10.1) Let KA1

WD .SHA1

F /c be the subcategory of compact ob-
jects in the stable A1 –homotopy category SHA1

F over a perfect field F of characteristic
different from 2. Let GW.F / be the Grothendieck–Witt ring of quadratic forms over F .
Then there is a surjective continuous map �

KA1 W Spc.KA1

/�! Spec.GW.F //.
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This uses among other things our first criterion for surjectivity (connectivity). The
Zariski spectrum Spec.GW.F // is classical and can be found in Remark 10.2.

Theorem (Corollary 8.8) Let G be a compact Lie group and KKG be the category
of separable G –C �—algebras with morphisms given by Kasparov’s equivariant KK –
theory (see Meyer [23]). Let R.G/ WD KG

0
.C/ be the complex representation ring

of G . Then there is a continuous surjection �KKG W Spc.KKG/�! Spec.R.G//.

This uses among other things our second criterion for surjectivity (noetherianity). The
Zariski spectrum Spec.R.G// is classical and can be found in Segal [31, Section 3].

The structure of the paper is the following. After quickly recalling from [1] a few facts
about tensor triangulated categories and their spectrum in the one-page Section 1, we
consider the central ring RK D EndK.1/ in Section 2. As in any symmetric monoidal
category, the ring RK acts on any object of K. We show in Theorem 2.15 that the
smallest thick triangulated ˝–ideal hcone.f /i containing the cone of an endomorphism
f W 1! 1 coincides with the subcategory of objects x 2 K on which f is nilpotent.
In Section 3, we use these techniques to construct localizations S�1K of any tensor
triangulated category K, with respect to any multiplicative subset S � RK . We also
provide graded versions of these constructions.

Section 4 has a broader importance for tensor triangular geometry, for we introduce
the notion of local tensor triangulated category. For instance, a rigid (Definition 1.5)
tensor triangulated category K is local if and only if

(0-2) x˝y D 0 implies x D 0 or y D 0 :

Following commutative algebra, one might naively call tensor triangulated categories
satisfying (0-2) “integral” or “domains”. The correct terminology, namely “local”,
is justified by the fact that Spc.K/ is a local topological space (Proposition 4.2) and
comforted by the fact that a commutative ring A is local if and only if Dperf.A/ is
local in the above sense. A key result says:

Theorem (Theorem 4.5) If K is a local tensor triangulated category, then RK is a
local ring and R�K D End�K.1/ is a local graded ring.

It is then easy to construct the maps �K and ��K explicitly in Section 5. Somewhat
independent of the rest, Section 6 recalls from [1] the sheaf of rings OK on the spectrum
Spc.K/. This yields a locally ringed space Spec.K/ WD

�
Spc.K/;OK

�
and our maps

�K and ��K become morphisms of locally ringed spaces. Incidentally, the example
of K D SHfin also shows that the locally ringed space Spec.K/ is not a scheme in
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general. We prove our surjectivity results in Section 7. The last three sections are
dedicated to examples, from algebraic geometry, modular representation theory and
KK –theory in Section 8, from topological stable homotopy theory in Section 9 and
finally from stable A1 –homotopy theory in Section 10.
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1 Basics

Convention 1.1 Unless stated otherwise, all categories are assumed essentially small
and all subcategories are assumed full and closed under isomorphism.

Definition 1.2 A tensor triangulated category .K;˝; 1/ is the data of a triangulated
category K and of a “compatible” symmetric monoidal structure

˝W K�K�!K

with unit 12K (for symmetric monoidal; see Mac Lane [21, Section XI.1]). We denote
by �a;bW a˝b

�
! b˝a the symmetry isomorphism (switch). The compatibility means

that ˝ should be exact in each variable. See further references in [1, Definition 1.1].

Definition 1.3 In [1], we define the spectrum, Spc.K/, of a tensor triangulated cate-
gory K as the set of proper thick triangulated ˝–ideals P ¨ K which are prime, ie
such that a˝ b 2 P implies a or b 2 P. We define for all a 2 K the open subsets
U.a/ WD fP 2 Spc.K/ j a 2 Pg, which form a basis of the topology on Spc.K/. The
support of an object a 2 K is the closed complement of U.a/:

supp.a/D fP 2 Spc.K/ j a … Pg � Spc.K/ :

Remark 1.4 Let J�K be a thick triangulated ˝–ideal (that is, J�K is a nonempty
full subcategory, stable in K under taking cones, direct summands and tensor product
with any object of K). The Verdier quotient K=J [32, Section II.2] becomes a ˝–
triangulated category, with qW K�K=J being ˝–triangulated. The spectrum of the
quotient Spc.K=J/ is naturally homeomorphic to the subspace fP 2 Spc.K/ j P� Jg

of Spc.K/, via Q 7! q�1.Q/; see [1, Proposition 3.11].
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Definition 1.5 We say that the tensor triangulated category is rigid if there exists an
exact functor DW Kop! K and natural isomorphisms

HomK.a˝ b; c/' HomK.a;D.b/˝ c/ :

This says that hom.b; c/ WDD.b/˝ c is an internal hom functor. In [2; 6] we wrote
“strongly closed” instead of “rigid” but the latter terminology seems more common.

Notation 1.6 For a collection E � K of objects, we denote by hEi the smallest thick
triangulated ˝–ideal containing E .

Proposition 1.7 Let E � K be a class of objects in our ˝–triangulated category K.

(a) For a 2 hEi and for b 2 K, we have a˝ b 2 hE ˝ bi.

(b) If hEi D K, then for every n� 1 we have hfx˝n j x 2 Egi D K as well.

Proof (a) The subcategory fx 2K j x˝b 2 hE˝big is a thick triangulated ˝–ideal
containing E , hence containing hEi, hence containing a.

(b) There exists x1; : : : ;xm 2 E such that 1 2 hx1; : : : ;xmi. So, we can assume
E D fx1; : : : ;xmg finite. From (a), we get xi 2 hE ˝ xii � hE.2/i, where E.r/ WD
fy1 ˝ � � � ˝ yr j y1; : : : ;yr 2 Eg for any r � 2. Hence 1 2 hx1; : : : ;xmi � hE.2/i.
Repeating this, we get 1 2 hE.r/i for all r � 2. Now since E is finite, for any
given n� 1, there exists r � 1 big enough such that E.r/� hfx˝n j x 2 Egi. Hence
1 2 hfx˝n j x 2 Egi and therefore KD hfx˝n j x 2 Egi.

2 Morphisms and actions

Definition 2.1 For a tensor triangulated category .K;˝; 1/, we define its central ring
RK to be the endomorphism ring of its unit

RK WD EndK.1/ :

It is commutative since composition coincides with tensor product:

Proposition 2.2 For all a; b 2 K, the group HomK.a; b/ is a left RK –module via
.f;g/ 7! f ˝g , for f 2 RK and g 2HomK.a; b/, using the identifications 1˝aŠ a

and 1˝ b Š b . This left action coincides with the right action .g; f / 7! g ˝ f

defined analogously. We denote this action by f �g . With this structure, composition
HomK.b; c/�HomK.a; b/! HomK.a; c/, .g; h/ 7! g ı h, becomes RK –bilinear.
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Proof Let us check that f ˝g D g˝f . Consider the commutative diagram:

1˝ a
f˝g //

�1;aŠ

��

1˝ b
Š

((
�1;bŠ

��

a

Š 77

Š ''

b :

a˝ 1
g˝f // b˝ 1

Š

66

The left and right triangles commute by axiom of symmetric monoidal categories [21,
XI.1.(4), page 252]. The upper composition from a to b is what we called f ˝g and
the lower one is g˝f . The rest of the proof is left to the reader (or see [11, 2.1.1]).

Remark 2.3 Proposition 2.2 justifies the term “central ring” for the ring RK .

Definition 2.4 An object u 2 K is invertible if u˝ v ' 1 for some v 2 K. When K

is rigid (Definition 1.5), v is necessarily isomorphic to D.u/.

Example 2.5 When u is invertible, so is †i.u/ for every i 2 Z. In particular, †i.1/
is invertible for every i 2 Z, with inverse †�i.1/.

Notation 2.6 For a morphism f W 1! u and for an object a 2 K, we denote by

f�aW a�!u˝ a

the morphism f ˝ ida (composed with aŠ 1˝a). This applies in particular to uD 1,
in which case, f�a is nothing but f � ida in the notation of Proposition 2.2.

Remark 2.7 Let u 2 K be invertible. Then f 7! f ˝ idu induces an isomorphism
HomK.a; b/

�
!HomK.a˝u; b˝u/ for all a; b 2K. In particular, there exists a central

unit �u 2R�K such that the switch �u;uW u˝u
�
!u˝u is equal to .�u/�u˝uD �u �idu˝u .

Note that .�u;u/
2 D idu˝u implies .�u/

2 D 1.

Definition 2.8 We say that an object x 2 K has central switch if there exists a unit
� D �.x/ 2 R�K such that �x;x D ��x˝x W x ˝ x ! x ˝ x . Remark 2.7 shows that
invertible objects have central switch.

Remark 2.9 Assume that x and y have central switch. Then x˝y also does. Indeed,
for x1;x2;y1;y2 2 K the switch �x1˝y1;x2˝y2

decomposes as follows:

x1˝y1˝x2˝y2

�x1˝y1;x2˝y2 //

1˝�y1;x2
˝1

��

x2˝y2˝x1˝y1

x1˝x2˝y1˝y2

�x1;x2
˝�y1;y2 // x2˝x1˝y2˝y1 :

1˝�x1;y2
˝1

OO
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For x1 D x2 D x and y1 D y2 D y , the bottom morphism is central (D �.x/ � �.y/)
and the two vertical morphisms are mutual inverses. So x ˝ y has central switch:
�.x˝y/D �.x/ � �.y/ in RK . In particular, x˝n has central switch for all n� 1.

Lemma 2.10 Let f W a! x and gW b! x be two morphisms and assume that x has
central switch (Definition 2.8). Then there exists an isomorphism � W b˝ a

�
! a˝ b

such that g˝ f D .f ˝g/ ı � . Similarly, for f 0W x! a0 and g0W x! b0 there exists
an isomorphism � 0W a0˝ b0

�
! b0˝ a0 such that g0˝f 0 D � 0 ı .f 0˝g0/.

Proof This is elementary. Let � 2 R�K such that �x;x D ��x˝x . Since the diagram

b˝ a
g˝f //

�b;a Š

��

x˝x

�x;xD��x˝xŠ

��
a˝ b

f˝g // x˝x

commutes, and since � 2RK is “central” (Proposition 2.2), we can take � D � ��b;a .

Lemma 2.11 Let gW x! y be a morphism. Let

a
k // b

l // c
m // †a

be a distinguished triangle and suppose that the following diagram commutes:

x˝ a
idx˝k //

0

��

x˝ b
idx˝l //

g˝idb

��

x˝ c
idx˝m //

0

��

†.x˝ a/

0
��

y˝ a
idy ˝k

// y˝ b
idy ˝l

// y˝ c
idy ˝m

// †.y˝ a/ :

Then the morphism g˝g˝ idbW x˝x˝ b�!y˝y˝ b is equal to zero.

Proof From the commutative diagram, we get

(a) .g˝ idb/ ı .idx˝k/D 0,

(b) g˝ l D .idy ˝l/ ı .g˝ idb/D 0.

By (a) and the exact triangle of the first row, there exists hW x˝ c! y˝ b such that
g˝idbDhı.idx˝l/. Hence g˝g˝idbDg˝.hı.idx˝l//D .idy ˝h/ı.g˝idx˝l/

and this is zero because g˝ idx˝l D 0. To check this last claim, note that (b) implies
0 D idx˝g ˝ l W x ˝ x ˝ b�!x ˝ y ˝ c and switch the first two factors, that is,
precompose by �x;x˝ idb and postcompose by �x;y ˝ idc .
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Proposition 2.12 Let f W x! y be a morphism. Then the objects a 2 K for which
there exists n� 1 with f ˝n˝ ida D 0 (as a morphism x˝n˝ a�!y˝n˝ a) form a
thick triangulated ˝–ideal of K.

Proof Thick and ˝–ideal is easy; triangulated follows from Lemma 2.11.

The following is well-known for x D y D 1.

Proposition 2.13 Let f W x! y be a morphism and assume that x and y have central
switch (Definition 2.8); eg x and y invertible. Then .f ˝f /˝ idcone.f / D 0.

Proof Consider a distinguished triangle

x
f
�!y

f1
�! cone.f /

f2
�!†.x/

and the commutative diagram

x˝x
idx˝f //

f˝idx

��

x˝y
idx˝f1 //

f˝idy

��

x˝ cone.f /
idx˝f2 //

f˝idcone.f /

��

†.x˝x/

†.f˝idx/

��
y˝x

idy ˝f

// y˝y
idy ˝f1

// y˝ cone.f /
idy ˝f2

// †.y˝x/ :

We claim that the diagonal morphisms of the second and third squares vanish:

(a) .idy ˝f1/ ı .f ˝ idy/D 0.

(b) †.f ˝ idx/ ı .idx˝f2/D 0.

Since y has central switch, we can apply Lemma 2.10 to our f and to g WD idy to
obtain an isomorphism � W y˝ x

�
! x˝ y such that .f ˝ idy/ ı � D idy ˝f . Then

(a) is easily checked by composing on the right by the isomorphism � and using that
f1 ıf D 0. Similarly, for (b), using the second statement of Lemma 2.10.

By (a) and (b), we can now replace the above morphism of distinguished triangles
.f ˝ idx; f ˝ idy ; f ˝ idcone.f // by the morphism .0; 0; f ˝ idcone.f //. The result
then follows from Lemma 2.11 (modulo obvious rotations).

Proposition 2.14 Let f W x! y be a morphism in K and suppose that hx;yi D K,
eg x or y is invertible. If a 2 K is such that f ˝ ida D 0 then a 2 hcone.f /i.
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Proof Tensor the distinguished triangle

x
f
�!y! cone.f /!†.x/

with a and use the assumption f ˝ ida D 0 to deduce that .y ˝ a/˚†.x˝ a/ '

cone.f /˝ a. This shows that x ˝ a and y ˝ a belong to hcone.f /i. Therefore
hx˝ a;y˝ ai � hcone.f /i. Finally, from 1 2 hx;yi we deduce a 2 hx˝ a;y˝ ai

by Proposition 1.7 (a).

Theorem 2.15 Assume that x;y 2 K have central switch (Definition 2.8) and that
hx;yi DK; eg x and y invertible. Let f W x! y be a morphism in K. Then the thick
triangulated ˝–ideal generated by its cone, hcone.f /i, coincides with the subcategory
of those objects a 2 K for which f ˝n˝ ida D 0 for some n� 1.

Proof Let J WD fa2K j 9 n� 1 such that f ˝n˝idaD 0g the subcategory in question.
By Proposition 2.12, J is a thick triangulated ˝–ideal and by Proposition 2.13 we
have cone.f / 2 J, hence hcone.f /i � J. Let us now check the other inclusion.

Let a 2 K be such that f ˝n˝ ida D 0. Then a 2 hcone.f ˝n/i by Proposition 2.14
applied to f ˝nW x˝n! y˝n . Note that hx˝n;y˝ni D K by Proposition 1.7 (b).

So, it remains to prove that hcone.f ˝n/i � hcone.f /i for all n � 1. We do so by
induction on n. Suppose that n � 1 and that hcone.f ˝n/i � hcone.f /i. Then the
octahedron axiom applied to the relation f ˝.nC1/D .f ˝ idy˝n/ı.idx˝f

˝n/ shows
that cone.f ˝.nC1// 2 hcone.f /; cone.f ˝n/i � hcone.f /i, which gives the result.

Proposition 2.16 Let x;y 2 K be as in Theorem 2.15, eg x and y invertible. Let
f W x! y and n� 1. Then hcone.f /˝ni D hcone.f ˝n/i D hcone.f /i.

Proof Note that x˝n and y˝n still satisfy the hypotheses of Theorem 2.15 by Remark
2.9 and Proposition 1.7 (b). It is then direct from Theorem 2.15 that hcone.f /i D
hcone.f ˝n/i. Obviously, cone.f /˝n 2 hcone.f /i hence it suffices to prove that
cone.f / 2 hcone.f /˝ni. By induction (and Proposition 1.7 (a)), it suffices to treat the
case nD 2. Consider the composition

x˝x˝ cone.f /
f˝1˝1 // y˝x˝ cone.f /

1˝f˝1 // y˝y˝ cone.f / :

Since the cone of the first map, cone.f /˝x˝ cone.f /, and the cone of the second,
y˝ cone.f /˝ cone.f /, both belong to hcone.f /˝2i, the octahedron axiom tells us
that the cone of the composition also belongs to hcone.f /˝2i. But that composition
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is zero by Proposition 2.13 hence its cone is †.x˝2˝ cone.f //˚ .y˝2˝ cone.f //.
By definition, hcone.f /˝2i is thick, so we have proved

hx˝2
˝ cone.f /;y˝2

˝ cone.f /i � hcone.f /˝2
i :

Proposition 1.7 (b) and (a) gives us 1 2 hx˝2;y˝2i and cone.f / D 1˝ cone.f / 2
hx˝2˝ cone.f /;y˝2˝ cone.f /i � hcone.f /˝2i, as wanted.

3 Graded homomorphisms and central localization

Notation 3.1 Let us fix u 2 K an invertible object. For any pair of objects a; b 2 K,
and any i 2 Z, we denote by

Homi
K.a; b/ WD HomK.a;u

˝i
˝ b/ :

When we need to stress the dependency on u, we can write Homi
K;u.a; b/. The above

notation is commonly used with uD†.1/, for which Homi
K.a; b/Š HomK.a; †

i.b//.
We denote by Hom�K.a; b/ the Z–graded abelian group

L
i2Z Homi

K.a; b/. We have
an obvious composition:

Homj
K.b; c/�Homi

K.a; b/
˘
�! HomiCj

K .a; c/�
b

g
�!u˝j ˝ c ; a

f
�!u˝i ˝ b

�
7�! a

g˘f //

f
((

u˝.iCj/˝ c

u˝i ˝ b
id˝i

u ˝g

44

which coincides with the usual composition when i D 0.

We shall mostly use the case uD†.1/ but the above flexibility can be useful in general,
as illustrated in algebraic geometry in Remark 8.2.

Definition 3.2 We denote by R�K (or R�K;u ) the graded group Hom�K.1; 1/, which is a
unital associative Z–graded ring with respect to ˘. We call it the graded central ring
of K (with respect to u 2 K). Note that R0

K is just the central ring RK D EndK.1/ of
Section 2, independently of u.

Generalizing Proposition 2.2, we have the following compatibility between ˘ and ˝.
Recall the central unit �u 2RKDR0

K such that the switch �u;uW u˝u
�
!u˝u is given

by multiplication by �u . (See Remark 2.7.) Of course, we have .�u/
2 D 1 and the

reader can simply assume that �u D˙1, as it is often the case.
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Proposition 3.3 Let u 2 K be an invertible object. With the above notation:

(a) For a; b 2 K, the graded abelian group Hom�K.a; b/ carries both a structure of
left and of right graded module over the graded central ring R�K , defined via the
tensor product ˝. Explicitly, for f 2 Ri

K and g 2 Homj
K.a; b/, we set

f �g WD
�

a
f˝g // u˝i ˝u˝j ˝ b Š u˝.iCj/˝ b

�
;

g �f WD
�

a
g˝f // u˝j ˝ b˝u˝i id˝�

Š
// u˝j ˝u˝i ˝ b Š u˝.iCj/˝ b

�
:

(b) When aD b D 1, both actions coincide with composition f �g D f ˘g .

(c) Composition ˘W Hom�K.b; c/�Hom�K.a; b/�!Hom�K.a; c/ is bilinear with re-
spect to both the left action and the right action, in an �u –graded way, that is, for
f 2 Ri

K , g 2 Homj
K.a; b/ and h 2 Homk

K.b; c/, we have

.f � h/˘g D f � .h˘g/D .�u/
i�kh˘ .f �g/;

h˘ .g �f /D .h˘g/ �f D .�u/
i�j .h �f /˘g :

(d) The left and right actions coincide in an �u –graded way, that is, for f 2 Ri
K and

g 2 Homj
K.a; b/, we have

f �g D .�u/
i�j g �f :

(e) In particular, the Z–graded central ring R�K is �u –commutative.

Sketch of Proof Consider the external product

Homi
K.a; b/�Homj

K.c; d/
�
�!HomiCj

K .a˝ c; b˝ d/

defined for f 2 Homi
K.a; b/ and g 2 Homj

K.c; d/ by the formula

a˝ c
f˝g

//

f�g

++
u˝i ˝ b˝u˝j ˝ d

1˝�˝1
// u˝i ˝u˝j ˝ b˝ d u˝iCj ˝ b˝ d :

This product is associative, natural and �u –commutative, in the obvious sense. State-
ments (a)–(e) can be deduced from these properties. (Compare Proposition 2.2.) Further
verifications are left to the reader, who can find some details in [11, Section 2.1.2].

Remark 3.4 We are going to need some elementary graded commutative algebra over
�–commutative Z–graded rings. Let R� D

L
i2Z Ri be a unitary and associative
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Z–graded ring. We denote by Rhom WD
S

i2Z Ri the subset of homogeneous elements.
We say that R� is �–commutative if there exists � 2R0 such that �2 D 1 and

(3-1) f �g D �ij
�g �f

for all homogeneous f 2 Ri and g 2 Rj . Hence the subset Reven WD
S

i2Z R2i is
central in R� , and in particular so is the unit � .

Let S � Rhom be a central multiplicative subset (1 2 S and S � S � S , typically
S �Reven ). Then the localization S�1R� is graded as usual by setting .S�1R�/i WD

ff=s j f 2 RiCj ; s 2 S \Rj g. If we need to invert a more general multiplicative
subset T �Rhom , hypothesis (3-1) allows us to do it by inverting the central subset
S WD ft2 j t 2 T g instead.

We define the homogeneous spectrum, Spech.R�/, as the set of proper homogeneous
ideals p� of R� which are prime (a � b 2 p� implies a 2 p� or b 2 p� ; this can be
checked on homogeneous elements only). The Zariski topology has as closed subsets
the V .I �/ WD fp� 2 Spech.R�/ j I � � p�g for homogeneous ideals I � � R� . The
principal open subsets D.s/ WD fp� 2 Spech.R�/ j s … p�g define a basis of the topology,
for s running through Rhom , or just through Reven since D.s/DD.s2/. We define
a structure sheaf O� of �–commutative Z–graded rings on Spech.R�/ by setting
O�.D.s//DR�Œ1=s� WD S�1R� where S D fs2i j i 2Ng �Reven .

When � D 1, the reader can find in Lorenzini [20] all results we use below. We also
use this reference even for � ¤ 1. Unfortunately, the literature does not seem to have
an �–commutative equivalent of [20] and we will follow here the usual practice of
leaving to the reader to extend the proofs in the �–commutative case.

Here, we need to associate to a homogeneous prime p� � R� a localization R� !

S�1R� such that S�1R� has a unique maximal homogeneous ideal (ie S�1R� is a
local graded ring) in such a way that this maximal ideal maps to our p� under the
natural map (defined as usual)

Spech.S�1R�/ ,! Spech.R�/ :

This can be realized by localization with respect to the central multiplicative subset

(3-2) Sp� WD fs 2Reven such that s … p�g :

Indeed, a homogeneous prime ideal q� � R� disjoint from Sp� is contained in p�

(otherwise, there is a homogeneous t 2 q� with t … p� , but then t2 2 Sp� \ q� D¿).

Construction 3.5 Let us return to our tensor triangulated category K. Consider now
S � R�K a multiplicative subset of homogeneous elements (1 2 S and S � S � S ).
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When �u ¤ 1, we further require S � Reven
K . So, S is central in R�K and acts centrally

on any graded module Hom�K.a; b/. For instance, for each p� 2 Spech.R�K/, we can
take S D Sp� as defined in (3-2) above.

We can construct as above the Z–graded �u –commutative ring S�1 R�K . Then, for
any a; b 2 K, we can construct the S�1 R�K –module S�1Hom�K.a; b/. Let us denote
by

�
S�1Hom�K.a; b/

�0 its degree zero part. Composition of morphisms (˘) being
R�K –bilinear, it induces a well-defined homomorphism�

S�1Hom�K.b; c/
�0
�
�
S�1Hom�K.a; b/

�0
�!

�
S�1Hom�K.a; c/

�0
:

This defines a new category, that we denote S�1K, with the same objects as K and

HomS�1K.a; b/D
�
S�1Hom�K.a; b/

�0
:

The natural homomorphism HomK.a; b/�!
�
S�1Hom�K.a; b/

�0 defines a functor

qS W K�!S�1K :

We now show that S�1K is a Verdier localization of K, in the obvious way. (Compare
Hovey et al [16, Theorem 3.3.7] under additional hypotheses about K.)

Theorem 3.6 Let us keep notation as above. Consider J D hcone.s/js 2 Si the
thick triangulated ˝–ideal generated by the cones of elements of S . Consider the
Verdier localization qW K�K=J. Then there is an equivalence ˛W S�1K

�
!K=J such

that ˛ ı qS D q . In particular, S�1K can be equipped with the structure of a tensor
triangulated category such that qS W K�!S�1K is a morphism of tensor triangulated
categories.

We need two preliminary results. The first one is a generalization of Theorem 2.15. Re-
call from Notation 2.6 the shorthand f�aD f ˝ ida for f 2Reven

K and an object a 2 K.

Proposition 3.7 With notation as in Construction 3.5 and Theorem 3.6, we have
JD fc 2 K j 9 s 2 S such that s�c D 0g.

Proof Let J0 WD fc 2 K j 9 s 2 S such that s�c D 0g. Proposition 2.14 implies
J0 � J. To check the converse, first note that since S is multiplicative and since
multiplication and composition coincide on R�K , we have J0 D fc 2 K j 9 s 2

S and n� 1 such that .s˝n/˝idcD0g. It is then easy to deduce from Proposition 2.12
that J0 is thick, triangulated and ˝–ideal. By Proposition 2.13, we have cone.s/ 2 J0

for all s 2 S . Therefore JD hcone.s/js 2 Si � J0 .
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Lemma 3.8 With notation as in Construction 3.5 and Theorem 3.6, a morphism
kW b! x in K has its cone in J if and only if there exists s 2 S of some degree d 2Z
and l;m 2 Homd

K.x; b/ such that l ı k D s�b in Homd
K.b; b/ and k ˘m D s�x in

Homd
K.x;x/.

Proof Consider a distinguished triangle over kW b!x and, for any s 2S of degree d ,
the commutative (plain) diagram:

b
k //

s�b

��

x
k1 //

s�x

��

l

vvn n n n n n n n

mvvn n n n n n n n cone.k/
k2 //

s�cone.k/

��

†.b/

†.s�b/

��
u˝d ˝ b

1˝k

// u˝d ˝x
1˝k1

// u˝d ˝ cone.k/
1˝k2

// †.u˝d ˝ b/ :

If cone.k/ 2 J, by Proposition 3.7, we can choose s 2 S such that the third vertical
morphism s�cone.k/ vanishes. Then .1˝ k1/ ı s�x D 0 and s�b ı†

�1.k2/D 0 and
the existence of l and m with l ı k D s�b and .1˝ k/ ımD s�x are standard facts
in triangulated categories. Conversely, if such morphisms l and m exist for some
s 2 S , then s�cone.k/ ı k1 D 0 and .1˝ k2/ ı s�cone.k/ D 0. By Lemma 2.11, this
implies .s2/�cone.k/ D s˝ s˝ idcone.k/ D 0. Since s2 2S as well, we have just proved
cone.k/ 2 J by Proposition 3.7.

Proof of Theorem 3.6 We define the functor ˛W S�1K! K=J as the identity on
objects. Let a; b 2K. For any s 2S , we have cone.s�b/D cone.s/˝b 2J. Therefore
q.s�b/ is an isomorphism in K=J and we have a natural homomorphism

˛a;bW .S
�1Hom�K.a; b//

0
�!HomK=J.a; b/

f=s 7�! q.s�b/
�1
ıf :

It is easy to deduce from Lemma 3.8 that ˛a;b is an isomorphism of abelian groups.
Indeed, Lemma 3.8 shows that any fraction in K=J can be amplified to have denomi-
nator in S . Explicitly, a morphism a! b in K=J can be represented by a fraction
k�1g as in the upper row of the following diagram:

a
g // x

l
���
�
� b

koo

s�b{{w
w

w
w

w

u˝d ˝ b

with cone.k/2J. Lemma 3.8 gives us a morphism l 2Homd
K.x; b/ such that lıkD s�b

for some s 2 S . Then the morphism k�1g is equal to ˛a;b.lg=s/. Injectivity of ˛a;b

follows from Lemma 3.8 in a similar way.
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Corollary 3.9 Let p� 2 Spech.R�K/. The localization Kp� WD S�1
p� K where Sp� D

fs 2 Reven
K j s … p�g has graded central ring End�Kp�

.1/ isomorphic to .R�K/p� .

Corollary 3.10 Let S � EndK.1/ be a multiplicative subset of the central ring RK .
Then the Verdier quotient S�1K of K by the thick triangulated ˝–ideal hcone.s/ j
s 2 Si has the same objects as K and morphisms HomS�1K.a; b/D S�1HomK.a; b/.

Proof This can be checked as above or deduced from Theorem 3.6 (using any in-
vertible object u), using that for a graded R�–module M � and for S �R0 , we have
.S�1M �/0 D S�1.M 0/.

Corollary 3.11 Let p 2 Spec.RK/. Then the localization Kp WD S�1
p K where Sp WD

RK Xp has central ring EndKp.1/ isomorphic to .RK/p .

4 Local tensor triangulated categories

Definition 4.1 A tensor triangulated category K is local if Spc.K/ is a local topolog-
ical space, that is, if any open cover Spc.K/D

S
i2I Ui is trivial, in that there exists

i 2 I such that Ui D Spc.K/.

Proposition 4.2 The following are equivalent:

(i) The tensor triangulated category K is local (Definition 4.1).

(ii) The space Spc.K/ has a unique closed point.

(iii) The category K has a unique minimal prime.

(iv) The ideal
p̋

0� K of ˝–nilpotent objects is prime (and is the minimal one).

(v) For any objects a; b 2 K, if a˝ b D 0 then a or b is ˝–nilpotent.

If K is moreover rigid (Definition 1.5), then the above are further equivalent to:

(vi) If a˝ b D 0 then aD 0 or b D 0. (In this case, 0 is the minimal prime.)

Proof .i/) .ii/ If P and P0 were distinct closed points, then the cover Spc.K/D�
Spc.K/�fPg

�
[
�
Spc.K/�fP0g

�
would contradict the local nature of Spc.K/.

.ii/) .i/ Recall that any nonempty closed subset of Spc.K/ contains a closed point,
by [1, Corollary 2.12]. So, if there is only one closed point M, any open subset
U � Spc.K/ which contains M has an empty closed complement, ie U D Spc.K/.
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.ii/, .iii/ By [1, Proposition 2.9], the closure of a point P 2 Spc.K/ is described
by fPg D fQ 2 Spc.K/ j Q� Pg. Hence closed points are just minimal primes.

.iii/, .iv/ Immediate from
T

P2Spc.K/ PD
p̋

0; see [1, Corollary 2.4].

.iv/, .v/ Just reformulation since a 2
p̋

0 if and only if a˝n 2
p̋

0 for some n.

Finally, when K is rigid,
p̋

0D 0; see [2, Corollary 2.5].

Example 4.3 For any prime P 2 Spc.K/ the category K=P is local. Indeed, in K=P,
the ideal 0D P=P is a prime.

The reader’s intuition from commutative algebra might be puzzled by (iii) or (vi), in
Proposition 4.2, which look more like K being “integral”. Yet, Definition 4.1 is the
conceptual one and the following example should lift any doubt.

Example 4.4 For a commutative ring A, the category Kb.A–proj/ is local if and only
if A is local. Indeed, Spc.Kb.A–proj// is homeomorphic to Spec.A/ via

Spec.A/
�
�! Spc.Kb.A–proj//

p 7�! P.p/ WD fM� 2 Kb.A–proj/ j .M�/p ' 0g

by [1, Corollary 6.3 (a)] and [9, Theorem 8.5]. Now, Spec.A/ has a unique closed
point if and only if A is local. The subtlety is that the above map is inclusion-reversing:
p� q implies P.p/� P.q/.

Theorem 4.5 If the tensor triangulated category K is local (Definition 4.1), then
R�K D End�K;u.1/ is a local graded ring. In particular, RK D EndK.1/ is a local ring.

Proof We have to prove that R�K admits a unique maximal homogeneous ideal, which
must then be the ideal generated by the noninvertible homogeneous elements. Since the
product of a noninvertible with any other element remains noninvertible, it suffices to
check that the sum of two noninvertible elements of same degree remains noninvertible.
Let f;g 2 Rd

K , for some d 2 Z, be such that f Cg is invertible and let us prove that
f or g is. In Notation 2.6, consider the morphism

.f Cg/�cone.f /˝cone.g/ W cone.f /˝ cone.g/�!u˝d
˝ cone.f /˝ cone.g/ :

We claim that this morphism is both invertible and nilpotent in the graded ring
End�K.cone.f /˝ cone.g//. The former is clear since f Cg is invertible by assumption.
To prove nilpotence, since f and g �u –commute, it suffices to show that both f and
g are nilpotent on cone.f /˝ cone.g/. By Proposition 3.3, .f�cone.f /˝cone.g//

2 D

f ˝f ˝ idcone.f /˝ idcone.g/ D 0 by Proposition 2.13, and similarly for g . Hence the
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morphism .f Cg/3�cone.f /˝cone.g/ is both invertible and zero. This forces cone.f /˝
cone.g/D 0. But K is local, so by Proposition 4.2 (v), we have cone.f /˝n D 0, or
cone.g/˝n D 0, for n 2N big enough. By Proposition 2.16, we deduce cone.f /D 0

or cone.g/D 0, ie f or g is an isomorphism.

The second statement follows: For any R� local graded ring, R0 is local.

Example 4.6 The converse to Theorem 4.5 does not hold. Consider KD Dperf.X /

for a nonlocal scheme X . It can nevertheless happen that EndK.1/ D �.X;OX / is
local, say, when OX does not have many global sections, eg for X D Pn

k
.

5 From triangular spectrum to Zariski spectra

Let K be a tensor triangulated category. As before, we tacitly fix an invertible object
u 2 K, like uD†.1/, for instance. Recall the graded central ring R�K D End�K.1/D
HomK.1;u˝�/ of Section 3.

Definition 5.1 Let P 2 Spc.K/ be a triangular prime. We define ��K.P/� R�K as the
following homogeneous ideal (given by homogeneous generators):

��K.P/ WD hf 2 Rhom
K j cone.f / … Pi :

Remark 5.2 Observe that ��K “reverses” inclusions: If P� Q are two primes of K,
then ��K.P/� �

�

K.Q/ in R�K .

Theorem 5.3 Let K be a tensor triangulated category. Let u 2 K be an invertible
object and recall the graded central ring R�K D R�K;u of Definition 3.2.

(a) Let P2Spc.K/. The subset ��K.P/�R�K is a homogeneous prime ideal, equal to
the preimage under the localization homomorphism R�K! R�K=P of the maximal
homogeneous ideal of R�K=P .

(b) The map ��KW Spc.K/ ! Spech.R�K/ is continuous. More precisely, for any
s 2 R�K homogeneous, the preimage of the principal open D.s/� Spech.R�K/ is
the open U.cone.s//� Spc.K/; see Definition 1.3.

(c) The above defines a natural transformation �� between the contravariant functors
K 7! Spc.K/ and K 7! Spech.R�K/ from the category of tensor triangulated
categories (with tensor triangulated functors respecting the chosen invertible
objects) to the category of topological spaces.
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Proof Consider the localization functor qW K�!L WD K=P. Choose q.u/ as invert-
ible in L. The functor q gives us in particular a ring homomorphism f 7! q.f /

R�K D Hom�K.1K; 1K/
q
!Hom�L.1L; 1L/D R�L :

Since the category L is local (Example 4.3) we know by Theorem 4.5 that R�L is a
local graded ring, with maximal ideal m� WD hf 2 Rhom

L j f is not invertiblei. For a
morphism f in K, since qW K�!L is exact, we have cone.q.f //' q.cone.f // and
for an object x 2 K, we have q.x/ D 0 if and only if x 2 P. Therefore ��K.P/ D
hf 2 Rhom

K j q.f / is not invertiblei D q�1.m�/. So, ��K.P/ is the image of m� by the
map Spech.q/W Spech.R�L/! Spech.R�K/. Hence (a).

For (b), unfolding the definitions, we see that P2 .��K/
�1.D.s// if and only if cone.s/2

P, that is, P 2 U.cone.s// see Definition 1.3.

Finally, for (c), let F W K!K0 be a morphism of tensor triangulated categories, that is,
an exact ˝–functor. We have the fixed invertible objects u in K and u0 D F.u/ in K0 .
Let us also denote by F W R�K! R�K0 , f 7! F.f /, the induced ring homomorphism.
We need to prove the commutativity of the following diagram:

Spc.K0/
Spc F //

��
K0

��

Spc.K/

��K
��

Spech.R�K0/ Spech F

// Spech.R�K/ :

Let P0 2Spc.K0/ and recall that .Spc F /.P0/DF�1.P0/. For f 2Rhom
K , unfolding the

definitions, we have f 2 ��K..Spc F /.P0//, cone.f / … .Spc F /.P0/D F�1.P0/,

F.cone.f // …P0 . Now, F being exact, F.cone.f //D cone.F.f // and the condition
becomes equivalent to cone.F.f // … P0, F.f / 2 ��K0.P

0/, f 2 F�1.��K0.P
0//D

.Spech F /.��K0.P
0//.

Theorem 5.4 Let S � R�K be a central homogeneous multiplicative subset and let
qW K! S�1K be the corresponding localization (see Theorem 3.6). Then the diagram

Spc.S�1K/
� � Spc.q/ //

��
S�1K

��

Spc.K/

��K
��

Spech.R�
S�1K

/D Spech.S�1 R�K/
� � // Spech.R�K/;

commutes and is cartesian: Spc.S�1K/Š fP 2 Spc.K/ j S \ ��K.P/D¿g.
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Proof The diagram commutes by naturality of �� (Theorem 5.3 (c)). As in Theorem
3.6, let J D hcone.s/ j s 2 Si, so that S�1K D K=J. We know that Spc.S�1K/ is
homeomorphic, via Spc.q/, to fP 2 Spc.K/ j J� Pg; see Remark 1.4. By definition
of J, we have J� P if and only if cone.s/ 2 P for all s 2 S , which is equivalent to
s … ��K.P/ for all s 2 S , by Definition 5.1.

Remark 5.5 For each Z–graded �–commutative ring R� , we have a continuous map
.�/0W Spech.R�/�! Spec.R0/, p� 7! p0 D p� \R0 . This is natural in R� , with
respect to homogeneous ring homomorphisms. Note that this map is surjective. Indeed,
let p 2 Spec.R0/. We can localize at p (invert S D R0 X p) and reduce to the case
where R0 is local with maximal ideal p. Then any homogeneous prime q� containing
the proper ideal p �R� (eg a maximal one) will satisfy q� \R0 D p: One inclusion
since q� contains p and the other one since p is maximal. Composing ��K with the
map .�/0 yields the following corollary.

Corollary 5.6 Let K be a tensor triangulated category and let P 2 Spc.K/. We define
�K.P/� RK D EndK.1/ as the subset

(5-1) �K.P/ WD ff 2 RK j cone.f / … Pg :

(This does not rely on the choice of an invertible object u 2 K.) Then we have:

(a) For each P 2 Spc.K/, the subset �K.P/� RK is a prime ideal.

(b) The map �KW Spc.K/!Spec.RK/ is continuous, natural in K, and the following
diagram commutes:

Spc.K/
��K //

�K %%

Spech.R�K/

.�/0

��
Spec.RK/ :

(c) Let S�RK be a multiplicative subset and let qW K!S�1K be the corresponding
localization (see Corollary 3.10). Then the commutative diagram

Spc.S�1K/
� � Spc.q/ //

�
S�1K

��

Spc.K/

�K

��
Spec.RS�1K/D Spec.S�1 RK/

� � // Spec.RK/

is cartesian, ie Spc.S�1K/Š fP 2 Spc.K/ j S \ �K.P/D¿g.
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Proof The diagram in (b) commutes by definition; see (5-1). Therefore (a) and the
rest of (b) follow. Only (c) requires some comment. Indeed, it follows from Theorem
5.4 and the following facts: For any graded ring R� and any multiplicative subset
S �R0 , we have .S�1R�/0 D S�1R0 and the commutative diagram

Spech.S�1R�/
� � //

.�/0

��

Spech.R�/

.�/0

��
Spec.S�1R0/

� � // Spec.R0/

is cartesian. Indeed, for p� 2 Spech.R�/ we have p�\S D¿ , p0\S D¿.

Remark 5.7 Not only are the spaces Spc.K/, Spech.R�K/ and Spec.RK/ spectral in
the sense of Hochster [14] but Theorem 5.3 (b) shows that ��K and �K are spectral
maps, namely the preimage of a quasicompact open is quasicompact.

6 Locally ringed space structures

The spectrum Spc.K/ of a tensor triangulated category K can be turned into a ringed
space, as explained in [1, Section 6]. We recall the definition, introduce a graded version
of it, and then compare these structure sheaves with the ones on Spec.RK/ and on
Spech.R�K/; see Remark 3.4. More important than the sheaf of rings, the fundamental
geometric feature is the following “presheaf” of triangulated categories.

Throughout this section, K is a rigid (Definition 1.5) tensor triangulated category. We
use this assumption to deduce that any thick triangulated ˝–ideal J of K is radical,
that is x˝n 2 J implies x 2 J (see [1, Proposition 2.4]).

Construction 6.1 Let U � Spc.K/ be a quasicompact open with closed comple-
ment Z . Define KZ WD fa 2 K j supp.a/�Zg to be the thick triangulated ˝–ideal
of K supported outside U . Then define the tensor triangulated category “K on U ”

(6-1) K.U / WD
�
K=KZ /

\

as the idempotent completion .�/\ of the Verdier quotient K=KZ . This quotient is
the localization S�1K with respect to S D fsW a ! b j supp.cone.s// � Zg. By
construction we have a natural functor

qU W K�!K.U / :

It sends in particular the unit 1D 1K 2K to the unit 1K.U / , which we simply denote 1U .
We will consider endomorphism rings of these unit objects. The above idempotent
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completion is harmless for the sequel since the inclusion K ,! K\ is fully faithful
but (6-1) is the right definition of K.U / in view of geometric examples; see more in [1,
Remark 6.2] including the reference to Thomason’s localization theorem.

Remark 6.2 The space Spc.K/ has a basis of quasicompact open subsets; see [1,
Remark 2.7 and Proposition 2.14]. We tacitly use this fact everywhere by describing
our presheaves on such opens only. This is enough for the associated sheaves anyway.
We focus on quasicompact opens when defining K.U / because Spc.K.U //Š U if
and only if U is quasicompact; see [1, Corollary 2.15] and [6, Proposition 1.11].

Lemma 6.3 Let P 2 Spc.K/ and let a; b 2 K. There is a natural isomorphism
colimU3P HomK.U /.a; b/

�
!HomK=P.a; b/, where the colimit is taken over the quasi-

compact open subsets of Spc.K/ containing the point P.

Proof Since we are considering a; b 2K, and since idempotent completion is fully
faithful, we have for every U that HomK.U /.a; b/ D HomK=KZ

.a; b/ where Z D

Spc.K/ X U . A morphism in the localization K=KZ is the equivalence class of a
fraction a

s
 x! b where supp.cone.s//�Z , the equivalence being with respect to

amplification, as usual. Letting U shrink among the quasicompact opens containing P,
it is easy to check that the stated colimit amounts to the equivalence classes of fractions
a

s
 x! b where supp.cone.s//� Spc.K/XfPg, which is equivalent to cone.s/ 2P.

Such fractions precisely describe the morphisms in K=P.

Definition 6.4 For each quasicompact open U � Spc.K/, define the commutative
ring pOK.U / and the �u –commutative Z–graded ring pO�K.U / by

pOK.U / WD RK.U / D EndK.U /.1U / and pO�K.U / WD R�K.U / :

For the right-hand graded ring (Definition 3.2), some invertible object u2K is assumed
fixed beforehand, for instance uD†.1/ and we use its image in K.U /. These pOK

and pO�K are partially-defined presheaves on Spc.K/, only defined on an open basis;
see Remark 6.2. Their associated sheaves on the space Spc.K/ are denoted

OK WD
epOK and O�K WD epO�K :

Finally, we denote the ringed spaces thus obtained by

Spec.K/ WD
�
Spc.K/;OK

�
and Spec�.K/ WD

�
Spc.K/;O�K

�
:

Note that they are both defined on the same space, namely the spectrum of K.
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Proposition 6.5 Let P 2 Spc.K/. The stalk of O�K and of pO�K at P are naturally
isomorphic to R�K=P . In particular, the stalk of OK and of pOK at P are naturally
isomorphic to RK=P .

Proof It follows directly from Lemma 6.3 applied to a D 1 and b D u˝i that the
stalk at P of the presheaf U 7! Ri

K.U / is Ri
K=P for all i 2 Z. This gives the result for

the presheaves pOK and pO�K , hence for the associated sheaves OK and O�K .

Corollary 6.6 The ringed space Spec.K/ is a locally ringed space.

Proof By Proposition 6.5, it suffices to prove that RK=P is a local ring. This holds by
Theorem 4.5 since the category K=P is local (see Example 4.3).

Remark 6.7 The author doesn’t know whether the concept of “locally graded ringed
space” exists but the proof of Corollary 6.6 applies to Spec�.K/ as well, showing that
the stalks of O�K are local in the graded sense.

Remark 6.8 We now want to show that the continuous maps �KW Spc.K/!Spec.RK/

and ��KW Spc.K/! Spech.R�K/ of Section 5 can be upgraded into morphisms of locally
ringed spaces.

Recall that a morphism �W .X;OX /! .Y;OY / of ringed spaces consists of a continuous
map �W X ! Y together with ring homomorphisms rU W OY .U /!OX .�

�1.U // for
all open U � Y , in a compatible way with the restrictions. As usual, it is enough to do
so on a basis of the topology of the base space Y .

Lemma 6.9 For every homogenous s 2 Reven
K there is a natural isomorphism between

the sections of the sheaf O�Spech.R�K/
over the principal open D.s/ of Spech.R�K/ and the

sections of the presheaf pO�K over the preimage .��K/
�1.D.s//D U.cone.s//. They

are both naturally isomorphic to R�KŒ1=s�.

There is an analogous obvious ungraded statement for s 2 RK mutatis mutandis.

Proof By definition, O�Spech.R�K/
.D.s// D R�KŒ1=s�. On the other hand, we know

by Theorem 5.3 (b) that the preimage of D.s/ under ��KW Spc.K/! Spech.R�K/ is
U.s/ WD U.cone.s//. Finally pO�K.U.s//D R�K.U.s// can be computed by Theorem
3.6 applied to S D fsi j i � 0g. (This uses K rigid to prove that Ksupp.cone.s// is
indeed hcone.s/i and not just

p̋
hcone.s/i.) This yields R�KŒ1=s� as well. Hence the

result. The ungraded statement follows by contemplating degree zero only.
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Construction 6.10 For every s 2 Reven
K , let U.s/ WD U.cone.s//D .��K/

�1.D.s//�

Spc.K/ and define the ring homomorphism

rD.s/W O�Spech.R�K/
.D.s//�!O�K.U.s//

as the composite of the isomorphism O�Spech.R�K/
.D.s//

�
! pO�K.U.s// of Lemma 6.9

followed by the (sheafification) morphism pO�K!O�K on U.s/. This construction is
compatible with restriction and defines a morphism of ringed spaces

(6-2) .��K; r/W Spec.K/�! Spech.R�K/ :

Concentrating on the degree zero part (hence allowing s 2 RK only), we obtain a
morphism of ringed spaces .�K; r/W Spc.K/! Spec.RK/.

Proposition 6.11 The above morphisms are morphisms of locally ringed spaces.
Moreover, we have the following properties:

(a) For a prime P 2 Spc.K/, let p D �K.P/ 2 Spec.RK/ and p� D ��K.P/ 2

Spech.R�K/. Then the induced homomorphisms on stalks are the natural ones,
.RK/p! RK=P and .R�K/p� ! R�K=P , induced by localization at P.

(b) If �K or ��K is a homeomorphism on the underlying spaces, it is automatically
an isomorphism of ringed spaces.

Proof We prove the graded version. The ungraded version can be proved similarly.
For readability, let us abbreviate � WD ��KW Spc.K/! Spech.R�K/ on spaces.

Localization qPW K!K=P induces a ring homomorphism R�K! R�K=P . By Theorem
5.3 (a), the preimage under this homomorphism of the maximal ideal of R�K=P is
precisely the ideal p� D �.P/ � R�K . Hence, the induced morphism of local rings
`W .R�K/p�! R�K=P is local (the image of the maximal ideal of the source is contained
in the maximal ideal of the target). We claim that this morphism `W .R�K/p�! R�K=P is
precisely the one induced stalkwise by the morphism of ringed spaces Spec�.K/!
Spech.R�K/ above. Recall Proposition 6.5. An element f=s2 .R�K/p� defines an element
of End�K.U.s//.1U.s// whose class in K=P is precisely `.f=s/. This yields Part (a).
Hence our morphism of ringed spaces is stalkwise local, so it is a morphism of locally
ringed spaces.

Part (b) is then easy to deduce from Lemma 6.9. Indeed, assuming the two spaces
are the same, the presheaf pO�K agrees with the sheaf O�Spech.R�K/

on principal opens.
Consequently its sheafification O�K is exactly O�Spech.R�K/

as claimed.

So much for structure sheaves. We now return to spectra.
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7 Two criteria for surjectivity

We want to give conditions for the maps ��KW Spc.K/!Spech.R�K/ and �KW Spc.K/!
Spec.RK/ to be surjective. First, we reduce to the case of R�K local.

Proposition 7.1 Let p� 2 Spech.R�K/ be a homogeneous prime. Consider the localiza-
tion L WDKp� D S�1

p� K of Corollary 3.9. We know that R�L Š .R
�

K/p� is a local graded
ring. Suppose that the maximal homogeneous ideal of R�L belongs to the image of ��L .
Then p� belongs to the image of ��K .

Proof By naturality of �� , the following diagram commutes:

Spc.L/ � � //

��L
��

Spc.K/

��K
��

Spech.R�L/D Spech..R�K/p�/
� � // Spech.R�K/ :

Since the lower map sends the maximal ideal of R�L to p� , we get the result.

The above can be combined with the following:

Proposition 7.2 Let K be a tensor triangulated category such that R�K is local with
maximal homogeneous ideal m� . Then the following conditions are equivalent:

(i) There exists a prime P 2 Spc.K/ such that ��K.P/Dm� .

(ii) For every n� 1 and every homogeneous f1; : : : ; fn 2m
� , the product of their

cones cone.f1/˝ � � �˝ cone.fn/ is nonzero in K.

Proof Suppose that ��K.P/Dm� and let f1; : : : ; fn 2 R�K be homogeneous elements
such that cone.f1/˝� � �˝cone.fn/D 02P. Since P is prime, this implies cone.fi/2

P for some 1� i � n. By Definition 5.1 this means fi … �
�

K.P/, hence fi …m
� .

Conversely, suppose that S WD fcone.f1/ ˝ � � � ˝ cone.fn/ j n � 1; f1; : : : ; fn 2

m� homogeneousg [ f1g does not contain zero. This S is ˝–multiplicative by con-
struction. By Zorn, more precisely by [1, Lemma 2.2 applied to JD 0], there exists a
prime P 2 Spc.K/ such that P\S D¿. Hence, for every homogeneous f 2m� , we
have cone.f / 2 S , so cone.f / … P, that is f 2 ��K.P/, by Definition 5.1. We have
shown m� � ��K.P/ and this is enough since m� is maximal.
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We now turn to the situation where R�K is coherent. We shall say that a graded ring is
coherent if every finitely generated homogeneous ideal is finitely presented. Of course,
a noetherian ring is coherent.

For this part, we choose the invertible object uD†.1/. That is, we have

Hom�K.a; b/D HomK.a; †
�b/

for any a; b 2 K and in particular, R�K D HomK.1; †�1/.

Theorem 7.3 Let K be a tensor triangulated category such that R�K is coherent (eg noe-
therian). Then the map ��KW Spc.K/! Spech.R�K/ is surjective.

We prove this result below. By surjectivity of .�/0W Spech.R�K/ ! Spec.RK/ (see
Remark 5.5) and since �K D .�/

0 ı ��K (see Corollary 5.6 (b)), we immediately have:

Corollary 7.4 Let K be a tensor triangulated category such that R�K is coherent (eg
noetherian). Then the map �KW Spc.K/! Spec.RK/ is surjective.

The key application of the coherence assumption is the following proposition. Recall
that a graded module is coherent if it is finitely presented and if any finitely generated
graded submodule is finitely presented as well.

Proposition 7.5 Suppose that R�K is coherent (eg noetherian) and local, with max-
imal homogeneous ideal m� . Let f 2 m� be homogeneous and let a 2 K be an
object such that Hom�K.1; a/ is nonzero and coherent as graded R�K –module. Then
Hom�K.1; a˝ cone.f // is nonzero and coherent as well.

Proof Let d 2 Z be the degree of f . We have a distinguished triangle

a
f�a // †d .a/ // a˝ cone.f / // †a

which induces a long exact sequence under the homological functor HomK.1;�/. This
long exact sequence can be wrapped up (˚) into a periodic exact sequence

(7-1)

Hom�K.1; a/
�f

.d/

// Hom�K.1; a/

uu
Hom�K.1; a˝ cone.f //

.1/

ii

of graded R�K –modules, where .d/ and .1/ indicate homogeneous R�K –linear homo-
morphisms of degree d and 1 respectively. (Here we used our choice of uD†.1/.)
If, ab absurdo, the lower module in (7-1) is zero, it means that f acts surjectively on
the coherent, hence finitely generated R�K –module Hom�K.1; a/. Since f 2m� , by the
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graded version of Nakayama’s Lemma (see [20, 1.10]), we would have Hom�K.1; a/D0,
which is excluded. Hence the lower module is nonzero as claimed. The fact that it
remains coherent is immediate: It fits in a short exact sequence with the cokernel
and the kernel of the horizontal map �f of (7-1), which are both coherent. See [10,
Proposition 1.2 and comments before Proposition 1.1].

Proof of Theorem 7.3 Since the localization of a coherent graded ring remains
coherent (extend [12, Theorem 3] to graded-commutative), we can use Propositions 7.1
and 7.2 to assume that R�K is local and coherent and reduce the proof to showing that
cone.f1/˝� � �˝cone.fn/¤ 0 for any homogeneous f1; : : : ; fn 2m

� . By Proposition
7.5, we even have the stronger fact that

Hom�K
�
1; cone.f1/˝ � � �˝ cone.fn/

�
¤ 0

by induction on n� 1. (Take of course aD 1 when nD 1.)

We now prove surjectivity of �KW Spc.K/ ! Spec.RK/ for another class of tensor
triangulated categories.

Definition 7.6 Let us say that K is connective if HomK.1; †i.1//D 0 for all i > 0.

Remark 7.7 Maybe surprisingly, this property is self-dual: If K is connective then Kop

is connective as well. This comes from the fact that the suspension in Kop must be †�1 .
In other words, the results below cannot be applied merely under the “complementary”
assumption that HomK.1; †i.1// D 0 for i < 0, by claiming duality. Applying the
following results to Kop gives the same results.

As in Propositions 7.1 and 7.2, we have reductions to the local case:

Proposition 7.8 Let p 2 Spec.RK/ be a prime. Consider the localization L WDKp of
Corollary 3.11. We know that the ring RL D .RK/p is local. Suppose that the maximal
ideal of RL belongs to the image of �L . Then p belongs to the image of �K .

Proof Easy exercise on the naturality of � , as in the proof of Proposition 7.1.

Proposition 7.9 Let K be a tensor triangulated category whose central ring RK is
local with maximal ideal m. Then the following conditions are equivalent:

(i) There exists a prime P 2 Spc.K/ such that �K.P/Dm.

(ii) For every n� 1 and every f1; : : : ; fn 2m, the product of their cones cone.f1/˝

� � �˝ cone.fn/ is nonzero in K.

Proof Same proof as Proposition 7.2.
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Lemma 7.10 Let K be connective. Let f1; : : : ; fn 2 RK . Let c D cone.f1/˝ � � � ˝

cone.fn/ 2 K be the product of their cones. Then, we have:

(a) HomK.1; †i.c//D 0 for all i > 0.

(b) There is a natural isomorphism RK =hf1; : : : ; fni
�
!HomK.1; c/.

Proof By induction on n � 0. For n D 0, that is for c D 1, statement (a) is the
connectivity assumption and (b) is trivial. For the induction step, let n� 1. Consider
d D cone.f1/˝ � � �˝ cone.fn�1/ and the distinguished triangle

d
.fn/�d // d // c // †.d/

obtained by tensoring d with the triangle defining cone.fn/. Consider the long exact
sequence obtained by applying HomK.1;�/ to the above triangle (and Proposition 2.2):

� � �!HomK.1; †
id/

�fn
�!HomK.1; †

id/!HomK.1; †
ic/!HomK.1; †

iC1d/!� � �

for i 2Z. The induction hypothesis (for d ) applied to this long exact sequence around
i > 0 gives (a); applied around i D 0, it gives (b).

Proposition 7.11 Let K be a connective tensor triangulated category and let I ¨ RK

be a proper ideal. Then for any f1; : : : ; fn 2 I the product of their cones does not
vanish: cone.f1/˝ � � �˝ cone.fn/¤ 0.

Proof By Lemma 7.10 (b), we have HomK.1; cone.f1/˝ � � �˝ cone.fn//¤ 0.

Corollary 7.12 Let K be a connective tensor triangulated category such that RK is
local with maximal ideal m. Then there exists P 2 Spc.K/ such that �K.P/Dm.

Proof It suffices to check condition (ii) of Proposition 7.9 and this follows from
Proposition 7.11 applied to I Dm.

Theorem 7.13 Let K be a connective tensor triangulated category (Definition 7.6).
Then the map �KW Spc.K/�! Spec.RK/ is surjective.

Proof This is immediate from Proposition 7.8 and Corollary 7.12 once we know that
Kp remains connective for every p 2 Spec.RK/. This is obvious by construction of
Kp D S�1

p K (see Corollary 3.11), since Sp D RK Xp sits in degree zero.
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Corollary 7.14 Let K be a connective tensor triangulated category such that R<0
K DL

i<0 HomK.1; †i1/ is a nil-ideal. (In more topological notation, we are assuming
that any element f W †j 1 ! 1 is zero for j < 0 and nilpotent for j > 0.) Then
Spech.R�K/Š Spec.RK/ via .�/0 . In particular, ��KW Spc.K/! Spech.R�K/ coincides
with �K and is surjective.

Proof We have the commutative diagram of Corollary 5.6 (b) and we know by Theorem
7.13 that �K is surjective. So, it suffices to show that .�/0W Spech.R�K/! Spec.RK/,
p� 7! p0 is a bijection. Since R<0

K is a homogeneous nil-ideal, it belongs to all
homogeneous prime ideals. Hence, we have p� D R<0

K ˚p
0 for all p� 2 Spech.R�K/

and the bijection follows easily.

8 Some examples, old and new

Proposition 8.1 Let A be a commutative ring and let KD Kb.A–proj/ be the tensor
triangulated category of perfect complexes. Then �KW Spc.Kb.A–proj//! Spec.A/ is
a homeomorphism, inverse to the one given in Example 4.4.

Proof Recall that the homeomorphism Spec.A/ �! Spc.Kb.A–proj// is given by
p 7! P.p/D fM� 2 Kb.A–proj/ j .M�/p D 0 in Kb.Ap–proj/g. Let p 2 Spec.A/. We
need to show that �K.P.p//D p. This is easy: For f W 1! 1, ie for f 2A, we have
by definition of �K in (5-1) that f 2 �K.P.p// , cone.f / … P.p/ , the image of
f W 1! 1 is not invertible in Kb.Ap–proj/ , the image of f in Ap is not invertible
, f 2 p.

Remark 8.2 For a nonaffine scheme X , this result fails for K D Dperf.X /, simply
because there aren’t always enough global sections, as can be checked for X D Pn

k
.

However, in this case, or more generally if X D Proj.A�/ is a projective scheme
with A� such that the natural map Ad ! �.X;O.d// is an isomorphism for large d

(see for instance [13, Exercise 2.5.9, page 125]) and such that A0 D �.X;OX /, then
Spech.A�/D Spech.�.X;O.�///. In this case, we can choose uDO.1/ as invertible
object in K and the map ��KW Spc.Dperf.X //�! Spech.A�/ induces a homeomorphism
onto X . This is similar to the above, using [1, Corollary 5.6], and is left to the reader.

I’m thankful to C Walter for the following example of nonsurjectivity of �K .

Example 8.3 Let .A;m/ be a regular local ring and U D Spec.A/ X fmg be its
punctured spectrum. Let KD Dperf.U /. When d D dimKrull.A/� 2, we have RK D

A and Spec.RK/ D Spec.A/ which is strictly bigger than U D Im.�K/. In fact,
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R�K 'A˚Rd�1
K where Rd�1

K DH d�1.U;OU / is an injective envelope of the residue
field A=m. This ring R�K is neither connective nor coherent.

Remark 8.4 The above proof of Proposition 8.1 uses the classification of thick triangu-
lated ˝–ideals, hidden in [1, Corollary 5.6]. Yet our Theorem 7.13 proves surjectivity
of �KW Spc.K/�! Spec.A/ without the classification. It is therefore interesting to
find a direct proof of injectivity, for this would yield a new proof of classification, via
[1, Theorem 4.10]. Actually such direct proofs of the injectivity of �K do exist in this
case. There is a rather elementary such proof, using only perfect complexes, but it
is a little long to include here. Another proof, due to Amnon Neeman, uses bigger
categories but can be sketched as follows. The general machinery developed above
allows us to reduce to the case of .A;m/ local and to show that the preimage in Spc.K/
of the maximal ideal consists only of the ideal zero. To do that, it suffices to show
that for any nonzero object X 2 KD Dperf.A/ there exists f1; : : : ; fr 2m such that
Kos.f / 2 hX i, where Kos.f / WD cone.f1/˝ � � � ˝ cone.fr /. One can reduce to A

noetherian local. Then in the big derived category D.A/, the complex X ˝L � is a
finite sum of shifts of the residue field � WDA=m. Then, using the t –structure on D.A/,
one can show by induction that any bounded complex with finite length homology
belongs to h�i and hence to the localizing triangulated subcategory hX iloc generated
by X in D.A/. In particular, if f D .f1; : : : ; fr / is a sequence generating m, we
have Kos.f / 2 hX iloc \K. Since the object X 2 K D .D.A//c is compact in the
compactly generated D.A/, we can use a general result of triangulated categories (see
Neeman [27, Theorem 4.4.9]) which implies here that hX iloc\KD hX i and we get
Kos.f / 2 hX i as wanted.

Let us switch to modular representation theory. The following result is new although
known to some experts (announced for instance in talks by Julia Pevtsova, joint work
with Paul Smith; see also Benson et al [8]):

Proposition 8.5 Let G be a finite group (scheme) and k be a field. Consider K D

Db.kG–mod/ with ˝D˝k . Its graded central ring R�K (Definition 3.2) is H�.G; k/
and the map ��KW Spc.Db.kG–mod//! Spech.H�.G; k// is a homeomorphism.

Proof Let JD Kb.kG–proj/� K. By Rickard [30], the quotient K=J is equivalent
to the stable category kG–stab, whose spectrum is described in [1, Corollary 5.10] as

'W Proj.H�.G; k//
�
�! Spc.kG–stab/

p� 7�! P.p�/ WD fM j AnnH�.G;k/.H
�.G;M // 6� p�g :
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We then have the following picture:

Spc.K=J/D Spc.kG–stab/ � � // Spc.K/

��K
��

f0g? _oo

��
Proj.H�.G; k// � � //

''

OO

Spech.H�.G; k// fHC.G; k/g? _oo

We claim that this diagram commutes. Indeed, the graded ring H�.G; k/ is local with
maximal ideal HC.G; k/. We claim that K is local as well. This is obvious since we
have a forgetful ˝–functor K! Db.k/ whose kernel is zero (exactness of a complex
of kG –modules being a property of the underlying complex of vector spaces). So 0 2

Spc.K/ and K is local by Proposition 4.2. It is obvious that ��K.0/DHC.G; k/ since no
homogeneous element of positive degree can be invertible. Then the right-hand square
of the above diagram commutes. To check that the left-hand square also commutes,
consider a homogeneous prime p� 2 Proj.H�.G; k// and a homogeneous element
f 2 Hd .G; k/ for some d � 0. Let qW K�! kG–stab be the localization functor.
Then, f 2 ��K.q

�1.P.p�/// , cone.f / … q�1.P.p�// , q.cone.f // … P.p�/ ,

AnnH�.G;k/.H
�.G; q.cone.f ////� p�, p� 2 V .AnnH�.G;k/.H

�.G; q.cone.f /////D
V .f /. The last equality comes from the fact that q.cone.f // D cone.q.f // is the
suspension of the so-called Carlson module Lf , whose support is known to be V .f /;
see [7, Proposition II.5.9.1, page 186]. In short, we have f 2 ��K.q

�1.P.p�///,

f 2 p� , which proves ��K.q
�1.'.p�///D p� , as wanted.

Finally, we claim that Spc.K/D Spc.K=J/[f0g. This follows from the fact that every
nonzero ˝–ideal P� K contains kG . Indeed, for any M� 2 Db.kG–mod/, we have
by Frobenius reciprocity that kG ˝M� ' indG

e ı resG
e .M�/ and since resG

e .M�/ 2

Db.k–mod/, the complex resG
e .M�/ is isomorphic to a complex of vector spaces with

zero differentials. So, if M� ¤ 0 then kG˝M� has a direct summand isomorphic
to kG . Hence if 0 ¤ P 2 Spc.K/ then J D Kb.kG–proj/ D hkGi � P, that is, P

belongs to the image of Spc.K=J/ ,! Spc.K/; see Remark 1.4.

We have shown that the above diagram commutes, that the top row describes a partition
Spc.K/D Spc.K=J/[f0g formed by the closed point f0g and its open complement
Spc.K=J/. Since ��K is a bijection on both parts, we see that ��K is bijective. Since ��K
is continuous, it only remains to check that it is open. This is very easy. The only open
subset of Spc.K/ which contains f0g is the whole Spc.K/. Any other open of Spc.K/
will be in Spc.K=J/, hence will have an open image in Proj.H�.G; k//, which is itself
open in Spech.H�.G; k//.

Remark 8.6 In this example of KD Db.kG–mod/, like for the case of Kb.A–proj/,
the general results of Section 7 actually provide a proof of the surjectivity of the
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map ��KW Spc.Db.kG–mod//�! Spech.H�.G; k// without using classification results.
Indeed, H�.G; k/ is noetherian by the Venkov–Evens Theorem (see [7, Theorem II.4.2.1,
page 126]) so we can apply Theorem 7.3. It would be interesting to prove injectivity
directly, in the spirit of Remark 8.4. Again, such a direct proof would provide a new
proof of classification, via general tensor triangular theory [1, Theorem 4.10].

Section 7 also applies to the following more analytic example.

Example 8.7 Let G be a compact (Lie) group and KKG the tensor triangulated
category which has separable G –C �–algebras as objects, equivariant Kasparov’s KK –
theory as morphisms and tensor given by the minimal tensor product with diagonal
G–action. Details can be found in Meyer’s survey [23] or in Dell’Ambrogio’s the-
sis [11, Chapter 5]. Here, the ring RKKG D KKG

0 .C;C/ D KG
0
.C/ DW R.G/ is the

Grothendieck group of continuous complex representations of G , following Segal [31].
Dell’Ambrogio proves by other techniques that �KG W Spc.KG/! Spec.R.G// is split
surjective when G is finite and where KG is the triangulated subcategory of KKG

generated by the unit. He also proves that the map �KG W Spc.KG/! Spec.R.G// is
a homeomorphism for G trivial and conjectures that this holds for all finite groups.
With Corollary 7.4 we can generalize the surjectivity from finite groups to any compact
group.

Corollary 8.8 Let G be a compact Lie group. With the above notation, the con-
tinuous map �KKG W Spc.KKG/ ! Spec.R.G// is surjective. Consequently, so is
�KG W Spc.KG/! Spec.R.G//.

Proof By Bott periodicity, Spech.R�KKG /D Spec.RKKG /. In addition, KKG
1 .C;C/D

KG
1
.C/DR.G/˝K1.C/D 0; see [28, Remark 2.8.5]. So, Ri

KKG D 0 for i odd. It
is a result of Segal [31, Corollary 3.3] that R.G/ is noetherian for any compact Lie
group and consequently R�KKG is noetherian as well. Corollary 7.4 then gives the result.
The last statement follows since �KKG factors via �KG , using KG ,! KKG .

9 Spectra of topological spectra

Let us consider the tensor triangulated category K D SHfin , the topological stable
homotopy category of finite spectra; see Margolis [22]. The tensor product is induced
by the smash product and the unit 1D S0 is the sphere spectrum. We have RK D Z
and R�K is connective with nilpotent R<0

K . So, by Corollary 7.14, we can focus on �K .

Let us denote the set of prime numbers by P �N D f0; 1; 2; 3; : : :g. Let p 2 P and
let SHfin

.p/ be the localization of SHfin at p , as in Corollary 3.11 applied to pD pZ.
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We recall the following major result from Hopkins and Smith [15]; see also Ravenel [29].

Theorem 9.1 (Hopkins–Smith) Let p 2 P be a prime. Recall that Morava K–
theories define a collection of functors Kp;nW SHfin

.p/�!Vp;n into ˝–categories Vp;n

of free graded modules, with index n2N . All functors Kp;n satisfy a Künneth formula,
ie they are ˝–functors. Let Cp;n WD Ker.Kp;n/. Then,

0DW Cp;1 ¨ � � �¨ Cp;n ¨ Cp;n�1 ¨ � � �¨ Cp;1 ¨ Cp;0 ¨ SHfin
.p/

are all the thick triangulated ˝–ideals of SHfin
.p/ . Moreover,

T
n2N Cp;n D 0.

Corollary 9.2 Every proper thick triangulated ˝–ideal of SHfin
.p/ is prime. In particu-

lar, SHfin
.p/ is a local tensor triangulated category (see Definition 4.1).

Proof Indeed, since Kp;n satisfies a Künneth formula and since the graded tensor
product of two free graded modules cannot vanish unless one of the factors is zero,
Ker.Kp;n/ is prime for every n � 0. Hence so is their intersection Cp;1 D 0. Then
SHfin

.p/ is local by Proposition 7.8 (iii).

Example 9.3 For nD 0, the Morava K–theory Kp;0 is rational (singular) homology:
Kp;0 D H�.�;Q/ and Cp;0 is therefore the subcategory of torsion finite spectra
localized at p . Note that the preimage of Cp;0 in SHfin under the localization functor
SHfin

�! SHfin
.p/ is the subcategory of torsion finite spectra, SHfin

tor , that is, the kernel
of rational homology. In particular, it is independent of p .

Proposition 9.4 Let p 2 P be a prime. The central ring RSHfin
.p/
D Z.p/ is the ring of

integers localized at p . The map � WD �SHfin
.p/
W Spc.SHfin

.p//�! Spec.Z.p// maps Cp;n

to the maximal ideal pZ.p/ for every n> 0 and maps Cp;0 to 0.

Proof By definition (see (5-1)), the prime ideal �.Cp;0/ consists of all f 2 RSHfin
.p/
D

Z.p/ whose cone does not belong to Cp;0 , ie is not torsion. So, �.Cp;0/D ff 2Z.p/ j
f is not an isomorphism rationallyg D 0.

As � is inclusion-reversing (Remark 5.2), and as pZ.p/ is maximal, in order to prove
�.Cp;n/DpZ.p/ for all n� 1, it suffices to prove it for nD 1. The Morava K–theory
Kp;1 is a direct summand of mod p topological K–theory. Hence Kp;1.S

0 p
!S0/ is

the zero map. Therefore, Kp;1.cone.p//D 1˚ 1.1/ in Vp;1 and in any case it is not
zero. So cone.p/ … Ker.Kp;1/D Cp;1 , ie p 2 �.Cp;1/ by definition; see (5-1). Thus
pZ.p/ � �.Cp;1/ and we have equality since pZ.p/ is the maximal ideal.
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Corollary 9.5 The spectrum of SHfin is the following topological space. We also
describe the surjective continuous map � WD �SHfin W Spc.SHfin/�! Spec.Z/.

(9-1)

P2;1 P3;1 � � � Pp;1 � � �

Spc.SHfin/D

�SHfin

��

:::
:::

:::

P2;nC1 P3;nC1 � � � Pp;nC1 � � �

P2;n P3;n � � � Pp;n � � �

:::
:::

:::

P2;1 P3;1 � � � Pp;1 � � �

SHfin
tor

Spec.Z/D 2Z 3Z � � � pZ � � �

.0/

In the above picture, a line indicates that the higher prime is in the closure of the lower
one (specialization). We have more precisely:

(a) The preimage of the dense point of Spec.Z/ has only one point, ��1.0/ D

fSHfin
torg, namely the subcategory of torsion spectra SHfin

tor D Ker.H�.�;Q//.

(b) For each prime p2P the preimage ��1.pZ/ consists of the countable collection
of Pp;n WD q�1

p .Cp;n/ where qpW SHfin
! SHfin

.p/ is the localization functor and
where 1� n�1. When n<1, we have Pp;nDKer.Kp;nıqp/Dfx 2 SHfin

j

Kp;n.qp.x// D 0g, where Kp;n is the n–th Morava K–theory at p . Finally,
Pp;1 D Ker.qp/D fx 2 SHfin

j qp.x/D 0 in SHfin
.p/g.

(c) SHfin
tor is the unique dense point of Spc.SHfin/. For each p 2 P and each

1� n�1, the closure of fPp;ng is fPp;ng D fPp;m j n�m�1g. The closed
points of Spc.SHfin/ are exactly the Pp;1 D Ker.qp/ for all p 2 P .

(d) For an object x 2 SHfin , we have supp.x/D Spc.SHfin/ if and only if x is not
torsion. When x 2 SHfin

tor , then

supp.x/D
[

p2P ;
qp.x/¤0

fPp;n.x;p/g
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where the union involves only finitely many p 2 P and where the integer 1 �

n.x;p/ <1, sometimes called the “type” of qp.x/ (see [29, Definition 1.5.3]),
is the smallest integer n such that qp.x/ … Pp;n .

(e) The proper nonempty closed subsets of Spc.SHfin/ are all possible finite unions
of the following subsets: fPp;ng D fPp;m j n �m �1g for all p 2 P and all
1� n�1.

Proof By Theorem 7.13, the map �W Spc.SHfin/ ! Spec.Z/ is surjective. So, to
describe the set Spc.SHfin/, it suffices to describe the preimages ��1.0/ and ��1.pZ/
for p 2 P . Let us start with the preimage of the generic point .0/ 2 Spec.Z/. By
Corollary 5.6 (c) for S D ZX .0/, the preimage of .0/ is the image of Spc.SHfin

.0// in
Spc.SHfin/, that is, the image of Spec.q0W SHfin

! SHfin
.0//. But SHfin

.0/ D SHfin
˝Q is

just Db.Q/ and q0W SHfin
! SHfin

˝Q'Db.Q/ is (total) rational homology (see [22,
Theorem 8.1.7, page 113]). Since Db.Q/ has only f0g as prime ideal, the preimage
��1.0/ consists only of Ker.q0/D SHfin

tor . This proves (a).

Let now p 2 P be a prime. By Corollary 5.6 (c) again but this time for S D ZXpZ,
we see that the fiber above pZ is the image in Spc.SHfin/ of the part of Spc.SHfin

.p//

which maps to pZ.p/ under �SHfin
.p/

. By the Hopkins and Smith’s Theorem 9.1 and by
Proposition 9.4, we know that this fiber is exactly the collection Cp;n for 1� n�1,
whose images in SHfin are the announced Pp;n for 1� n�1. This proves (b).

The inclusion Pp;n � SHfin
tor is immediate from SHfin

tor D q�1
p .Cp;0/ and from the

inclusions Cp;n � Cp;0 . Then (c) is easy to check from the definitions, recalling that
in any tensor triangulated category K, the closure of a point P 2 Spc.K/ is described
by fPg D fQ 2 Spc.K/ j Q� Pg; see [1, Proposition 2.9].

Now, let x 2 SHfin . If x is not torsion, ie x … SHfin
tor , then for every p 2 P and

n 2 N [ f1g we have x … Pp;n as well, since Pp;n � SHfin
tor . Hence by Definition

1.3, we have supp.x/ WD fP j x …Pg D Spc.SHfin/. On the other hand, if x is torsion,
then it is well-known that qp.x/¤ 0 for only finitely many p 2 P . (By Proposition
3.7, there exists m 2 Z, m ¤ 0, such that m�x D 0 and then qp.x/ D 0 for all p

prime to m.) On the other hand, since 0D Cp;1 D
T

n�0 Cp;n , when qp.x/¤ 0 we
have an integer n D n.x;p/ 2 N , n � 1, such that qp.x/ 2 Cp;n�1 XCp;n . Hence
x 2 Pp;n.p/�1 XPp;n.p/ . This proves (d).

Finally, by definition of the topology of Spc.K/ (Definition 1.3) any closed subset is
an intersection of supports, supp.x/, for x 2 K. It is easy to check that they are the
announced ones. The only subtlety is the appearance of the closed point fPp;1g which
is not the support of any object but which is

T
n�1 fPp;ng.
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Remark 9.6 We observe that Spc.SHfin/ is not a noetherian topological space since,
for any p 2 P , the nonempty family of closed subsets ffPp;ng j 0 � n <1g has no
minimal element, its intersection being fPp;1g. In particular, Spc.SHfin/ cannot be
realized as the homogeneous spectrum Spech.R�/ of a noetherian graded ring R� .

Proposition 9.7 The locally ringed space Spec.SHfin/ is not a scheme. Nor is any of
the local ones Spec.SHfin

.p//, for any prime p .

Proof Let p 2P be a prime. We know by Corollary 9.2 that SHfin
.p/ is a local category

and its spectrum Spc.SHfin
.p// is a local topological space. Hence, if the ringed space

Spec.SHfin
.p// was a scheme, it would be the spectrum of the local ring of global sections

of its structure sheaf, which is just Z.p/ . Obviously, the spectrum of SHfin
.p/ is much

bigger than Spec.Z.p//D f.0/; .p/g. The global result follows, as a scheme remains a
scheme locally.

Remark 9.8 The category SHfin
.p/ only has trivial invertible objects, so even the

twisted version of ��K cannot be injective. In conclusion, the triangular spectrum
Spc.K/ considerably differs from the algebraic spectra Spec.RK/ or Spech.R�K/ in
general. This of course indicates that Spc.K/ is a better, finer invariant than both
Spech.R�K/ and Spec.RK/.

10 Spectra of motivic spectra

For this section, let K D KA1

WD .SHA1

F /c be the subcategory of compact objects
in the Morel–Voevodsky stable A1 –homotopy category SHA1

F over a field F ; see
Voevodsky [33] and Morel [24]. This category can be defined over a more general basis
but the computation of EndK.1/, which we use below, is only performed for a field so far.
The category KA1

is connective in the sense of Definition 7.6, ie HomK.1; †i.1//D 0

for i > 0; see [33, Theorem 4.14], [25, Section 6] or [26, Corollary 4.3.3]. The beautiful
computation of EndK.1/ is due to Morel (see [25, Theorem 6.2.1]):

(10-1) End
KA1 .1/Š GW.F / :

This holds at least when the field F is perfect and of characteristic different from
two, which we assume from now on. The ring GW.F / is the Grothendieck–Witt ring
of quadratic forms over F , that is, the group completion of the abelian semiring of
isometry classes of nondegenerate quadratic forms over F , with orthogonal sum as
addition and tensor product as multiplication. This ring is classical and its quotient
W.F /D GW.F /=h by the 2–dimensional hyperbolic plane hD h1;�1i is the even
more classical Witt ring; see Lam [18]. Applying our Theorem 7.13, we get:
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Corollary 10.1 The map �KW Spc.KA1

/! Spec.GW.F // is surjective.

Remark 10.2 The latter spectrum Spec.GW.F // is well-known, at least for the Witt
group part. Let us remind the reader.

There is always a ring homomorphism, rankW GW.F /! Z, induced by the rank of
quadratic forms. For instance, rankW GW.F /Š Z is an isomorphism for F quadrat-
ically closed, like F D C . On the other hand, if there exists an ordering ˛ on F

(equivalently, if �1 is not a sum of squares in F ) there is another ring homomorphism,
sgn˛W GW.F /!Z, induced by the signature of quadratic forms (for a 2F� , we have
sgn˛.hai/D 1 if a> 0 with respect to the ordering ˛ and sgn˛.hai/D�1 otherwise).
Using this, one can show for instance that Spec.GW.R// is equal to two copies of
Spec.Z/ attached together at the point 2Z.

More generally, the above surjective ring homomorphisms, rankW GW.F /! Z and
sgn˛ W GW.F /! Z, yield copies of Spec.Z/ as closed subsets of Spec.GW.F //.

(a) For q 2 Spec.Z/ define the ideal qq WD rank�1.q/. The ideal I WD q2 D fx 2

GW.F / j rank.x/ is eveng is called the fundamental ideal.

(b) For every ordering ˛ on F (if any) and for every prime p 2 Spec.Z/, define
the ideal p˛;p WD .sgn˛/

�1.p/.

One has I D p˛;2 for every ˛ and there is no other redundancy in the above list:

Spec.GW.F //D fqq j q 2 Spec.Z/g [
[

˛ ordering

fp˛;p j p 2 Spec.Z/X f2gg :

Figure 1 shows a picture of Spec.GW.F //. In the figure, the lines ı � and
ı � indicate inclusions ı � �, that is, � is in the closure of ı. These are the

only inclusions. The dotted part, beyond I , appears only when F has at least one
ordering otherwise Spec.GW.F //D Spec.Z/. This copy of Spec.Z/, coming via the
rank, is the only one which is always present.

To prove this, first recall the spectrum of W.F /DGW.F /=h where hDh1;�1i, from
Harrison and Lorenz–Leicht [19]. It can be found in [18, Section VIII.7, page 277]
and corresponds exactly to the dotted part of 1, including I . It just remains to describe
Spec.GW.F /Œ1=h�/ and this is immediate from GW.F /Œ1=h�' ZŒ1=2�. The latter is
induced by the rank and uses the equation hai˝hD ha;�ai D h1;�1i D h in GW.F /

(which holds in any characteristic). Note that the induced topology on the subspace
fp˛;0 j ˛ ordering on Fg is homeomorphic to the so-called Harrison topology on the
set of orderings; see [18, Corollary 7.6, page 279]. Being a Boolean space, it is not
discrete unless it is finite.
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Figure 1

Remark 10.3 We now wonder what lives “above” this space Spec.GW.F //, that is,
how much bigger is the spectrum of our KA1

D .SHA1

F /c , compared to Spec.GW.F //.
The first answer is coming from SHfin . Let us assume that F � C has a complex
embedding. Then we have two ˝–triangulated functors

SHfin
�!KA1 Re

!SHfin;

the first one being the constant one and the second being complex realization. Their
composition is the identity. So, there is a copy of Spc.SHfin/, as described in Section 9,
embedded inside Spc.KA1

/ via Spc.Re/. On the level of central rings, this corresponds
to the copy of Spec.Z/ in Spec.GW.F // given by the rank. This shows that the fibers
of �K are at least as big as in topology.

As should be expected, there is even more here than in topology:

Proposition 10.4 The split inclusion Spc.Re/W Spc.SHfin/ ! Spc.KA1

/ is not sur-
jective. Its image is contained in the proper closed subset supp.cone.�//, where
� 2 HomK.1;G˝�1

m / is the algebraic Hopf map. This closed subset is also supp.P2/.

Proof The algebraic Hopf map is given by the natural map A2
F
X f0g ! P1

F
and

the facts that A2
F
X f0g Š †.G˝2

m / and P1
F
Š †.Gm/. See for instance Morel [25,
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Section 6.1]. Its complex realization Re.�/ is the topological Hopf map, which is
˝–nilpotent. However, Morel proves that the algebraic � is not nilpotent; see [25,
Corollary 6.4.5, page 258]. We then use two general results:

(a) For any ˝–triangulated functor F W K!L, if we 'DSpc.F /W Spc.L/!Spc.K/
denotes the induced map and if x 2 K, then supp.F.x//D '�1.supp.x// in Spc.L/;
see [1, Proposition 3.6]. Hence '.supp.F.x///� supp.x/.

(b) By Theorem 2.15 above, for any ˝–invertible object u2K, a morphism f W 1!u

is ˝–nilpotent if and only if hcone.f /i DK. The latter is equivalent to the equality
supp.cone.f //D Spc.K/; see [1, Corollary 2.5].

In our case, (b) and the nilpotence of Re.�/ imply that supp.Re.cone.�///DSpc.SHfin/.
Hence by (a), we get Im.Spc.Re//� supp.cone.�//, as announced. The latter is smaller
than Spc.KA1

/ by (b) and the non-nilpotence of the algebraic �. Finally iscone.�/DP2

can be seen from the Mayer–Vietoris square

A2�f0g
�

zz ��

// A2 ' �

��
P1 P2�f0g

'oo // P2 :

(All schemes are pointed, eg at the points corresponding to Œ1 W 1 W 1� 2 P2 .)

Remark 10.5 There is also a continuous map ��KW Spc.KA1

/! Spech�R�KA1
;u

�
ob-

tained from Section 5 with u D Gm as ˝–invertible. Morel proves that R�KA1
;u Š

KMW
�

.F / is the Milnor–Witt K–theory of the field F ; see more in [25, Section 6,
page 251]. Further determination of Spc

�
.SHA1

F /c
�
, including the question of the

surjectivity of this ��K , is a challenging endeavor in which the reader is welcome to
engage.
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