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Top terms of polynomial traces
in Kra’s plumbing construction

SARA MALONI

CAROLINE SERIES

Let † be a surface of negative Euler characteristic together with a pants decom-
position P . Kra’s plumbing construction endows † with a projective structure as
follows. Replace each pair of pants by a triply punctured sphere and glue, or “plumb”,
adjacent pants by gluing punctured disk neighbourhoods of the punctures. The gluing
across the i –th pants curve is defined by a complex parameter �i 2C . The associated
holonomy representation �W �1.†/! PSL.2;C/ gives a projective structure on †
which depends holomorphically on the �i . In particular, the traces of all elements
�.
 /; 
 2 �1.†/ , are polynomials in the �i .

Generalising results proved by Keen and the second author [4; 13] for the once
and twice punctured torus respectively, we prove a formula giving a simple linear
relationship between the coefficients of the top terms of �.
 / , as polynomials in
the �i , and the Dehn–Thurston coordinates of 
 relative to P .

This will be applied in a later paper [7] by the first author to give a formula for the
asymptotic directions of pleating rays in the Maskit embedding of † as the bending
measure tends to zero.

57M50; 30F40

1 Introduction

Let † be a surface of negative Euler characteristic together with a pants decomposi-
tion P . Kra’s plumbing construction endows † with a projective structure as follows.
Replace each pair of pants by a triply punctured sphere and glue, or “plumb”, adjacent
pants by gluing punctured disk neighbourhoods of the punctures. The gluing across the
i –th pants curve is defined by a complex parameter �i 2C . More precisely, zw D �i

where z; w are standard holomorphic coordinates on punctured disk neighbourhoods
of the two punctures. The associated holonomy representation �W �1.†/! PSL.2;C/
gives a projective structure on † which depends holomorphically on the �i , and in
which the pants curves themselves are automatically parabolic. In particular, the traces
of all elements �.
 /; 
 2 �1.†/, are polynomials in the �i .
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The main result of this paper is a very simple relationship between the coefficients of
the top terms of �.
 /, as polynomials in the �i , and the Dehn–Thurston coordinates
of 
 relative to P . This generalises results of Keen and the second author [4; 13] for
the once and the twice punctured torus respectively.

Our formula is as follows. Let S denote the set of homotopy classes of multiple
loops on †, and let the pants curves defining P be �i ; i D 1; : : : ; � . For brevity we
usually refer to elements of S as curves (even if they are not connected); see Section 2.
The Dehn–Thurston coordinates of 
 2 S are i.
 / D .qi ;pi/; i D 1; : : : ; � , where
qi D i.
; �i/ 2N [f0g is the geometric intersection number between 
 and �i and
pi 2 Z is the twist of 
 about �i . We prove:

Theorem A Let 
 be a connected simple closed curve on †, not parallel to any of
the pants curves �i . Then Tr �.
 / is a polynomial in �1; : : : ; �� whose top terms are
given by

Tr �.
 /D˙iq2h
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where

� q D
P�

iD1
qi > 0;

� R represents terms with total degree in �1 � � � �� at most q� 2 and of degree at
most qi in the variable �i ;

� h D h.
 / is the total number of scc-arcs in the standard representation of 

relative to P ; see below.

If q D 0, then 
 D �i for some i , �.
 / is parabolic, and Tr �.
 /D˙2.

The non-negative integer hD h.
 / is defined as follows. The curve 
 is first arranged
to intersect each pants curve minimally. In this position, it intersects a pair of pants P

in a number of arcs joining boundary loops of P . We call one of these an scc-arc (short
for same-(boundary)-component-connector, called an archetype by Penner [12]) if it
joins one boundary component to itself, and denote by h the total number of scc-arcs,
taken over all pants in P .

The precise definition of the twist coordinates pi in Theorem A requires some care; we
use essentially the standard definition implied in Fathi, Laudenbach and Poenaru [3]
and explained in detail by D P Thurston [14] (called here the DT–twist; see Section 3.1),
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although for the proof we find useful the form given by Penner [12] (called here the
P–twist and denoted ypi ; see Section 3.2).

We remark that the formula in Theorem A could of course be made neater by replacing
the parameter � by � � 1; we use � to be in accordance with the conventions of [4;
13]; see also Section 4.2.

We believe the formula in Theorem A noteworthy in its own right. However the
main motivation for this work was the following. If the representation � constructed
in the above manner is free and discrete, then the resulting hyperbolic 3–manifold
M DH3=�.�1.†// lies on the boundary of quasifuchsian space QF.†/. One end
of M consists of a union of triply punctured spheres obtained by pinching in † the
curves �i defining P . Suppose that, in addition, �.�1.†// is geometrically finite and
that the other end �C=�.�1.†// of M is a Riemann surface homeomorphic to †.
Since the triply punctured spheres are rigid, it follows from Ahlfors–Bers’ measurable
Riemann mapping theorem that the Riemann surface structure of �C=�.�1.†// runs
over the Teichmüller space T .†/ of †. The image of the space of all such groups in
the character variety R of † is called the Maskit embedding of T .†/.

In [4; 13], special cases of the trace formula were important in constructing a computa-
tional method of locating the image M of T .†/ in R. In those papers we defined a
pleating ray to be a line in R along which the projective class of the bending measure
was kept constant. The trace formulae enabled us to find the asymptotic directions
of pleating rays in M as the bending measure tends to zero. Theorem A allows the
extension of these results to the general case; see Maloni [7].

The plan of this paper is as follows. After establishing preliminaries in Section 2, in
Section 3 we review the Dehn–Thurston coordinates and, in particular, the definition
of twists. In Section 4 we discuss the gluing construction which leads to the family
of projective structures and their holonomy representation. In Section 5 we explain
in detail the holonomy representation in various special cases, starting with arcs in a
single pair of pants and going on to the one holed torus and four holed sphere. Finally,
in Section 6, we make explicit the general combinatorial pattern of matrix products
obtained in the holonomy, and use this to give an inductive proof of Theorem A.

2 Background and notation

Suppose † is a surface of finite type, let S0 D S0.†/ denote the set of free homotopy
classes of connected closed simple non–boundary parallel curves on †, and let S D
S.†/ be the set of curves on †, that is, the set of finite unions of non-homotopic
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curves in S0 . For simplicity we usually refer to elements of S as “curves” rather than
“multicurves”, in other words, a curve is not required to be connected. In addition by the
term “loop” we mean “connected curve”. The geometric intersection number i.˛; ˇ/

between ˛; ˇ 2 S is the least number of intersections between curves representing the
two homotopy classes, that is,

i.˛; ˇ/D min
a2˛; b2ˇ

ja\ bj:

Now given a surface †D†b
g of finite type and negative Euler characteristic, choose a

maximal set PC D f�1; : : : ; ��g of homotopically distinct and non–boundary parallel
loops in † called pants curves, where � D �.†/D 3g� 3C b is the complexity of
the surface. These connected curves split the surface into k D 2g� 2C b three-holed
spheres P1; : : : ;Pk , called pairs of pants. (Note that the boundary of Pi may include
punctures of †.) We refer to both the set P D fP1; : : : ;Pkg, and the set PC , as a
pants decomposition of †.

We take Pi to be a closed three-holed sphere whose interior Int.Pi/ is embedded in †;
the closure of Int.Pi/ fails to be embedded precisely in the case in which two of its
boundary curves are identified in †, forming an embedded one-holed torus †1;1 . Thus
each pants curve � D �i is the common boundary of one or two pants whose union
we refer to as the modular surface associated to � , denoted M.�/. If the closure of
Int.Pi/ fails to be embedded then M.�/ is a one-holed torus †1;1 , otherwise it is a
four-holed sphere †0;4 .

Any hyperbolic pair of pants P is made by gluing two right angled hexagons along
three alternate edges which we call its seams. In much of what follows, it will be
convenient to designate one of these hexagons as “white” and one as “black”. A
properly embedded arc in P , that is, an arc with its endpoints on @P , is called scc
(same component connector) if it has both its endpoints on the same component of @P
and dcc (different component connector) otherwise.

2.0.1 Convention on dual curves We shall need to consider dual curves to �i 2PC ,
that is, curves which intersect �i minimally and which are completely contained in
M.�i/, the union of the pants P;P 0 adjacent to �i . The intersection number of such
a connected curve with �i is 1 if M.�i/ a one-holed torus and 2 otherwise. In the
first case, the curve is made by identifying the endpoints of a single dcc-arc in the
pair of pants adjacent to �i and, in the second, it is the union of two scc-arcs, one in
each of the two pants whose union is M.�i/. We adopt a useful convention introduced
in [14] which simplifies the formulae in such a way as to avoid the need to distinguish
between these two cases. Namely, for those �i for which M.�i/ is †1;1 , we define
the dual curve Di 2 S to be two parallel copies of the connected curve intersecting �i
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once, while if M.�i/ is †0;4 we take a single copy. In this way we always have, by
definition, i.�i ;Di/D 2, where i.˛; ˇ/ is the geometric intersection number as above.

A marking on † is the specification of a fixed base surface †0 , together with a
homeomorphism ‰W †0!†. Markings can be defined in various equivalent ways,
for example by specifying the choice of dual curves; see Section 3.1 below.

2.0.2 Convention on twists Our convention will always be to measure twists to the
right as positive. We denote by Tw� .
 / the right Dehn twist of the curve 
 about the
curve � .

3 Dehn–Thurston coordinates

Suppose we are given a surface † together with a pants decomposition P as above.
Let 
 2 S and for i D 1; : : : ; � , let qi D i.
; �i/ 2Z>0 . Notice that if �i1

; �i2
; �i3

are
pants curves which together bound a pair of pants whose interior is embedded in †,
then the sum qi1

C qi2
C qi3

of the corresponding intersection numbers is even. The
qi D qi.
 / are sometimes called the length parameters of 
 .

To define the twist parameter twi D twi.
 / 2 Z of 
 about �i , we first have to fix
a marking on †, for example by fixing a specific choice of dual curve Di to each
pants curve �i ; see Section 3.1 below. Then, after isotoping 
 into a well-defined
standard position relative to P and to the marking, the twist twi is the signed number
of times that 
 intersects a short arc transverse to �i . We make the convention that
if i.
; �i/D 0, then twi.
 /> 0 is the number of components in 
 freely homotopic
to �i .

There are various ways of defining the standard position of 
 , leading to differing
definitions of the twist. The parameter twi.
 /D pi.
 / which occurs in the statement
of Theorem A is the one defined by Dylan Thurston [14], however in the proof of the
formula we will find it convenient to use a slightly different definition twi.
 /D ypi.
 /

given by Penner [12]. Both of these definitions are explained in detail below, as is
the precise relationship between them. With either definition, a classical theorem of
Dehn [2] (see also Penner [12, page 12]) asserts that the length and twist parameters
uniquely determine 
 :

Theorem 3.1 (Dehn’s theorem) The map

‰W S.†/! Z�
>0
�Z� ; 
 2 S.†/ 7! .q1.
 /; : : : ; q�.
 /I tw1.
 /; : : : ; tw�.
 //

is an injection. The point .q1; : : : ; q� ; tw1; : : : ; tw�/ is in the image of ‰ (and hence
corresponds to a curve) if and only if
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(i) if qi D 0, then twi > 0, for each i D 1; : : : ; � ;

(ii) if �i1
; �i2

; �i3
are pants curves which together bound a pair of pants whose

interior is embedded in †, then the sum qi1
C qi2

C qi3
of the corresponding

intersection numbers is even.

We remark that as a special case of (ii), the intersection number with a pants curve
which bounds an embedded once-punctured torus or twice-punctured disk in † is even.

One can think of this theorem in the following way. Suppose given a curve 
 2 S ,
whose length parameters qi.
 / necessarily satisfy the parity condition (ii), then the
qi.
 / uniquely determine 
\Pj for each pair of pants Pj , j D1; : : : ; k , in accordance
with the possible arrangements of arcs in a pair of pants; see for example Penner [12].
Now given two pants adjacent along the curve �i , we have qi.
 / points of intersection
coming from each side and we have only to decide how to match them together to
recover 
 . The matching takes place in the cyclic cover of an annular neighbourhood
of �i . The twist parameter twi.
 / specifies which of the Z possible choices is used
for the matching.

3.1 The DT–twist

In [14], Dylan Thurston gives a careful definition of the twist twi.
 / D pi.
 / of

 2 S which is essentially the “folk” definition and the same as that implied in [3]. He
observes that this definition has a nice intrinsic characterisation; see Section 3.1.4 below.
Furthermore, it turns out to be the correct definition for our formula in Theorem A.

3.1.1 The marking Given the pants decomposition P of †, we note, following [14],
that we can fix a marking on † in three equivalent ways. These are

(a) a reversing map: an orientation-reversing map RW † ! † so that for each
i D 1; : : : ; � we have R.�i/D �i ;

(b) a hexagonal decomposition: this can be defined by a curve which meets each
pants curve twice, decomposing each pair of pants into two hexagons;

(c) dual curves: for each i , a curve Di so that i.Di ; �j /D 2ıij .

The characterisations (a) and (b) are most easily understood in connection with a
particular choice of hyperbolic metric on †. Recall that a pair of pants P is the union
of two right-angled hexagons glued along its seams. There is an orientation reversing
symmetry of P which fixes the seams. The endpoints of exactly two seams meet each
component of the boundary @P . Now let †0 be a hyperbolic surface formed by gluing
pants P1; : : : ;Pk in such a way that the seams are exactly matched on either side of
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each common boundary curve �i . In this case the existence of the orientation reversing
map R as in (a) and the hexagonal decomposition as in (b) are clear and are clearly
equivalent.

If the modular surface associated to �i is made up of two distinct pants P;P 0 , then, as
explained above, the dual curve Di to �i is obtained by gluing the two scc-arcs in P

and in P 0 which run from �i to itself. Each arc meets �i orthogonally so that in the
metric †0 the two endpoints on each side of �i are exactly matched by the gluing.
If the modular surface is a single pair of pants P , then the dual curve is obtained by
gluing the single dcc-arc in P which runs from �i to itself. Once again both ends of
this arc meet �i orthogonally and in the metric †0 are exactly matched by the gluing.
In this case, following the convention explained in Section 2, we take the dual curve Di

to be two parallel copies of the loop just described. Thus in all cases i.Di ; �j /D 2ıij
and furthermore the curves Di are fixed by R.

A general surface † can be obtained from †0 by performing a Fenchel–Nielsen
twist about each �i . Namely, if Ai D �i � Œ0; 1� is an annulus around �i and if we
parameterise �i as s 7! �i.s/ 2 † for s 2 Œ0; 1/, then the distance t twist, denoted
FNt W †0! †, maps Ai to itself by .�i.s/; �/ 7! .�i.sC � t/; �/ and is the identity
elsewhere. Clearly FNt induces a reversing map, a hexagonal decomposition, and dual
curves on the surface FNt .†/, showing that each of (a), (b) and (c) equivalently define
a marking on an arbitrary surface †.

3.1.2 The twist Having defined the marking, we can now define the twist pi.
 /

for any 
 2 S . Arrange, as above, the dual curves Di to be fixed by R, so that, in
particular, if �i is the boundary of a single pair of pants P , then the two parallel
components of the curve Di are contained one in each of the two hexagons making
up P . For each i D 1; : : : ; � , choose a small annular neighbourhood Ai of �i , in such
a way that the complement † n

S�
iD1

Int.Ai/ of the interiors of these annuli in † are
pants yP1; : : : ; yPk . Arrange 
 so that its intersection with each yPi is fixed by R and so
that it is transverse to Di . Also push any component of 
 parallel to any �i into Ai .

If qi D i.
; �i/D 0, define pi � 0 to be the number of components of 
 parallel to �i .
Otherwise, qi D i.
; �i/ > 0. In this case, orient both 
 \Ai and Di \Ai to run
consistently from one boundary component of Ai to the other. (If M.�i/ is †0;4 , then
the two arcs of Di\Ai will be oriented in opposite directions relative to the connected
curve Di .) Then define

pi Dyi.
 \Ai ;Di \Ai/;

where yi.˛; ˇ/ is the algebraic intersection number between the curves ˛ and ˇ , namely
the sum of the indices of the intersection points of ˛ and ˇ , where an intersection
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point is of index C1 when the orientation of the intersection agrees with the orientation
of † and �1 otherwise.

Note that this definition is independent of both the choice of the orientations of 
 \Ai

and Di \Ai , and of the choice of the arrangement of 
 in the pants adjacent to �i .
Also note that, following the convention about dual curves in Section 2.0.1, pi is
always even. Two simple examples are illustrated in Figures 1 and 2.

3.1.3 An alternative definition The twist pi can also be described in a slightly
different way as follows. Lift Ai to its Z–cover which is an infinite strip H . As shown
in Figures 1 and 2, the lifts of Di \Ai are arcs joining the two boundaries @0H and
@1H of H . They are equally spaced like rungs of a ladder in such a way that there are
exactly two lifts in any period of the translation corresponding to �i . Any arc of 

enters H on one side and leaves on the other. Fix such a rung D� say and number the
strands of 
 meeting @0H in order as Xn; n 2Z, where X0 is the first arc to the right
of D� and n increases moving to the right along @0H , relative to the orientation of the
incoming strand of 
 . Label the endpoints of 
 on @1H by X 0n; n2Z correspondingly,
as shown in Figure 1. Since 
 is simple, if X0 is matched to X 0r , then Xn is matched
to X 0nCr for all n 2 Z. Then it is not hard to see that r D pi=2.

@0H

@1H

X2 X1 X0 X�1 X�2

X 0
2

X 0
1

X 0
0

X 0
�1

X 0
�2


 
 
 
 
D D0 D D0

Figure 1: A curve 
 with pi.
 /D 0 . The arcs D;D0 together project to the
dual curve Di .

@0H

@1H

X2 X1 X0 X�1 X�2

X 02 X 01 X 00 X 0
�1 X 0

�2


 
 
 
D D0 D D0

Figure 2: A curve 
 with pi.
 /D�2
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3.1.4 Intrinsic characterisation The intrinsic characterisation of the twist in [14]
uses the Luo product ˛ �ˇ of curves ˛; ˇ 2 S on an oriented surface †. This is defined
as follows [6; 14]:

� If a\ b D∅, then ˛ �ˇ D ˛[ˇ 2 S .

� Otherwise, arrange ˛ and ˇ in minimal position, that is, such that i.˛\ˇ/D

j˛ \ ˇj. In a neighbourhood of each intersection point xj 2 ˛ \ ˇ , replace
˛[ˇ by the union of the two arcs which turn left from ˛ to ˇ relative to the
orientation of †; see Figure 3. (In [6] this is called the resolution of ˛[ˇ from
˛ to ˇ at xj .) Then ˛ � ˇ is the curve made up from ˛ [ ˇ away from the
points xj , and the replacement arcs near each xj .

˛

ˇ

xj
˛

ˇ

Figure 3: The Luo product: the resolution of ˛[ˇ at xj

Proposition 3.2 [14, Definition 15] The function pi W S.†/ ! Z is the unique
function such that for all 
 2 S ,

(i) pi.�j � 
 /D pi.
 /C 2ıij ;

(ii) pi depends only on the restriction of 
 to the pants adjacent to �i ;

(iii) pi.R.
 // D �pi.
 /, where R is the orientation reversing involution of †
defined above.

We call pi.
 / the DT–twist parameter of 
 about �i . Property (i) fixes our convention
noted above that the right twist is taken positive. Notice that pi.Di/ D 0. We also
observe:

Proposition 3.3 Let 
 2 S . Then

pi

�
Tw�i

.
 /
�
D pi.
 /C 2qi :
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3.1.5 Relation to [3] In [3], a curve 
 2 S is parameterized by three non-negative
integers .mi ; si ; ti/. These are defined as the intersection numbers of 
 with the three
curves Ki , K0i and K00i , namely the pants curve �i , its dual curve Di , and Tw�i

.Di/,
the right Dehn twist of Di about �i ; see Figure 4 on page 62 in [3]. In particular,

� mi.
 /D i.
;Ki/D i.
; �i/D qi.
 /;

� si.
 /D i.
;K0i/D i.
;Di/D jpi.
 /j=2;

� ti.
 /D i.
;K00i /D i
�

;Tw�i

.Di/
�
D jpi.
 /=2� qi.
 /j:

As proved in [3], the three numbers mi ; si and ti satisfy one of the three relations
mi D si C ti ; si D mi C ti ; ti D mi C si . As it is easily verified by a case-by-case
analysis, we have:

Theorem 3.4 Each triple .mi ; si ; ti/ uniquely determines and is determined by the
parameters qi and pi . In fact, qi Dmi and pi D 2 sign.pi/si where

sign.pi/D

(
C1 if mi D si C ti or si Dmi C ti ;

�1 if ti Dmi C si :

Proof If sign.pi/D�1, then pi=2� qi � 0. So

ti D

ˇ̌̌̌
pi

2
� qi

ˇ̌̌̌
D�

�
pi

2
� qi

�
D
jpi j

2
C qi D si Cmi :

If sign.pi/DC1, then

if
pi

2
6 qi ; then ti D

ˇ̌̌̌
pi

2
� qi

ˇ̌̌̌
D qi �

jpi j

2
Dmi � si ;

if qi 6 pi

2
; then ti D

ˇ̌̌̌
pi

2
� qi

ˇ̌̌̌
D
jpi j

2
� qi D si �mi ;

as we wanted to prove.

3.2 The P–twist

We now summarise Penner’s definition of the twist parameter following [12, Section
1.2]. Instead of arranging the arcs of 
 transverse to �i symmetrically with respect to
the involution R, we now arrange them to cross �i through a short closed arc wi � �i .
There is some choice to be made in how we do this, which leads to the difference with
the definition of the previous section. It is convenient to think of wi as contained in
the two “front” hexagons of the pants P and P 0 glued along �i , which we will also
refer to as the “white” hexagons.
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Precisely, for each pants curve �i 2 PC , fix a short closed arc wi � �i , which we
take to be symmetrically placed in the white hexagon of one of the adjacent pants P ,
midway between the two seams which meet �i � @P . For each �i , fix an annular
neighbourhood Ai and extend wi into a “rectangle” Ri �Ai with one edge on each
component of @Ai and “parallel” to wi and two edges arcs from one component of
@Ai to the other. (See Penner [12] for precise details.)

Now isotope 
 2 S into Penner standard position as follows. Any component of

 homotopic to �i is isotoped into Ai . Next, arrange 
 so that it intersects each
�i exactly qi.
 / times and moreover so that all points in 
 \ �i are contained in
wi . We further arrange that all the twisting of 
 occurs in Ai . Precisely, isotope
so that 
 \ @Ai � @Ri , in other words, so that 
 enters Ai across the edges of Ri

parallel to wi . By pushing all the twisting into Ai , we can also arrange that outside
Ai , any dcc-arc of 
 \P does not cross any seam of P . The scc-arcs are slightly
more complicated. Any such arc has both endpoints on the same boundary component,
let us say @0P . Give the white hexagon (the “front” hexagon in Figure 4) the same
orientation as the surface †. With this orientation, the two other boundary components
@1P and @1P are arranged as shown in the figure. We isotope the scc-arc so that
outside Ai it loops round the right hand component @1P , cutting the seam which is to
the right of the seam contained in @0P exactly; see Figure 4.

�i D @0P

wi

@1P @1P

Figure 4: An scc-arc in Penner standard position
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Having put 
 into Penner standard position, we define the Penner–twist or P–twist
ypi.
 / as follows. Let di be a short arc transverse to wi with one endpoint on each of
the two components of @Ai .

� If qi.
 /D i.
; �i/D 0, let ypi.
 /> 0 be the number of components of 
 which
are freely homotopic to �i .

� If qi.
 / ¤ 0, let j ypi.
 /j be the minimum number of arcs of 
 \Ai which
intersect di , where the minimum is over all families of arcs properly embedded
in Ai , isotopic to 
 \Ai by isotopies fixing @A pointwise. Take ypi.
 /> 0 if
some components of 
 twist to the right in Ai and ypi.
 /6 0 otherwise. (There
cannot be components twisting in both directions since 
 is embedded and, if
there is no twisting, then ypi.
 /D 0.)

yD�i

P

ˇ

ˇ0

P 0

�i yY 0

X 0

DX

wi

yY
di

Figure 5: The dual curve Di in Penner standard position. The endpoints of
di are on the annulus Ai (not shown) around �i .
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3.2.1 The dual curves in Penner position As an example, we explain how to put
the dual curves Di into Penner standard position. This requires some care. For clarity,
we denote one component of the dual curve Di by yDi , so that in the case in which
M.�i/ is †1;1 , we have 2 yDi DDi , while yDi DDi otherwise.

If M.�i/ is †1;1 , there is only one arc to be glued whose endpoints we can arrange to
be in wi . We simply take two parallel copies of this loop yDi so that Di D 2 yDi and
ypi.Di/D 0.

If M.�i/ is †0;4 then Di D
yDi . In this case we have to match the endpoints of two

scc-arcs ˇ � P and ˇ0 � P 0 , both of which have endpoints on �i . The arc ˇ has one
endpoint X in the front white hexagon of P , which we can arrange to be in wi , and the
other Y in the symmetrical position in the black hexagon. Label the endpoints of ˇ0 in
a similar way. To get ˇ[ˇ0 into standard Penner position, we have to move the back
endpoints Y and Y 0 round to the front so that they also lie in wi . Arrange P and P 0

as shown in Figure 5 with the white hexagons to the front. In Penner position, ˇ has
to loop round the right hand boundary component of P so that Y has to move to a
point yY to the right of X along wi in Figure 5. In P 0 on the other hand, ˇ0 has to loop
round the right hand boundary component of P 0 , so that Y 0 gets moved to a point yY 0

to the left of X 0 on wi . Since X is identified to X 0 , to avoid self-intersections, yY
has to be joined to yY 0 by a curve which follows �i around the back of P [P 0 . By
inspection, we see that ypi. yDi/D�1.

3.3 Relationship between the different definitions of twist

Our proof of Theorem A in Section 6 uses the explicit relationship between the above
two definitions of the twist. The formula in Theorem 3.5 below appears without proof
in [14]; for completeness we supply a proof.

Suppose that two pairs of pants meet along �i 2 PC . Label their respective boundary
curves .A;B;E/ and .C;D;E/ in clockwise order, where E D �i ; see Figure 6.
(Some of these boundary curves may be identified in †.)

Theorem 3.5 [14, Appendix B] As above, let 
 2 S and let qi D qi.
 /, ypi D ypi.
 /

and pi D pi.
 / respectively denote its length parameter, its P–twist and its DT–twist
around �i . Then

ypi D
pi C l.A;EIB/C l.C;EID/� qi

2
;

where l.X;Y IZ/ denotes the number of strands of 
 \P running from the boundary
curve X to the boundary curve Y in the pair of pants P having boundary curves
.X;Y;Z/.
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A B




Di

Ai

D C

Figure 6: Case nD 1 when 
 goes from A to C . E is the core curve of the
annulus Ai .

Proof Let 
 2 S . We will use a case-by-case analysis to give a proof by induction
on nD qi.
 /. We shall assume that the modular surface M.�i/ is †0;4 , so that �i

belongs to the boundary of two distinct pants P D .A;B;E/ and P 0 D .C;D;E/,
and leave the case in which M.�i/ is †1;1 to the reader. We begin with the cases
nD 1 and nD 2, because nD 2 is useful for the inductive step.

When n D 1, the strand of 
 which intersects �i must join one of the boundary
components of P different from E , to one of the two boundary components of P 0

different from E . We have four cases corresponding to 
 joining A or B to C

or D . Figure 6 shows the case in which 
 joins A to C . One checks easily that
l.A;EIB/D 1, l.C;EID/D 1 while ypD 0;pD�1 and qD 1, verifying the formula
in this case. The other cases are similar.

Now consider n D 2, so that 
 \M.�i/ may have either one or two connected
components. If there are two components, then each one was already analysed in the
case nD 1, and the result follows by the additivity of the quantities involved.

If 
 \P is connected, we must have (in one of the pants P or P 0 ) an scc-arc which
has both its endpoints on �i . Without loss of generality we may suppose that this arc
is in P . Choose an orientation on 
 and call its initial and final points X1 and X2

respectively. The endpoints of this arc must be joined to the boundary components
C or D of P 0 . Figure 7 illustrates the case in which X1 is joined to D , while X2 is
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A B

CD

Ai




Di

X2

X1

Figure 7: Case nD 2 when X1 is joined to D and X2 is joined to C

joined to C . Then l.A;EIB/D 0, l.C;EID/D 1 while yp D 0;p D 1 and q D 2,
verifying the formula in this case. The other cases are similar.

Suppose now that the statement is true for any n< qi . If 
 \M.�i/ is not connected,
then each connected component intersects �i less then n times and the result follows
from the inductive hypothesis and the additivity of the quantities involved.

If y
 D 
 \M.�i/ is connected, then there will be an arc which has both its endpoints
on �i . Choose an orientation on 
 . Without loss of generality, we can suppose that the
first such arc is contained in P . Let X1 and X2 be its two ordered endpoints. Then
X2 splits y
 into two oriented curves ˛ and ˇ , where ˛ contains only one arc with
both endpoints in �i , while ˇ has n�1 arcs of this kind. Now we modify ˛ and ˇ , in
such a way that they will became properly embedded arcs in M.�i/, that is, arcs with
endpoints on @.M.�i//�†. We do this by adding a segment for each one of ˛ and
ˇ from X2 to one of the boundary components C or D of P 0 . In order to respect the
orientation of ˛ and ˇ we add the segment twice, once with each orientation. This
will not change the quantities involved. For example, suppose we add two segments
from X2 to C . This creates two oriented curves ˛0 and ˇ0 in M.�i/ such that

ti.
 /D ti.˛[ˇ/D ti.˛
0
[ˇ0/D ti.˛

0/C ti.ˇ
0/

and the conclusion now follows from the inductive hypothesis.
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Remark 3.6 There is a nice formula for the number l.X;Y;Z/ in the above theorem.
Given a; b 2R, let max.a; b/D a_ b and min.a; b/D a^ b . Suppose that a pair of
pants has boundary curves X;Y;Z and that 
 2 S . Let x D i.
;X / and define y; z

similarly. As above let l.X;Y IZ/ denote the number of strands of 
 running from X

to Y . Then (see Thurston [14, page 20])

l.X;Y IZ/D 0_

�
xCy � z

2
^x ^y

�
:

4 The gluing construction

As explained in the introduction, the representations which we shall consider are
holonomy representations of projective structures on †, chosen so that the holonomies
of all the loops �j 2 PC determining the pants decomposition P are parabolic. The
interior of the set of free, discrete, and geometrically finite representations of this form
is called the Maskit embedding of †; see Section 4.5 below.

The construction of the projective structure on † is based on Kra’s plumbing construc-
tion [5]; see Section 4.4. However it will be convenient to describe it in a somewhat
different way. The idea is to manufacture † by gluing triply punctured spheres across
punctures. There is one triply punctured sphere for each pair of pants P 2 P , and the
gluing across the pants curve �j is implemented by a specific projective map depending
on a parameter �j 2 C . The �j will be the parameters of the resulting holonomy
representation �W �1.†/! PSL.2;C/.

More precisely, we first fix an identification of the interior of each pair of pants Pi to a
standard triply punctured sphere P . We endow P with the projective structure coming
from the unique hyperbolic metric on a triply punctured sphere. The gluing is carried
out by deleting open punctured disk neighbourhoods of the two punctures in question
and gluing horocyclic annular collars round the resulting two boundary curves; see
Figure 8.

4.1 The gluing

To describe the gluing in detail, first recall (see eg Mumford, Series and Wright [11,
page 207]) that any triply punctured sphere is isometric to the standard triply punctured
sphere P DH=� , where

� D

� �
1 2

0 1

�
;

�
1 0

2 1

� �
:
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Figure 8: Deleting horocyclic neighbourhoods of the punctures and preparing
to glue

Fix a standard fundamental domain for � as shown in Figure 9, so that the three
punctures of P are naturally labelled 0; 1;1. Let �0 be the ideal triangle with
vertices f0; 1;1g, and �1 be its reflection in the imaginary axis. We sometimes refer
to �0 as the white triangle and �1 as the black.

�1 �0

�1

�1 0 1

Figure 9: The standard fundamental domain for � . The white triangle �0 is unshaded.

With our usual pants decomposition P , fix homeomorphisms ˆi from the interior of
each pair of pants Pi to P . This identification induces a labelling of the three boundary
components of Pi as 0; 1;1 in some order, fixed from now on. We denote the boundary
labelled � 2 f0; 1;1g by @�Pi . The identification also induces a colouring of the
two right angled hexagons whose union is Pi , one being white and one being black.
Suppose that the pants P;P 0 2 P are adjacent along the pants curve � meeting along
boundaries @�P and @�0P 0 . (If P DP 0 then clearly �¤ �0 .) The gluing across � will
be described by a complex parameter � with =� > 0, called the plumbing parameter
of the gluing. We first describe the gluing in the case � D �0 D1.

Arrange the pants with P on the left as shown in Figure 10. (Note that the illustration
in the figure describes the more general case �D 1 and �0D 0.) Take two copies P ;P 0
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ˆ�1.A/ @c.P / @c0.P
0/
.ˆ0/�1.A0/

P P 0

ˆ�1 ı � .ˆ0/�1 ı �0

z

S

z0

S 0

H H 0

@c.P / @c0.P
0/

� �0

�.z/ �.@c/D1 �0.z0/ �0.@c0/D1

J

T�

J ı�.z/

Figure 10: The gluing construction when � D 1 and �0 D 0 . The top two
upwards pointing arrows are the restrictions of ˆ�1 ı� and .ˆ0/�1 ı� 0 to the
fundamental region �0 [�1 . The strips H DH1;H

0 DH 0
0

project under
�; �0 to the annuli A � P ;A0 � P 0 whose core curves are h0; h

0
1 ; these are

identified with the corresponding annuli and curves on P;P 0 by ˆ�1; ˆ0�1 .
Only the parts of H;H 0 in �0 are shown.
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of P . Each of these is identified with H=� as described above. We refer to the copy
of H associated to P 0 as H0 and denote the natural parameters in H;H0 by z; z0

respectively. Let � and �0 be the projections �W H! P and �0W H0! P 0 respectively.

Let h1 D h1.�/ be the loop on P which lifts to the horocycle fz 2H j =z D=�=2g

on H . For � > 0, H1 DH1.�; �/D fz 2H j .=� � �/=2 6 =z 6 .=� C �/=2g �H
is a horizontal strip which projects to an annular neighbourhood A of h1 � P . Let
S � P be the surface P with the projection of the open horocyclic neighbourhood
=z > .=�C�/=2 of 1 deleted. Define h01;S

0 and A0 in a similar way. We are going
to glue S to S 0 by matching A to A0 in such a way that h1 is identified to h01 with
orientation reversed; see Figure 10. The resulting homotopy class of the loop h1 on the
glued up surface (the quotient of the disjoint union of the surfaces Si by the attaching
maps across the Ai ) will be in the homotopy class of � . To keep track of the marking
on †, we will do the gluing on the level of the Z–covers of S;S 0 corresponding to
h1; h

0
1 , that is, we will actually glue the strips H1 and H 01 .

As shown in Figure 10, the deleted punctured disks are on opposite sides of h1
in S and h01 in S 0 . Thus we first need to reverse the direction in one of the two
strips H1;H

0
1 . Set

(1) J D

�
�i 0

0 i

�
; T� D

�
1 �

0 1

�
:

We reverse the direction in H1 by applying the map J.z/D�z to H . We then glue
H1 to H 01 by identifying z 2 H1 to z0 D T�J.z/ 2 H 01 . Since both J and T�
commute with the holonomies z 7! z C 2 and z0 7! z0 C 2 of the curves h1; h

0
1 ,

this identification descends to a well defined identification of A with A0 , in which
the “outer” boundary �.=z/D .=� C �/=2 of A is identified to the “inner” boundary
�0.=z0/D .=� � �/=2 of A0 . In particular, h1 is glued to h01 reversing orientation.

Now we treat the general case in which P and P 0 meet along punctures with arbitrary
labels �; �0 2 f0; 1;1g. As above, let �0 � H be the ideal “white” triangle with
vertices 0; 1;1. Notice that there is a unique orientation preserving symmetry �˛ of
�0 which sends the vertex ˛ 2 f0; 1;1g to 1:

(2) �0 D

�
1 �1

1 0

�
; �1 D

�
0 �1

1 �1

�
; �1 D IdD

�
1 0

0 1

�
:

Let h� be the loop on P which lifts to the horocycle ��1
� .fz 2 H j =z D =�=2g/

on H , so that h� is a loop round @�.P /. Also let H� be the region in H defined by
��1
� .fz 2H j .=� ��/=2 6 =z 6 .=� C�/=2g/. Define h0�0 and H 0�0 in a similar way.
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To do the gluing, first move �; �0 to 1 using the maps ��; ��0 and then proceed as
before. Thus the gluing identifies z 2H� to z0 2H 0� by the formula

(3) ��0.z
0/D T� ıJ .��.z//

(see Figure 10).

Finally, we carry out the above construction for each pants curve �i 2 PC . To do
this, we need to ensure that the annuli corresponding to the three different punctures
of a given Pi are disjoint. Note that the condition =�i > 2, for all i D 1; : : : ; � ,
ensures that the three curves h0 , h1 and h1 associated to the three punctures of Pi

are disjoint in P . Under this condition, we can clearly choose � > 0 so that their
annular neighbourhoods are disjoint, as required.

In what follows, we shall usually write h;H for h�;H� provided the subscript is clear
from the context.

Remark 4.1 Note that in the above construction of †� , we glued a curve exiting from
the white triangles �0.P / to one entering the white triangle �0.P

0/. Suppose that
we wanted instead to glue the two black triangles �1.P / and �1.P

0/. This can be
achieved by replacing the parameter � with � � 2. However, following our recipe, it is
not possible to glue a curve exiting a white triangle to a curve entering a black one,
because the black triangle is to the right of both the outgoing and incoming lines while
the white triangle is to the left.

4.1.1 Independence of the direction of the travel The recipe for gluing two pants
apparently depends on the direction of travel across their common boundary. The
following lemma shows that, in fact, the gluing in either direction is implemented by
the same recipe and uses the same parameter � .

Lemma 4.2 Let pants P and P 0 be glued across a common boundary � , and suppose
the gluing used when travelling from P to P 0 is implemented by (3) with the parame-
ter � . Then the gluing when travelling in the opposite direction from P 0 to P is also
implemented by (3) with the same parameter � .

Proof Using the maps �� if necessary, we may, without loss of generality, suppose
we are gluing the boundary @1P to @1P 0 . (Note that �1 D Id.) By definition, to
do this we identify the horocyclic strip H �H to the strip H 0 �H0 using the map
T� ıJ .

Fix a point X 2 h. The gluing sends X to T�J.X / 2 h0 . The gluing in the other
direction from P 0 to P reverses orientation of the strips to be glued and is done using
a translation T� 0 say. To give the same gluing we must have T� 0JT�J.X /DX . This
gives � 0� .�X C �/DX which reduces to � D � 0 as claimed.
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4.2 Marking and Dehn twists

Write � D .�1; : : : ; ��/ 2C� , and denote by †.�/ the surface obtained by the gluing
procedure described above with parameter �i along curve �i . To complete the descrip-
tion of the projective structure, we have to specify a marking on †.�/. To do this we
have to specify a base structure on a fixed surface †0 , together with a homeomorphism
ˆ� W †0!†.�/.

We first fix the base structure on †0 , together with a marking given by a family of
dual curves Di to the pants curves �i . Let �� �H be the unique oriented geodesic
from �C 1 to �C 2, where � is in the cyclically ordered set f0; 1;1g; see Figure 9.
The lines �� project to the seams of P . We call �0 (from 1 to 1) and �1 (from 1
to 0) respectively the incoming and the outgoing strands (coming into and going out
from the puncture) at 1, and refer to their images under the maps �� in a similar
way. For � 2C , let X1.�/D 1C=�=2 be the point at which the incoming line �0

meets the horizontal horocycle =z D=�=2 in H , and let Y1.�/D=�=2 be the point
the outgoing line �1 meets the same horocycle. Also define X�.�/D��.X1/ and
Y�.�/D��.Y1/. Now pick a pants curve � and, as usual, let P;P 0 2P be its adjacent
pants in †, to be glued across boundaries @�P and @e0P

0 . Let X�.P /;X�.P
0/ be

the points corresponding to X�.�/;X�.�/ under the identifications ˆ;ˆ0 of P;P 0

with P , and similarly for Y�.P /;Y�.P
0/. The base structure †0 will be one in which

the identification (3) matches the point X�.P; �/ on the incoming line across @�P to
the point Y 0�0.P

0/ on the outgoing line to @�0P 0 . Referring to the gluing Equation (3),
we see that this condition is fulfilled precisely when <� D 1.

We define the structure on †0 by specifying <�i D 1 for i D 1; : : : ; � . The imaginary
part of �i is unimportant; for definiteness we can fix =�i D 4. Now note that the
reflection z 7! �xz of H induces an orientation reversing isometry of P which fixes its
seams; with the gluing matching seams as above this extends, in an obvious way, to an
orientation reversing involution of †0 . Following (a) of Section 3.1.1, this specification
is equivalent to a specification of a marking on †0 .

Finally, we define a marking on the surface †.�/. After applying a suitable stretching
to each pants to adjust the lengths of the boundary curves, we can map †0!†.�/

using a map which is the Fenchel–Nielsen twist FN<�i
on an annulus around �i 2 PC ,

i D 1; : : : ; � and the identity elsewhere; see Section 3.1.1. This gives a well defined
homotopy class of homeomorphisms ‰� W †0!†.�/.

With this description, it is easy to see that <�i corresponds to twisting about �i ; in
particular, �i 7! �i C 2 is a full right Dehn twist about �i . The imaginary part =�i

corresponds to vertical translation and has the effect of scaling the lengths of the �i .
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4.3 Projective structure and holonomy

The above construction gives a way to define the developing map from the universal
cover z† of † to C . To do this we have to describe the developing image of any path 

on †. The path goes through a sequence of pants Pi1

;Pi2
; : : : ;Pin

such that each
adjacent pair Pij ;PijC1

is glued along an annular neighbourhood A.�ij / of the pants
curve �ij which forms the common boundary of Pij and PijC1

. Since all the maps
involved in this gluing are in PSL.2;C/, it is clear that if 
 is a closed loop, then the
holonomy of 
 is in PSL.2;C/. Thus we get a representation �1.†/! PSL.2;C/
which can be checked to be independent of 
 up to homotopy in the usual way.

Now we can justify our claim that our construction gives a projective structure on †.
Recall that a complex projective structure on † means an open covering of † by
simply connected sets Ui , such that Ui \ Uj is connected and simply connected,
together with homeomorphisms ˆi W Ui ! Vi �

yC , such that the overlap maps
ˆi ıˆ

�1
j W ĵ .Ui \Uj /!ˆi.Ui \Uj / are in PSL.2;C/.

Given the developing map ‰W z† ! yC from the universal covering space z† of †
into the Riemann sphere yC , we can clearly cover † by open sets Ui such that each
component W of the lift of Ui to z† is homeomorphic to Ui and such that the
restriction ‰jW is a homeomorphism to an open set V � yC . For each Ui , pick one
such component. Since any two lifts differ by a covering map, and since Ui \Uj ¤∅
implies there are lifts which intersect, the overlap maps will always be in the covering
group which by our construction is contained in PSL.2;C/.

In terms of the projective structure, the holonomy representation �W �1.†/!PSL.2;C/
is described as follows. A path 
 in † passes through an ordered chain of charts
U0; : : : ;Un such that Ui \ UiC1 ¤ ∅ for every i D 0; : : : ; n � 1. This gives us
the overlap maps Ri D ˆi ıˆ

�1
iC1

for i D 0; : : : ; n� 1. The sets Vi and Ri.ViC1/

overlap in yC and hence the developing image of z
 in yC passes through in order the
sets V0;R0.V1/;R0R1.V2/; : : : ;R0 � � �Rn�1.Vn/. If 
 is closed, we have Un D U0

so that V0 D Vn . Then, by definition, the holonomy of the homotopy class Œ
 � is
�.Œ
 �/DR0 � � �Rn�1 2 PSL.2;C/.

Notice that our construction effectively takes the charts to be the maps Pi!H which
identify Pi with the standard fundamental domain ��H via the map ˆi W Pi ! P .
Strictly speaking, we should divide each Pi into two simply connected sets by cutting
along its seams, so that each chart maps to one or other of the standard ideal triangles
�0 or �1 . The details of how this works will be discussed in Section 5.

As a consequence of the construction we note the following fact which underlies the
connection with the Maskit embedding (Section 4.5), and which (together with the
definition of the twist in the case qi D 0) proves the final statement of Theorem A.
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Lemma 4.3 Suppose that 
 2 �1.†/ is a loop homotopic to a pants curve �j . Then
�.
 / is parabolic and Tr �.
 /D˙2.

4.4 Relation to Kra’s plumbing construction

Kra in [5] uses essentially the above construction to manufacture surfaces by gluing
triply punctured spheres across punctures, a procedure which he calls plumbing. Plumb-
ing is based on so called “horocyclic coordinates” in punctured disk neighbourhoods
of the punctures which have to be glued.

Given a puncture � on a triply punctured sphere P , let �W H ! P be the natural
projection, normalised so that � lifts to 12H , and so that the holonomy of the loop
round � is, as above, � 7! �C 2. Let D� denote the punctured unit disc fz 2C W
0 < z < 1g. The function f W H! D� given by f .�/ D ei�� is well defined in a
neighbourhood N of 1 and is a homeomorphism from an open neighbourhood of �
in P to an open neighbourhood of the puncture in D� . Choosing another puncture �0

of P , we can further normalise so that �0 lifts to 0. Hence f maps the part of the
geodesic from �0 to � contained in N , to the interval .0; r/ for suitable r > 0. These
normalisations (which depend only on the choices of � and �0 ), uniquely determine f .
Kra calls the natural parameter z D f .�/ in D� , the horocyclic coordinate of the
puncture � relative to �0 .

Now suppose that yz and yz0 are horocyclic coordinates for distinct punctures in distinct
copies Pyz and Pyz0 of P . Denote the associated punctured discs by D�.yz/ and D�.yz0/.
To plumb across the two punctures, first delete punctured disks f0 < yz < rg and
f0< yz0 < r 0g from D�.yz/ and D�.yz0/ respectively. Then glue the remaining surfaces
along the annuli

A.yz/D fyz 2D� W r < yz < sg and A.yz0/D fyz0 2D� W r
0 < yz0 < s0g

by the formula yzyz0 D tK . (To avoid confusion we have written tK for Kra’s parameter
t 2C .) It is easy to see that this is essentially identical to our construction; the difference
is simply that we implement the gluing in H and H0 without first mapping to D�.yz/
and D�.yz0/. Our method has the advantage of having a slightly simpler formula and
also of respecting the twisting around the puncture, which is lost under the map f .

The precise relation between our coordinates z; z0 2H in Section 4.1 and the horocyclic
coordinates yz; yz0 is

z D f �1.yz/D�
i

�
log yz; z0 D f �1.yz0/D�

i

�
log yz0:
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The relation
yzyz0 D tK

translates to
log tK D log yz0C log yz

which, modulo 2� iZ, is exactly our relation

�zC � D z0:

Hence we deduce that
� D�

i

�
log tK :

4.5 Relation to the Maskit embedding of †

As usual let PCD f�1; : : : ; ��g be a pants decomposition of †. We have constructed a
family of projective structures on †, to each of which is associated a natural holonomy
representation �� W �1.†/! PSL.2;C/. We want to prove that our construction, for
suitable values of the parameters, gives exactly the Maskit embedding of †. For the
definition of this embedding we follow the second author [13]; see also Maskit [9].
Let R.†/ be the representation variety of �1.†/, that is, the set of representations
�W �1.†/! PSL.2;C/ modulo conjugation in PSL.2;C/. Let M�R be the subset
of representations for which

(i) the group G D � .�1.†// is discrete (Kleinian) and � is an isomorphism;

(ii) the images of �i , i D 1; : : : ; � , are parabolic;

(iii) all components of the regular set �.G/ are simply connected and there is exactly
one invariant component �C.G/;

(iv) the quotient �.G/=G has kC 1 components (where k D 2g� 2C n if †D
†.g;n/ ), �C.G/=G is homeomorphic to † and the other components are triply
punctured spheres.

In this situation, see for example Marden [8, Section 3.8], the corresponding 3–manifold
M� D H3=G is topologically † � .0; 1/. Moreover G is a geometrically finite
cusp group on the boundary (in the algebraic topology) of the set of quasifuchsian
representations of �1.†/. The “top” component �C=G of the conformal boundary
may be identified to †� f1g and is homeomorphic to †. On the “bottom” component
��=G , identified to †� f0g, the pants curves �1; : : : ; �� have been pinched, making
��=G a union of k triply punctured spheres glued across punctures corresponding
to the curves �i . The conformal structure on �C=G , together with the pinched
curves �1; : : : ; �� , are the end invariants of M� in the sense of Minsky’s ending
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lamination theorem. Since a triply punctured sphere is rigid, the conformal structure on
��=G is fixed and independent of � , while the structure on �C=G varies. It follows
from standard Ahlfors–Bers theory, using the measurable Riemann mapping theorem
(see again Marden [8, Section 3.8]), that there is a unique group corresponding to
each possible conformal structure on �C=G . Formally, the Maskit embedding of the
Teichmüller space of † is the map T .†/!R which sends a point X 2 T .†/ to the
unique group G 2M for which �C=G has the marked conformal structure X .

Proposition 4.4 Suppose that � 2 C� is such that the associated developing map
Dev� W z† ! yC is an embedding. Then the holonomy representation �� is a group
isomorphism and G D �� .�1.†// 2M.

Proof Since the developing map DevW z†! yC is an embedding, G D �� .�1.†//

is Kleinian. By construction (see Lemma 4.3), the holonomy of each of the curves
�1; : : : ; �� is parabolic. This proves (i) and (ii).

The image of Dev is a simply connected G–invariant component �C D Dev.z†/ of
the regular set �.G/ of G . Since �C is G –invariant, its boundary @�C is the limit
set ƒ.G/.

Let P 2 P , and let zP be a lift of P to the universal cover z†. The boundary curves
�i1
; �i2

; �i3
of P lift, in particular, to three curves in @ zP corresponding to elements


i1
; 
i2

; 
i3
2 �1.†/ such that 
i1


i2

i3
D id and such that �.
ij / is parabolic for

j D 1; 2; 3. These generate a subgroup �. zP / of SL.2;R/ conjugate to � ; see Section
4.1. Thus the limit set ƒ. zP / of �. zP / is a round circle C. zP /.

Without loss of generality, fix the normalisation of G such that 12�C.G/. Since
�C.G/ is connected, it must be contained in the component of yC n ƒ. zP / which
contains 1. Since ƒ.G/D @�C.G/, we deduce that ƒ.G/ is also contained in the
closure of the same component, and hence that the open disk D. zP / bounded by C. zP /

and not containing 1, contains no limit points. (In the terminology of [4], �. zP / is
peripheral with peripheral disk D. zP /.) It follows that D. zP / is precisely invariant
under �. zP / and hence that D. zP /=G DD. zP /=�. zP / is a triply punctured sphere.

Thus �.G/=G contains the surface †.G/ D �C.G/=G and the union of k triply
punctured spheres D. zP /=�. zP /, one for each pair of pants in P . Thus the total
hyperbolic area of �.G/=G is at least 4�k . Now Bers’ area inequality [1] (see also
eg Matsuzaki and Taniguchi [10, Theorem 4.6]) states that

Area.�.G/=G/� 4�.T � 1/
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where T is the minimal number of generators of G , in our case 2gC b � 1. Since
k D 2gC b� 2 we have

4�.2gC b� 2/� Area.�.G/=G/� 4�.T � 1/D 4�.2gC b� 2/:

We deduce that �.G/ is the disjoint union of �C.G/ and the disks D. zP /, P 2 P .
This completes the proof of (iii) and (iv).

This gives an alternative viewpoint on our main result: we are finding a formula for the
leading terms in �i of the trace polynomials of simple curves on † under the Maskit
embedding of T .†/. This was the context in which the result was presented in [4; 13];
see also Section 5.3.1.

5 Calculation of paths

In this section we discuss how to compute the holonomy of some simple paths. We
first specify a particular path joining one hexagon to the next, then we study paths
contained in one pair of pants, and finally we compute the holonomy representations
of some paths in the one holed torus and in the four times punctured sphere.

The gluing construction in Section 4 effectively takes the charts to be the maps which
identify Pi with the standard fundamental domain � � H . Precisely, as explained
above, for each P DPi 2P , we have a fixed homeomorphism ˆi W P!P and hence a
map ��1ıˆi W P!H , where � is the projection of H to P . Let �0.P /Dˆ

�1
i ı �.�0/

be the white hexagon in P . Also let b.P /Dˆ�1
i ı �.b0/ where b0D .1Ci

p
3/=22�0

is the barycentre of the white triangle. This will serve as a base point in �0.P /.

Suppose that 
 2 S . Although not logically necessary, we can greatly simplify our
description by arranging 
 in standard Penner position, so that it always passes from
one pants to the next through the white hexagons �0.Pi/. Suppose, as in Section 4.3,
that 
 passes through a sequence of pants Pi1

; : : : ;Pin
. We may as well assume that


 starts at the base point b.Pi1
/ of Pi1

. Given our identification ˆi1
of Pi1

with P ,
there is a unique lift zb.Pi1

/ 2�0 and hence there is a unique lift z
 of 
 \Pi1
to H

starting at zb.Pi1
/. This path exits �0 either across one of its three sides, or across that

part of a horocycle which surrounds one of the three cusps 0; 1;1 contained in �0 . In
the first case, the holonomy is given by the usual action of the group � on H , where
� is the triply punctured sphere group as in Section 4.1. (This will be explained in
detail in Section 5.2.) In the second case, we have a precise description of the gluing
across the boundary annuli, giving a unique way to continue z
 into a lift of Pi2

. In
this case we continue in a new chart in which the lift of Pi2

is identified with ��H ,
as before.

Algebraic & Geometric Topology, Volume 10 (2010)



Top terms of polynomial traces in Kra’s plumbing construction 1591

The following result applies to an arbitrary connected loop on †.

Proposition 5.1 Let 
 2 �1.†/ and suppose that
P

i i.
; �i/ D q . Then the trace
Tr �.Œ
 �/ is a polynomial in �1; : : : ; �� of maximal total degree q and of maximal
degree qk.
 /D i.
; �k/ in the parameter �k .

Proof Suppose the boundary @�P of one pair of pants P is glued to the boundary
@�0P

0 of another pair P 0 along a pants curve � . The map ˆP 0ˆ
�1
P
W HP!HP 0 which

glues the horocycle labelled � in �0.P / to the horocycle labelled �0 in �0.P
0/ is

��1
�0 T�J�� , where as usual the maps �� and ��0 are the standard maps taking �; �0

to 1. Thus with the notation of Section 4.3, the overlap map RDˆPˆ
�1
P 0

is

(4) ��1
� J�1T �1

� ��0 :

Any curve 
 2 �1.†/ which intersects the pants curves �i in total q times passes
through a sequence of pants Pi1

; : : : ;Piq
D Pi1

and can therefore be written as a
product

Qq
jD1

�j�j where �j 2 �1.Pij I bij / is a path in Pij with both its endpoints in
the base point bij D b.Pij / and �j D �.Pij ;PijC1

/ is a path from bij to bijC1
across

the boundary �ij between Pij and PijC1
.

Let �W �1.Pij I bij /! � be the map induced by the identification of Pij with ��H ,
where � is the triply punctured sphere group as in Section 4.1. It follows that the
holonomy of 
 is a product

(5) �.Œ
 �/D

qY
jD1

�.�j /�
�1
�j

J�1T �1
�ij
�0�jC1

from which the result follows.

It is clear from this formula that Tr �.Œ
 �/ is an invariant of the free homotopy class
of 
 , because changing the base point of the path 
 changes the above product by
conjugation.

We can also define the holonomy of paths with distinct endpoints in one pair of pants P ;
see Section 5.2.

5.1 Paths between adjacent pants

Suppose that pants P and P 0 are glued along � 2PC . If @1P is glued to @1P 0 , then
there is an obvious path �.P;P 0I1;1I 0/ on †0 from b.P / to b.P 0/, namely the
projection to †0 of the union of the path z D b.P /C i t; t 2 Œ0;=�=2C �� in �0.P /

with the path z0 D b.P 0/C i t; t 2 Œ=�=2C �; 0� in �0.P
0/. More generally, if @�P is
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glued to @�0P 0 , we define �.P;P 0I �; �0I 0/ to be the path obtained by first applying
the maps ��; ��0 to the segments of �.P;P 0I1;1I 0/ in P;P 0 respectively. For a
general surface †.�/ we define �.P;P 0I �; �0I �/Dˆ� .�.P;P 0I �; �0I 0//. Note that
�.P;P 0; � I �/ is entirely contained in the white triangles in P and P 0 . Unless needed
for clarity, we refer to all these paths as �.P;P 0/.

Referring to the gluing Equation (3) we see that the holonomy of �.P;P 0/ is given by

(6) �
�
�.P;P 0I �; �0I �/

�
D��1

� J�1T �1
� ��0 :

As already noted in Lemma 4.2, the gluing parameters � are independent of the direction
of travel (from P to P 0 or vice versa). From (6) we have

�
�
�.P 0;P I �0; �I �/

�
D��1

�0 J�1T �1
� ��

so that
�.�.P 0;P I �0; �I �/�1/D��1

� T�J��0 :

Using the identities J�1 D�J , T �1
� D T�� and T�J D JT�� this gives

(7) �
�
�.P 0;P I �0; �I �/�1

�
D��

�
�.P 0;P I �0; �I �/

��1
;

as one would expect. That fact will be particularly important for our proof in Section 6.

5.2 Paths in a pair of pants

We now calculate the holonomy of the three boundary loops in one pair of pants P .
As usual, we identify P with P so that the components of its boundary are labelled
0; 1;1 in some order, and the base point is the barycentre b0 D .1C

p
3i/=2 of �0 .

Orient each of the three boundary curves @�.P /, where � 2 f0; 1;1g, consistently with
the three lines �� where, as above, �� �H is the unique oriented geodesic from �C1

to �C2, where � is in the cyclically ordered set f0; 1;1g; see Figure 9. We denote by
�� 2 �1.P I b0/ the loop based at b0 and freely homotopic to the oriented loop @�.P /.
To calculate the holonomy of �� , we begin by noting the holonomies of the three
homotopically distinct paths 
� , with � 2 f0; 1;1g, joining b0 to b�0 D .�1C

p
3i/=2,

the barycentre of �1 ; see Figure 11.

Each path 
� is determined by the geodesic �� which it crosses. Thus 
0 connects b0

and b�0 crossing �0 , and so on. The holonomies of these three paths are

(8) �.
0/D

�
1 2

0 1

�
; �.
1/D IdD

�
1 0

0 1

�
; �.
1/D

�
1 0

2 1

�
;

as is clear from Figure 11.
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�1 0 1

b�0 
1 b0 
0 F.b�0 /


1

G.b�0 /

Figure 11: Paths between b0 and b�0 where F D �.
0/ and G D �.
1/

�3 D 1

�2 D 0

�1 D1

Figure 12: The loop �0 homotopic to @0P

To calculate the holonomy of the loop �0 around the boundary @0P , we have to go
from b0 to b�0 crossing �1 and then go from b�0 to b0 crossing �1 . Hence, as
illustrated in Figures 11 and 12, we have to go along the path 
1 and then along the
path 
�1

1
. Thus we find

�.�0/D �.
1

�1
1 /D

�
1 0

2 1

�
:

Similarly to calculate the holonomy of �1 , we have to go from b0 and b�0 crossing �0

and then return from b�0 to b0 crossing �1 . This means going along 
0 and then 
�1
1 .
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Thus the holonomy is

�.�1/D �.
0

�1
1 /D

�
1 2

0 1

��
1 0

�2 1

�
D

�
�3 2

�2 1

�
:

Finally, to calculate the holonomy of �1 , we have to go from b0 to b�0 crossing �1

and return from b�0 to b0 crossing �0 . Hence we have to go along the path 
1 and
then along the path 
�1

0
, so the holonomy is

�.�1/D �.
1

�1
0 /D

�
1 �2

0 1

�
:

As a check, we verify that

�.�0/�.�1/�.�1/D

�
1 0

2 1

��
1 �2

0 1

��
�3 2

�2 1

�
D Id

in accordance with the relation �0�1�1 D id in �1.P I b0/.

5.3 Examples

To conclude this section, we look at the special cases of the once punctured torus and
the four times punctured sphere.

5.3.1 The once punctured torus The once punctured torus †1;1 is decomposed into
one pair of pants by cutting along a single pants curve � . To determine the projective
structure on †1;1 following our construction, we take a pair of pants P and glue the
boundaries @1P and @0P , so that the remaining boundary @1P becomes the puncture
on †1;1 ; see Figure 13. To find �W �1.†1;1/! PSL.2;C/, it is sufficient to compute
the holonomy of � and of its dual curve D� .

To do the gluing, take two copies of P and, following the notation in Section 4, label
the copy on the left in the figure P , and that on the right, P 0 . We identify P with
the standard triply punctured sphere P by the homeomorphism ˆW P ! P so that the
universal covers zP ; zP 0 are identified with copies H;H0 of the upper half plane H with
coordinates z; z0 respectively. The cusps to be glued are labelled � D1 and �0 D 0.
We first apply the standard symmetries ��; ��0 which carry � D1 and �0 D 0 to 1.
Referring to (2), we see that �1.z/D z and �0.z

0/D 1� 1=z0 .

According to the choices made in Section 3.1.1, the dual curve D� to � is the curve
�.P;P 0; � I �/ joining b.P / 2 P to b.P 0/ 2 P 0 . By (5) in Section 5 and by the

Algebraic & Geometric Topology, Volume 10 (2010)



Top terms of polynomial traces in Kra’s plumbing construction 1595

�

@1.P / @0.P /

D�

@1.P /

Figure 13: Plumbing for the once punctured torus

formulae (2) for the standard symmetries, we have

�.D� /D�
�1
1 J�1T �1

� �0

D

�
i 0

0 �i

��
1 ��

0 1

��
1 �1

1 0

�
D�i

�
� � 1 1

1 0

�
:

Since clearly

�.�/D

�
1 2

0 1

�
;

this is enough to specify the representation �W �1.†/! PSL.2;C/.

The original motivation for studying the representations in this paper came from
studying the Maskit embedding of the once punctured torus; see Keen and Series [4]
and Section 4.5. The Maskit embedding for †1;1 is described in [4] as the representation
�0W �1.†1;1/! PSL.2;C/ given by

�0.�/D

�
1 2

0 1

�
and �0.D� /D�i

�
� 1

1 0

�
:

This agrees with the above formula setting �D � � 1.
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5.3.2 The four holed sphere †0;4 We decompose †0;4 into two pairs of pants P

and P 0 by cutting along the curve � , and label the boundary components as shown in
Figure 14, so that the boundaries to be glued are both labelled 1. In the figure, P is
the upper of the two pants and P 0 the lower. We shall calculate the holonomy of the
dual D� to � in two different ways, first in the standard Penner position and secondly
in the symmetrical DT–position. As it is to be expected, the two calculations give the
same result.

The loop D� in Penner standard position If we put the loop D� in Penner standard
position, as illustrated in Figure 5, and as described in Section 3.2, we see that it is the
concatenation of the paths

(1) �.P;P 0I1;1I �/ from b0.P / to b0.P
0/;

(2) �0.P
0/;

(3) �1.P
0/;

(4) �.P 0;P I1;1I �/ from b0.P
0/ to b0.P /;

(5) ��1
0
.P /.

Thus using the calculations in Sections 5.1 and 5.2, we have

�.D� /D �
�
�.P;P 0I1;1I �/ � �0.P

0/ � �1.P
0/ ��.P 0;P I1;1I �/ � ��1

0 .P /
�

D

�
i �i�

0 �i

�
�

�
1 0

2 1

�
�

�
1 �2

0 1

�
�

�
�i i�

0 i

�
�

�
1 0

�2 1

�
D

�
�4�2C 6� � 3 2�2� 4� C 2

�4� C 4 2� � 3

�
giving

Tr �.D� /D�4�2
C 8� � 6:

Now q.D� /D 2 and p.D� /D 0 (see Section 3.1), and the number h of scc-arcs in
D� is 2. Thus Theorem A predicts that

Tr �.D� /D˙i222.� C .0� 2/=2/2CR

where R represents terms of degree at most 0 in � , in accordance with the computation
above.
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@1.P / @0.P /

@1.P /

@1.P
0/

�

@0.P
0/ @1.P

0/

b�0 .P /

b�0 .P
0/

b0.P /

b0.P
0/

D�

Figure 14: The loop D� in its symmetrical DT–position in the four holed sphere

The loop D� in symmetrical DT–position As usual we take as base points the
barycenters b0.P / and b�0 .P / of the “white” and the “black” hexagons respectively in
P and the same base points b0.P

0/ and b�0 .P
0/ in P 0 . Also denote ��.P;P 0I1;1I �/

the path R.�.P;P 0I1;1I �// from b�0 .P / to b�0 .P
0/ through the black hexagons,

where R is the orientation reversing symmetry of †.�/ as in Section 3.1.

From Figure 14, we see that D� is the concatenation of the paths

(1) �.P;P 0I1;1I �/ from b0.P / to b0.P
0/;

(2) 
1.P
0/ in P 0 from b0.P

0/ to b�0 .P
0/;

(3) ��.P 0;P I1;1I �/ from b�0 .P
0/ to b�0 .P /;

(4) 
�1
1 .P / in P from b�0 .P / to b0.P /.

Thus

�.D� /D �
�
�.P;P 0; � I �/

�
� �
�

1.P /

�
� �
�
��.P 0;P; � I �/

�
� �
�

�1
1 .P /

�
:

Following Remark 4.1 we have

��.P 0;P I1;1I �/D �.P 0;P I1;1I � � 2/D �.P;P 0I1;1I � � 2/�1
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so that, from Section 5.1, we have

�
�
��.P 0;P I1;1I �/

�
D

�
�i i.� � 2/

0 i

�
:

Thus referring also to Section 5.2 we see

�.D� /D

�
i �i�

0 �i

�
�

�
1 0

2 1

�
�

�
�i i.� � 2/

0 i

�
�

�
1 0

�2 1

�
D

�
�4�2C 6� � 3 2�2� 4� C 2

�4� C 4 2� � 3

�
:

Hence Tr .�.D� //D�4�2C 8� � 6 as before.

6 Proof of Theorem A

In this final section we prove Theorem A. Our method is to show that the product of
matrices forming the holonomy always takes a special form and then give an inductive
proof.

First consider the holonomy representation of a typical path. Let 
 2 S0 be a simple
loop on †. We suppose 
 is in Penner standard position, so that it always cuts �ij in
the arc wij . Starting from the basepoint in some pants P , it crosses, in order, pants
curves �ij , j D 1; : : : ; q.
 /. If the boundaries glued across �ij are @�P; @�0P 0 , then,
by Equation (4), the contribution to the holonomy product �.
 / is

��1
� J�1T �1

�ij
�0�0

where �ij D �i whenever �ij D �i 2 PC .

A single positive twist around @�P immediately before this boundary component
contributes �.��1

� / D ��1
� �.��1

1 /�� (because �� twists in the negative direction
round @�P ; see Figure 12), while a single positive twist around @�0P 0 after the crossing
contributes �.��/ D ��1

�0 �.�1/��0 . Thus if, in general, 
 twists j̨ times around
@�P D �ij immediately before the crossing and ǰ times after, the total contribution
to the holonomy is

(9) ��1
� �.�1/

� j̨ J�1T �1
�i
�.�1/ ǰ�

0
�0 ;

where �ij D �i 2 PC .

From Sections 4.1 and 5.2 we have

J�1T �1
� D

�
i �i�

0 �i

�
and �.�1/D

�
1 �2

0 1

�
:
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For variables X;Y , write

AX D

�
1 X

0 �1

�
and BY D

�
1 Y

0 1

�
:

We calculate
�.�1/

� j̨ J�1T �1
�i
�.�1/ ǰ D iAXj

with Xj D �.�i C 2 j̨ C 2 ǰ /, from which we note in particular that, as expected,
which side of the crossing the twists occur makes no difference to the final product.

Proposition 6.1 (i) Suppose that 
 contains no scc-arcs. Then �.
 / is of the
form ˙iq

Qq
iD1

AXj�ij , where �ij D �0 or �1 for all j . If the term AXj

corresponds to the crossing of a pants curve �ij D �i , with j̨ twists before the
crossing and ǰ after, then Xj D�.�i C 2 j̨ C 2 ǰ /.

(ii) If 
 contains scc-arcs, then �.
 / takes the same form as above, with an extra
term

AXj�1B˙2�0AXj

inserted for each scc-arc which crosses �ij twice in succession.

(iii) In all cases, the total P–twist of 
 about �i 2PC is ypi.
 /D
P

�ij
D�i

. j̨C ǰ /.

Proof As computed above we have

�.�1/
�˛J�1T �1

� �.�1/
ˇ
D i

�
1 �.� C 2˛C 2ˇ/

0 �1

�
D iA�.�C2˛C2ˇ/:

So the holonomy �.
 / is a concatenation of q terms of the form i��1
� A�.�C2˛C2ˇ/��0 ,

one for each crossing of a pants curve �ij . If 
 contains no scc-arcs, then it enters
and leaves each pants P across distinct boundary components, say @�1

P and @�2
P

respectively. Then the corresponding adjacent terms in the concatenated product are then

� � ���1
��1
�2
� � �

where �1 ¤ �2 , from which (i) easily follows.

We also note that regardless of how the twists are organised before or after the crossings,
the sum

Pqi .
 /
jD1

. j̨ C ǰ / of coefficients in terms corresponding to crossings of the
pants curve �i is equal to ypi.
 /, the i –th P–twisting number of the curve 
 with
respect to the pants decomposition PC . This proves (iii).

Now suppose that 
 contains some scc-arcs. Suppose that 
 cuts a curve �ij twice
in succession entering and leaving a pants P across the boundary @1P . Since 

is in P–form, after crossing @1P it goes once around @0P in either the positive or
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negative direction and then returns to @1P ; see Figure 5. Since 
 is simple, the
twisting around �ij is the same on the inward and the outward journeys. The term in
the holonomy is therefore

AXj �.�0/
˙1AXj DAXj�

�1
0 �.�1/

�1�0AXj DAXj�
�1
0 B˙2�0AXj

as claimed.

If more generally 
 enters and leaves P across @�P , then this entire expression is
multiplied on the left by ��1

� and on the right by �� . By the same discussion as in (i),
this leaves the form of the holonomy product unchanged. The contribution to the twist
about �ij is calculated as before.

We are now ready for our inductive proof of Theorem A. Suppose first that 
 2 S0

contains no scc-arcs. If
�.
 /D˙iq Qq

iD1
AXj�ij

define X �j DXj C h.�ij /C k.�ij�1
/ where �i0

WD�iq
and

h.�ij /D

(
1 if ij D 0;

0 otherwise,
and k.�ij /D

(
0 if ij D 0;

1 otherwise:

Thus

�0AX�0!X � DX C 1

�0AX�1!X � DX

�1AX�0!X � DX C 2

�1AX�1!X � DX C 1:

Remark 6.2 Replacing �.
 / by �.
 /�1 leaves the occurrences of the above blocks
unchanged. The entire matrix product is multiplied by .�1/q . This is because A�1

X
D

�AX and, for example,

.�0AX�1/
�1
D��1

1 A�1
X ��1

0 D��0AX�1:

Now given the path of some 
 2 S0 , consider a crossing for which �ij D �i . Let
�ij�1

AXj�ij be the corresponding terms in �.
 /, (where �ij�1
is associated to the

crossing of the previous pants curve �ij�1
). Let pj ; ypj be the respective contributions

from this j –th crossing to the DT– and P–twist coordinates of 
 , so that the total
twists pi ; ypi about �i are obtained by summing over all crossings for which �ij D �i :
pi D

P
�ij
D�i

pj and likewise ypi D
P
�ij
D�i
ypj .
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For any variable aj 2R which depends on the j –th crossing, define a�j according to
the same rule as X � above, in other words a�j D aj C h.�ij /C k.�ij�1

/. We have:

Lemma 6.3 Suppose that 
 contains no scc-arcs and as usual let pj ; ypj be the
contributions to the DT– and P–twists of 
 corresponding to the j –th crossing of a
pants curve �i 2 PC . Then .�2 ypj /

� D�pj C 1.

Proof This is verified using Theorem 3.5, together with the fact that 
 is assumed to
be in P–standard form.

Consider a crossing for which �ij D�i with corresponding term �ij�1
AXj�ij in �.
 /.

Suppose for example that the relevant term in the holonomy is �0AXj�0 , so that by
definition, a�j D ajC1 for any variable aj . Without loss of generality, we may suppose
that �ij is the gluing of @1P to @1P 0 as shown in Figure 6. The first �0 means that
there is an arc from D to E , and the second �0 means there is an arc from E to A.
The formula of Theorem 3.5 therefore gives a contribution 2 ypj D pj C0C1�1D pj .
Thus .�2 ypj /

� WD �2 ypj C 1D�pj C 1 as claimed.

Similarly, consider the sequence �1AXj�0 . In this case, .�2 ypj /
�D�2 ypjC2. From

Theorem 3.5 we find 2 ypj DpjC1C1�1DpjC1, so .�2 ypj /
�D�2 ypjC2D�pjC1.

The other two possible sequences are similar.

In the case of no scc-arcs, Theorem A is an immediate corollary of this lemma and the
following proposition:

Proposition 6.4 Suppose that 
 contains no scc-arcs, then

Tr.�.
 //D˙iq Tr
�Qq

jD1
AXj�ij

�
D˙iq

�Qq
jD1

X �j
�
CR

where R denotes terms of degree at most q� 2 in the Xj .

Proof of Theorem A (No scc-arcs case) By Proposition 6.1, if �ij D �i then Xj D

�.�iC2 j̨C2 ǰ /. There are qi.
 / such terms Xj . Thus the top order term of Tr �.
 /
is �q1

1
� � � �

q�
�

, with coefficient ˙iq , in accordance with the result of Theorem A.
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Now the contribution to the P–twist corresponding to the j –th crossing is ypj D j̨C ǰ .
Thus

qY
jD1

X �j D

qY
jD1

�
� .�i C 2 j̨ C 2 ǰ /

��
D

qY
jD1

�
� .�i C 2 ypj /

��
D

qY
jD1

�
� �i C .�2 ypj /

�
�

D

qY
jD1

�
� �i �pj C 1

�
D .�1/q

qY
jD1

.�i Cpj � 1/;

where we used Lemma 6.3 to evaluate .�2pj/
�. So the coefficient of �q1

1
� � ��

qi�1
i � � ��

q�
�

is

˙iq
X
�ij
D�i

.pj � 1/D˙iq.pi � qi/

which is exactly the coefficient in Theorem A.

Proof of Proposition 6.4 We prove this by induction on the length q of the productQq
jD1

AXj�ij . If q D 1, with respect to the cyclic ordering we see either the block
�0AX�0 or �1AX�1 , so that X � D X C 1. In both cases we check directly that
Tr AX�0 D Tr AX�1 DX C 1.

The case q D 2 corresponds to a product AX1
��AX2

��0 . Hence there are four
possibilities corresponding to �D˙1 and �0D˙1. These cases can be checked either
by multiplying out or by using the trace identity

(10) Tr.AB/D Tr.A/Tr.B/�Tr.AB�1/:

For example, if � D �0 D 0, then

Tr AX1
�0AX2

�0 D Tr.AX1
�0/Tr.AX2

�0/CTr AX1
AX2

D .X1C 1/.X2C 1/C 2DX �1 X �2 C 2;

where we used the relation A�1
X
D�AX .
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If � D 0; �0 D 1 then

Tr
�
AX1

�0AX2
�1

�
D Tr.AX1

�0/Tr.AX2
�1/�Tr

�
AX1

�0�
�1
1 A�1

X2

�
:

The first term on the right hand side is .X1C 1/.X2C 1/ and the last term reduces to

�Tr A�1
X2

AX1
�1 D�X2CX1� 1:

Hence

Tr AX1
�0AX2

�1 DX1X2C 2X2C 2D .X1C 2/X2C 2DX �1 X �2 C 2:

The other two cases with qD 2 are similar (or can be obtained from these by replacing

 with 
�1 ).

Now we do the induction step. Suppose the result true for all products of length less
than q . We split into three cases.

Case (i) �0 appears 3 times consecutively.

After cyclic permutation the product is of the form

AX1
�0AX2

�0AX3
�0 � � ��iq

:

We will apply (10), splitting the product as

.AX2
�0/� .AX3

�0 � � ��iq
AX1

�0/:

Considering the first term of this split product alone, AX2
is still preceded and followed

by �0 . Likewise, taking the second term alone, AX1
and AX3

are still preceded and
followed by the same values of �i as they were before and nothing else has changed.
Thus the induction hypothesis gives

Tr AX2
�0 DX �2 and Tr AX3

�0 � � ��iq
AX1

�0 DX �3 � � � X �q X �1 :

Now consider the remaining term coming from (10):

Tr
�
AX2

�0.AX3
�0 � � ��iq

AX1
�0/
�1
�
D Tr

�
AX2

A�1
X1
��1

iq
� � �A�1

X3

�
:

Cyclically permuting, the three terms A�1
X3
;AX2

;A�1
X1

combine to give a single term
AX3CX2CX1

, so that the trace has degree at most q�2 in the variables X3CX2CX1;

X4; : : : ;Xq . Putting all this together proves the claim.

Case (ii) �0 appears at most 2 times consecutively.
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Suppose first q � 4. Thus after cyclic permutation the product is of the form

AX1
�0AX2

�0AX3
�1AX4

� � ��1:

We apply (10) splitting as

.AX1
�0AX2

�0AX3
�1/� .AX4

� � �AXq
�1/:

Taking each of these subproducts separately, we see that again the terms �i preceding
and following each AX are unchanged. So the induction hypothesis gives

Tr.AX1
�0AX2

�0AX3
�1/DX �1 X �2 X �3 ;

Tr.AX4
� � �AXq

�1/DX �4 : : :X
�
q :

Moreover we note

AX1
�0AX2

�0AX3
�1�

�1
1 A�1

Xq
� � �A�1

X4

is of degree at most q�2 in the variables X4CX1;X2;X3CXq;X5; : : : ;Xq�1 . The
result follows.

The case q D 3 is dealt with by splitting

AX1
�0AX2

�0AX3
�1 as .AX3

�1AX1
�0/�AX2

�0;

using the previously considered case q D 2, and noting that

AX3
�1AX1

�0�
�1
0 A�1

X2

has degree 1 in the variable X1CX2CX3 . (Recall that A�1
X
D�AX .)

Case (iii) �0 and �1 appear alternately.

In this case we split

AX1
�0AX2

�1AX3
�0AX4

� � ��1 as .AX1
�0AX2

�1/� .AX3
�0AX4

� � ��1/

and the argument proceeds in a similar way to that before.

Now we add in the effect of having scc-arcs, that is we deal with the case h> 0.

Theorem 6.5 Suppose that a matrix product of the form in Proposition 6.4 is modified
by the insertion of h blocks AXj�

�1
0

BYr
�0AXj , r D 1; : : : ; h for variables Yr 2C .

Then its trace is
˙iq

�Qh
rD1 Yr

��Qq
jD1

X �j
�
CR

where R denotes terms of degree at most q� 2 in the Xj .
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Proof We first check the case q D 1; hD 1 by hand. (Note that such a block cannot
be the holonomy matrix of a simple closed curve.) We have

AX�1BY�0 D

�
X.1CY /� .X C 1/ �

� 1

�
;

hence Tr AX�1BY�0DXY . Since the term �0AX�1 contributes the factor X and
the term BY contributes Y , this fulfills our hypothesis.

Now work by induction on h. Suppose the result holds for products

�uAX1
�i1

AX2
�i2
� � �AXs

containing at most h� 1 terms of the form BYr
and consider a product

�uAX1
�i1

AX2
�i2
� � ��vAX�1BYh

�0AX :

There are four possible cases:

uD 1; v D 0; uD 1; v D 1; uD 0; v D 0; uD 0; v D 1:

Case u D 1; v D 0 Consider the extra contribution to the trace resulting from the
additional block AX�1BYh

�0AX . The first occurrence of AX appears in a block
�0AX�1 which, according to what we want to prove, should contribute a factor X .
Likewise the block �0AX�1 containing the second occurrence of AX should con-
tribute X , and the term BY should contribute Y . Thus it is sufficient to show that

Tr.�1AX1
�i1

AX2
�i2
� � �AXs

�0AX�1BY�0AX /

D˙X 2Y Tr.�1AX1
�i1

AX2
�i2
� � �AXs

�0AX /CR

where R denotes terms of total degree at most 2 less then the first term in the Xj .

Splitting the product as

.�1AX1
�i1

AX2
�i2
� � ��0AX /� .�1BY�0AX /

and using (10), we see that the second factor contributes XY and the first factor,
containing the sequence �0AX�1 , contributes X . The remaining term

.�1AX1
�i1

AX2
�i2
� � ��0AX /� .�1BY�0AX /

�1

coming from (10) has, as usual, degree in the Xj lower by 2. This proves the claim in
this case.

Case uD 1; v D 1 Again splitting the product as

.�1AX1
�i1

AX2
�i2
� � ��1AX /� .�1BY�0AX /;
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the first split factor contains the block �1AX�1 which contributes a factor .X C 1/

to the trace. The second split factor contributes XY .

In the unsplit product we have from the first occurrence of AX the block �1AX�1 ,
which contributes a factor XC1, and from the second AX the block �0AX�1 , which
contributes X , again proving our claim.

Case u D 0; v D 0 This can be done by inverting the previous case. Alternatively,
splitting again as

.�0AX1
�i1

AX2
�i2
� � ��0AX /� .�1BY�0AX /;

the first split factor contains the block �0AX�0 , which contributes a factor X C 1,
while the second split factor contributes, as usual, XY .

In the unsplit product we have from the first AX the block �0AX�1 which con-
tributes X , and from the second AX the block �0AX�0 which contributes X C 1,
again proving our claim.

Case uD 0; v D 1 Again split as

.�0AX1
�i1

AX2
�i2
� � ��1AX /� .�1BY�0AX /:

The first split factor, containing �1AX�0 , contributes X C 2 and the second split
factor contributes XY .

In the unsplit product we have from the first AX the term �1AX�1 , which con-
tributes X C 1, and from the second AX the term �0AX�0 , which contributes
X C 1. The induction still works because, up to terms of lower degree, X.X C 2/Y D

.X C 1/.X C 1/Y .

Remark 6.6 Not all the cases discussed above are realisable as the holonomy repre-
sentations of simple connected loops 
 . For example, the cases

v D 1; uD 1; Y DC2 and v D 0; uD 0; Y D�2

produce nonsimple curves.

Proof of Theorem A This follows from Proposition 6.1 on setting Yj D ˙2 in
Theorem 6.5. (For the final statement see Lemma 4.3.)
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