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Continuous interval exchange actions

CHRISTOPHER F NOVAK

Let E denote the group of all interval exchange transformations on Œ0; 1/ . Given a
suitable topological group structure on E , it is possible to classify all one-parameter
interval exchange actions (continuous homomorphisms R! E ). In particular, up
to conjugacy in E , any one-parameter interval exchange action factors through a
rotational torus action.

37E05, 54H15; 57S05, 37A10, 57M60

1 Introduction

An interval exchange transformation is a map Œ0; 1/! Œ0; 1/ defined by a finite partition
of the unit interval into half-open intervals and a rearrangement of these intervals by
translation. See Figure 1 for a graphical example.

before

after

I1 I2 I3 I4

I3 I1 I4 I2

Figure 1: An interval exchange with � D .1 2 4 3/

The dynamics of interval exchanges were first studied in the late seventies by Keane [9;
10], Katok [8], Rauzy [16], Veech [17] and others. This initial stage of research
culminated in the independent proofs by Masur [12] and Veech [18] that almost every
interval exchange is uniquely ergodic. See the recent survey of Viana [19] for a unified
presentation of these results.

There is currently much interest and activity in the dynamics of interval exchanges.
This is due in part to the recent resolution of certain long-standing problems in this
area; one important example is the work of Avila and Forni [1] in which they prove
that almost every interval exchange is weakly mixing. Much of the study of interval
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exchanges is closely related to dynamics on the moduli space of translation surfaces; an
introduction to this topic and its connection to interval exchanges is found in a survey
of Zorich [20].

An extension of the study of single interval exchanges is to consider their dynamics in
terms of group actions. The set E of all interval exchange transformations forms a group
under composition, and an interval exchange action of a group G is a homomorphism
G! E . A general and fundamental question is to determine if a given group G has
faithful interval exchange actions. More broadly, it can be asked if there are general
algebraic obstructions to the existence of such actions. On the other hand, if such
actions do exist for a given group, it is desirable to attempt to classify them in some
way. The goal of this paper is to classify continuous interval exchange actions of the
group R.

The study of interval exchange actions is motivated by the study of other transfor-
mation groups, particularly groups of homeomorphisms and diffeomorphisms of one-
dimensional manifolds. However, what is known about the structure of E suggests
that there may be substantial differences between E and these groups. For instance,
the author showed in [15] that no subgroup of E has distortion elements. In contrast,
the groups Diff!.R/ and Diff!.S1/ of real-analytic diffeomorphisms on the line and
circle both contain such elements. See Franks [5] for definitions, examples and results
involving actions of groups having distortion elements.

In addition, many basic questions that are well understood for diffeomorphisms of
1–manifolds are currently open for the group E . For instance:

(1) Does E contain a free subgroup on two generators? (Katok)

(2) Does E contain groups of intermediate growth? (Grigorchuk)

(3) Is every solvable subgroup of E virtually abelian? (Navas)

For question (1), it is easy to construct examples of nonabelian free groups in Diff.S1/

or Diff.R/ by means of the ping-pong construction. More detailed results, analo-
gous to the Tits’ alternative, are also known for HomeoC.S1/ and Diff!.S1/I see
Margulis [11] and Farb and Shalen [4], respectively. Question (2) is answered in
the affirmative for the group Diff 1

C.Œ0; 1�/ by Navas [14]. This work also shows that
for any ˛ > 0, any subgroup of Diff 1C˛

C .Œ0; 1�/ with subexponential growth must be
virtually nilpotent. This gives a negative answer to question (2) in this case, due to the
fundamental result of Gromov [6] that the finitely generated virtually nilpotent groups
are exactly those having polynomial growth. Question (3) is also well understood for
various transformation groups on 1–manifolds; for instance, see Bleak [2], Burslem
and Wilkinson [3] and Navas [13].
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To introduce the results of the current work, consider the following precise definition
and notation for an interval exchange. Let � 2†n be a permutation of f1; 2; : : : ; ng,
and let � be a vector in the simplex

ƒn D

n
�D .�1; : : : ; �n/ W �i > 0;

X
�i D 1

o
�Rn:

The vector � induces a partition of Œ0; 1/ into intervals

(1) Ij D

"
ǰ�1 WD

iDj�1X
iD1

�i ; ǰ WD

iDjX
iD1

�i

!
; 1� j � n:

Let f.�;�/ be the interval exchange that translates each Ij such that the ordering of
these intervals within Œ0; 1/ is permuted according to � . More precisely,

(2) f.�;�/.x/D xC!j if x 2 Ij ;

where

(3) !j D��.�/j D
X

iW�.i/<�.j/

�i �

X
iW i<j

�i :

Note that �� W ƒn!Rn is a linear map depending only on � .

An initial example of an interval exchange R–action is defined by

t 7! rt ;

where rt 2 E is the rotation rt .x/ D x C t .mod 1/, as depicted in Figure 2. This
action is not faithful, but its kernel is a discrete subgroup of R.

A B

B A

t

1� t

Figure 2: The rotation rt with � D .2 1/ and �D .1� t; t/

To construct a faithful interval exchange action of R, choose numbers ˛1 and ˛2 in
.0; 1/ such that ˛1=˛2 is irrational. For a real number t , define ft as the map that

Algebraic & Geometric Topology, Volume 10 (2010)



1612 Christopher F Novak

rotates by t˛1 .mod 1=2/ on the interval Œ0; 1=2/ and rotates by t˛2 .mod 1=2/ on
the interval Œ1=2; 1/. That is, ft D f.�; �.t// for the data

� D .1 2/.3 4/; �.t/D

�
1�ft˛1g

2
;
ft˛1g

2
;

1�ft˛2g

2
;
ft˛2g

2

�
;

where f � g denotes the fractional part of a real number. It is easy to check that t 7! ft

is a group homomorphism R! E , and the action is faithful due to the assumption that
˛1=˛2 is irrational.

This faithful R–action can be viewed as the restriction of an action of the torus T2 D

R2=Z2 (identified with Œ0; 1/� Œ0; 1/) defined by the map .˛1; ˛2/ 7! f.�; �.˛1;˛2//;

where

� D .1 2/.3 4/; �.˛1; ˛2/D

�
1�˛1

2
;
˛1

2
;

1�˛2

2
;
˛2

2

�
:

See Figure 3 for an illustration of the map f.�; �.˛1;˛2// .

A1 B1 A2 B2

B1 A1 B2 A2

.1�˛1/=2 1� .˛2=2/

˛1=2
1=2

.1C˛2/=2

Figure 3: The action .˛1; ˛2/ 7! f.�; �.˛1;˛2//

A general class of torus actions can be defined by a similar construction. For any
partition vector � 2 ƒn and for any ˛ D .˛1; ˛2; : : : ; ˛n/ 2 Tn , define the interval
exchange f.˛;�/ by

(4) f.˛;�/W x 7!

�
xC�j j̨ ; x 2 Œ ǰ�1; ǰ ��j j̨ /;

xC�j j̨ ��j ; x 2 Œ ǰ ��j j̨ ; ǰ /;

where the points ǰ are the boundary points of the partition intervals defined by �.
The map f.˛;�/ is also defined by the permutation � D .1 2/.3 4/ � � � ..2n� 1/ 2n/

and the partition vector�
�1.1�˛1/; ˛1�1; �2.1�˛2/; ˛2�2; : : : ; �n.1�˛n/; ˛n�n

�
:

The action ˛ 2 Tn 7! f.˛;�/ is called the standard torus action associated to �.
Restricting a standard torus action to a one-parameter subgroup gives an action of R.
A (one-parameter) rotation action is defined as any action R! E that is conjugate
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in E to a one-parameter subgroup of a standard torus action. The image in E of a
rotation action will be referred to as a rotation subgroup.

The main result of this paper is that under some natural and unrestrictive topological
assumptions, the rotation actions classify all continuous interval exchange actions
of R. To specify these conditions, define a permutation � 2†n to be unpartitioned if
�.jC1/¤�.j /C1, for all j such that 1�j �n�1. It is shown in Proposition 2.2 that
an interval exchange is defined by a unique pair .�; �/ if one restricts to unpartitioned
permutations. For each unpartitioned � 2†n , there is a coordinate map �� W ƒn! E
defined by ��.�/ D f.�;�/ . The definition of the map f.�;�/ in Equations (1)–(3)
extends to vectors �2 xƒn by allowing some of the partition intervals Ii to be degenerate.
Thus, the coordinate maps extend to maps �� W xƒn ! E . The needed topological
conditions essentially require the �� to be continuous parameterizations.

Theorem 1.1 Suppose that E has a topological group structure such that for every
unpartitioned permutation � 2†n , the coordinate map �� W xƒn! E is continuous and
the restriction �� jƒn

is a homeomorphism onto its image. Then an action R! E is
continuous if and only if it is a rotation action.

Due to this result, the image in E of a rotation action will be referred to as a one-
parameter subgroup of E . Based on the classification in [15] of interval exchange
centralizers, it is not hard to see that if two one-parameter subgroups commute, then they
are simultaneously conjugate to subgroups of a common standard torus action. Thus,
the group generated by two distinct commuting one-parameter subgroups is conjugate
to the image of a two-dimensional subgroup of Tn under some standard torus action.
However, the situation for noncommuting one-parameter subgroups appears to be quite
different.

Conjecture 1.2 Let F D fftg and G D fgsg be one-parameter subgroups of E . If F

and G do not commute, then the group hF;Gi has elements that are not contained in
any one-parameter subgroup of E .

A consequence of this conjecture is the observation that up to conjugacy in E , an
interval exchange action of a connected Lie group must factor through a standard torus
action.

A motivating example for this conjecture is the pair of one-parameter subgroups
F Dfrtg and GDfrs;ıg, where the map rs;ı denotes a restricted rotation by sı .mod ı/
supported on the interval Œ0; ı/. It can be shown that certain products in hF;Gi, such
as hD rt ı rs;ı with sufficiently small t and s , will have linear discontinuity growth;
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1614 Christopher F Novak

ie, if D.hn/ denotes the number of discontinuities of hn , then D.hn/� C n for some
C > 0. It is not difficult to see that interval exchanges with linear discontinuity growth
cannot be in the image of a rotation action. Hence, by Theorem 1.1, the group hF;Gi
contains elements that do not lie on any one-parameter interval exchange group.

Acknowledgements The author is indebted to Professor John Franks for suggesting
this topic of study and for many helpful conversations while completing this work. The
author would like to thank the referee for many useful comments and for suggesting
much important background information.

2 Coordinates and topology of E

The restriction to unpartitioned permutations is suggested by the fact that such a
permutation � properly describes the discontinuities of the map f.�;�/ .

Lemma 2.1 � 2 †n is unpartitioned if and only if, for any � 2 ƒn , the interval
exchange f.�;�/ is discontinuous, as a map Œ0; 1/ ! Œ0; 1/, at precisely each of
ˇ1; : : : ; ˇn�1 .

Proof If �.j C 1/ D �.j /C 1 for some j , then for any � 2 ƒn , the map f.�;�/
restricts to a translation on Ij [ IjC1 . In particular, f.�;�/ is continuous at ǰ .

Conversely, if f D f.�;�/ is continuous at ǰ , then both Ij and IjC1 are translated
the same distance by f . Consequently, �.j C 1/D �.j /C 1, which implies � is not
unpartitioned.

Proposition 2.2 For any interval exchange f 2 E , there exists a positive integer n, an
unpartitioned � 2†n , and � 2ƒn , all of which are unique, such that f D f.�;�/ .

Proof To show the existence of n; � , and �, let

0< ˇ1 < ˇ2 < � � �< ˇn�1 < 1

be the finite set of points in .0; 1/ at which f is discontinuous as a map Œ0; 1/! Œ0; 1/I

this defines n. Setting ˇ0 D 0 and ˇn D 1, define � 2ƒn by

�j D ǰ � ǰ�1; j D 1; : : : ; n:

The permutation � is defined by the reordering of the points ˇi�1 induced by the
map f . Thus, �.i/Dj if and only if #fkW f .ˇk/<f .ˇi�1/gC1Dj . By construction
f D f.�;�/; and � is unpartitioned by Lemma 2.1, since f is discontinuous at
precisely ˇ1; : : : ; ˇn�1 . The uniqueness of � and � now follows since these data
were constructed using intrinsic features of the transformation f .

Algebraic & Geometric Topology, Volume 10 (2010)



Continuous interval exchange actions 1615

The most natural choice of a topology on E that satisfies the conditions of Theorem
1.1 is the CW–complex topology induced by the cell maps �� . It is not difficult to
check that the group operations of E are continuous with respect to this topology. In
particular, since the CW–complex structure for E involves only countably many cells,
the product E � E has a CW–complex structure induced by the cell maps �� � ��
(see Hatcher [7, Proposition A-2, page 521]). In addition, a proof of Theorem 1.1 with
respect to the CW–complex topology is not difficult (particularly given Lemma 3.1
and Proposition 3.2 below); this is due to the fact that in the cell topology any compact
subset must be contained within finitely many cells.

However, the CW topology on E does not properly reflect the action of E on various
function spaces defined over T . For instance, consider the following sequence fn of
interval exchanges. Define �.1/ D .1 2/ and �.1/ D .1=2; 1=2/; let f1 D f.�.1/;�.1// .
For integers n� 2, let

�.n/ D .1 2/ � .3 4/ � � � ..2n� 1/ .2n// � .2nC 1/ 2†2nC1;

�.n/ D

�
1

2nC1
;

1

2nC1
; : : : ;

1

2nC1
; 1�

n

2n

�
;

and let fn D f.�.n/; �.n// ; see Figure 4.

A1 B1 � � � An Bn C

B1 A1 � � � Bn An C

1=2n .n� 1/=2n n=2n

Figure 4: The map fn

Since each element of ffng is in a different cell, this set is closed in the CW topology
of E . In particular, it does not contain the identity as a limit point, even though the
mappings fn converge uniformly to the identity.

The topology of uniform convergence is also not a suitable topology on E since the
maps are not usually continuous. For instance, the sequence of maps gn D g.�.n/;�.n//

defined by

� .n/ D .1 3/ 2†4; �.n/ D

�
1

2n
;
2n�1� 1

2n
;

1

2n
;
2n�1� 1

2n

�
does not converge uniformly to the identity; see Figure 5.

Algebraic & Geometric Topology, Volume 10 (2010)



1616 Christopher F Novak

A B C D

C B A D

1=2n 1=2 1=2C1=2n

Figure 5: The map gn

We now define a topological group structure on E in which both of the above sequences
converge to the identity. Let � denote the shortest-path metric on the circle T , identified
with Œ0; 1/. Given f;g 2 E , define

d.f;g/D

Z
T
�.f .x/;g.x// d�.x/;

where � denotes Lebesgue measure.

Proposition 2.3 The function d is a metric on E , and the metric space .E ; d/ is a
topological group.

Proof The nonnegativity, symmetry, and triangle inequality for d follow from the
corresponding properties of the metric � . Moreover, note that d.f;g/ D 0 implies
that f .x/D g.x/ �–a.e., and two interval exchanges that coincide �–a.e. must be
identical. Thus d is a metric.

To show that composition is continuous with respect to d , suppose there are convergent
sequences fn ! f and gn ! g . It suffices to estimate for all sufficiently large n

that fn.gn.x// is close to f .g.x// outside of a set with small measure, since the T –
metric � is bounded on the exceptional set. To achieve this estimate, two comparisons
can be made. First, for sufficiently large n, the T –distance between fn.gn.x// and
f .gn.x// is small outside of a set with small measure since d.fn; f / is close to
zero. Next, the distance between f .gn.x// and f .g.x// is small outside of a set with
small measure since d.gn;g/ is close to zero and since the map f is a translation on
most sufficiently small intervals. Thus, composition is continuous with respect to the
metric d .

It remains to show that inversion in E is continuous. First, note that the metric � is
invariant under right translation in the group, since all interval exchange transformations
preserve Lebesgue measure. Thus,

d.f; id/D d.id; f �1/:
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Consequently, if fn! id, then f �1
n ! id. Thus inversion is continuous at the identity.

In general, if fn! f , the continuity of composition implies that f �1fn! id. But
then f �1

n f ! id, and applying the continuity of composition again yields f �1
n !f �1 ,

as desired.

Proposition 2.4 For any unpartitioned permutation � , the map �� W xƒn ! E is
continuous with respect to the metric d . Consequently, the restriction �� jƒn

is a
homeomorphism onto its image.

Proof It has been shown in Proposition 2.2 that the restriction �� jƒn
is injective. If

the map �� is continuous, then the restriction �� jƒn
is a homeomorphism onto its

image due to the compactness of xƒn .

To show the continuity of �� W xƒn! E , suppose that �.m/! � in xƒn , and let f .m/

and f denote ��.�.m// and ��.�/, respectively. Given some � > 0, for all sufficiently
large m, we have

j�j ��
.m/
j j<

�

n
; j D 1; : : : ; n:

Comparing the difference between boundary points of the partition intervals of f .m/

and f , we have

j ǰ �ˇ
.m/
j j D

ˇ̌̌̌
ˇ

jX
kD1

�k �

jX
kD1

�
.m/

k

ˇ̌̌̌
ˇ�

jX
kD1

j�k ��
.m/

k
j< �:

Thus, for sufficiently large m, the partition intervals Ij and I
.m/
j overlap up to a set

of small measure. That is,
�
�
Ij n I

.m/
j

�
< 2�:

Next, observe that the translation vectors !.m/ D��.�.m// converge to ! D��.�/,
since the map �� is linear. Thus, for all sufficiently large m,

j!j �!
.m/
j j< �:

Therefore, d.f; f .m// is equal to
nX

jD1

�Z
Ij\I

.m/

j

�.f x; f .m/x/ d�.x/C

Z
Ij nI

.m/

j

�.f x; f .m/x/ d�.x/

�

D

nX
jD1

Z
Ij\I

.m/

j

�.xCwj ;xCw
.m/
j / d�.x/C

nX
jD1

Z
Ij nI

.m/

j

�.f x; f .m/x/ d�.x/:

The first term in this last expression is bounded by � , since �.xCwj ;xCw
.m/
j / < �

on the sets Ij \ I
.m/
j . The second term is bounded by n� , since � � 1=2 and
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�.Ij n I
.m/
j / < 2� . Thus d.f; f .m// < .nC 1/� for all sufficiently large m, which

proves that �� is continuous.

In addition to having the desired topological properties with respect to the coordinate
maps �� , the topology induced by the metric d has another natural interpretation.
Since all interval exchanges preserve Lebesgue measure on Œ0; 1/, one may view the
group E as a group of unitary operators on L2.T ; �/.

Proposition 2.5 The topology induced on E by the metric d coincides with the strong
operator topology when E is viewed as a subgroup of B.L2.T ; �//.

Proof Let ffng be a sequence in E and let fTng be the corresponding sequence of
unitary operators; similarly, let f 2 E and let T denote its corresponding operator.

First, suppose that d.fn; f / converges to zero, and let � 2L2.T / be any continuous
function. As in the above arguments, having d.fn; f / close to zero means that
�.fn.x/; f .x// < ı on a set An whose complement has measure approaching zero as
n increases. Using the uniform continuity of � , it follows that jTn�.x/�T�.x/j< �

on An . Since � is bounded by a constant M , the contribution to kTn� �T�k2
2

from
points in the complement of An is bounded by 4M 2�.Ac

n/, which approaches zero.
Thus T n converges to T in the strong operator topology.

Conversely, suppose T n converges strongly to T . Given � > 0, partition T into
intervals I1; I2; : : : ; IM such that f is continuous on each interval Ij and �.Ij / < �

for all j . Since kTn�Ij
�T�Ij

k2! 0, there exists Nj such that

�.fx 2 Ij W fn.x/ 2 f .Ij /g/ > .1� �/�.Ij /

for all n � Nj . Since f .Ij / is an interval, we have �.fn.x/; f .x// < � for any
x 2 Ij such that fn.x/ 2 f .Ij /. Let N DmaxfNj g. Then for any n>N , the set of
points x 2 T for which �.fn.x/; f .x// < � has measure greater than .1� �/. Thus
d.fn; f / < �C .1=2/� , which implies d.fn; f /! 0.

3 Proof of the classification theorem

In preparation for proving Theorem 1.1, it is useful to describe the dynamics of a
rotation subgroup F D fftg on Œ0; 1/. Suppose ft D f.Œt˛�;�/ , where ˛ 2 Rn and
Œt˛� is the equivalence class of t˛ in Tn Š Œ0; 1/n . See Equation (4) to recall the
definition of f.Œt˛�;�/ . In this case, ft rotates each of the �–partition intervals Ij by
t j̨�j .mod �j /. The nontrivial orbits of the action are the intervals Ij for which the
rotation rate j̨ is nonzero.
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In general, a rotation subgroup F D fftg is conjugate in E to a subgroup ff.Œt˛�;�/g
of a standard torus action; thus, ft D hf.Œt˛�;�/h

�1 for some h 2 E . The conjugacy h

may break a nontrivial ff.Œt˛�;�/g – orbit into several intervals, but for each point x in
the interior of such an interval, the maps ft still locally translate x by t j̨�j . See an
example in Figure 6.

A1 A2 C1 C2 B1 B2

C2 A1 B2 C1 A2 B1

ˇ1�˛
ˇ1

ˇ2�˛
ˇ2

ˇ3�˛
ˇ3

Figure 6: A map conjugate to a restricted rotation

To make a precise statement, let Fix.F / denote the set of global fixed points for a
given one-parameter subgroup F D fftg. Let P denote the set algebra of all finite
unions of half-open intervals Œa; b/ in Œ0; 1/.

Lemma 3.1 A one-parameter subgroup F D fftg of E is a rotation subgroup if and
only if Fix.F / 2 P and for all but finitely many x 2 Œ0; 1/, there exists ˛x 2 R and
�x > 0, such that

ft .x/D xC t˛x if jt j< �x :

Proof It is easy to see that if F is conjugate to a rotation subgroup, then the action
of ft satisfies the local condition stated in the lemma. In particular, if ftDhf.Œt˛�;�/h

�1

for all t , then the finite set of points that do not satisfy the condition is contained in the
image under h of the union of the set of discontinuities of h and the set of partition
interval endpoints induced by the length vector �.

Conversely, suppose Fix.F / 2 P and ft is locally a rotation at all but finitely many
points. Let 0D x0 < x1 < x2 < � � �< xn D 1 be the exceptional points, including all
boundary points of Fix.F /. Over all x 2 .xi�1;xi/ the rotation speed ˛x must be
constant, since by definition it is locally constant. It remains to consider the behavior
of ft at the exceptional points.

Consider the interval Ij D Œxj�1;xj / of length �j . Let j̨ denote the constant rotation
speed on the interior points of Ij . If j̨ D 0, then Ij � Fix.F /, so assume j̨ ¤ 0. By
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replacing t with �t , it can be assumed that j̨ is positive. For sufficiently small nonneg-
ative t and for sufficiently small ı such that 0< ı� �j , the interval .xj�1;xj�1Cı/

is translated by t j̨ under ft . Since the maps ft are all right-continuous at xj�1 , it
follows that ft .xj�1/D xj�1C t j̨ for all sufficiently small nonnegative t .

In fact, the group ft acts (locally) on all of .xj�1;xj / by translation by t j̨ ; thus

ft .xj�1/D xj�1C t j̨ for 0� t < �j= j̨ :

Consider what happens for t D �j= j̨ . First, suppose the interval Ij is ft –invariant.
If y D f.�j = j̨ /.xj�1/ is in the interior of Ij , then Œy;xj / is a periodic orbit properly
contained in the orbit of xj�1 , which is impossible. Thus, f.�j = j̨ /.xj�1/ D xj�1 ,
and the action of ft on Ij is globally a rotation action.

In general, if Ij is not invariant, suppose that y is in the interior of some Ik , with
k ¤ j , since y 2 Ij would imply invariance. For small t < 0, ft .y/ is in Ik , since the
ft locally act as a rotation on the interior of Ik . However, y D f.�j = j̨ /.xj�1/, and
it is also the case that ft .y/ is in Ij for small t < 0, which is a contradiction. Thus,
f.�j = j̨ /.xj�1/ must be some other exceptional point xk�1 . The transformations ft

all preserve Lebesgue measure, and by right-continuity ft .xk�1/D xk�1C t˛k for
small t � 0. Thus, if f.�j = j̨ /.xj�1/D xk�1 , then j̨ D ˛k . Consequently, the orbit
of xj�1 is a finite union of intervals Ik , each of which has the same rotation speed.
After applying a suitable conjugacy, each invariant collection of these intervals may
be reassembled into a single invariant subinterval on which the conjugate action is a
standard rotation action.

It is possible to improve on the previous lemma’s recharacterization of rotation actions.
In particular, since all interval exchanges preserve Lebesgue measure on T , the condi-
tion of a point x having an orbit locally given by a rotation action can be weakened
to the condition that t 7! ft .x/ is continuous for t in a neighborhood of zero. If x

satisfies this weaker condition, it is said to have a locally continuous orbit under ft .

Proposition 3.2 A one-parameter subgroup F D fftg is a rotation subgroup if and
only if Fix.F / 2 P and for all but finitely many x 2 Œ0; 1/, the function R! Œ0; 1/

defined by

t 7! ft .x/

is continuous in some open neighborhood around t D 0.
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Proof By applying the previous lemma, it suffices to show that if x has a locally
continuous orbit, then there exists ˛x , such that ft .x/ D x C t˛x for all t in a
neighborhood of zero. If ft .x/ D x for all t in a neighborhood, then x is a global
fixed point of the action, and ˛x D 0 will suffice.

Suppose that x is not a global fixed point, and assume that the orbit t 7! ft .x/ is
continuous for t 2 Œ��; ��. By reducing � if necessary, it can be assumed that the
function t 7! ft .x/ is one-to-one on Œ��; ��.

By reversing the parameter t , it can be assumed that t 7! ft .x/ is increasing on Œ��; ��.
Define ˛ ¤ 0 to satisfy

f�.x/D xC �˛:

Next, for any n 2N , consider the increasing sequence of points

f��.x/; f�.n�1/�=n.x/; : : : ;x; f�=n.x/; f2�=n.x/; : : : ; f�.x/:

Since all ft preserve Lebesgue measure �,

�
��
f.j�1/�=n.x/; fj�=n.x/

��
D �

��
f.k�1/�=n.x/; fk�=n.x/

��
;

for all j and k satisfying �n< j ; k � n. Consequently,

fj�=n.x/D xC .j�=n/˛ for all integers j such that jj j � n:

Thus, ft .x/D xC t˛ for a dense set of t 2 Œ��; ��, and by continuity of the orbit this
holds at all t 2 Œ��; ��.

Therefore, to prove Theorem 1.1 it suffices to prove the following:

Proposition 3.3 If F = fftg is a continuous one-parameter subgroup of E , then all but
finitely many x 2 Œ0; 1/ have locally continuous orbits and Fix.F / 2 P .

Before giving a proof of this proposition, it will be shown that for any one-parameter
subgroup fftg, the number of discontinuities of ft is bounded over all t in some
neighborhood of zero. Define the function ıW E!N by

ı.f /D n; where f D f.�;�/ for (unique) unpartitioned � 2†n; � 2ƒn .

Equivalently, ı.f / returns the number of discontinuities of f , considered as a map
Œ0; 1/ ! Œ0; 1/, counting 0 as a discontinuity. Note that ı.f / D n if and only if
f is in the image of the interior of the (n–1)–dimensional simplex xƒn under the
parametrization �� , for some unique unpartitioned � 2 †n . The simplex xƒn is
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compact, and the number of unpartitioned permutations in †k for k � n is finite. Since
the parametrizations �� are continuous, the sets

Kn D ff 2 E W ı.f /� ng

are compact. Therefore, if ı.f /Dn, then f is in the interior of EnKn�1 . Consequently,
for all g in some neighborhood of f , ı.g/� ı.f /; in other words, the function ı is
lower semicontinuous.

Lemma 3.4 For any continuous one-parameter subgroup F D ft , the function t 7!

ı.ft / is bounded on any compact subset of R.

Proof Since fsCt D fs ıft for all s; t 2R, it follows that

(5) ı.fsCt /� ı.fs/C ı.ft /; s; t 2R:

This inequality records the fact that a composition of two interval exchange maps cannot
have more discontinuities than occur over both of its factors. From this inequality, it
also follows that

(6) ı.fsCt /� jı.fs/� ı.ft /j; s; t 2R:

By (5), if ı.ft / is bounded for t 2 Œ��; ��, then ı.ft / is bounded on all compact subsets.
Thus, if ı.ft / is unbounded on some compact subset, then ı.ft / is unbounded in any
neighborhood of zero. In fact, the inequality (6) further implies that ı.ft / is unbounded
in any neighborhood of any t 2R.

This local unboundedness and the semicontinuity of ı cannot coexist. To derive a
contradiction, suppose that ı.ft / is unbounded in any neighborhood of any t . Let

An D ft 2R W ı.ft /� ng :

By the lower semicontinuity of ı , the sets An are closed, and their complements

Bn D ft 2R W ı.t/ > ng

are open. If ı is locally unbounded at every point, each set Bn is dense in R. However,\
Bn D ft 2R W ı.ft / > n for all n 2Ng D¿;

which is a contradiction by the Baire Category Theorem. Thus, ı.ft / must be bounded
on any compact subset of R.
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Proof of Proposition 3.3 Applying Lemma 3.4, let

nDmaxfı.ft / W t 2 Œ�1; 1�g:

By the lower semicontinuity of ı , the set ft 2 Œ�1; 1� W ı.ft /D ng is relatively open
in Œ�1; 1�. Therefore, there exists some t0 2 .�1; 1/ and � > 0, such that ı.ft /D n

for t 2 .t0� �; t0C �/. Let � 2†n be the unique unpartitioned permutation such that
ft0
2 ��.ƒn/. By Proposition 2.2, the sets �� .ƒn/ are pairwise disjoint as � ranges

over †0n , the set of unpartitioned permutations in †n . Since

ft0
2 E n

 [
�2†0

nnf�g

�� .xƒn/

!

and the sets �� .xƒn/ are compact, it follows that ft0
is actually in the interior of the set

denoted above. Consequently, after possibly replacing � by a smaller value, it follows
that ft 2 ��.ƒn/ for all t 2 .t0� �; t0C �/.

In this situation, it can be seen that the paths

t 7! ft .x/

are continuous in a neighborhood of t0 for all but finitely many points, namely the
discontinuity points of ft0

. For t 2 .t0� �; t0C �/ let �.t/ 2ƒn be such that

ft D ��.�
.t//;

where the �.t/ vary continuously in ƒn . Thus, if x is an interior point of the interval Ij

induced by ft0
, then

t 7! ft .x/D xC��.�
.t//j

is continuous in a neighborhood of t0 . Since f�t0
is continuous at all but a finite

number of points, the path t 7! ft .x/ is continuous in a neighborhood of zero for all
but finitely many points.

It remains to consider the set of global fixed points for ft . As before, define ˇ.t/j

in terms of �.t/ and let I
.t/
j D Œˇ

.t/
j�1

; ˇ
.t/
j /. Suppose the interior of I

.t0/
j contains a

global fixed point x . Then for all t in some .t0� �; t0C �/, the point x is located in
the interval I

.t/
j . Thus, for each t in .t0� �; t0C �/, the interval I

.t/
j is fixed by ft .

In addition, the intervals I
.t/
j�1

and I
.t/
jC1

cannot be fixed by ft , since otherwise �
would be partitioned. As a result, the boundary points ˇ.t/

j�1
and ˇ.t/j must be constant

over t 2 .t0 � �; t0C �/, since otherwise there would be points fixed by ft for t in
some nonempty, proper open subset of R, which is impossible. Thus, the set Fix.F /
of global fixed points for ft is a finite union of intervals I

.t0/
j , which implies that

Fix.F / is a member of P .
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