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Coalgebraic tensor product and homology operations

TAKUJI KASHIWABARA

In this paper, we show that Hunton–Turner coalgebraic tensor product respects various
actions of Hopf algebras of homology operations.

16W30, 18G99, 55N20, 55S05, 55S10; 55S12, 55S25, 55U99, 57T05, 57T25

1 Introduction

In their paper [4] Hunton and Turner set up the framework for homological algebra
of coalgebraic rings and coalgebraic modules, which arise naturally in the study of
ordinary and generalized homologies of infinite loop spaces. Their language has proved
to be a useful tool both for describing (see eg Hunton and Turner [5] and Kashiwabara
and Wilson [7]) and computing (see Kashiwabara [6]) homology of infinite loop spaces.
Of course, such objects tend to get equipped with extra structures. For example the
Steenrod algebra [11], the Dyer–Lashof algebra [3] or the algebra of cohomology
operations for appropriate generalized cohomology theory (see Adams [1]) may act on
these objects. Thus it is natural to ask if these actions can be extended to the algebraic
constructions defined by Hunton and Turner, notably to the coalgebraic tensor product.

The purpose of this paper is to answer this question, namely we prove:

Theorem 1.1 Let ‚ be a Hopf algebra over the base-ring R, A�;� a commutative
coalgebraic ring over R, M�;� , N�;� coalgebraic modules over A�;� . If ‚ acts on all
of A�;� , M�;� and N�;� in a way that is compatible with their structure maps, then it
also acts on M�;� x̋

A�;� N�;� .

More precise statements will be given in later sections.

The paper is organized as follows. In Section 2, we recall necessary results from [4]. In
Section 3 we treat the case of M x̋RŒS �RŒT �, where T is an S –module and M is an
RŒS �–coalgebraic module, which is somewhat simpler than the rest. In Section 4, we
treat the case of M x̋RŒS �N where both M and N are arbitrary RŒS �–coalgebraic
modules, and the proof becomes more complicated. In Section 5, we treat the general
case. The proof doesn’t get more complicated, but the definition requires more care
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than in Section 4. Throughout the paper, R will denote a commutative ring with unit
(which may be graded).

This work is partially supported by ANR project number BLAN08-2 338236, HGRT.

2 Basics on coalgebraic algebra

In this section we quote relevant results of [4] for the convenience of the reader. For
more details, refer to [4]. We start by quoting some definitions.

Definition 2.1 [4] (1) A graded abelian coalgebraic group over R is an abelian
group object in the category of graded cocommutative, coassociative coalgebras with
counit over R.

(2) A bigraded commutative coalgebraic ring over R is a graded commutative ring
object in the category of graded cocommutative, coassociative coalgebras with counit
over R.

As usual, we note by � the “additive” products and ı the “multiplicative” products on
such objects.

Remark 2.2 Coalgebraic rings were studied long before the works of Hunton and
Turner [4], eg by May [8], Milgram [9] and Ravenel and Wilson [10]. Unfortunately their
denominations (Hopf-ring or bialgebra) would cause us problems of internal coherence
or compatibility with names in other domains. Thus we adopt the denomination in [4].

Definition 2.3 [4] An A�;� coalgebraic module over R is a graded abelian coalge-
braic group M�;� over R equipped with a coalgebra map

ı W A�;�˝
R M�;�!M�;�

satisfying the following five axioms for all a; b 2A�;� and x;y 2M�;� .

(1) .a ı b/ ıx D a ı .b ıx/

(2) Œ1� ıx D x

(3) Œ0� ıx D ��.x/

(4) .a� b/ ıx D
P
.�1/jx

0jjbj.a ıx0/� .b ıx00/

(5) a ı .x �y/D
P
.�1/ja

00jjxj.a0 ıx/� .a00 ıy/

Here � is the counit of M�;� , � is the coaugmentation, �.a/D †a0˝ a00 , �.x/D
†x0˝x00 , and j� j and k�k denote the “internal” and “external” degrees respectively.
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We can turn this left action into a right one by defining

x ı aD .�1/jxjjajŒ�1�ıkxkkak ı a ıx

where Œ�1�D �Œ1� with � the conjugation. We will do this without further comment.

Denote by CMA�;�
the category of A�;� coalgebraic modules with structure and

bigrading preserving morphisms.

Next we need to recall the construction of the free A�;� coalgebraic modules generated
by given supplemented coalgebras. Recall that a supplemented coalgebra C�;� is a
cocommutative, coassociative coalgebra with counit over R equipped with a map
�W R ! C�;� with �� the identity on R (cf [10]). Denote by SC the category of
supplemented coalgebras. Let C�;� be a supplemented coalgebra, then we have:

Proposition 2.4 [4] Denote by D the forgetful functor CMA�;�
! SC: Then it

admits a left-adjoint which we will denote by F W SC ! CMA�;�
: Concretely F

is given by F.C�;�/ Š SymR.A�;� ˝
R C�;�/=I where I is the coalgebraic ideal

generated by the elements of the form

.a� b/ ıx�
X

.�1/jx
0jjbj.a ıx0/� .b ıx00/

and Sym is the symmetric power construction. Here we impose on F.C�;�/ the
canonical algebra structure on Sym, we make it a coalgebra by extending the coalgebra
structure of C�;� , and the A�;� action is given by the formula

a ı .x1˝ � � �xn/D†.a
0
˝x1/˝ � � �˝ .a

.n/
˝xn/

where †a0˝ � � � a.n/ is the iterated coproduct on a.

With these preparations, we can state the definition of the coalgebraic tensor product.

Definition 2.5 [4] Let M�;� and N�;� be A�;� coalgebraic modules. Then we
define M�;� x̋

A�;� N�;� to be the quotient of FD.M�;�˝R N�;�/ by J where J is
the coalgebraic ideal generated by the elements of the form

u˝ .x �y/�
X

.�1/ju
00jjxj.u0˝x/ x� .u00˝y/;

.u� v/˝x�
X

.�1/jvjjx
0j.u˝x0/ x� .v˝x00/;

.a ıu/˝x� axı .u˝x/;

u˝ .x ı a/� .u˝x/xı a;

where xı and x� are the structure maps of FD.M�;�˝R N�;�/.
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To conclude the section we quote a couple more results that are only needed in the next
section.

Theorem 2.6 [4, Proposition 6.1] The bifunctor x̋ is right-exact.

Proposition 2.7 [4] Denote by MS the category of S –modules, and A�;� DRŒS �.
The functor RŒ��WMS ! CMA�;�

is exact and commutes with the coproduct.

Note that the coproduct in CMA�;�
is just the ordinary tensor product over R.

3 Coalgebraic tensor product with a module-ring

In this section we state and prove Theorem 1.1 when A�;�DRŒS �, N�;�DRŒT � where
S is a ring and T an S –module. Throughout the paper, let ‚ be a cocommutative
and coassociative R–Hopf algebra (but not necessarily commutative). We say that
M�;� 2 Obj.CMA�;�

/ is a right (left, respectively) ‚–A�;�–coalgebraic module if ‚
acts on M�;� on the right (left, resp.) so that both �M�;�

and �M�;�
commute with

‚–action, where ‚ acts on M�;�˝M�;� via the diagonal �‚ , and the circle product
with elements of A�;� commutes with ‚–action. For the sake of concreteness, we will
only consider the case of right actions unless otherwise specified. Now we can state:

Theorem 3.1 Let A�;� and N�;� be as above, and M�;� be a ‚–A�;�–coalgebraic
module. Then M�;� x̋

A�;� N�;� becomes naturally a ‚–A�;�–coalgebraic module.

Proof Let T1! T0! T be a S –free presentation of T . Then the sequence

M�;� x̋
A�;� RŒT1�!M�;� x̋

A�;� RŒT0�!M�;� x̋
A�;� N�;�

is exact in CMA�;�
by Proposition 2.7. However, again by Proposition 2.7 the first two

members of this exact sequence is just iterated tensor products of M�;� with itself, so
they have a natural ‚–A�;�–coalgebraic module structure, and the map between them
is easily seen to be compatible with the ‚ action. The desired result now follows.

4 Coalgebraic tensor product over a ring-ring

In this section we state and prove Theorem 1.1 when A�;� D RŒS �, and N�;� is
arbitrary. Namely we will show:

Theorem 4.1 Let S be a ring, M�;� and N�;� ‚–A�;�–coalgebraic modules, where
A�;� DRŒS �. Then M�;� x̋

A�;� N�;� admits a unique ‚–A�;�–coalgebraic module
structure compatible with that on M�;�˝

R N�;� .
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To prove this, we follow step by step the construction of the coalgebraic tensor product.
Thus we will start from the free coalgebraic module generated by a coalgebra. So we
need:

Definition 4.2 An R–supplemented coalgebra C is called a ‚–coalgebra if ‚ acts
on C and the diagonal map �C W C ! C ˝C is compatible with ‚–action where ‚
acts on C ˝C via the diagonal �‚W ‚!‚˝‚.

Now we can state our first step, namely:

Lemma 4.3 Let C be a ‚–coalgebra and S a ring. Then F.C / admits a unique
‚–A�;�–coalgebraic module structure compatible with that on C where A�;�DRŒS �.
Furthermore natural maps C˝n! F.C / are compatible with ‚–action.

Proof The statement of the Lemma indicates how to define the ‚–action on F.C /.
The uniqueness is also clear. We will proceed to show that this action is indeed well-
defined. First of all there is no trouble in extending the ‚–action on C to RŒS �˝R C .
By the coassociativity and cocommutativity of ‚, its action on Sym.RŒS �˝R C / is
well-defined. So it remains to show that the coalgebraic ideal I in Proposition 2.4 is
invariant under ‚–action. However the defining relations of I can be considered as
the lack of the commutativity of the following diagram:

A�;�˝A�;�˝C�;� A�;�˝A�;�˝C�;�˝C�;�

A�;�˝C�;� Sym.A�;�˝C�;�/

-�C

?

�A˝idC

?
-

That is, I is generated by the difference of the images by the two maps of elements at
the top-left corner. However, our hypotheses imply that both top horizontal arrow and
the left vertical arrow are compatible with ‚–action, and we defined the action of ‚
on Sym.A�;�˝C�;�/ in such a way that the two other arrows become compatible with
the ‚–action. Thus we see that I is invariant. Thus we can define an action of ‚ on
F.C /. By construction it is compatible with the product. The compatibility with the
coproduct follows from the compatibility of the diagonal of C with the ‚ action. The
compatibility with the A�;�–action is straightforward.

Proof of Theorem 4.1 Now we are ready to prove Theorem 4.1. Thanks to the Lemma
we see that we can make ‚ act on FD.M�;�˝R N�;�/. Thus we only need to show
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that the ideal J in Definition 2.5 is invariant under the ‚–action. We will deal with
the first type and the third type of elements, as the others are similar. The first type of
elements correspond to the lack of commutativity of the following diagram:

M�;�˝N�;�˝N�;� M�;�˝M�;�˝N�;�˝N�;�

M�;�˝N�;� FD.M�;�˝N�;�/

-�M

? ?
-

However, as in the proof of the Lemma, every arrow is compatible with ‚–action.
As to the third set of generators, they come from the lack of commutativity of the
following diagram:

A�;�˝M�;�˝N�;� M�;�˝N�;�

A�;�˝FD.M�;�˝N�;�/ FD.M�;�˝N�;�/

-

? ?
-

Here, the top horizontal arrow is compatible with ‚–action by the hypothesis, other
arrows commute with ‚–action by the Lemma. Thus we have a well-defined action
of ‚ on M�;� x̋

A�;� N�;� . It is easy to show that this action satisfies the required
properties.

5 The general case

In this section we state and prove Theorem 1.1 in the most general setting. First we
need the following.

Definition 5.1 Let A�;� be a coalgebraic ring over R and ‚ a Hopf algebra over R.
We say that A�;� is a ‚–coalgebraic ring over R if all structure maps commute with
the action of ‚, where ‚ acts on A�;�˝A�;� via the diagonal �‚W ‚! ‚˝‚.
An A�;�–coalgebraic module is called a ‚–A�;�–coalgebraic module if all structure
maps (the star product, the coproduct, and the action of A�;� ) commute with the ‚
action.
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Now we are ready to state:

Theorem 5.2 If A�;� is a ‚–coalgebraic ring over R and M�;� and N�;� are ‚–
A�;�–coalgebraic modules, then there is unique ‚–A�;�–coalgebraic module structure
on M�;� x̋

A�;� N�;� that is compatible with the ‚–action on M�;�˝
R N�;� .

Proof This statement can be proved exactly in the same way as in the previous section,
and is left as exercise to the reader.

Remark 5.3 When A�;� DRŒS �, the definition in this section coincides with that of
the previous section if we let ‚ act on A�;� through the augmentation map ‚!R.

Remark 5.4 (1) Let E� be a graded ring space, and F� an E�–module. Denote
A D HZ=p�.HZ=p/, the mod p Steenrod algebra. Then H�.E�IZ=p/ is a A–
coalgebraic ring and H�.F�IZ=p/ is a A–H�.E�IZ=p/–coalgebraic module. Note
that if E� is a discrete ring (so that �0.E�/D E� ), then H�.E�IZ=p/ŠZ=pŒE��,
thus we are in the situation of the previous section.

(2) The action of the Dyer–Lashof algebra R deserves some discussion. Let E be a
ring spectrum, F , G E–module spectra, E� F� and G� their associated infinite loop
spaces. Then one easily sees that H�.F�IZ=p/ is a R–Z=pŒ�0.E�/�–coalgebraic
module (R acting on the left). However, one can’t expect in general H�.F�IZ=p/ to
be a R–H�.E�IZ=p/–coalgebraic module since at the space level, the multiplication
E� � F� ! F� is represented by maps which are not maps of infinite loop spaces
(not even maps of loop spaces as a matter of fact). Nevertheless, it is still likely
that H�.F�IZ=p/ x̋H�.E�IZ=p/ H�.G�IZ=p/ is equipped with a natural action of
Dyer–Lashof algebra, as it is clearly a A–H�.QS0/–coalgebraic module, and in
view of May’s formula (see Cohen, Lada and May [2, page 15]) which relates the
H�.QS0/–coalgebraic module structure and the actions of A and R it is likely that
under a suitable instability hypothesis, one can construct a R action from the A–
H�.QS0/–coalgebraic module structure. We hope to come back to this subject in a
future work.
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