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On Davis–Januszkiewicz homotopy types II:
Completion and globalisation

DIETRICH NOTBOHM

NIGEL RAY

For any finite simplicial complex K , Davis and Januszkiewicz defined a family of ho-
motopy equivalent CW–complexes whose integral cohomology rings are isomorphic
to the Stanley–Reisner algebra of K . Subsequently, Buchstaber and Panov gave an
alternative construction, which they showed to be homotopy equivalent to the original
examples. It is therefore natural to investigate the extent to which the homotopy
type of a space X is determined by such a cohomology ring. Having analysed this
problem rationally in Part I, we here consider it prime by prime, and utilise Lannes’
T –functor and Bousfield–Kan type obstruction theory to study the p–completion
of X . We find the situation to be more subtle than for rationalisation, and confirm
the uniqueness of the completion whenever K is a join of skeleta of simplices. We
apply our results to the global problem by appealing to Sullivan’s arithmetic square,
and deduce integral uniqueness whenever the Stanley–Reisner algebra is a complete
intersection.

55P15, 55P60; 05E99

1 Introduction

For any finite simplicial complex K , the Stanley–Reisner algebra ZŒK� is an important
combinatorial invariant (see Stanley [14]), and may be graded by assigning dimension 2

to each of its generators. The corresponding R–algebra RŒK� is defined over any
commutative ring R as R˝ZŒK�, and a topological space X realises RŒK� whenever
H�.X IR/ is isomorphic to RŒK� as graded R–algebras. In their pioneering work
on toric topology [5], Davis and Januszkiewicz construct a family of realisations of
ZŒK� for every K , and show each of them to be homotopy equivalent to a certain
universal example. We refer to a generic representative of this homotopy type as a
Davis–Januszkiewicz space DJ.K/.

Questions of uniqueness then arise, and suggest that we investigate the relationship
between the geometric properties of K and the number of homotopy types which
realise ZŒK�. As usual, the problem is best approached by dealing separately with
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its rational and p–adic versions, and applying Sullivan’s arithmetic square to recover
global information. We consider the rational situation in our paper [11], and study the
case in which QŒK� is a complete intersection. The rational homotopy type of any
realisation of QŒK� is then unique, up to weak equivalence of nilpotent spaces.

Our purpose here is to address the p–adic version of the problem. We obtain uniqueness
statements for a somewhat larger class of complexes K , from which we deduce global
uniqueness for complete intersections by appealing to the arithmetic square. So far, we
have little evidence to suggest that these results may be extended to more general K ,
either p–adically or globally; nor, however, do we have any example of an exotic
Davis–Januszkiewicz space that realises ZŒK� yet fails to be homotopy equivalent to
DJ.K/. On the other hand, a simple cohomological argument proves that the suspension
of any such space is equivalent to ˙ DJ.K/, for every K .

We refer readers to [11] for detailed background and prerequisites, and summarise
the crucial points in Section 2 below, where we also state our main results explicitly.
Unlike the rational version, we have found no helpful formulation of the p–adic
problem in terms of model category theory. Nevertheless, we work in several algebraic
and geometric categories which admit model structures, and appeal regularly to the
language of homotopy colimits. We insist, for example, that our spaces lie in the model
category TOP of k –spaces and continuous maps (see Vogt [16]). Sometimes we deal
with based CW–complexes .X;�/, which lie in the pointed category TOPC ; then � is
a distinguished 0–cell and its inclusion into X is a cofibration.

So far as notation is concerned, we let p denote a fixed but arbitrary prime throughout
our work. We usually abbreviate the cyclic group Z=p to C in the interests of
notational simplicity, and write Z^p for the p–adic integers. We denote the field
of p elements by Fp and the topological group of unimodular complex numbers
by T , in order to distinguish them from the underlying group Z=p and the underlying
circle S1 respectively. Over any commutative ring R with identity, we interpret
the polynomial algebra generated by a set V of graded independent variables as the
symmetric algebra SR.V / on V . Finally, for every pair of objects x0 and x1 of an
arbitrary category C , we write C.x0;x1/ for the set of morphisms x0! x1 .

For any space X we consider the p–adic completion X^p described by Bousfield and
Kan [2], which agrees with Sullivan’s original p–completion in all our cases. Given a
p–complete space XK realising Z^p ŒK�, our underlying strategy is to develop methods
of comparing XK with a canonical representative hc.K/ for DJ.K/, and each of
Sections 3 to 8 takes steps towards this goal. We organise the programme as follows.

In Section 3, we begin by assuming that XK realises Fp ŒK�, and apply Lannes’ T –
functor to compute the mod p cohomology ring of certain components of the mapping
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space map.BC � ;XK / for appropriate elementary abelian p–groups C � . We extend
our computations to p–adic cohomology in Section 4, by taking advantage of the
fact that the mod p ring is zero in odd dimensions. In Section 5 we develop the
corresponding results for certain components of map.BT � ;XK /, by interpreting T ^p
as a limit of cyclic subgroups Z=pr .

In order to bring these calculations to bear on the central problem, we provide a
brief survey of higher limits of algebraic CAT.K/–diagrams in Section 6. These
feature prominently in the obstruction theory associated to Bousfield and Kan’s spectral
sequence for homotopy limits, which we investigate in Section 7; in particular, we show
that there are no obstructions to defining a homotopy equivalence hc.K/^p!XK when
K is the skeleton of a simplex, and deduce p–adic uniqueness in such cases. We extend
the results to iterated joins in Section 8, where we also confirm that homotopy classes
of self-equivalences of XK are classified by their action on cohomology. Finally, in
Section 9, we employ the arithmetic square to combine our p–adic conclusions with
the rational calculations of [11], and prove global uniqueness for XK when K is a
complete intersection. The latter is equivalent to identifying K as the iterated join of a
simplex with boundaries of simplices.

The authors would like to reiterate their gratitude to the organisers of the International
Conference on Algebraic Topology, held on the Island of Skye in June 2001, for
providing the environment in which their collaboration began; and to the London
Mathematical Society for its support of the Transpennine Topology Triangle, whose
meetings have ensured that it continues to flourish. They are also indebted to their
colleagues Tony Bahri, who encouraged us to include our remarks on the suspension of
DJ.K/, and Taras Panov, who contributed so generously to many of our discussions.

2 Preliminaries and main results

We shall work with a canonical representative for DJ.K/, constructed as the homotopy
colimit of a diagram of topological spaces. Our methods depend upon the cohomological
and homotopy theoretic properties of such diagrams, so we recall the crucial definitions
and notation in this section. Readers may consult [11] for further motivation and details.

We consider an ordered set V of vertices v1 , . . . , vm . A simplicial complex K on
V D V .K/ is given by a finite set of faces � � V , which is closed with respect
to the formation of subsets. The dimension dim.�/ of any face is given in terms
of its cardinality by j� j � 1, and dim K is the maximum dimension attained by its
faces. We assume that the empty face ¿ belongs to K unless otherwise stated, and
write K� when we wish to emphasise that it has been omitted. The most basic
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example is the simplex �.V /; it consists of all possible subsets of V , and therefore
contains any K on V as a subcomplex. Its r –skeleton �.r/.V / includes those faces
� � V of dimension � r , for any 0 � r � m� 1. In particular, �.m�2/.V / is the
boundary @.V / � �.V /, constructed by deleting the maximal face V . For any two
disjoint simplicial complexes K and L, their join K �L on V .K/[V .L/ has faces
f� [ � W � 2K; � 2Lg; thus K and L are full subcomplexes.

Every face � 2 K determines several subcomplexes. In particular, we need the
simplex �.�/ on � , and the link and star of � , defined by

`K .�/ :Df� n � W � � � 2Kg and stK .�/ :Df� W � [ � 2KgI

so stK .�/ coincides with �.�/ � `K .�/ as subcomplexes of K . Given any two
complexes K and L, we note that

`K�L.� [ �/D `K .�/� `L.�/ and stK�L.� [ �/D stK .�/� stL.�/

as subcomplexes of K �L, for every face � 2K and � 2L.

The vertices masquerade as algebraically independent variables of degree 2, and
generate a graded polynomial algebra SR.V /. For any subset ! � V , we abbreviate
the square-free monomial

Q
! vi to v! , which has degree 2j!j. We then define the

Stanley–Reisner algebra RŒK� as SR.V /=.v! W ! …K/; so the inclusions of the full
subcomplexes K;L�K �L induce an isomorphism

(1) RŒK�˝RŒL�
Š
�!RŒK �L�:

Since RŒ�.�/�D SR.�/ for every face � , an example is provided by

(2) SR.�/˝RŒ`K .�/�
Š
�!RŒstK .�/�:

Any subcomplex J �K induces a surjection RŒK�!RŒJ �, by annihilating the faces
in K nJ ; in particular, K ��.V / induces the canonical projection SR.V /!RŒK�.

Every K determines a finite category CAT.K/, whose objects are the faces � and
morphisms the inclusions i�;� W � � � . The empty face is initial, so the classifying
space BCAT.K/ is contractible, whereas BCAT.K�/ is homeomorphic to the geometric
realisation jKj. The maximal faces � are characterised by the fact that they admit only
identity morphisms. By construction, there is an isomorphism CAT.K/� CAT.L/Š

CAT.K �L/ for any K and L, which we use to identify CAT.�.�//� CAT.`K .�//

with CAT.stK .�// as necessary.

An A–diagram in an arbitrary category R consists of a covariant functor DW A! R

for some small category A .
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Definitions 2.1 For any based CW–complex .X;�/, the CAT.K/–diagram

X K
W CAT.K/ �! TOP

assigns the cartesian product X � to each face � , where X K .¿/D�; its value on i�;�
is the cofibration X � ! X � , where the extra coordinates are set to �. The constant
functor cstX V assigns X V Š X m to each face, and the identity map idX V to each
inclusion. The natural transformation iK W X

K ! cstX V is induced by the inclusions
i� W X

� !X V , for every face � .

We are interested in two particular values of X , which stem from the inclusion of
the cyclic subgroup C in the circle T . To any subset � � V , there corresponds the
inclusion of the elementary abelian p–subgroup C � in the torus T � , whose classifying
map represents the projection of a product of infinite dimensional lens spaces onto
the corresponding product of complex projective spaces. We shall denote this map
by t� W BC � ! BT � , and assume that it is a homomorphism of abelian topological
groups, written multiplicatively. It may be interpreted as a natural transformation

(3) t W BC K
�! BT K :

The colimit c.K/:DcolimCAT.K /BT K lies in the category TOPC of pointed topological
spaces, and is a subcomplex of BT V via iK .

Following Buchstaber and Panov [4], we view c.K/ as a distinguished representative
for DJ.K/. In [11, Section 3], this property is expressed in terms of isomorphisms

(4) H�.c.K/IR/
Š
�! lim SR.K/

Š
�!RŒK�;

where SR.K/ is the CATop.K/–diagram of graded commutative R–algebras whose
value on � is SR.�/, and on � � � is the canonical projection p�;� .

In order to investigate the homotopy theoretical properties of c.K/, it is natural to
consider the homotopy colimit hc.K/ :D hocolimCAT.K /BT K . Following Hollender
and Vogt’s elaboration [8] of the original definition of Bousfield and Kan [2], we describe
hc.K/ as the bar construction B.�; CAT.K/;BT K /. As such, it lies in TOPC . The
fact that BT K is cofibrant in the category of CAT.K/–diagrams [11, Lemma 2.7]
ensures that the natural projection hc.K/! c.K/ is a homotopy equivalence, and that
either space may be used as a model for DJ.K/.

A deeper analysis of hc.K/ involves certain secondary structures associated to CAT.K/,
such as the undercategory � # CAT.K/. For any face � of K , this is obtained by
restricting attention to those objects � for which � � � . The overcategory CAT.K/#�
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is defined by analogy, and .� #CAT.K//op is isomorphic to CATop.K/#� . Setting
P .�/ :D � n � defines a functor

(5) P W �#CAT.K/ �! CAT.`K .�//;

which is also an isomorphism. Writing the restriction of X K to �#CAT.K/ as X �#K

and taking appropriate colimits then yields homeomorphisms

(6) colim X �#K
�X �

� colim X `K .�/ � colim X stK .�/;

where the former is induced by P . In case X DBT , we apply H�.�IR/ and appeal
to (4) to obtain isomorphisms

(7) lim SR.�#CAT.K//Š SR.�/˝RŒ`K .�/�ŠRŒstK .�/�

of graded commutative algebras.

To organise our proofs, it is convenient to formalise the following, in which X DXK

denotes a space that realises ZŒK� for any choice of K .

Definitions 2.2 If an isomorphism �X W H
�.X IZ/!ZŒK� is given, then the space X

reflects K , and �X is the reflector. If �X is given with coefficients R, then X reflects K

over R.

For any subcomplex J �K , a map eW WJ !XK reflects the pair .K;J / whenever
the square

(8)

H�.XK IZ/
e�

����! H�.WJ IZ/

�X

??y ??y�W

ZŒK�
pK;J

����! ZŒJ �

commutes, where pK ;J denotes the canonical surjection.

For example, the classifying space BT V reflects �.V / by means of the standard
isomorphism H�.BT V IZ/!SZ.V /. More generally, the colimit c.K/ reflects K for
any complex K , and the inclusion c.K/�BT V reflects the pair .�.V /IK/. This may
be extended to any other XK by interpreting BT V as an Eilenberg–Mac Lane space
H.ZV ; 2/. Then �X determines a unique homotopy class of maps qX W XK ! BT V ,
which represents the m–tuple of generators in H 2.XK ;Z/ and reflects .�.V /;K/
as before. Composing qX with projection onto BT � creates a map q� W XK ! BT �

for every face � ; its image in integral cohomology realises the polynomial subalgebra
ZŒ� � < ZŒK�, via �X .
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Canonical reflectors �hc.K /W H
�.hc.K//!ZŒK� arise by taking limits over CATop.K/,

and have good functorial properties. So we may often interchange H�.c.K// and
ZŒK� without further comment.

Given any e reflecting .K;J /, there is a homotopy commutative square

(9)

WJ
e

����! XK

qW

??y ??yqX

BT V .J /
jJ;K

����! BT V .K /

where jJ ;K denotes coordinatewise inclusion. This reflects the subpair

.K;J /� .�.V .K//;�.V .J ///;

in the sense that it induces a commutative cube in cohomology when combined with
the four reflectors.

For any noetherian local graded commutative algebra A over Q, a choice of homoge-
neous generators establishes a presentation

0 �! IA �! S �!A �! 0;

where S is a finitely generated graded polynomial algebra and IA�S is a graded ideal.
Then A is a complete intersection whenever IA is generated by a regular sequence
of homogeneous elements; this definition is independent of the choice of generators
by [3, Theorem 2.3.3]. We note in [11, Section 5] that the Stanley–Reisner algebra
QŒK� is a complete intersection precisely when K is an iterated join of the form
�.U0/� @.U1/� � � � � @.Ut /, for any partition fU0;U1; : : : ;Utg of V . In this case, an
isomorphism

(10) SQ.U0/˝QŒ@.U1/�˝ � � �˝QŒ@.Ut /�ŠQŒK�

is given by (1) above.

Theorem 9.4 Let X be a nilpotent CW–complex, and suppose that QŒK� is a complete
intersection; then there is an isomorphism � W H�.X IZ/!ZŒK� if and only if there is
a homotopy equivalence f W hc.K/!X such that f � D � .

We prove Theorem 9.4 by using the arithmetic square to combine the rational results
of [11] with the following p–adic statement, which refers to a larger class of complexes.

Theorem 8.6 Let X be a p–complete CW–complex, and suppose that K is an
iterated join �.r1/.U1/ � � � � � �

.rt /.Ut / of skeleta of simplices; then there is an
isomorphism � W H�.X IZ^p/! Z^p ŒK� if and only if there is a homotopy equivalence
f W hc.K/^p !X such that f � D � .
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After suspension, however, the situation becomes much simpler.

Theorem 9.5 Let X be a CW–complex that realises ZŒK� for any K ; then there is a
homotopy equivalence eW ˙X !˙ hc.K/.

Our final result on completions is a homotopy classification of self-equivalences of
hc.K/. We do not expect a global version to hold, even under the assumptions of
Theorem 9.4.

Theorem 8.7 For complexes K as in Theorem 8.6, any pair of self-equivalences
f;gW hc.K/^p ! hc.K/^p are homotopic if and only if H�.f IZ^p/DH�.gIZ^p/.

For these K , it is also of interest to apply [7, Theorem 10.2(3)], and deduce that the
t –fold suspension ˙ tZK of the moment-angle complex [5; 4] is homotopy equivalent
to a wedge of spheres.

3 Stanley–Reisner algebras and the T –functor

We begin by focusing our attention on the mod p Stanley–Reisner algebra Fp ŒK�,
where K is a specific simplicial complex with generic face � . It is convenient to denote
H�.�IFp/ by H�.�/ throughout this section, and to abbreviate H�.BE/ to HE for
an arbitrary elementary abelian p–group E . Often, E will be of the form C � for
some face � of K .

For any space X reflecting K over Fp , our aim is to construct maps BE!X with
prescribed cohomological properties. We proceed by studying the mapping space
map.BE;X /, and take advantage of the fact that its mod p cohomology ring may
be computed by Lannes’ functor TE . We refer to Lannes [10] and Schwartz [13] for
the basic properties of TE , which we summarise below. We follow their notation by
writing U for the category of unstable modules over the mod p Steenrod algebra Ap ,
and K for the subcategory of unstable algebras over Ap . In order to avoid technical
difficulties, we shall only consider algebras that are finitely generated; thus K.A;A0/
is a finite set for any algebras A and A0 .

By definition, TE is left adjoint to the functor HE˝�W U!U . The latter is compatible
with the forgetful functor K! U , and TE W K! K is left adjoint to its restriction.
By construction, TC n coincides with the n–fold iterate TC � � �TC for any n, and TE

preserves tensor products in U and K .
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For any space Y , evaluation defines a map BE � map.BE;Y / ! Y . Passing to
cohomology and left adjointing yields a K–morphism

(11) aY W TEH�.Y / �!H�.map.BE;Y //;

which is an isomorphism whenever Y is p–complete and TEH�.Y / has finite type
and vanishes in degree 1. So TE computes the mod p cohomology of the mapping
space under these conditions [10, Theorem 3.2.1].

The splitting of map.BE;Y / into the disjoint union
`

map.BE;Y /f of its connected
components is mirrored by the algebraic properties of TE , as follows. For each unstable
algebra A and K–morphism �W A!HE , its adjoint restricts to a map T 0

E
A! Fp

on the zero-dimensional part. We write Fp.�/ when it is necessary to emphasise the
induced T 0

E
A–module structure on Fp . The component of TEA associated to � is

defined by

(12) TE.A; �/ :DTEA˝T 0
E

A Fp.�/;

and Lannes’ linearisation principle [13, Theorem 3.8.6] leads to splittings

TEAŠ
M

�2K.A;HE/

TE.A; �/ and T 0
EAŠ

M
�2K.A;HE/

Fp.�/:

In particular, we may identify T 0
E

A with the p–Boolean algebra F K.A;HE/
p .

In the case that ADH�.Y / and � D f � for some f W BE! Y , the morphism aY

of (11) restricts to a K–morphism

(13) af W TE.H
�.Y /; f �/ �!H�.map.BE;Y /f /:

Since the algebraic components of TEH�.Y / correspond bijectively to the connected
components of map.BE;Y //, it follows that aY splits accordingly.

The following key example is based on the proof of [13, Proposition 9.8], in which
map.BE;BT !/ is identified with E.!/�BT ! , where E.!/ denotes the discrete
group of homomorphisms E!E! for any subset ! � V .

Example 3.1 As Ap –algebras, HT ! :DH�.BT !/ is canonically isomorphic to
SFp

.!/, and multiplication on BT ! induces a coproduct d . The K–morphisms
�W HT ! ! HE correspond bijectively to group homomorphisms E ! T ! , and
hence to E.!/. The coaugmentation c� W HT !! TE.HT ! ; �/ is an isomorphism
in K , whose inverse r� is the adjoint of .�˝ 1/ ı d .

For each f W BE! BT ! , the composition

(14) HT !
cf
�! TE.HT ! ; f �/

af
�!H�.map.BE;BT !/f /
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computes the mod p cohomology of the mapping space, and is induced by evaluation
map.BE;BT !/f ! BT ! at the base point. Its inverse is induced by the adjoint of
the action sf W BE �BT !! BT ! , defined by .b;u/ 7! uf .b/.

For any K–morphism � W A1!A2 , the induced homomorphism

T 0
E.�/W

M
�2K.A1;HE/

Fp.�/Š T 0
EA1 �! T 0

EA2 Š

M
 2K.A2;HE/

Fp. /

is determined by composition ı � W K.A2;HE/ ! K.A1;HE/ with � . For any
� 2 K.A1;HE/, we denote the subset . ı�/�1.�/ � K.A2;HE/ by ext.�; �/; its
elements  satisfy  ı� D � . We may then identify T 0

E
.�/ with the direct sum of

diagonal maps of the form Fp.�/!
L
 2 ext.�;�/ Fp. /, and obtain an isomorphism

(15) T 0
EA2˝T 0

E
A1

Fp.�/Š
M

 2ext.�;�/

Fp. /:

For any unstable algebra A in K we write A�U for the category whose objects M

are simultaneously A–modules and unstable Ap –modules, and whose structure maps
A˝M !M are Ap –linear; here Ap acts on A˝M via the Cartan formula. The
morphisms in A�U are both A– and Ap –linear. Since the T –functor commutes with
tensor products, TE extends to a functor A�U! .TEA/�U , which we also label TE .
For every morphism �W A!HE , we may then define the relative component

TE.M; �/ :DTEM ˝T 0
E

A Fp.�/

by analogy with (12), and obtain a splitting TEM Š
L
�2K.A;HE/ TE.M; �/. Fur-

thermore, the coaugmentation A! TE.A; �/ makes TE.M; �/ into an A–module,
and TE.�; �/ becomes an endofunctor on A�U .

In particular, the morphism � of (15) turns A2 into an object of A1�U , where there
are isomorphisms

TE.A2; �/ Š TEA2˝T 0
E

A1
Fp.�/

Š TEA2˝T 0
E

A2
T 0

E
A2˝T 0

E
A1

Fp.�/

Š TEA2˝T 0
E

A2

�L
 2 ext.�;�/ Fp. /

�
Š
L
 2 ext.�;�/ TE.A2;  /:

One additional property of the T –functor is that TE commutes with finite limits;
in other words, for any finite category C and diagram F W C! K , there exists a K–
isomorphism TE.lim F /Š lim TEF . In this situation, we are interested in computing
the components of TE.lim F /. To avoid technical difficulties we assume that F.c/ is
finitely generated as an algebra for every object c of C , and similarly for A :D lim F .
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The limit is defined by an exact sequence of the form

0 �!A �!
Y

c

F.c/
ı
�!

Y
c0!c1

F.c1/;

and the natural projections �c W A! F.c/ turn ı into an A�U –morphism. For every
�W A! HE the functor TE.�; �/ is exact on A�U , because it is a retract of TE .
We therefore obtain an exact sequence

0 �! TE.A; �/ �!
Y

c

TE.F.c/I�/ �!
Y

c0!c1

TE.F.c1/; �/;

which identifies TE.limC F; �/ with limC TE.F; �/.

If ext.�; �c/ is empty, then TE.F.c/; �/ D 0. So we consider the full subcategory
ChF; �i of C , whose objects are defined by insisting that ext.�; �c/ be nonempty. For
any morphism c0! c with c in ChF; �i, it follows that c0 also lies in ChF; �i; so
there exists an isomorphism

(16) TE.limCF; �/Š limChF;�iTE.F; �/:

We apply these considerations to the diagram SFp
.K/W CATop.K/!K of (4), whose ob-

jects are interpreted as Ap –algebras via Example 3.1. In particular, limCATop.K / SFp
.K/

is isomorphic to Fp ŒK�, and the K–morphism �� W Fp ŒK�! SFp
.�/ is the standard

projection, for every � 2 K . We focus on the K–morphisms �� W Fp ŒK�! HC � ,
defined in terms of (3) by t�� ı�� .

Proposition 3.1 For any face � of K , there is an isomorphism

r� W TC� .Fp ŒK�; �� / �! Fp ŒstK .�/�

as objects of K .

Proof The set ext.�� ; �� / contains the single element ��;� W SFp
.�/!HC � , defined

by t�� ı p�;� , if and only if � � � . Otherwise, ext.�� ; �� / is empty; so for any
particular � , we may identify CAT.K/hSFp

.K/; �� i with �#CAT.K/.

For � � � , Example 3.1 provides isomorphisms

r� .�/W TC�
�
SFp

.�/; ��;�
�
�! SFp

.�/

that are functorial in � , and so define an isomorphism

r� .K/W TC�
�
SFp

.K/; ��
�
�! SFp

.�#CAT.K//

of CATop.K/#� –diagrams in K . Then take limits, using (7) and (16).
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Corollary 3.2 For every maximal face � of K , there exists a K–isomorphism
r�W TC�.Fp ŒK�; ��/! SFp

.�/.

Proof Since � is maximal, its star is the simplex �.�/.

We now introduce the crucial map f� W BC � !X , and prove the main results of this
section. It is convenient to write the space map.BC � ;X /f� as m� .X /, and evaluation
at the identity of BC � as evW m� .X /!X .

Theorem 3.3 If X is p–complete and reflects K by means of an isomorphism
� W H�.X /! Fp ŒK�, then

(1) there exists a map f� W BC � ! X such that f �� D �� ı � , and it is uniquely
determined up to homotopy;

(2) the space m� .X / is p–complete, and reflects stK .�/ over Fp ;

(3) the map evW m� .X /!X reflects .K; stK .�// over Fp ;

(4) for maximal �, there is a homotopy equivalence m�.X /' .BT �/^p .

Proof (1) Every K–morphism H�.X /! HC � may be realised uniquely up to
homotopy by [10, Théorème 3.1.1], because X is p–complete and H�.X / has finite
type.

(2) By [10, Proposition 3.4.4], m� .X / inherits the property of completeness from X .
Also, TC� .H

�.X /; �� / is of finite type and vanishes in degree 1, by Proposition 3.1.
So a� :D af� W TC� .H

�.X /; �� /!H�.m� .X // of (13) is an isomorphism, and the
required reflector is �m� .X / :D r� ıTC� .�/ ı a�1

� .

(3) By construction, ev�W H�.X /!H�.m� .X // is the composition of f �� with the
coaugmentation c� for TC� . So we may combine (2) with the functorial properties
of T to obtain a commutative ladder

(17)

H�.X /
c�
����! TC� .H

�.X /; �� /
a�
����! H�.m� .X //

�

??y ??yTC� .�/

??y�m� .X/

Fp ŒK�
c�
����! TC� .Fp ŒK�; �� /

r�
����! Fp ŒstK .�/�

whose outer rectangle is a commutative square of the form (8); hence ev is the required
reflector.

(4) It suffices to combine (2), Corollary 3.2, and the fact that the homotopy type of
.BT �/^p is determined by its mod p cohomology.
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Remarks 3.2 (1) The mod p cohomology of X of Theorem 3.3 is concentrated
in even dimensions, so H ev.X IZ^p/ is torsion free and H od .X IZ^p/ is zero. Since
Theorem 3.3(3) implies that evaluation induces an epimorphism in mod p cohomology,
the same must hold over Z^p .

(2) We may replace �� in Proposition 3.1 with the homomorphism induced by
the constant map cstW BC � ! X , which we write as �� W Fp ŒK� ! HC � . Then
ChF; �� i D C , and we obtain an isomorphism TC� .Fp ŒK�; �� /! Fp ŒK�. It follows
that evW map.BC � ;X /cst! X induces an isomorphism in mod p cohomology, by
adapting the proofs of Theorem 3.3(2) and (3); it is therefore an equivalence, because
the source and target are p–complete.

4 Mapping spaces and p–adic cohomology: I

In this section we extend our calculations to p–adic cohomology for the mapping
space m� .X / of Theorem 3.3(2). We insist that X is p–complete and 1–connected,
and reflects K over Z^p by means of an isomorphism � W H�.X IZ^p/! Z^p ŒK�. The
reduction of � mod p is therefore a reflector over Fp , and Theorem 3.3 applies.

For our first result, we consider the evaluation map of Theorem 3.3(3), and abbreviate
V .stK .�// to VK .�/ throughout.

Lemma 4.1 For any face � 2K , the map qm� .X / may be chosen so as to make the
diagram

(18)

m� .X /
ev
����! X

qm� .X/

??y ??yqX

.BT VK .�//^p
j�
����! .BT V /^p

homotopy commutative, where j� denotes coordinatewise inclusion.

Proof Define qm� .X / by composing qX ı ev with projection onto .BT VK .�//^p . The
diagram induced by (18) in mod p cohomology is then commutative, by Theorem
3.3(3), and it remains to prove that ev� q�

X
.vi/ is also zero in H 2.m� .X /IZ^p/ for

any vertex vi 62 VK .�/.

Let qi W X ! BT ^p represent vi . The Serre spectral sequence of the induced spherical
fibration

(19) T ^p �! Fi �!X

Algebraic & Geometric Topology, Volume 10 (2010)



1760 Dietrich Notbohm and Nigel Ray

shows that H�.Fi IFp/ has finite type, and Fi is p–complete because qi is a map of 1–
connected p–complete spaces. Also, qi ıf� W BC �!BT ^p is null-homotopic for any
vi 62 VK .�/, so f� lifts to a map fi W BC � ! Fi . By [15], the functor map.BC � ;�/

converts Fi!X ! BT ^p into a fibration

map.BC � ;Fi/fi

gi
�!m� .X /

ki
�!map.BC � ;BT ^p /cst;

whose base is homotopy equivalent to BT ^p by Example 3.1. We abbreviate the fibre
to m� .Fi/, and note that it is path connected and p–complete, because ki is a map
of 1–connected p–complete spaces; and H�.m� .Fi/IFp/ is of finite type, because
the same holds for H�.m� .X /IFp/. We may then deduce from [10, Proposition
3.4.4] that TC� computes H�.m� .Fi/IFp/. But the Gysin sequence of (19) confirms
that H�.Fi IZ^p/ is torsion-free, so the same is also true for H�.m� .Fi/IZ^p/ by [9,
Theorem A].

Now k�i vi 2H 2.m� .X /IR/ is the Euler class e.ki/ of the principal T ^p –fibration ki

for any coefficients R, and equals ev� q�
X
.vi/ by construction. Thus e.ki/ van-

ishes mod p for every vi … V .stK .�//, and we need only prove that the same is
true p–adically. The mod p Gysin sequence shows that g�i W H

�.m� .X /IFp/ !

H�.m� .Fi/IFp/ is a monomorphism; and there are isomorphisms H�.Y IFp/ Š

H�.Y IZ^p/˝Fp for Y Dm� .X / and m� .Fi/, because H�.Y IZ^p/ is torsion-free in
both cases. Then Nakayama’s lemma confirms that g�i is also a p–adic monomorphism,
and e.ki/D 0 as sought.

Corollary 4.2 For any maximal face � 2K , the map qm�.X / is a homotopy equiva-
lence and determines a homotopy commutative square

m�.X /
ev
����! X

qm�.X/

??y ??yqX

.BT �/^p
j�
����! .BT V /^p :

Proof The statement follows from Lemma 4.1 by setting � D �, and identifying
qm�.X / as a homotopy equivalence by Theorem 3.3(4).

Definition 4.3 For any maximal face �, the map h�W BT �!X is the composition
of ev ıq�1

m�.X /
with completion. For any other face � , the map h� W BT � ! X is

h� ı i�;� for some choice of �� � .
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Remarks 4.1 (1) In Section 5, we shall show that the homotopy class of h� is
independent of the choice of �, and therefore that the diagram

(20)

BT �
h�

i�;� //

""

BT �

h�}}
X

is homotopy commutative for every � � � . In fact h� reflects the pair .K; �.�//
over Z^p by construction, so the diagram induced by (20) is certainly commutative in
p–adic cohomology.

(2) In [6], Dehon and Lannes study maps BT r ! Y for spaces such that H�.Y IZ/
is torsion free and concentrated in even degrees. They deduce that H�.�IZ/ classifies
such maps up to homotopy. Their proof establishes a similar result for the p–adic
cohomology of p–complete spaces, and may also be adapted to show that the homotopy
class of h� is independent of �.

(3) For any face � , Theorem 3.3(1) provides a homotopy

(21) h� ı t� ' f� W BC �
�!X:

Theorem 4.4 If X is p–complete and reflects K over Z^p , then

(1) the space m� .X / reflects stK .�/ over Z^p ;

(2) the map evW m� .X /!X reflects the pair .K; stK .�// over Z^p .

Proof (1) For any pair of faces � � � , write i�;� ı t� as t�;� W BC � ! BT � . Then
(21) confirms that h� ı t�;� W BC �!X is homotopic to f� . Passing to mapping spaces
and employing Example 3.1 defines a composition

l�;� W BT �
e�;�
���!map.BC � ;BT � /t�;�

h�ı
��!m� .X /;

where e�;� .u/ acts by b 7! ut�;� .b/, and ev ıl�;� ' h� . Since H�.evIZ^p/ is epic by
Remarks 3.2(1), all choices of h� induce the same homomorphism H�.l�;� IZ^p/. So
for any � � � � � we obtain a commutative triangle

(22)

H�.m� .X /IZ^p/

vv ))
H�.BT �IZ^p/

// H�.BT � IZ^p/ ;
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thus defining a .CATop.K/#�/–diagram HT �#K of graded commutative Z^p –algebras,
and an induced homomorphism

(23) � 0W H�.m� .X /IZ^p/ �! lim HT �#K :

By (7), the target is isomorphic to Z^p ŒstK .�/�.

Now consider the homomorphism � 00W H�.m� .X /IFp/! Fp ŒstK .�/�, given by re-
ducing � 0 mod p ; it may be identified with the isomorphism �m� .X / of (17) by noting
the commutativity of the square

TC� .H
�.X IFp/; �� /

a�
����! H�.m� .X /IFp/

TC� .��ı�/

??y ??yl��;�

TC� .SFp
.�/; ��;� /

r� .�/
����! SFp

.�/

for any � � � , and taking limits over CATop.K/#� . Applying the exact sequence
Z^p

p
!Z^p ! Fp yields a commutative ladder of short exact sequences

(24)

H�.m� .X /IZ^p/
p

����! H�.m� .X /IZ^p/ ����! H�.m� .X /IFp/

� 0

??y � 0

??y ??y� 00
Z^p ŒstK .�/�

p
����! Z^p ŒstK .�/� ����! Fp ŒstK .�/�

because H�.m� .X /IZ^p/ is free. But � 00 is an isomorphism, so � 0 is also an isomor-
phism by the snake lemma, and is therefore the required reflector.

(2) The homomorphism ev�W H�.X IZ^p/!H�.m� .X /IZ^p/ induces morphisms of
triangles (22) over the inclusion functor �#CAT.K/! CAT.K/. The required square
commutes, by Lemma 4.1.

Corollary 4.5 If stK .�/ coincides with K , then evW m� .X / ! X is a homotopy
equivalence and the reflectors satisfy � 0 ı ev� D �X over Z^p .

Proof Setting �#CAT.K/D CAT.K/ in the proof of Theorem 4.4(2) shows that ev�

is an isomorphism of p–adic cohomology, as required.

Remark 4.2 In the special case X D c.K/ of Theorem 4.4, a more precise description
of m� .X / is possible by appeal to Example 3.1. The action st�;� W BC � �BT � !

BT � is given by .b;u/ 7! ut�;� .b/ for every � � � , and extends to a morphism
BC � � BT �#K ! BT K of diagrams over the inclusion � # CAT.K/ ! CAT.K/.
Taking colimits and adjointing then creates a map

c.stK .�// �!m� .c.K//;
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which induces the isomorphism � 00 of (24) in mod p cohomology. So its p–completion
is a homotopy equivalence.

5 Mapping spaces and p–adic cohomology: II

In this section we prove that the homotopy class of the map h� of Definition 4.3
is uniquely determined, and compute the p–adic cohomology of map.BT � ;X /h� .
We retain the prevailing notation, whereby X is p–complete, simply connected, and
reflects K over Z^p by means of an isomorphism � .

We focus on the action st� of BC � on BT � , given by .b;u/ 7! ut� .b/ in Example
3.1 and denoted here by s� . There is a principal BC � –fibration

(25) BC � j�
�! BC �

�BT � s�
�! BT � ;

where j� includes the kernel of s� and is given by b 7! .b�1; t� .b//. Any map
gW BT � !X may be factorised through evaluation at the identity as

(26) BT � g0

�!map.BC � ;X /gıt�
ev
�!X;

where g0 is the adjoint of g ı s� , and satisfies g0.u/.c/D g.ut� .c// for all u 2 BT �

and c 2 BC � .

Lemma 5.1 The map

map.BT � ;X /g �!map.BT � ;map.BC � ;X /gıt� /g0

induced by s� is a homotopy equivalence, whose inverse is induced by evaluation at
the identity of BC � .

Proof In the context of (25), g ı s� ı j� is null-homotopic; it follows from Remarks
3.2(2) that evW map.BC � ;X /gıs�ıj�!X is a homotopy equivalence. So Zabrodsky’s
Lemma [18, 3.1] implies that ı s� W map.BT � ;X /!map.BC � �BT � ;X /L is also
an equivalence, where L denotes the set of homotopy classes whose composition with
s� is trivial. Restricting to the component of g and adjointing yields the required
equivalence; by construction, evaluation at the basepoint is a right inverse.

By analogy with (25), BC � also acts on map.BC � ;X /gıt� according to the formula
.b; f / 7! f b , where f b.c/ :Df .bc/.

Lemma 5.2 The map g0W BT � !map.BC � ;X /gıt� is BC � –equivariant.
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Proof For .b; c/ 2 BC � �BC � , we have g0.ut� .b//.c/D g.ut� .b/t� .c// by (26),
and g0b.c/D g.ut� .bc//; these agree, as t� is a homomorphism.

We now insist that g induces the homomorphism H�.h� IZ^p/, and write g D g� to
emphasise this choice. Thus g� ı t� ' f� by Theorem 3.3(1), and map.BC � ;X /gıt�
becomes m� .X /. Applying p–adic cohomology to (26) shows that H�.g0� IZ

^
p/D

H�.h0� IZ
^
p/ by Remarks 3.2(1), so we may study our uniqueness problem in terms of

maps BT � !m� .X /, or equivalently, by restricting attention to subcomplexes of the
form stK .�/�K .

We may apply Lemma 4.1 to construct a map q� W m
� .X /! .BT � /^p such that q� ıg

0
�

is completion, and consider the homotopy fibration

(27) X`
i
�!m� .X /

q�
�! .BT � /^p :

Combining the Serre spectral sequence for i with Theorem 4.4 shows that i reflects
.stK .�/; `K .�// over Z^p . We take � 0 of (23) as the reflector for m� .X /, and its
quotient by the appropriate ideals as the reflector for X` .

As a consequence of Lemma 5.2, we may apply the Borel construction to g0� , and
obtain a homotopy pullback diagram of principal BC � –fibrations

(28)

BT �
g0�
����! m� .X /

p

??y ??y xp
BT �

xg0�
����! xm� .X /

where xm� .X /:DEBC ��BC� m� .X / and p denotes the p–th power homomorphism.
So xm� .X / is simply connected, and applying �2.�/ to (28) yields the commutative
square

(29)

Z� ����! .Z� /^p ˚ .Z
V .`K .�///^p

p�

??y ??yp�˚1

Z� ����! .Z� /^p ˚ .Z
V .`K .�///^p

where the horizontal homomorphisms include the completed direct summand .Z� /^p ,
and p� is multiplication by p .

We now identify �2. xm
� .X // with H 2. xm� .X /IZ^p/ by the universal coefficient theo-

rem, and deduce the existence of a map xq� W xm� .X /! .BT � /^p such that xq� ı xg0� is
completion. The homotopy fibre of xq� is X` because xq� ı xp and pıq� are homotopic,
and the Serre spectral sequence of the fibration X` ! xm

� .X / ! .BT � /^p shows
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that H�. xm� .X /IZ^p/ is of finite type, torsion free, and generated by 2–dimensional
classes.

Lemma 5.3 The space xm� .X / reflects stK .�/ over Z^p ; the reflector x� 0 is determined
by the commutative square

H�. xm� .X /IZ^p/
x� 0

����! SZ^p .�/˝Z^p Œ`K .�/�

xp�
??y ??yp˝1

H�.m� .X /IZ^p/
� 0

����! SZ^p .�/˝Z^p Œ`K .�/�

where p acts on the polynomial generators of SZ^p .�/ as multiplication by p .

Proof The Serre spectral sequence for the p–adic cohomology of the fibration xp of
(28) collapses at the E2 –page, and shows that xp� is a monomorphism. It is given in
dimension 2 by the dual of (29), and the result follows.

At this point it is helpful to work for a while with an arbitrary p–complete space Y

that reflects stK .�/ over Z^p . We write the reflector as �Y , on the understand-
ing that it agrees with � 0 whenever Y is m� .X /; in these circumstances, we also
identify h� W BT � ! Y with h0� W BT � ! m� .X /. Of course h� induces the ho-
momorphism �� ı �Y in p–adic cohomology, where �� denotes the projection
SZ^p .�/ ˝ Z^p Œ`K .�/� ! SZ^p .�/. We write g� for any other map inducing the
same homomorphism, and identify g� with g0� in case Y Dm� .X /.

To analyse g� further, we consider its restriction g�=r W BC �
r ! Y , where Cr < T

denotes the cyclic subgroup of order pr for any r > 0. We factorise t� into natural
inclusions as

BC �
��=r

���! BC �
r

t�=r

���! BT � ;

so that g�=r D g� ı t�=r . The induced homomorphism H�.h�=r IZ
^
p/ is given by

t�
�=r
ı��ı�Y , and Theorem 3.3(1) implies that g0

�=1
'h0

�=1
because both are homotopic

to f� . We abbreviate map.BC �
r ;Y /h�=r

to m�
r .Y / henceforth.

Proposition 5.4 If Y is p–complete and reflects stK .�/ by means of an isomorphism
�Y W H

�.Y IZ^p/! SZ^p .�/˝Z^p Œ`K .�/�, then

(1) there is a unique homotopy class of maps h�=r W BC �
r ! Y such that .h�=r /

� D

t�
�=r
ı�� ı �Y ;

(2) the map ı ��=r W m
�
r .Y /!m� .Y / is a homotopy equivalence.
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We prove Proposition 5.4 by induction on r , following application to our main result.
It is convenient to denote map.BT � ;X /h� by M � .X /, and to rewrite the induced
map ı t� W M

� .X /!m� .X / as u� .

Theorem 5.5 If X is p–complete and reflects K over Z^p , then

(1) there is a unique homotopy class of maps h� W BT � !X that reflect .K; �.�//
over Z^p ;

(2) the map u� is a homotopy equivalence, and the map evW M � .X /!X reflects
.K; stK .�// over Z^p ;

(3) there is a map j W X`!M � .X / that reflects .stK .�/; `K .�// over Z^p ;

(4) there is a homotopy equivalence M � .X /' .BT � /^p �X` .

Proof (1) Write Y Dm� .X /, and let l.�/ be a set of representative maps BT �!Y

for the homotopy classes that induce �� ı � 0 in p–adic cohomology. Since Y is p–
complete and the natural map hocolimr BC �

r ! BT � is a mod–p equivalence, the
maps

map.BT � ;Y /l.�/ �!map.hocolimr BC �
r ;Y /l.�/ �! holimr m�

r .Y /

are both equivalences. Furthermore, evaluation at the identity induces compatible
equivalences m�

r .Y /! Y for all r � 1, by Proposition 5.4. Thus l.�/ contains only
the homotopy class of h0� , and (26) implies the result.

(2) The proof of (1) shows that ev ıu� W M � .Y /! Y is also evaluation at the identity,
and an equivalence. So Corollary 4.5 confirms that u� is an equivalence. Then apply
Lemma 5.1 and Corollary 4.5 to replace Y by X in the source and target respectively;
the required reflectors are �X for X and � 0 ı .u�1

� /� for M � .X /.

(3) By (2), the fibration (27) may be rewritten as

(30) X`
j
�!M � .X /

r�
�! BT � ;

where i ' u� ı j and r� D q� ıu� . The reflectors are those of (2) and (27).

(4) An action BT � �M � .X /!M � .X / is given by .u; f / 7! f u, where f u.v/D

f .uv/ for any u, v 2 BT � and f 2M � .X /. Restricting to BT � �X` along 1� j

induces an isomorphism of p–adic cohomology, and is therefore an equivalence.

We now return to the proof of Proposition 5.4; the base cases r D 1 are immediate, so
we assume that r � 2 throughout.
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Proof (1) Pulling the p–th power map on BT � back along t�=r�1 and combining
the result with (28) and (29) yields a homotopy commutative ladder

(31)

BC �
r

t�=r

����! BT �
g0�
����! m� .Y /

q�
����! BT �

p

??y p

??y ??y xp ??yp

BC �
r�1

t�=r�1

����! BT �
xg0�
����! xm� .Y /

xq�
����! BT � :

Each vertical map has homotopy fibre BC � and induces a monomorphism in p–adic co-
homology, so Lemma 5.3 confirms that H�.xg0

�=r�1
IZ^p/ agrees with H�.xh0

�=r�1
IZ^p/

as homomorphisms H�. xm� .Y /IZ^p/!H�.BC �
r�1
IZ^p/. But xm� .Y / also reflects

stK .�/; so the inductive hypotheses show that xg0
�=r�1

is homotopic to xh0
�=r�1

, and
that evaluation

(32) map.BC �
r�1; xm

� .Y //xh0
�=r�1

ı ��=r�1

�����!map.BC � ; xm� .Y //xh0
�=1

ev
�! xm� .Y /

at the identity is a homotopy equivalence.

Let lY denote the set of homotopy classes of lifts BC �
r ! m� .Y / of the map xp ı

g0
�=r
W BC �

r ! xm
� .Y /. Applying the functor map.BC �

r ;�/ to (31) creates a homotopy
pullback square

(33)

map.BC �
r ;m

� .Y //lY

q�ı
����! map.BC �

r ;BT � /lB

xp ı

??y ??yp ı

map.BC �
r ; xm

� .Y // xpıg0
�=r

xq�ı
����! map.BC �

r ;BT � /pıt�=r

where lB denotes a set of representatives for homotopy classes of lifts of p ı t�=r .
The vertical maps are principal map.BC �

r ;BC � /–fibrations by [15], and xq� ı may
be identified with the corresponding map

map.BC �
r�1; xm

� .Y /xh0
�=r�1

�!map.BC �
r�1;BT � /t�=r�1ıp

by Zabrodsky’s lemma. It follows from the inductive hypothesis that the lower fibration
of (33) is equivalent to xq� W xm� .Y /!BT � , and therefore that the common homotopy
fibre of the horizontal maps is Y` , which is 1–connected. Thus q� ı induces a bijection
lY $ lB of components. But we are given that H�.g0

�=r
IZ^p/DH�.h0

�=r
IZ^p/, from

which we deduce that q� ıg
0
�=r
' q� ıh

0
�=r

; so g0
�=r

and h0
�=r

define the same element
of lY , and are therefore homotopic. Applying evW m� .Y /! Y completes the proof.

(2) The pullback square (33) combines with the inductive hypotheses to show that
evW map.BC � ;m� .Y //h0

�=r
!m� .Y / is an equivalence, and Corollary 4.5 allows us
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to replace m� .Y / with Y , and h0
�=r

with h�=r . Then ı ��=r is also an equivalence,
by analogy with (32).

6 Higher limits of diagrams

In this section we recall the basic properties of higher limits of diagrams ˚ W C! AB

of abelian groups, where C is usually of the form CATop.K/. These are crucial for
later sections, and also featured in [11, Section 3].

Following Oliver’s elaboration [12] of [2], we interpret limi
C ˚ as the i –th cohomology

group of the cochain complex .C �.C; ˚/; ı/, where

(34) C n.CI˚/D
Y

c0!c1!���!cn

˚.cn/

for every n � 0, and the product is taken over all chains of morphisms in C . The
differential ıW C n.CI˚/! C nC1.CI˚/ is the alternating sum

Pr
kD0.�1/kık , where

ık is defined on u 2 C n.CI˚/ by

ık.u/.c0! � � � ! cnC1/ :D

(
u.c0! � � � ! bck ! � � � ! cnC1/ for k � n;

˚.cn! cnC1/u.c0! � � � ! cn/ for k D nC 1:

We may replace C �.CI˚/ by its quotient N �.CI˚/ of normalised cochains, obtained
by restricting the products (34) to chains of nonidentities. So

lim i
C˚ :DH i.C �.CI˚/; ı/ŠH i.N �.CI˚/; ı/

for i �0, and the limits are themselves abelian groups. The same construction works for
small diagrams in an arbitrary abelian category A , and the limits inherit any additional
algebraic structure from the objects of A .

Given a constant diagram cstM W C! AB , it follows that its higher limits are determined
by the cohomology of the classifying space BC , via an isomorphism limi

C cstM Š
H i.BCIM /. In particular, limi

CATop.K / cstM vanishes for i �1 because BCATop.K/ is
contractible, and limi

CATop.K�/ cstM is isomorphic to H i.KIM / because BCATop.K�/

is homeomorphic to the realisation jKj. Both are isomorphic to M when i D 0.

For any face � 2K , we refer to a diagram ˚ W CATop.K/! AB as � –atomic when
˚.�/D0 for every �¤� . We consider the following generalisation of [11, Lemma 3.9],
in which it is convenient to set zH n.¿IM / WD 0 for n � 0, and zH�1.¿IM / WDM ,
for any abelian group M .
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Proposition 6.1 If ˚ is � –atomic, then there exists an isomorphism

lim i
CATop.K /˚ Š

zH i�1.`K .�/I˚.�//

for any i � 0.

Proof Let J D `K .�/, and define ˚ 0W CATop.J /! AB by ˚ 0.� n �/ :D˚.�/ for
every � � � . Thus ˚ 0 is ¿–atomic, and ˚ 0 ıP op D ˚ jCATop.K /#� in terms of the
functor P of (5). The isomorphisms

N �.CATop.K/I˚/ŠN �.CATop.K/#� I˚/ŠN �.CATop.J /I˚ 0/

of normalised chain complexes determine an isomorphism

lim i
CATop.K /˚ Š lim i

CATop.J /˚
0

for every i � 0.

If J D f¿g, the claim is clear. Otherwise, write ˚ 0.¿/ as M and consider the short
exact sequence

(35) 0 �! ˚ 0 �! cstM �! � �! 0

of CATop.J /–diagrams, where � is trivial on ¿ and constant on the subcategory
CATop.J�/. The long exact sequence associated to (35) combines with the isomorphism
N �.CATop.J /I� /ŠN �.CATop.J�/I cstM / to ensure that

lim i
CATop.J /˚

0
Š lim i�1

CATop.J / � Š
zH i�1.J IM /

for i � 2, and reduces to the short exact sequence

0 �!M �!H 0.J IM / �! lim 1˚ 0 �! 0

for i D 1. So the result holds for all i .

We may associate a � –atomic diagram ˚� to every ˚ , by the formula

˚� .�/D

(
˚.�/ when � D �;

0 otherwise:

Such diagrams play a fundamental rôle in proving vanishing results for higher limits;
in particular, they act as building blocks for the following notions of filtration, which
depend on the poset structure of CATop.K/.

Given ˚ as above, ˚s; ˚�sW CATop.K/! AB are defined by

˚s.�/D

(
˚.�/ if j� j D s;

0 otherwise;
and ˚�s.�/D

(
˚.�/ if j� j � s;

0 otherwise:
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Thus ˚s decomposes as the product diagram
Q
j� jDs ˚� . Also, ˚�0 D ˚ and

˚�dim KC1 D ˚dim KC1 hold by definition, and ˚�dim KC2 is trivial. Furthermore,
there is a short exact sequence

(36) 0 �! ˚s �! ˚�s �! ˚�sC1 �! 0

for every s > 0, because there are no morphisms � ! � when j� j< j� j.

Lemma 6.2 If lim i
CATop.K /

˚� D 0 for every face � , then we have lim i
CATop.K /

˚ D 0.

Proof The decomposition of ˚s into atomic factors ensures that lim i
CATop.K /

˚s is
zero, and the long exact sequence associated to (36) confirms that

lim i
CATop.K /˚�s �! lim i

CATop.K /˚�sC1

is a monomorphism for every 0� s � dim KC 1. So the composition

lim i
CATop.K /˚ �! lim i

CATop.K /˚�dim KC2 D 0

is also a monomorphism, and the result follows.

Lemma 6.3 If i � dim KC 2, then we have that limi
CATop.K / ˚ D 0.

Proof The cochain group N i.CATop.K/I	/ vanishes for i � dim KC 2.

Given any two diagrams ˚ W CATop.K/! AB and 	 W CATop.L/! AB , we define their
external product ˚ �	 W CATop.K �L/! AB by ˚ �	.� [ �/ WD ˚.�/�	.�/.

Lemma 6.4 For any i � 1, there is an isomorphism

limi
CATop.K�L/˚ �	 Š limi

CATop.K /˚ � limi
CATop.L/ 	:

Proof This follows directly from the isomorphism

C �.CATop.K �L/I˚ �	/Š C �.CATop.K/I˚/�C �.CATop.L/I	/

of cochain complexes.
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7 p–adic homotopy uniqueness for �.r/.V /

In this section we show that the homotopy type of the p–adic completion hc.K/^p is
determined by its p–adic cohomology, for any r –skeleton �.r/.V / of the .m�1/–
simplex. We restrict attention to 1–connected spaces, so that completion is well-behaved.
We also maintain the notation of previous sections, but make the additional assumption
that any space denoted by X or XJ is p–complete, for every simplicial complex J .

Our aim is to prove that K D�.r/.V / satisfies the following.

Conditions 7.1

(C1) There is an isomorphism � W H�.X IZ^p/ ! Z^p ŒK� if and only if there is a
homotopy equivalence f W hc.K/^p !X such that f � D � .

(C2) Any two self-equivalences f;gW hc.K/^p ! hc.K/^p are homotopic if and only
if H�.f IZ^p/DH�.gIZ^p/.

To confirm (C1), it suffices to assume the existence of � and construct a mod p

equivalence f W hc.K/!X such that f � D � . Our strategy is to apply the results of
Section 4 and Section 5.

By Corollary 4.2, there are maps h� W BT �!X for all faces � 2K , which induce the
restrictions of � in p–adic cohomology. By Theorem 5.5(1), the h� are compatible
up to homotopy with the inclusions BT � ! BT � for all � � � . They therefore
define a map .hc.K//.1/!X on the 1–skeleton of the homotopy colimit hc.K/. The
Bousfield–Kan spectral sequence for homotopy inverse limits, together with work of
Wojtkowiak [17] clarifying the situation for low dimensions, provides an obstruction
theory for extending this map to hc.K/. The obstruction groups are given by the higher
limits

lim iC1
CATop.K /

�i.M
� .X //:

If these groups vanish for all i � 1, then the desired extension exists. So for any i � 1,
it is convenient to define the diagram

˘i W CATop.K/ �! AB

by assigning �i.M
� .X // to each face � , and assigning the homomorphism induced

by M � .X /!M � .X / to each morphism � � � .

The obstruction theory also applies to the question of uniqueness. There is a restriction
map

RW Œhc.K/;X � �! lim 0
CATop.K /ŒBT K ;X �
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of homotopy classes, whose target may be identified with Œhc.K/.1/;X �. If, for some
element h1 :D .h� /�2K of the latter, the limits lim i

CATop.K /
˘i vanish for all i � 1,

then R�1.h1/ contains at most one element; in other words, there is at most one
extension hc.K/!X of h1 , up to homotopy.

So we are interested in simplicial complexes K that satisfy the following.

Condition 7.2 (VHL) For any p–complete space X equipped with an isomorphism
� W H�.X IZ^p/! Z^p ŒK�, the groups

lim i
CATop.K /˘i and lim iC1

CATop.K /
˘i

vanish for all i � 1.

Proposition 7.3 If K satisfies (VHL), then it satisfies (C1) and (C2).

Proof If K satisfies (VHL), the above considerations show that there exists a map
f W hc.K/!X which induces � . It therefore determines the homotopy equivalence
f W hc.K/^p !X required for (C1).

Let f;gW hc.K/^p ! hc.K/^p be self-equivalences, and H�.f IZ^p/ D H�.gIZ^p/.
Without loss of generality, we may assume that f is the identity. Then for every face
� 2K , the restriction gjBT � reflects the pair .K; �.�// over Z^p , and so by Theorem
5.5(1) is homotopic to h� ; in particular, g lies in R�1..h� /�2K /. All obstruction
groups vanish by assumption, so 1 and g are homotopic, as required for (C2).

We now turn to the distinguishing properties of the skeleta �.r/.V /. For any space X

that reflects K over Z^p , we denote the homotopy fibre of the map qX W X !BT V of
Lemma 4.1 by FX .

Lemma 7.4 For K D�.r�1/.V / and any face � , we have that

(1) the space FX is 2r –connected;

(2) `K .�/ is empty if � is maximal, and is �.r�j� j�1/.V n �/ otherwise.

Proof (1) The missing faces of K have cardinality at least r C 1, so qX induces an
isomorphism of p–adic cohomology in dimensions � 2r C 1. The same is therefore
true in homology. Both X and BT V are simply connected and p–complete, so
�j .FX /D 0 for 1� j � 2r by Whitehead’s Theorem.

(2) The faces � of `K .�/ are restricted only by the requirements that they are subsets
of V n � , and that j� jC j�j � r .
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Lemma 7.4(2) combines with (9) and Theorem 5.5(3)–(4) to create a homotopy pullback
square

(37)

X`K .�/ ����! M � .X /

q`K .�/

??y ??yqM� .X/

.BT V n� /^p ����! .BT V /^p

for every nonmaximal face � 2 K ; when � is maximal, there is an equivalence
M � .X /' .BT � /^p .

Theorem 7.5 Suppose that K D�.r/.V /, and X reflects K over Z^p : then we have
that lim j

CATop.K /
˘i D 0 for all j � i .

Proof If i D 1, then ˘1.�/ D 0 for every face � , by Theorem 5.5(2); therefore
lim j

CATop.K /
˘1 D 0 for j � 1.

If i D 2, then ˘2.�/D .Z
� /^p when � is maximal, and .ZV /^p otherwise, by (37).

So there exists a short exact sequence

0 �!˘2 �! cst.ZV /^p
�! 	 �! 0;

where 	 is nonzero only on maximal faces, and decomposes as a product of atomic
diagrams. Hence limj

CATop.K /
˘2 Š limj�1

CATop.K /
	 , and Proposition 6.1 confirms that

limj

CATop.K /
˘2 D 0 for j � 2.

If i � 3, abbreviate the atomic diagrams .˘i/� to ˘� , and the groups lim j

CATop.K /
˘�

to l
j
� . It follows from Lemma 7.4(1) and (37) that ˘� D 0 for all � satisfying

j� j � r� i=2, because the fibre of q`K .�/ is 2.r�j� j/–connected. So l
j
� D 0 for j � i .

The remaining faces satisfy i > 2.r �j� j/, and therefore i > .r �j� j/. But Proposition
6.1 and Lemma 7.4(2) identify l

j
� with zH j�1.�.r�j� j�1/.V n�/I˚.�//. Hence l

j
� D0

for j � i in these cases also, and the result follows by applying Lemma 6.2.

Theorem 7.5 shows that K satisfies (VHL), so the following is an immediate conse-
quence of Proposition 7.3.

Corollary 7.6 Every complex �.r/.V / satisfies conditions (C1) and (C2).

For low dimensional K , our main results hold without restriction.
Theorem 7.7 (1) For dim.K/ � 1, there is an isomorphism � W H�.X IZ^p/ !

Z^p ŒK� if and only if there is a homotopy equivalence f W hc.K/^p ! X such
that f � D � .

(2) For dim.K/D 0, two self equivalences f;gW hc.K/^p! hc.K/^p are homotopic
if and only if H�.f IZ^p/DH�.gIZ^p/.
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Proof All relevant mapping spaces are simply connected, so (1) follows from the fact
that limj ˘i.�/ vanishes for dimensional reasons when j � 3. If dim.K/D 0 then
K D�.0/.V / for some V ; so (2) follows from Corollary 7.6.

8 Joins of complexes and higher limits

We have shown in Section 7 that skeleta of simplices satisfy condition (VHL), and the
aim of Proposition 8.5 is to extend the class of complexes with this property. Preparing
for the proof occupies most of this section, throughout which we insist that X DXK�L

reflects K �L over Z^p . We maintain our convention that any space denoted by X or
XJ is p–complete, for every simplicial complex J .

Lemma 8.1 For any iK reflecting .K �L;K/ and iL reflecting .K �L;L/ over Z^p ,
the homotopy pullback of the diagram

XK

iK
�!X

iL
 �XL

is p–complete and contractible.

Proof The pullback is p–complete by [2, Section II.5], and the Eilenberg-Moore
spectral sequence computes its mod p cohomology. The E2 –term is given by

Torj

FpŒK �˝FpŒL�
.Fp ŒK�;Fp ŒL�/D

(
0 for j ¤ 0;

Fp for j D 0;

so the spectral sequence collapses and the pullback is contractible.

The homotopy fibre of iL is therefore the loop space ˝XK , and its inclusion into XL

is null-homotopic.

Lemma 8.2 For any iL reflecting .K�L;L/ over Z^p , and any face � 2L, the square

M � .XL/
ev
����! XL

M� .iL/

??y ??yiL

M � .X /
ev
����! X

is a homotopy pullback and functorial in � .
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Proof First apply the functor map.BT � ;�/ to iL , and use evaluation at the base
point to obtain a commutative square whose upper left-hand entry is M � .XL/. By
Theorems 4.2 and 5.5(2), the upper evaluation reflects .L; stL.�// over Z^p ; and there
is a canonical map d W M � .XL/! P to the pullback P .

The Eilenberg–Moore spectral sequence computes H�.P IFp/. The isomorphisms

Torj

FpŒK �˝FpŒL�
.Fp ŒK�˝Fp ŒstL.�/�;Fp ŒL�/Š Torj

Fp
.Fp ŒstL.�/�;Fp/

show that the higher Tor groups vanish, and that the spectral sequence collapses at the
E2 –page. It follows that d is a homotopy equivalence, as required. Functoriality of
the construction is immediate.

Lemma 8.3 Suppose that L satisfies condition (VHL); then there exists a map
jLW hc.L/!X reflecting .K �L;L/ over Z^p , and it is unique up to homotopy.

Proof Consider a maximal face � of the subcomplex K�K�L, so that `K�L.�/DL.
The fibre inclusion XL ! M�.X / of Theorem 5.5(3) may be combined with the
equivalence hc.L/! XL that arises because L satisfies (VHL). Then composition
with evaluation at the basepoint defines jL as hc.L/!M�.X /!X , which reflects
.K �L;K/ over Z^p by Theorem 5.5.

In order to prove homotopy uniqueness, we utilise the obstruction theory of Section 7.
In this case the obstruction groups are limi

CATop.L/ �i.M
� .X // for i � 1, and it remains

to show that they vanish.

First apply Lemma 8.1 and Lemma 8.2 to the maps jK and jL . The homotopy exact
sequences of the principal fibrations ˝ hc.K/!M � .hc.L//!M � .X / decompose
into short exact sequences

(38) 0 �! �i.M
� .hc.L/// �! �i.M

� .X // �! cst�i .hc.K // �! 0

of CATop.L/–diagrams. But L satisfies (VHL) by assumption, and the higher limits of
constant diagrams are zero on CATop.L/. So (38) implies limi

CATop.L/ �i.M
� .X //D 0

for i � 1, as required.

Lemma 8.4 Suppose that K and L satisfy (VHL); then for any � 2 K and � 2 L

there exist maps lK .�; �/ reflecting .stK .�/� stL.�/; stK .�// and lL.�; �/ reflecting
.stK .�/� stL.�/; stL.�// over Z^p , such that the diagram

M � .hc.K//
lK .�;�/
�����!M �[� .X /

lL.�;�/
 �����M � .hc.L//

is homotopy functorial in � and � and has contractible homotopy pullback.
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Proof In order to define lK .�; �/ and lL.�; �/, observe that the respective restrictions
of h�[� W BT �[� !X to BT � and BT � are homotopic to h� and h� , by Theorem
5.5(1). So the adjoint properties of mapping spaces provide homeomorphisms

(39) M � .M � .X //�M �[� .X /�M � .M � .X //:

By Theorem 5.5(2) and Lemma 8.3, there exists jL.�/W hc.L/!M � .X / reflecting
.stK .�/ �L;L/ over Z^p . Then lL.�; �/ is induced by applying map.BT � ;�/ to
jL.�/, and reflects .stK .�/ � stL.�/; stL.�// over Z^p by Theorem 5.5(2). The con-
struction is functorial in � , and homotopy functorial in � because Lemma 8.3 defines
jL.�/ uniquely up to homotopy. Interchanging � 2 K and � 2 L defines lK .�; �/,
which reflects .stK .�/� stL.�/; stK .�// over Z^p ; the construction is functorial in �
and homotopy functorial in � .

The homotopy pullback of the diagram is contractible by Lemma 8.1.

Proposition 8.5 The class of simplicial complexes satisfying (VHL) is closed under
the formation of finite joins.

Proof Let K and L satisfy (VHL). By Lemma 8.4, there are isomorphisms

�i.M
� .hc.K///��i.M

� .hc.L///Š �i.M
�[� .X //

that are functorial on CATop.K/ � CATop.L/, and so on CATop.K �L/. The result
follows from Lemma 6.4, by induction on the number of factors.

We believe that other combinatorial operations on simplicial complexes may also respect
condition (VHL).

Theorem 8.6 Let X be a p–complete CW–complex, and suppose that K is an
iterated join �.r1/.U1/ � � � � � �

.rt /.Ut / of skeleta of simplices; then there is an
isomorphism � W H�.X IZ^p/! Z^p ŒK� if and only if there is a homotopy equivalence
f W hc.K/^p !X such that f � D � .

Proof Any such K satisfies condition (VHL) by Theorem 7.5 and Proposition 8.5,
and therefore satisfies (C1) by Proposition 7.3.

Theorem 8.7 For complexes K as in Theorem 8.6, any pair of self-equivalences
f;gW hc.K/^p ! hc.K/^p are homotopic if and only if H�.f IZ^p/DH�.gIZ^p/.

Proof As before, K satisfies (C2) by Proposition 7.3.
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9 The integral homotopy type

Our final aim is to prove Theorems 9.4 and 9.5. For any space Y , we denote the
product of all its p–adic completions by Y ^ WD

Q
p Y ^p , and its rationalisation by Y0 ;

its finite adele type YAf is both the rationalisation of Y ^ and the formal completion
of Y0 . When Y is nilpotent, these spaces fit into Sullivan’s arithmetic pullback square

(40)

Y
^

����! Y ^??y ??y
Y0

^
����! YAf :

Given any partition U :D fU0; : : : ;Utg of V , we write K.U/ for the iterated join
�.U0/� @.U1/� � � � � @.Ut /. So there is an isomorphism

QŒK.U �ŠQŒ�.U0/�˝QŒ@.U1/�˝ � � �˝QŒ@.Ut /�;

which implies the following observation of [11, Section 5].

Proposition 9.1 The simplicial complexes K.U/ are precisely those for which QŒK�
is a complete intersection.

For the rest of this section we insist that X is a 1–connected space realising the complete
intersection QŒK.U/�, and maintain our convention of denoting the homotopy fibre
of qX W X ! BT V by FX . In particular, the cofibre of any qhc.@.U // is the Thom
complex Th.U / of the universal product of line bundles over BT U , so qhc.@.U // is
equivalent to the projection of the corresponding sphere bundle, and has homotopy
fibre the .2jU j � 1/–dimensional sphere S.U /; hence Fhc.K.U// is given by S.U/ :D
S.U1/� � � � �S.Ut /.

Lemma 9.2 The p–adic completion, rationalisation, and finite adele type of the
fibration FX !X!BT V are all themselves fibrations; moreover, FX is 1–connected
and rationally equivalent to S.U/.

Proof The first statement follows from [2, Section II.5] since BT V is 1–connected;
the 1–connectedness of FX arises directly from the definitions. Part I of [11, Propo-
sition 5.11] confirms the existence of a homotopy equivalence hW hc.K.U//0!X0 ,
for which qX ıh' qhc.K.U// as rationalised maps. So h lifts to a rational equivalence
S.U/! FX of homotopy fibres.
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Now let q]W X ]! BT V denote the homotopy pullback of the fibration q^
X

along
the completion map BT V ! .BT V /^ ; then the inclusion F^

X
! X ] of the fibre is

homotopic to the principal T V –fibration classified by q] .

Lemma 9.3 The homotopy fibre F ] of the induced map X ! X ] is a productQt
iD1 H.Z^=Z; 2jUi j � 2/ of Eilenberg–Mac Lane spaces.

Proof By construction, there is a homotopy pullback diagram

FX
^

����! F^
X??y ??y

X ����! X ]

in which the homotopy fibre of the horizontal maps agrees with that of .FX /0 !

.FX /Af . Since the fibre of S.U/0!S.U/Af has the required form, the result follows
from (40) and Lemma 9.2.

Theorem 9.4 Let X be a nilpotent CW–complex, and suppose that QŒK� is a complete
intersection; then there is an isomorphism � W H�.X IZ/!ZŒK� if and only if there is
a homotopy equivalence f W hc.K/!X such that f � D � .

Proof Using Proposition 9.1, write K as K.U/ for some partition U of V . Then
� extends to an isomorphism H�.X IZ^p/! Z^p ŒK.U/� for each prime p , which is
induced by an equivalence hc.K.U//^p ! X^p via Theorem 8.6. So there exists a
map f 0W hc.K.U//!X^ , such that q^

X
ıf 0 factors through the completion BT V !

.BT V /^ using arguments of Sections 7 and 8. In other words, the square

hc.K.U//
qhc.K.U//
������! BT V

f 0
??y ??y^

X^
q^

X
������! .BT V /^

is homotopy commutative, and f 0 factors through f 00W hc.K.U//!X ] .

To lift f 00 to X , note that the obstructions lie in the groups H iC1.hc.K.U//I�i.F
]//.

But �i.F
]/D 0 in odd dimensions by Lemma 9.3; so all obstructions vanish, and a

lift f W hc.K.U//!X exists. Then f � D � by construction, and f is an equivalence
by Whitehead’s theorem, because the source and target are 1–connected.

Theorem 9.5 Let X be a CW–complex that realises ZŒK� for any K ; then there is a
homotopy equivalence eW ˙X !˙ hc.K/.
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Proof The Stanley–Reisner algebra ZŒK� decomposes additively as a sum ˚�2K A�
of graded subgroups, generated by monomials whose support is a particular � . Every
A� is realised in H�.X IZ/ by a map q0� W X !^�BT , defined by composing q�
with projection onto the iterated smash product. Using the cogroup structure of ˙X ,
we sum the suspensions ˙q0� over all faces � , to obtain a map

hX W ˙X �!
_
�2K

˙.^�BT /:

This induces a cohomology isomorphism of 1–connected CW–complexes, and is
therefore a homotopy equivalence. Identical reasoning applies to hc.K/, so it suffices
to define h as h�1

c.K /
ı hX .

We may use the splitting of [1, Theorem 1.18] as an elegant alternative to hc.K / ;
in either event, Theorem 9.5 identifies X with the wedge

W
�2K Th.�/ of Thom

complexes, after one suspension.
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