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Involutions on S 6 with 3–dimensional fixed point set

MARTIN OLBERMANN

In this article, we classify all involutions on S6 with 3–dimensional fixed point
set. In particular, we discuss the relation between the classification of involutions
with fixed point set a knotted 3–sphere and the classification of free involutions on
homotopy CP3 ’s.

57S17; 55M35, 57R65

1 Introduction

As a general assumption, we are interested in smooth involutions on connected, closed,
smooth manifolds.

The study of group actions on very simple manifolds such as disks, spheres or Euclidean
spaces has been a very active subject. In his MathSciNet review [17] of Pawalowski [21],
Masuda notes: “Representations of groups provide examples of group actions on
Euclidean spaces, disks or spheres, and an important natural question in transformation
groups is to what extent arbitrary actions on those spaces resemble actions provided by
representations.” The first highlight theorems are due to P A Smith. For an involution
on a sphere, Smith proved that the fixed point set is a Z2 –homology sphere. There are
various converses to this theorem which can be found in the literature, eg Davis and
Weinberger [4] and Pawalowski [21] and references therein. However, the following
theorem seems to be new:

Theorem 1.1 (Olbermann [19]) Every Z2 –homology 3–sphere is the fixed point set
of an involution on S6 .

Moreover, the method used by the author in [19] generalizes to a classification of these
involutions, which is the subject of the present paper. (A shorter proof of the above
existence theorem can be given using Dovermann’s equivariant surgery approach along
the lines of Schultz [24] and Dovermann, Masuda and Schultz [6].)

Recently, a class of involutions called conjugations was defined by Hausmann, Holm
and Puppe [11] and various aspects of conjugations were studied by Franz and Puppe [7],

Published: 17 September 2010 DOI: 10.2140/agt.2010.10.1905

http://www.ams.org/mathscinet/search/mscdoc.html?code=57S17,(55M35, 57R65)
http://dx.doi.org/10.2140/agt.2010.10.1905


1906 Martin Olbermann

the author [20], Hausmann and Holm [10] and Hambleton and Hausmann [9]. Con-
jugations � on topological spaces X have the property that the fixed point set has
Z2 –cohomology ring isomorphic to the Z2 –cohomology ring of X , with the slight
difference that all degrees are divided by two. In the case of smooth involutions
on (positive-dimensional) spheres, the conjugations are exactly the involutions on
even-dimensional spheres with half-dimensional fixed point set. In dimension 2, the
Schönflies theorem gives a classification: every conjugation is conjugate to the reflection
of S2 at the equator. In dimension 4, work of Gordon and Sumners shows that there
are infinitely many nonequivalent conjugations on S4 . Hambleton and Hausmann
recently reduced the study of such involutions to a nonequivariant four-dimensional
knot theory question [9]. Knot theory of n–spheres in S2n is easier for n> 2, so that
the study of conjugations gets a different flavor for n> 2.

The study of free involutions on simply connected spin manifolds with the same
homology groups as CP3 was motivated by the question whether it is possible to
define an “equivariant Montgomery–Yang correspondence”. After Haefliger [8] proved
that the group C 3

3
of knotted S3 ’s in S6 (isotopy classes of smooth embeddings, or

equivalently diffeomorphism classes relative to S3 ) is isomorphic to Z, Montgomery
and Yang [18] showed that there is a natural bijection between C 3

3
and the set of dif-

feomorphism classes of homotopy CP3 ’s. Wall’s classification of all simply connected
spin manifolds with the same homology groups as CP3 [28] also uses the bijection
between diffeomorphism classes of such manifolds, together with a basis of H 2 , and
isotopy classes of framed S3 –knots in S6 . In the equivariant setting, Li and Lü [15]
show that the existence of a free involution on a homotopy CP3 implies the existence
of an involution on S6 with fixed point set the corresponding knotted S3 . Similarly,
in our approach, the same surgery arguments apply in both cases. However, it is not
possible to produce a nice bijection on the set of equivariant diffeomorphism classes of
these, as claimed by Su [26]. Our classification results are:

Theorem 1.2 Let M be a smooth closed simply connected spin manifold with
H2.M / D Z and H3.M / D 0. Let x 2 H 2.M IZ/ be a generator. Assume that
M 6Š S2 �S4 .
� If h.p1.M /x� 4x3/=24; ŒM �i is odd, there exists no free involution on M .
� If hx3; ŒM �i is odd, and h.p1.M /x � 4x3/=24; ŒM �i is even, there exist up to

diffeomorphism exactly two free involutions on M .
� If hx3; ŒM �i is even, and h.p1.M /x� 4x3/=24; ŒM �i is even, there exist up to

diffeomorphism exactly five free involutions on M .

If M ŠS2�S4 , then the same classification holds for orientation-reversing involutions
which act by �1 on H 2.M /.
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In the case of homotopy CP3 ’s the classification of free involutions was given by
Petrie [22] (whose result contains a mistake, corrected by Dovermann, Masuda and
Schultz [6]), and Su [26]. Li and Su (unpublished) give the answer to the existence
question in the case of odd hx3; ŒM �i. Our method reproves all these results in a
different way, extends to a larger class of manifolds and gives classification results
in all cases. A different generalization of Petrie’s result is the classification of free
involutions on homotopy complex projective spaces of arbitrary dimension given by
Sady [23].

Theorem 1.3 For every even element of C 3
3

there are (up to equivariant diffeomor-
phism relative S3 ) exactly four involutions (conjugations) on S6 with the knot as fixed
point set. For every odd element of C 3

3
, there is no involution on S6 with the knot as

fixed point set.

The new part of the theorem is the classification of these involutions. Li and Lü proved
that the existence of an involution with fixed point set a given knot is equivalent to
the existence of a free involution on the corresponding homotopy CP3 under the
Montgomery–Yang correspondence, so that together with Su’s work mentioned above,
the existence question was answered.

The case of involutions on S6 with fixed point set S3 is especially interesting since,
given another 6–manifold with an involution that has a 3–dimensional fixed point
set, (equivariant) connected sum gives a possibly different involution on the same 6–
manifold with same fixed point set. (This is in analogy with the fact that connected sum
with a homotopy sphere gives a possibly new smooth structure on the same underlying
topological manifold.) Similarly, connected sum with a conjugation on S6 with fixed
point set different from S3 gives a new conjugation on the same 6–manifold, with
different fixed point space.

Our main result is a classification of smooth involutions on S6 with arbitrary three-
dimensional fixed point set, using a recent classification of embeddings of closed
oriented connected 3–manifolds into S6 by Skopenkov [25]. Skopenkov proves that
for a 3–dimensional Z2 –homology sphere M the set of isotopy classes of embeddings
i W M ! S6 has a free action by C 3

3
and the orbits are in canonical bijection with

H1.M /.

Theorem 1.4 Let M be a Z2 –homology sphere of dimension 3. The set of isotopy
classes of embeddings i W M ! S6 which are the fixed point sets of involutions
(conjugations) is contained in the orbit corresponding to 0 2 H1.M /. Moreover, it
is acted upon freely and transitively by 2Z � Z Š C 3

3
. There are up to equivariant

diffeomorphism relative to i exactly four such conjugations for every such i .
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In our case, we can also classify involutions without additional identification of the
fixed point set with a given 3–manifold. However, we consider involutions together
with an orientation of their fixed point sets, and the equivalence relation is equivariant
diffeomorphism which respects the orientations of both S6 and the fixed point set.
Equipping the involution with an orientation of the fixed point set is necessary in order
to perform connected sums. Thus it is more natural to determine this more structured
set of equivariant diffeomorphism classes InvM .S6/.

Since the action of the mapping class group of M on the above set of equivariant
diffeomorphism classes of involutions relative to the fixed point set M is trivial, we
get the same classification as in Theorem 1.4:

Theorem 1.5 Conjugations up to conjugation (preserving orientations) with fixed
point set of a fixed oriented diffeomorphism type of Z2 –homology 3–spheres are in
bijection with Z˚Z4 . Under connected sum, InvS3.S6/ŠZ˚Z4 is an isomorphism
of groups, and InvS3.S6/ acts freely and transitively on InvM .S6/ for every Z2 –
homology 3–sphere M .

Remark 1.6 In principle, using the machinery described by Kreck [13], it is also
possible to prove classification results for conjugations on X 6 with fixed point set M 3

in other cases as X D S6 . (However, the argument we use to show the surgery
obstruction is trivial does not extend to the case of free involutions on other manifolds.)

One would compute the set of equivariant diffeomorphism classes of the involution
together with an identification of the fixed point set with a prescribed 3–manifold M ,
ie the set

EmbZ2
.M !X /D ff W .M; id/! .X; �/g=�

where f is an inclusion onto the fixed point set of � , and f W .M; id/ ! .X; �/

is identified with f 0W .M; id/! .X 0; � 0/ if there is an equivariant diffeomorphism
�W .X; �/! .X 0; � 0/ making the obvious triangle commute. One of the difficulties to
overcome is “due” to Wall’s classification: in order to determine which of the resulting
6–manifolds are diffeomorphic to X , one would need a good understanding of the
isomorphism classes of the algebraic invariants (trilinear forms), and this problem
seems to be very hard in general.

Acknowledgements I would like to thank Diarmuid Crowley, Jean-Claude Hausmann,
Matthias Kreck and Arturo Prat-Waldron for many helpful discussions and remarks.
Special thanks to Yang Su, whose article [26] was the origin of this paper, and who
shared with me the so far unpublished notes on a generalization of [26] due to himself
and Banghi Li.
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2 Preliminaries

2.1 Modified surgery

We will use Kreck’s modified surgery theory [14; 13] which is also suited to give
classification results. By the equivariant tubular neighbourhood theorem, we can write
S6 DM �D3[@ V , where V is a manifold with boundary M �S2 equipped with a
free involution, which restricts to .id;�id/ on the boundary. (It is not hard to see that
the normal bundle of M in S6 is trivial. See [20] for a proof.)

A classification of manifolds V with free involutions � up to equivariant diffeomor-
phism is the same as a classification of the quotient manifolds W D V =� up to
diffeomorphism. This is what modified surgery theory will give us.

We first determine the normal 2–type of the manifolds W under consideration. The
normal 2–type B of a 6–manifold (see the precise Definition 3.2) is a fibration
B! BO . It carries roughly the information of a 3–skeleton of the manifold together
with the restriction of the normal bundle to this 3–skeleton. After computing the
bordism group of manifolds with normal B –structure, we show that in every bordism
class there exists a manifold (together with a map to B ) which qualifies as the W above.
Moreover, we show that given two normally B–bordant manifolds W as above, the
obstruction, which a priori lies in the complicated monoid l7.Z2;�1/, for the existence
of an s–cobordism (ie a diffeomorphism) is zero. The diffeomorphism classification of
the manifolds W under consideration is given by the set of orbits of the action of the
group of fiber homotopy self-equivalences B! BO .

2.2 Conjugations on manifolds

This section explains what conjugation spaces are and shows that the smooth involutions
on S2n with n–dimensional fixed point set are exactly the smooth conjugations. The
rest of the paper does not depend on the material in this section.

A conjugation on a topological space X is an involution � W X ! X , which we
consider as an action of the group Z2 Š C D fid; �g on X , and which satisfies the
following cohomological pattern: We denote the Borel equivariant cohomology of X

by H�
C
.X IZ2/. It is a module over H�

C
.ptIZ2/ D Z2Œu�. The restriction maps in

equivariant cohomology are denoted by

�W H�C .X IZ2/!H�.X IZ2/ and r W H�C .X IZ2/!H�C .X
�
IZ2/ŠH�.X �

IZ2/Œu�:
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Definition 2.1 [11] X is a conjugation space if

� H odd.X IZ2/D 0,

� there exists a (ring) isomorphism �W H 2�.X IZ2/!H�.X � IZ2/ and a (mul-
tiplicative) section � W H�.X IZ2/!H�

C
.X IZ2/ of � such that the so-called

conjugation equation holds:

r�.x/D �.x/uk
C terms of lower degree in u:

One does not need to require that � and � be ring homomorphisms, it is a consequence
of the definition. Moreover, the “structure maps” � and � are unique, and natural with
respect to equivariant maps between conjugation spaces.

There are many examples of such conjugations: complex conjugation on the projective
space CPn and on complex Grassmannians, natural involutions on smooth toric mani-
folds [5] and on polygon spaces [12]. Every cell complex with the property that each
cell is a unit disk in Cn with complex conjugation, and with equivariant attaching maps,
is a conjugation space. Coadjoint orbits of semisimple Lie groups with the Chevalley
involution are conjugation spaces. Moreover, there are various constructions of new
conjugation spaces out of other conjugation spaces.

A conjugation manifold is a conjugation space consisting of a smooth manifold X with
a smooth involution � . As a consequence, a closed conjugation manifold X must be
even-dimensional, say of dimension 2n, and M is of dimension n.

In [20] we proved that it is possible to give a definition of conjugation spaces without the
nongeometric maps � and � , which is moreover well-adapted to the case of conjugation
manifolds, where the fixed point set has an equivariant tubular neighbourhood.

Proposition 2.2 Every smooth involution on S2n with (nonempty) n–dimensional
fixed point set is a conjugation.

Proof Let pt 2 S2n be a fixed point of the involution. Then pt is a conjugation
space and .S2n; pt/ is a conjugation pair, by the same proof as in Example 3.5 of [11].
Then the extension property for triples, Proposition 4.1 in [11], shows that S2n is a
conjugation space. (A slightly different proof is given in [9].)

3 Free involutions on certain 6–manifolds

We are considering smooth involutions on smooth closed simply connected spin man-
ifolds M with H2.M / D Z, and H3.M / D 0. The classification by Wall in [28]
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also uses a generator x 2H 2.M / and an orientation of M . Then pairs .M;x/ up to
diffeomorphism are classified by the bordism class of

M
x
!CP1 2�Spin

6
.CP1/Š Z2;

and .M;x/ is mapped under the isomorphism to��
p1.M /x� 4x3

24
; ŒM �

�
; hx3; ŒM �i

�
:

Both switching the sign of the generator of H 2.M / and the orientation of M induce
multiplication with �1, so that diffeomorphism classes are in bijection with Z2=� 1.

As observed in [15], the Lefschetz fixed point theorem implies:

Lemma 3.1 If hx3; ŒM �i is nonzero, then a free involution on M must be orientation
reversing, and act by �1 on H 2.M /.

If hx3; ŒM �i D 0, we consider only orientation reversing free involutions which are �1

on H 2.M /. From Li and Su we learned that except for the case M D S2�S4 , these
are all free involutions: If the involution acts by �1 on H 4.M /, the first Pontryagin
class must be 0, and we use the classification. The remaining case is handled as above
by the Lefschetz fixed point theorem.

Obviously, for M DS2�S4 , our classification of orientation reversing free involutions
which are �1 on H 2.M / does not include all free involutions.

3.1 The normal 2–type

Definition 3.2 The normal 2–type of a compact manifold N is a fibration B2.N /!

BO which is obtained as a Postnikov factorization of the stable normal bundle map
N !BO : There is a 3–connected map N !B2.N /, the fibration B2.N /!BO is
3–coconnected (ie �i.BO;B2.N //D 0 for i > 3), and the composition is the stable
normal bundle map. This determines B2.N /!BO up to fiber homotopy equivalence.

Lemma 3.3 Let � be an involution on M as above, and let N DM=� be the quotient
space of the involution. The second space in a Postnikov tower for N is either P D

.CP1�S1/=.c;�1/, where c is complex conjugation, or QD .CP1�S1/=.�;�1/,
where � is fiberwise the antipodal involution on S2!CP1!HP1 .

Proof The first space in the Postnikov tower is a K.Z2; 1/, and the second space
is a K.Z; 2/ fibration over it, with �1 acting nontrivially on �2 . Such fibrations are
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classified by their k –invariant in H 3.K.Z2; 1/IZ�/ŠZ2 . The spaces P and Q have
the required properties, and they are not homotopy equivalent, as eg H 2.P IZ2/Š Z2

2

and H 2.QIZ2/ŠZ2 . So they represent all isomorphism classes of fibrations. (P has
k –invariant 0, and Q has nonzero k –invariant.)

Lemma 3.4 The Z2 –cohomology ring of N is Z2Œq; t �=ht
3; q2i, where deg.q/D 4,

deg.t/D 1.

Proof (This was proved in [26] in the case of homotopy CP3 ’s, and we generalize
his proof.) We consider the Serre spectral sequence of the fibration M ! N !

RP1 , with Z2 (and also sometimes with integral) coefficients. The first case is that
d3W E

0;2
3
!E

3;0
3

is nontrivial. Then by multiplicativity the E4 –term has exactly one
Z2 in E

p;0
4

and E
p;4
4

for each p D 0; 1; 2. There are no further differentials, and we
get the above cohomology ring. The second case is that d3W E

0;2
3
!E

3;0
3

is trivial. We
will show that this leads to a contradiction. By multiplicativity, also d3W E

0;6
3
!E

3;4
3

is trivial. If we remember that we need the limit to have no cohomology in degrees > 6,
then we see in the sequence with integral coefficients that there must be a nontrivial
d3 –differential between the fourth and second line. Then the same must hold for the
Z2 coefficient sequence. And we get a d7 –differential from the sixth to the zeroth line.
The E1–term has exactly one Z2 in E

p;0
1 for pD 0; : : : ; 6 and E

p;2
1 for pD 0; 1; 2.

This gives a cohomology ring with a generator t 2H 1.N IZ2/, and another generator
x 2 H 2.N IZ2/. Since in this case H 2.N IZ2/ Š Z2

2
, the second Postnikov space

must be P , and we can choose x 2H 2.N IZ2/ coming from P ; we choose the class
in H 2.P IZ2/ which maps to 0 under a section of P ! RP1 . Note that x maps
nontrivially to H 2.M IZ2/.

We have the relations t7 D t3x D x2 C at2x C t4 D 0, where a 2 Z2 . (We have
Sq1 x D tx as this is true in P , thus t3x D Sq1.t2x/D 0 since H 5.N IZ/D 0. By
Poincaré duality t2x2 can’t be zero. This implies that in x2C at2xC bt4 D 0 we
have b D 1.)

We see that Sq1.t5/ D t6;Sq2.t4/ D 0;Sq2.t2x/ D t2x2 ¤ 0. It follows that the
first Wu class is t and the second Wu class is x . But that implies that the second
Stiefel–Whitney class of N maps to a nontrivial class in H 2.M IZ2/. But since
M is spin, this image must be zero, as it is the second Stiefel–Whitney class of M .
Contradiction.

Corollary 3.5 The second space in a Postnikov tower for N is Q.

Proof This follows from the fact that H 2.N IZ2/Š Z2 .
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Proposition 3.6 If such a manifold M with hx3; ŒM �i odd has a free involution � ,
then the quotient space N has normal 2–type BDBSpin�Q!BO�BO.1/

˚
!BO .

Proof If hx3; ŒM �i is odd, then the map H 4.QIZ2/! H 4.N IZ2/ is a bijection,
since then we have isomorphisms H 4.QIZ2/! H 4.CP1IZ2/! H 4.M IZ2/ 

H 4.N IZ2/. Then Sq2
W H 4.N IZ2/!H 6.N IZ2/ is zero, so is the second Wu class

of M=� , and as a consequence the quotient space has a spin structure twisted by the
nontrivial real line bundle L!Q.

Proposition 3.7 If such a manifold M has a free involution � (satisfying the extra
conditions if M D S2 � S4 ), then the quotient space N has one of the following
normal 2–types:

ADQ�BSpin! BO.1/�BO.1/�BO.1/�BO
˚
! BO;

B DQ�BSpin! BO.1/�BO
˚
! BO;

where the maps to all BO.1/’s are the projections pW Q!RP1 D BO.1/.

Proof If hx3; ŒM �i is even, then there is a second possibility for the normal 2–type.
If we fix the second space in a Postnikov tower to be Q, the second Stiefel–Whitney
class of N can be t2 or 0. Thus N either admits spin structures twisted by L or spin
structures twisted by L˚L˚LD 3L.

A normal B –structure on a manifold N can be defined in three equivalent ways.

� It is a vertical homotopy class of lifts of the normal bundle map N !BO to B

(this is independent of the particular map N !BO coming from an embedding
of N into some Euclidean space).

� It is a spin structure on N twisted by L, ie a map f W N !Q (up to homotopy)
together with a spin structure on the bundle �N � f

�.L/, where L is the
nontrivial real line bundle on Q.

� It is a map f W N !Q together with a homotopy � (and this up to homotopy)
in the following square:

N
� //

f
��

BO

w1�w2

��
Q

�
3;

t�0
// K.Z2; 1/�K.Z2; 2/
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Here we fix maps corresponding to the classes w1 2 H 1.BOIZ2/, w2 2

H 2.BOIZ2/, the generator t 2H 1.QIZ2/; 0 2H 2.QIZ2/.
(For fixed f , the homotopy classes of homotopies � have a free and transitive
action by �1..K.Z2; 1/�K.Z2; 2//

N /ŠH 1.N IZ2/�H 0.N IZ2/.)

Similarly, normal A–structures are defined. (In the first definition, replace B by A. In
the second definition, replace L by 3L. In the third definition, replace 0 by t2 .)

Remark 3.8 As a converse to Proposition 3.7, a manifold with normal B–structure
N 6 ! B which is a 3–connected map is the quotient of an involution on a closed
simply connected spin manifold M with H2.M /D Z, and H3.M /D 0 if and only
if H3.N Iƒ/D 0. Here ƒD ZŒZ2� is the group ring of the fundamental group. The
same holds for normal A–structures.

3.2 Computation of the bordism groups

We compute bordism groups of manifolds with normal A–structures (respectively
B –structures). The (co)homology of Q is described in [20]. To compute the bordism
groups �A

6
and �B

6
we use the Atiyah–Hirzebruch spectral sequence (which computes

the group up to an extension problem) and an Adams spectral sequence (which can
help solve the extension problem). We get:

Theorem 3.9 We have isomorphisms �A
6
Š Z2˚Z2 and �B

6
Š Z2˚Z4:

Proof The case of �B
6

was proven in [20]. For �A
6

, the Atiyah–Hirzebruch spectral
sequence is

Hp.QI�
Spin
q /)�A

pCq;

the d2 –differential

E2
p;1 ŠHp.QIZ2/!Hp�2.QIZ2/ŠE2

p�2;2

is the dual of Sq2
Ct Sq1

Ct2 Sq0 , and the d2 –differential

E2
p;0 ŠHp.QIZ�/!Hp�2.QIZ2/ŠE2

p�2;1

is reduction modulo 2 composed with the dual of Sq2
Ct Sq1

Ct2 Sq0 . (We obtain this
using the Thom isomorphism

�
Spin
6
.QI 3L/Š�

Spin
9
.D.3L/;S.3L//

and the Atiyah–Hirzebruch spectral sequence for the latter. See also [27].) From
the calculations in [20] it immediately follows that the differentials d2W E2

6;1
!E2

4;2
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and d2W E2
6;0
!E2

4;1
are nontrivial. This implies that the nonzero terms on the sixth

diagonal in the E1–term are

E12;4 Š Z; E15;1 Š Z2; E16;0 Š 2Z:

Thus �A
6
Š Z2˚Z2 or �A

6
Š Z2 .

Now we consider the Adams spectral sequence

Exts;tA .H
�.M Spin^T .3L/IZ2/;Z2/)�A

t�s�3;

where A is the mod 2 Steenrod algebra. We compute the left hand side for t�s�3� 6.
We have

H�.M Spin^T .3L/IZ2/ŠH�.M SpinIZ2/˝ zH
�.T .3L/IZ2/;

and zH�.T .3L/IZ2/ is a free H�.QIZ2/–module on one generator u3 of degree 3
(the Thom class). We have

Sq.u3/D w.3L/u3 D u3C tu3C t2u3C t3u3:

All of this allows to write down the A–module structure of H�.M Spin^T .3L/IZ2/

in degrees � 10. Then we compute a free A–resolution (in low degrees). From this we
get the E2 –term of the spectral sequence, which is displayed in the following diagram:

0

1

2

3

4

5

6

7

s

2 3 4 5 6 7 8 9 10 t � s

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

Since there are no differentials starting or ending at .t � s; s/ D .9; 1/, we obtain
�A

6
Š Z2˚Z2 .
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3.3 Construction and classification up to normal B –bordism

By Wall’s classification, every bordism class in �Spin
6
.K.Z; 2//ŠZ2 contains a unique

normal 2–smoothing with H3 D 0 (up to diffeomorphism relative BSpin�K.Z; 2/).

Theorem 3.10 In every bordism class in �A
6

there is a unique manifold W !A (up
to diffeomorphism relative to A) such that W !A is 3–connected and H3.W Iƒ/D 0.
The same is true if one replaces A by B .

Proof For the construction and classification of free involutions on these manifolds,
we use surgery theory. The existence proof is a simplified version of the proof of the
main theorem in [19].

We start with any 6–dimensional closed manifold with normal A–structure, and we
do surgery to get manifolds W such that the map W ! A is 3–connected and
H3.W Iƒ/D 0.

Surgery below the middle dimension is always possible [14]. It allows to modify any
closed 6–manifold W with normal A–structure into one with normal 2–type A. Let
us denote this new manifold again by W . It remains to kill H3.W Iƒ/.

By the Hurewicz theorem (its extended version) we have a surjection �3.W / !

H3.W Iƒ/, where ƒ D ZŒZ2� is the group ring of the fundamental group, and
H3.W Iƒ/ can be identified with the homology of the universal cover of W .

The map H3.W Iƒ/!H3.W IZ2/ factors through H3.W Iƒ/˝ƒZ2 , more precisely
the relation is given by a universal coefficient spectral sequence

Torƒp .Hq.W Iƒ/;Z2/)HpCq.W IZ2/:

(This can also be interpreted as the Serre spectral sequence for the fibration �W !W !

RP1 .) Here the zeroth and the second row are related by nontrivial differentials: we
compare with the corresponding situation for the space Q. As a result, H3.W IZ2/Š

H3.W Iƒ/˝ƒZ2 .

By Poincaré duality, H3.W Iƒ/ŠH 3.W Iƒ/, and this is free over Z, as there is no Z–
torsion in H2.W Iƒ/. Since H3.W Iƒ/ is free over Z, it is a sum of summands of the
form ƒ, ZC and Z� [3]. We also get that H 3.W Iƒ/Š Homƒ.H3.W Iƒ/;ƒ/, for
example again from a universal coefficient spectral sequence. The map H3.W Iƒ/!

H 3.W Iƒ/! Homƒ.H3.W Iƒ/;ƒ/ describes the ƒ–valued intersection form on
H3.W Iƒ/. The Z2 –valued intersection form on H3.W IZ2/ is given by tensoring
with Z2 .
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But this implies that for a generator x 2H3.W Iƒ/ of a Z˙ summand, its image in
H3.W IZ2/ has intersection 0 with all other elements, hence it must be 0: if T xD˙x ,
then T �.x;y/D�.T x;y/D�.˙x;y/D˙�.x;y/, so �.x;y/ is a multiple of .1˙T /

and its reduction in Z2 is zero.

Hence H3.W Iƒ/ is a free ƒ–module with nondegenerate intersection form. Since we
are in dimension 3, there is a quadratic refinement in ƒ=hxC xx; 1i which is uniquely
determined by the intersection form. Hence we obtain an element in zL6.ƒ;wD�/D0,
as L6 Š Z2 is given by the Arf invariant. Thus it is possible (after stabilization) to do
surgery which makes H3.W Iƒ/D 0.

The argument shows that every class of �A
6

contains a manifold W with normal
2–type A and H3.W Iƒ/D 0.

For the uniqueness result we take two such manifolds W0;W1 , and assume there is
a normal A–bordism between them. By Kreck’s theory [14, page 734], there is a
surgery obstruction in zl7.ƒ;w D �1/ for turning the normal A–bordism into an s–
cobordism. By surgery below the middle dimension we may assume that the bordism Y

is equipped with a 3–connected map to A. Now Kreck defines the surgery obstruction
using a construction of a certain disjoint union U of submanifolds of Y diffeomorphic
to S3 �D4 , and defines the surgery obstruction to be the kernel of H3.@U Iƒ/!

H3.Y n int.U /;W0Iƒ/. He also notes that the orthogonal complement of this kernel is
the kernel of H3.@U Iƒ/!H3.Y n int.U /;W1Iƒ/. But in our case H3.Wi Iƒ/D 0

so that both these kernels are equal to the kernel of H3.@U Iƒ/!H3.Y n int.U /Iƒ/.

This implies that the surgery obstruction just defined lies in the group zL7.ƒ;w D�1/

which is trivial as computed by Wall. Hence we get as a result that A–bordant manifolds
Wi with normal 2–type A and H3.W Iƒ/D 0 are diffeomorphic (relative to A).

The proof for normal 2–type B is obtained by replacing all occurrences of A by B .

3.4 The transfer

For the transfer (double cover) map �A
6
! �

zA
6
Š �

Spin
6
.CP1/ we compare the

Atiyah–Hirzebruch spectral sequences. We fix the isomorphism

�
Spin
6
.CP1/ Š Z2

Œf W M !CP1� 7!
��

p1.M /f �x� 4f �x3

24
; ŒM �

�
; hf �x3; ŒM �i

�
:
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One computes the homology transfers using the long exact sequences coming from
short exact coefficient sequences:

H6.QIZ�/
Š
!H6.CP1/;

H4.QIZ2/
0
!H4.CP1IZ2/;

H2.QIZ�/
Š
!H2.CP1/:

We see that the transfer gives a map of short exact sequences

F5 Š Z2˚Z

.a;b/ 7!2b

��

.a;b/ 7!.a;b;0/ // �A
6
Š Z2˚Z2 .a;b;c/7!c //

tr
��

E1
6;0
Š Z

c 7!2c
��

zF5 Š Z
b 7!.b;0/

// �
zA

6
Š Z2

.b;c/ 7!c

// zE1
6;0
Š Z

which shows (using the snake lemma) that �A
6
!�

zA
6

has a cokernel of order 4. But
the composition of projection and transfer: � zA

6
!�A

6
!�

zA
6

is multiplication by 2.
So the image of the transfer consists exactly of all classes divisible by 2.

It also follows that one can find generators for the free summands in �A
6

as images of
the generators of � zA

6
.

Theorem 3.11 [19] The image of the transfer map �B
6
! �

zB
6
Š �

Spin
6
.CP1/ is

2Z˚Z.

3.5 Generators for the bordism group �B
6

We use the Thom isomorphism for twisted spin bordism:

�B
6 Š�

Spin
6
.QIL/Š�

Spin
7
.DL;SL/:

Under this isomorphism, the boundary map

�
Spin
7
.DL;SL/!�

Spin
6
.SL/Š�

Spin
6
.CP1/

corresponds to the transfer map �B
6
!�

zB
6

. It follows that the torsion elements in

�B
6 Š�

Spin
7
.DL;SL/

come from �
Spin
7
.DL/Š�

Spin
7
.Q/:

Moreover, �Spin
7
.CP1/D 0, as one sees easily from the Atiyah–Hirzebruch spectral

sequence. Thus �Spin
7
.Q/ŠZ4 must be responsible for the torsion. Moreover, a study
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of the Atiyah–Hirzebruch spectral sequence shows that the map

�
Spin
7
.CP3=�/!�

Spin
7
.Q/

is an isomorphism. Now there is a bundle RP2!CP3=�!S4 . So CP3=��RP2 is an
RP2 –bundle over D4 , so homotopy equivalent to RP2 . Again the Atiyah–Hirzebruch
spectral sequence shows that

�
Spin
7
.CP3=� �RP2/D�

Spin
6
.CP3=� �RP2/D 0:

�
Spin
7
.CP3=�/Š�

Spin
7
.CP3=�;CP3=� �RP2/;Thus

and the latter is isomorphic to �Spin
3
.RP2/Š Z4 by the Thom isomorphism. Again

the Atiyah–Hirzebruch spectral sequence shows that the transfer

�
Spin
3
.RP2/!�

Spin
3
.S2/Š Z2

is surjective. Thus one can detect a generator of �Spin
7
.CP3=�/ by the composition

�
Spin
7
.CP3=�/!�

Spin
7
.CP3=�;CP3=� �RP2/!�

Spin
3
.RP2/!�

Spin
3
.S2/:

Now take the seven-dimensional manifold .CP3 � S1/=.�; c/, where c is complex
conjugation. The spin structure on CP3 �S1 which restricts to the nonbounding one
on S1 is preserved by the involution .�; c/, so that we obtain a spin structure on the
quotient. The map to CP3=� is projection on the first coordinate. This intersects
RP2 D CP1=� transversely, so that the Thom isomorphism maps it to the pullback
.CP1�S1/=.�; c/!CP1=� whose double cover is the projection CP1�S1!CP1 ,
which is a generator for �Spin

3
.S2/ since the Spin structure restricts to the nonboundant

one on S1 .

We have to apply the Thom isomorphism

�
Spin
7
.DLjCP3=� ;SLjCP3=� /!�

Spin
6
.CP3=� IL/

to the map .CP3�S1/=.�; c/!CP3=�! .CP3�D1/=.�;�1/. For this, we homotope
the map to make it transversal to the zero section: take

.CP3
�S1/=.�; c/! .CP3

�D1/=.�;�1/

Œx;y� 7! Œx; Im.y/�

and intersect it with the zero section: we obtain two copies of CP3=� with different
B –structures.
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It follows that the torsion Z4 in �B
6

is generated by the sum (or the difference) of two
copies of CP3=� with different B –structures. Let us denote one of them by � and the
other by � 0 .

Thus we obtain as generators for �B
6
Š�

Spin
7
.DL;SL/:

� The map f � idW X �D1!CP1�D1 , where X is a simply connected spin 6–
manifold with H 3.X /D0, trivial cup product H 2.X /�H 2.X /!H 4.X /, and
f W X !CP1 defines a generator of H 2.X / such that the first Pontrjagin class
of X is equal to 24 times the generator of H 4.X / which is dual to f 2H 2.X /.

� ..CP3 �D1/=.�;�1/; �/.

� ..CP3 �D1/=.�;�1/; �/� ..CP3 �D1/=.�;�1/; � 0/.

The two former generators generate free summands, the latter generates the torsion
summand Z4 . In this basis, the map �B

6
Š Z2˚Z4! Z2 Š�

Spin
6
.CP1/ is given

as .a; b; c/ 7! .2a; b/.

3.6 The automorphism groups of A and B and their action on the bor-
dism groups

The automorphism group Aut.B/BO of fiber homotopy classes of fiber homotopy
self-equivalences of B acts on �B

6
. We saw that �B

6
Š�

Spin
7
.DL;SL/, where L is

the nontrivial real line bundle .CP1 �R/=.�;�1/.

Lemma 3.12 The set of equivariant oriented diffeomorphism classes of free involu-
tions on 6–manifolds with H3 D 0 and whose quotient spaces have normal 2–type B

are given as the orbits. Again, B can be replaced by A in the theorem.

Proof Equivariant diffeomorphism classes of free involutions are the same as diffeo-
morphism classes of the quotients. Now the lemma follows from the uniqueness of the
Postnikov decomposition, ie for a given manifold W with normal 2–type B , the map
W !B is uniquely determined up to fiber homotopy self equivalences of B over BO .
See also [13].

The restriction of the first component of a fiber homotopy self-equivalence of Q�BSpin
to Q is a self-homotopy equivalence of Q. There is a unique free homotopy class
of maps Q!Q which is an isomorphism on �1 , and thus (using obstruction theory
to extend homotopies from Q to Q�BSpin) a unique free homotopy class of maps
Q�BSpin!Q which are an isomorphism on �1 . The vertical homotopy classes of
fiber homotopy equivalences thus correspond to the different choices (up to homotopy)
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of a homotopy � from Q�BSpin!Q!K.Z2; 1/�K.Z2; 2/ to Q�BSpin!BO!

K.Z2; 1/�K.Z2; 2/. So the group has four elements, and the action of the group on the
set of normal B –structures on a manifold f W M!B (ie spin structures on �M�f

�L)
is given by just changing the spin structure � into �;��; � Cf �t;�� Cf �t , where
t 2H 1.BIZ2/ is the generator.

On �Spin
7
.DL;SL/, the group Aut.B/BO acts in the following way: the negative spin

generator acts by �1, and the spin flip generator acts by

..CP3
�D1/=.�;�1/; �/ 7! ..CP3

�D1/=.�;�1/; � 0/;

and is the identity on X . So in the decomposition �Spin
7
.DL;SL/ŠZ˚Z˚Z4 given

by the above generators, the negative spin generator acts by .a; b; c/ 7! .�a;�b;�c/,
and the spin flip generator acts by .a; b; c/ 7! .a; b; b � c/. We obtain orbits of the
form

f.a; b; c/; .a; b; b� c/; .�a;�b;�c/; .�a;�b;�bC c/g:

The group Aut.A/BO also has four elements which act on the set of normal A–
structures on a manifold f W M ! A (ie spin structures on �M � f

�.3L/) by just
changing the spin structure � into �;��; � Cf �t;�� Cf �t , where t 2H 1.AIZ2/

is the generator.

This is either the identity or minus the identity on the generators for the free summands
in �A

6
as they are images of the generators of � zA

6
under projection. All group elements

must act by the identity on the torsion generator. We obtain orbits

f.a; b; c/; .�a;�b;�c/g:

The group Aut.K.Z; 2/�BSpin/BO also has four elements, which act on the bordism
group by reversing the spin structure and/or the class in H 2 . It follows that here the
orbits are of the form

f.a; b/; .�a;�b/g:

For the proof of Theorem 1.2, it is now sufficient to count preimages and orbits: An
element of the form .2aC 1; b/ 2 �

Spin
6
.CP1/ has no preimages in �A

6
or �B

6
.

An element .2a; 2b C 1/ in �Spin
6
.CP1/ has four preimages .a; 2b C 1; c/ in �B

6

and no preimages in �A
6

. These four preimages, together with the four preimages
of .�2a;�2b � 1/, decompose into two orbits. For .2a; 2b/ in �

Spin
6
.CP1/ we

obtain four preimages .a; 2b; c/ in �B
6

. These four preimages, together with the
four preimages of .�2a;�2b/, decompose into three orbits. The element .2a; 2b/ in
�

Spin
6
.CP1/ has two preimages .a; b; c/ in �A

6
. These two preimages, together with

the two preimages of .�2a;�2b/, decompose into two orbits.
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4 Involutions on S 6 with three-dimensional fixed point set

4.1 Nonequivariant classification of embeddings in S 6

Before we classify involutions on S6 , let us recall the nonequivariant results on
embeddings of three-manifolds into S6 .

Naturally the most interesting case is the one of knotted 3–spheres in the six-sphere.
Here the results are due to Haefliger. One could consider various equivalence relations
on knotted S3 ’s in S6 . In all cases there is an addition defined using connected sums:

First we can look at the group C 3
3

of isotopy classes of embeddings of S3 into S6 .
Second, the group ‚ of diffeomorphism classes of embeddings of S3 into oriented
manifolds X diffeomorphic to S6 , relative to S3 . (We require a diffeomorphism to
be the identity on S3 and to preserve orientations.) Third, the group † of orientation-
preserving diffeomorphism classes of pairs .X;M /, where the oriented manifold X is
diffeomorphic to S6 and the oriented submanifold M is diffeomorphic to S3 .

There are obvious surjective group homomorphisms C 3
3
!‚!†. Haefliger showed

that C 3
3

and † are both isomorphic to Z, so that both of the above maps are isomor-
phisms.

To prove that C 3
3
!‚ is an isomorphism, one needs to show that a diffeomorphism

S6! S6 relative the embedded S3 can be replaced by an isotopy. This is true since
�0.Diff.Dn; @//! �0.Diff.Sn// is surjective. This means it is always possible to
modify the original diffeomorphism on a disk such that the resulting diffeomorphism
is isotopic to the identity.

One explanation of the isomorphism ‚!† is Cerf’s result that DiffC.S3/ is con-
nected [2]. Thus every orientation-preserving diffeomorphism of S3 is isotopic to the
identity, and this isotopy extends to an ambient equivariant isotopy of S6 .

The negative of an isotopy class is given by precomposing the embedding S3! S6

with an orientation-reversing self-diffeomorphism of S3 .

Isotopy classes of framed embeddings S3 �D3! S6 are in bijection with Z2 , the
framing giving an additional integer invariant (the isomorphism to Z2 depends on
a choice). Note also that in the PL category, all nonframed knots are trivial, but the
isotopy classes of framed knots are in bijection with smooth isotopy classes of smooth
framed knots.

For embeddings of general closed oriented connected 3–manifolds M 3 into S6 , the
argument that diffeomorphism relative to the submanifold implies isotopy of the em-
beddings still holds. Isotopy classes of embeddings Emb.M;S6/ have been classified
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by Skopenkov in [25]. To an isotopy class of embeddings i W M ! S6 he associates its
Whitney invariant W .i/ 2H1.N /. (For the precise definition we refer to [25], we give
a description in special cases in Remark 4.5.) The map W W Emb.M;S6/!H1.N / is
surjective, and C 3

3
ŠZ acts transitively on the fibers by connected sum. This action has

nontrivial stabilizers in general: There is a bijective map (the Kreck invariant) from the
fiber over u2H1.N / to Zd.u/ , where d.u/ is the divisibility of xu2H1.M /=ftorsiong.
In general, both the Whitney and the Kreck invariant depend on choices. For Z2 –
homology spheres M , the Whitney invariant does not depend on choices, and C 3

3
acts

freely on the fibers, so that Emb.M;S6/ is in noncanonical bijection with Z�H1.M /.
Instead of a map to Z, the Kreck invariant describes an action of Z on Emb.M;S6/

which leaves the Whitney invariant fixed.

4.2 What should we classify in the equivariant case?

In the equivariant case, there are again various equivalence relations one can put on the
set of embeddings respectively involutions. However, in order to get a well-defined
connected sum operation, it is necessary to orient both the 6–manifold and the fixed
point set.

Remark 4.1 The proof of the uniqueness of the nonequivariant connected sum con-
struction can be generalized to show that the equivariant diffeomorphism type of the
equivariant connected sum of two conjugation manifolds of dimension 2n only depends
on the connected component of the set of equivariant isomorphisms of a tangent space
at a fixed point with .R2n; .1n;�1n//. More generally, varying the chosen fixed point,
we get a bundle of such isomorphisms over the fixed point set, and the equivariant
diffeomorphism type depends only on the connected component in the total space of
this bundle. (The total space has two components if the fixed point set is orientable,
and one component if it is not.) See also Definition 1.1 and Lemma 1.2 of [16]. In
particular, the connected sum is unique up to equivariant diffeomorphism if we are
provided with orientations of the conjugation manifolds and their fixed point sets,
but in general depends also on an orientation of the fixed point sets. This answers a
question in [11], and it also explains why we are less interested in the classification of
conjugations without an orientation of the fixed point set.

We fix M 3 , allow various involutions � on S6 , and consider equivariant embeddings
.M; id/! .S6; �/ such that the image of i is the fixed point set of � . Again there are
several equivalence relations which we can put on this set.

� Two embeddings i0W .M; id/! .S6; �0/ and i1W .M; id/! .S6; �1/ are equiv-
alent if there is a diffeomorphism �W .S6; �0/! .S6; �1/ relative M which is
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equivariant and orientation-preserving, ie there is a commutative triangle

.M; id/
i0 //

i1

%%

.S6; �0/

�
��

.S6; �1/:

This classifies involutions together with an identification of the fixed point set
with the given 3–manifold M . We get a set EmbZ2

.M;S6/.
� Two embeddings i0W .M; id/! .S6; �0/ and i1W .M; id/! .S6; �1/ are equiv-

alent if there is an equivariant diffeomorphism �W .S6; �0/! .S6; �1/ which
restricts to some self-diffeomorphism �M of M . We require that both � and
�M are orientation-preserving. There is a commutative square

.M; id/
i0 //

�M

��

.S6; �0/

�
��

.M; id/
i1 // .S6; �1/:

This classifies (up to orientation-preserving diffeomorphism) involutions plus
an orientation of the fixed point set. One might call this the classification of
conjugations up to conjugation. We get a set InvM .S6/.

Remark 4.2 One could also define an equivariant version of isotopy classes of embed-
dings: we say two equivariant embeddings i0W .M; id/! .S6; �0/ and i1W .M; id/!
.S6; �1/ are equivalent if there is an equivariant embedding i W .M � I; id/! .S6�I; �/

such that i.x; t/D .it .x/; t/ and �.y; t/D .�t .y/; t/, hence in particular it restricts on
both ends to i0 respectively i1 . (We also require that the image of all the embeddings
involved is the whole fixed point set.)

4.3 Analysis of involutions on S 6 with three-dimensional fixed point set

We recall the classical result:

Theorem 4.3 (P A Smith [1]) If an involution on Sn has fixed points, the fixed point
set is a Z2 –homology sphere.

Comparing with Skopenkov’s classification of embeddings, our first result is the fol-
lowing.

Proposition 4.4 If i W M 3! S6 is the embedding of a fixed point set of an involution,
then the Whitney invariant of the embedding vanishes: W .i/D 0.
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Proof Let � be such an involution, and let � be the reflection of S6 at the equator.
In [25] it is proved that W .� ı i/D�W .i/. But we have a commutative square

M

D

��

i // S6

�ı �
��

M
�ı i // S6

which shows that i and � ı i are isotopic. Thus W .i/D�W .i/, and since H1.M /

consists of odd torsion only, we have W .i/D 0.

Remark 4.5 Up to a multiplicative factor, which is invertible in the case of Z2 –
homology spheres, the Whitney invariant can also be defined in the following way:
Let Ci D S6 n i.M 3/. By Alexander duality, H 2.Ci/ŠZ and H 4.Ci/ŠH 2.M /Š

H1.M /. Then the invariant is given by the square of a generator of H 2.Ci/. In the
case of a fixed point set of a conjugation, the involution acts by multiplication with �1

on both H 2.Ci/ and H 4.Ci/. It follows that the square of a generator of H 2.Ci/

must be 0.

Recall that by the equivariant tubular neighborhood theorem, for every involution on S6

with fixed point set M we can write S6 DM �D3 [ V , such that the involution
is id��id on M �D3 , and free on V . The quotient W D V =� is a manifold with
fundamental group Z2 and boundary M �RP2 . The normal 2–type of W is B . The
inclusion of the boundary needs to induce an isomorphism �2.RP2/! �2.B/.

In order to define the bordism set �.B;M�RP2/
6

, we have to fix a normal B –structure
on M �RP2 . Since we are interested in a classification, we first consider all relevant
normal B –structures.

For any such structure, the homotopy class of maps M �RP2!Q! RP1 is the
nontrivial class in H 1.M �RP2IZ2/. We have to lift this nontrivial map M �RP2!

RP1 to Q. Any lift, together with a choice of a spin structure on �M�RP2 � f �.L/,
will then be a normal B –structure on M �RP2 . It is easy to find a lift f on RP2 (see
[20, page 47]), and composing any lift with the projection M �RP2! RP2 gives
a lift M �RP2 ! Q. Obstruction theory shows that pointed homotopy classes of
lifts on RP2 are classified by H 2.RP2;Z�/Š Z, and that every lift on RP2 extends
uniquely up to homotopy to a lift on M �RP2 (see [20, pages 50–52]).

But there is a further condition. Only two pointed homotopy classes of lifts induce an
isomorphism �2.RP2/!�2.Q/, and one obtains one from the other by precomposing
with the nontrivial pointed homotopy class of maps RP2!RP2 . However, this map is
freely homotopic to the identity of RP2 . Thus we get up to (free) homotopy a unique
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map f W RP2!Q. There are four spin structures on �M�RP2 � f �.L/, since spin
structures on unoriented (but orientable and spin) bundles over N are in bijection with
H 0.N IZ2/�H 1.N IZ2/. Thus there are four distinguished normal B –structures on
M �RP2 which can be used in the construction.

Theorem 4.6 For every distinguished normal B –structure on M�RP2 , every element
of the bordism set �.B;M�RP2/

6
contains (up to diffeomorphism relative to B and the

boundary) a unique manifold W which produces a conjugation on S6 .

Remark 4.7 Actually we also see that H3.W Iƒ/ consisting just of odd torsion is a
necessary and sufficient condition for this.

Proof The proof of existence is a slight modification of the proof of Theorem 3.10.
(For full details, see the proof of Theorem 1.3 in [19].) Also the uniqueness extends
from the proof of Theorem 3.10: If we take two manifolds W0;W1 with the same
normal B–structure on the boundary, and which both produce conjugations on S6 ,
and assume that there is a normal B–bordism between them, we have to modify the
argument from Section 3.3 slightly to show that Kreck’s surgery obstruction is 0: For
both i D 0; 1 the kernel of H3.@U Iƒ/!H3.Y n int.U /;Wi Iƒ/ is equal to the kernel
of H3.@U Iƒ/!H3.Y n int.U /Iƒ/=ftorsiong. So again the surgery obstruction lies
in zL7.ƒ;w D�1/D 0.

Corollary 4.8 Diffeomorphism classes of W relative to M �RP2 and to B (fixing
M �RP2! B ) producing conjugations on S6 are in bijection with �.B;M�RP2/

6
Š

Z2˚Z4 .

Diffeomorphism classes of W relative to M �RP2 and to B (where M �RP2! B

is not fixed) producing conjugations on S6 are in bijection with the disjoint union of
these four bordism sets.

Equivariant connected sum of two conjugations with fixed point sets M1 respec-
tively M2 corresponds to a map of bordism sets defined by gluing along part of the
boundary (or parametrized boundary connected sum): Choose disks D3 in M1;M2

centered at the points where the connected sum is performed. Then there is a map

�.B;M1�RP2/
6 ��.B;M2�RP2/

6 !�.B;.M1#M2/�RP2/
6

.W1;W2/ 7!W1[D3�RP2 W2

This is equivariant with respect to the action of the bordism group �B
6

. Hence it
equips �.B;S

3�RP2/
6

with a group structure, and we obtain an action of �.B;S
3�RP2/

6

on �.B;M�RP2/
6

for any M .
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To compare with the nonequivariant embedding results of Skopenkov, it suffices to
consider the image under the transfer map: Comparing with [25], we see that for the
embeddings with Whitney invariant 0, the Kreck invariant describes an action of Z on
Emb.M;S6/ which corresponds precisely to the action of

�
Spin
6
.K.Z; 2/; @D S3

�S2/=.0˚Z��Spin
6
.K.Z; 2///

�
Spin
6
.K.Z; 2/; @DM �S2/=.0˚Z��Spin

6
.K.Z; 2///:on the set

We will see in the next section how the quotients arise also in the equivariant setting.

4.4 Equivariant diffeomorphism classes as a quotient by group actions

Now we have to relate the set of relative diffeomorphism classes of the previous section
to the set EmbZ2

.M;S6/ of equivariant diffeomorphism classes of six-spheres with
involution whose fixed point set is identified with M .

Basically, we forget the B –structure, we construct the equivariant inclusion M�D3!X

from M�RP2!W , and we forget the tubular neighbourhood and the framing of the
normal bundle.

More precisely, we have the following sets of equivalence classes:

(1) The set T1 of diffeomorphism classes of manifolds W relative to M �RP2

and BO . An element is represented by M �RP2!W ! B , such that the first map
is the inclusion of the boundary. Two representatives W and W 0 are equivalent if there
is a diffeomorphism W !W 0 which commutes with the maps from M �RP2 and
to BO .

(2) The set T2 of diffeomorphism classes of manifolds W relative to M �RP2 . An
element is represented by M �RP2 ! W , which is the inclusion of the boundary.
Two representatives W and W 0 are equivalent if there is a diffeomorphism W !W 0

which commutes with the maps from M �RP2 .

(3) The set T3 of equivariant diffeomorphism classes of manifolds V relative to
M �S2 . An element is represented by .M �S2; .id;�id//! .V; �/, which is the
inclusion of the boundary, and where � is a free involution. Two representatives V

and V 0 are equivalent if there is a diffeomorphism .V; �/! .V 0; � 0/ which commutes
with the maps from M �S2 .

(4) The set T4 of equivariant diffeomorphism classes of closed manifolds X relative to
M�D3 . An element is represented by an equivariant embedding .M�D3; .id;�id//!
.X; �/, where � is free on the complement of the image. Two representatives X and
X 0 are equivalent if there is a diffeomorphism .X; �/! .X 0; � 0/ which commutes
with the maps from M �D3 .
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(5) The set EmbZ2
.M;S6/ of equivariant diffeomorphism classes of manifolds X

relative to M . An element is represented by an equivariant embedding .M; id/!
.X; �/, where � is free on the complement of the image. Two representatives X and
X 0 are equivalent if there is a diffeomorphism .X; �/! .X 0; � 0/ which commutes
with the maps from M .

On the set T1 , the automorphism group Aut.B/BO of fiber homotopy classes of fiber
homotopy self-equivalences of B acts by postcomposing M �RP2!B with B!B .

We saw that the group Aut.B/BO has four elements, and the action of the group on the
set of normal B –structures on a manifold f W M!B (ie spin structures on �M�f

�L)
is given by just changing the spin structure � into �;��; � Cf �t;�� Cf �t , where
t 2H 1.BIZ2/ is the generator.

Thus the group Aut.B/BO acts freely and transitively on the set of distinguished
normal B–structures on M �RP2 . In particular each orbit of the action on the set
in (1) contains a unique element from each of the four bordism sets.

By uniqueness of the Postnikov decomposition, forgetting the map to B is a bijection
from the quotient of T1 by Aut.B/BO to the set T2 . See also [13]. Thus the set T2 is
in bijection with �.B;M�RP2/

6
Š Z2˚Z4 .

The sets T2 , T3 and T4 are in bijective correspondence: One gets from M �D3!X

by restriction to M � S2 ! V D X n int.M �D3/ and from M � S2 ! V one
takes the quotient by the involution to obtain M �RP2 ! W D V =� . Vice-versa,
from M �RP2 ! W , take any nontrivial double covering V of W and any map
M �S2!V inducing the given M �RP2!W . The involution on V is the nontrivial
deck transformation. Up to equivalence, this does not depend on the choices made.
And from �W M � S2 ! V , obtain M �D3 ! X DM �D3 [� V . The smooth
structure on the latter depends on choices, but only up to equivalence.

On the sets T2 , T3 and T4 , we have an action of the group of bundle automorphisms
Map.M;O.3// of M�D3 : every bundle automorphism induces a self-diffeomorphism
of the boundary M �S2 which induces a self-diffeomorphism of M �RP2 , and we
precompose with these diffeomorphisms. A bundle automorphism f W M ! O.3/

corresponds to the diffeomorphism

�f W M �RP2
!M �RP2

.x;˙y/ 7! .x;˙f .x/ �y/

for y 2 S2 . So the bundle automorphism which is minus the identity on each fiber
acts trivially on M �RP2 , hence the action is trivial also on the other sets. (This
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corresponds in T4 to the fact that the embeddings

M �D3 i
�!X and M �D3 id��id

����!M �D3 i
�!X

are related by the equivariant diffeomorphism � W .X; �/ ! .X; �/.) Thus we may
restrict to orientation preserving bundle automorphisms.

The equivariant tubular neighbourhood of the fixed point set is unique up to isotopy
and bundle automorphisms. But isotopies of embeddings can be enlarged to isotopies
of the ambient space, so that they act trivially on the set of equivariant diffeomorphism
classes. It follows that the action of the group of bundle automorphisms descends to an
action of ŒM;SO.3/�, and that dividing out this action, we get the set EmbZ2

.M;S6/.

The part which is a little more complicated is to see the action of ZŠ �3.SO.3//Š
ŒM;SO.3/� 3 f on a bordism set �.B;M�RP2/

6
. We can also precompose with the

corresponding self-diffeomorphism �f of M �RP2 , but this changes the precise map
M � RP2 ! B . Still the normal B–structure is preserved: Up to homotopy, we
may assume that f W M ! SO.3/ is trivial on a whole disk D3 , so that the normal
B–structure on D3 �RP2 does not change. Spin structures on vector bundles over
M �RP2 are in bijection with spin structures on their restrictions to RP2 (using the
natural framing of the normal bundle), and the latter are invariant. Hence these bundle
automorphisms preserve the normal B –structure on M �RP2 , and we may consider
the action of f on the bordism group as given by gluing a mapping cylinder of f .

Lemma 4.9 Let B! BO be a fibration, let N be an .n� 1/–manifold with normal
B–structure, W1;W2;W3 be normal B–nullbordisms of N , let �W N ! N be a
diffeomorphism preserving the normal B–structure, let C� be the mapping cylinder
of � , let i0; i1W N ! C� be the two natural inclusions, and let T� be the mapping
torus of � . Then, in the bordism group �B

n , we have

.W1[i0
C� [i1

�W2/� .W1[idN
�W2/D T� DW3[i0

C� [i1
�W3:

Proof W � I can be considered as a bordism between the manifolds with boundary
@W � I and �W [W . The second equality in the statement follows from applying
this to W DW3 . Similarly, the first equality is obtained by applying this to W DW1

and W DW2 .

It follows that the action of f on the bordism set �.B;S
3�RP2/

6
is the same as taking the

disjoint sum with D4 �RP2[�f
D4 �RP2 . The latter is an RP2 –bundle on S4 , and

the corresponding double cover is a S2 –bundle over S4 which can be identified with
S2!CP3!HP1 . Thus the induced action on �. zB;S

3�S2/
6

Š Z2 is by a generator
for the first summand of � zB

6
Š Z2 .
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It follows that the set EmbZ2
.M;S6/ of orbits of the action on T4 is in bijection with

Z˚Z4 . In particular EmbZ2
.M;S6/ is a group which acts freely and transitively on

EmbZ2
.M;S6/ for all M .

Comparing with the nonequivariant classification of embeddings in S6 , forgetting the
involution defines a map EmbZ2

.M;S6/Š Z˚Z4! Emb.M;S6/Š Z˚H1.M /

which is equivariant with respect to the group homomorphism EmbZ2
.S3;S6/ Š

Z ˚ Z4 ! Emb.S3;S6/ Š Z given by .a; b/ 7! 2a. In particular the image of
EmbZ2

.M;S6/ is acted upon freely by 2Z� Z, and the map is 4–to–1.

For embeddings of Z2 –homology spheres we saw that the elements Œi W M ! S6� 2

Emb.M;S6/ with vanishing Whitney invariant are acted freely and transitively upon
by C 3

3
Š Z. The subset of isotopy classes of embeddings which are the fixed point

sets of conjugations are acted freely and transitively upon by 2Z� Z. There are up to
equivariant diffeomorphism relative to i exactly four such conjugations for every i .
This proves Theorem 1.3 and Theorem 1.4.

4.5 From embeddings to submanifolds – proof of Theorem 1.5

The more natural thing is to classify involutions without the additional identification
of the fixed point set with a fixed 3–manifold M . The invariant of the involution
should be its fixed point set, ie a submanifold of S6 . In order to get from embeddings
up to diffeomorphism to submanifolds up to diffeomorphism, it suffices to divide out
the action of the group of self-diffeomorphisms Diff.M /. Since isotopies extend to
ambient isotopies (this also holds in this equivariant case, since it suffices to extend a
vector field on the fixed point set to an equivariant vector field on the whole space),
and these give equivariant diffeomorphisms, the action of Diff.M / factors through the
mapping class group of M .

Since in our case, the map M � RP2 ! Q factors through RP2 , this map does
not change, so that we get the same normal B–structure. Then the action of a self-
diffeomorphism f W M !M on the bordism set �.B;M�RP2/

6
is by disjoint union with

the mapping torus Tf�id of f � idW M �RP2!RP2 . Now Tf�id D Tf �RP2 , and
the map to Q factors again through RP2 . Spin structures twisted by L on Tf �RP2

are products of a spin structure on M and a spin-structure twisted by L on RP2 .
Thus a spin-nullbordism of Tf gives a normal B –nullbordism of Tf�id . Recall that a
four-dimensional spin manifold is zero bordant if and only if its signature is zero, and
that the signature of a mapping torus is always zero. Hence the action of the mapping
class group of M on the bordism set is trivial. As a consequence, the mapping class
group of M acts trivially on EmbZ2

.M;S6/. This proves Theorem 1.5.
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