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Small dilatation mapping classes coming from the simplest
hyperbolic braid

ERIKO HIRONAKA

In this paper we study the small dilatation pseudo-Anosov mapping classes arising
from fibrations over the circle of a single 3–manifold, the mapping torus for the “sim-
plest hyperbolic braid”. The dilatations that occur include the minimum dilatations for
orientable pseudo-Anosov mapping classes for genus gD 2; 3; 4; 5 and 8 . We obtain
the “Lehmer example” in genus g D 5 , and Lanneau and Thiffeault’s conjectural
minima in the orientable case for all genus g satisfying g D 2 or 4 .mod 6/ . Our
examples show that the minimum dilatation for orientable mapping classes is strictly
greater than the minimum dilatation for non-orientable ones when g D 4; 6 or 8 . We
also prove that if ıg is the minimum dilatation of pseudo-Anosov mapping classes
on a genus g surface, then

lim sup
g!1

.ıg/
g
�

3C
p

5

2
:

57M50; 57M25

1 Introduction

Let Sg be a closed oriented surface of genus g � 1, and let Modg be the mapping
class group of isotopy classes of orientation preserving self-homeomorphisms of Sg .
A mapping class � 2Modg is called pseudo-Anosov if Sg admits a pair of �–invariant,
transverse measured, singular foliations on which � acts by stretching transverse to
one foliation by a constant �.�/ > 1 and contracting transverse to the other by �.�/�1 .
The constant �.�/ is called the (geometric) dilatation of � . A mapping class is pseudo-
Anosov if it is neither periodic nor reducible (see Thurston [26], Fathi, Laudenbach and
Poenaru [7], and Casson and Bleiler [3]). Denote by ModpA

g the set of pseudo-Anosov
mapping classes in Modg .

A pseudo-Anosov mapping class � is defined to be orientable if its invariant foliations
are orientable. We will denote the set of orientable pseudo-Anosov mapping classes by
ModpAC

g . Let �hom.�/ be the spectral radius of the action of � on the first homology
of S . Then

�hom.�/� �.�/;
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2042 Eriko Hironaka

with equality if and only if � is orientable (see, for example, Lanneau and Thiffeault [16],
and Koberda and Silberstein [15]).

The dilatations �.�/ satisfy reciprocal monic integer polynomials of degree bounded
from above by 6g� 6 (see Thurston [26]). If � is orientable the degree is bounded by
2g . For fixed g , it follows that �.�/ achieves a minimum ıg > 1 on ModpA

g (see also,
Arnoux and Yoccoz [2] and Ivanov [12]). Let

ModpAC
g �ModpA

g

be the subset of orientable pseudo-Anosov mapping classes, and let ıCg be the minimum
dilatation among elements of ModpAC

g .

In this paper, we address the following question (see Penner [23], McMullen [20] and
Farb [5]):

Question 1.1 What is the behavior of ıg and ıCg as functions of g?

So far, exact values of ıg have only been found for g � 2. For g D 1, the derivative
map determines an identification Mod1 D SL.2IZ/, and

ı1 D
3C
p

5

2
:

For a monic integer polynomial p.x/, the house of p.x/, written jpj, is the absolute
value of the largest root of p . For g D 2, Cho and Ham [4] show that ı2 is given byˇ̌

t4
� t3
� t2
� t C 1

ˇ̌
� 1:72208:

In the orientable case more is known due to recent results of Lanneau and Thiffeault [16].
Given .a; b/ 2 Z˚Z with 0< a< b , let

LT.a;b/.t/D t2b
� tb

�
1C ta

C t�a
�
C 1;

and let
�.a;b/ D jLT.a;b/.t/j:

Theorem 1.2 (Lanneau–Thiffeault [16, Theorem 1.2 and 1.3]) For gD 2; 3; 4; 6 and
8,

�.1;g/ � ı
C
g

with equality when g D 2; 3 or 4.
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For gD2, the value of ıC
2

was first determined by Zhirov [27]. For gD5, Lanneau and
Thiffeault show that ıC

5
equals Lehmer’s number (� 1:17628) [17]. This dilatation

is realized as a product of multi-twists along a curve arrangement dual to the E10

Coxeter graph (see Leininger [18] and Hironaka [10]), and as the monodromy of the
.�2; 3; 7/–pretzel knot (see Hironaka [9]). Lanneau and Thiffeault also find a lower
bound for ıC

7
. An example realizing this bound can be found in Aaber and Dunfield [1,

page 4] and Kin and Takasawa [14, Theorem 1.12].

Based on their results, Lanneau and Thiffeault ask:

Question 1.3 (Lanneau–Thiffeault [16, Question 6.1]) Is ıCg D�.1;g/ for all even g?

For convenience, we will call the affirmative answer to their question the LT-conjecture.

In our first result, we improve on the following previous best bounds for the minimum
dilatation of infinite families

.ıg/
g
� .ıCg /

g
� 2C

p
3

found in Minakawa [22], and Hironaka–Kin [11].

Theorem 1.4 If g D 0; 1; 3 or 4 .mod 6/, g � 3, then

ıg � �.3;gC1/;

and if g D 2 or 5 .mod 6/ and g � 5, then

ıg � �.1;gC1/:

For the orientable case, our results complement those of Lanneau and Thiffeault for
g D 2 or 4 .mod 6/.

Theorem 1.5 Let g � 3. Then

ıCg � �.3;gC1/ if g D 1 or 3 .mod 6/;

ıCg � �.1;g/ if g D 2 or 4 .mod 6/; and
ıCg � �.1;gC1/ if g D 5 .mod 6/:

Putting Theorem 1.5 together with Lanneau and Thiffeault’s lower bound for g D 8

gives:

Corollary 1.6 The minimal dilatation for orientable pseudo-Anosov mapping classes
for genus 8 is given by

ıC
8
D �.1;8/:
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The following is a table of the minimal dilatations that arise in this paper’s examples
for genus 1 through 12. All numbers in the table are truncated to 5 decimal places.
An asterisk � marks the numbers that have been verified to equal ıCg (resp., ıg ). For
singularity-type, we use the convention that .a1; : : : ; ak/ means that the singularities
of the invariant foliations have degrees a1; : : : ; ak (see Lanneau and Thiffeault’s
notation [16, page 3]). The singularity-types for our examples are derived from the
formula given in Corollary 3.6.

g orientable degrees of singularities unconstrained degrees of singularities
1 2:61803� no singularities 2:61803� no singularities
2 1:72208� .4/ 1:72208� .4/

3 1:40127� .2; 2; 2; 2/ 1.40127 (2,2,2,2)
4 1:28064� (10,2) 1.26123 (3,3,3,3)
5 1:17628� (16) 1.17628 (16)
6 – – 1.1617 (5,5,5,5)
7 1.13694 (6,6,6,6) 1.13694 (6,6,6,6)
8 1:12876� (22,6) 1.1135 (25,1,1,1)
9 1.1054 (8.8.8.8) 1.1054 (8,8,8,8)
10 1.10149 (28,8) 1.09466 (9,9,9,9)
11 1.08377 (34,2,2,2) 1.08377 (34,2,2,2)
12 – – 1.07874 (11,11,11,11)

Table 1: Minimal orientable and unconstrained dilatations coming from Msb

For gD2; 3; 4 and 5, our orientable examples agree both in dilatation and in singularity-
type with the previously known minimizing examples (see [16, Sections 3, 4 and 6]).
For g D 8, our example agrees with the singularity-type anticipated by Lanneau
and Thiffeault [16, (6.4)]. We prove that the known minimal dilatation examples for
g D 2; 3; 4; 5 and 8 arise as the monodromy of fibrations of a single 3–manifold Msb .
For g D 7, our minimal example gives a larger dilatation than ıC

7
. (The dilatation ıC

7

is realized by Kin and Takasawa [14], and by Aaber and Dunfield [1].)

Lanneau and Thiffeault show that ıC
5
� ıC

6
, and hence ıCg is not strictly monotone

decreasing (see Farb [5, Question 7.2]). Theorem 1.5 implies the following stronger
statement.

Proposition 1.7 If the LT-conjecture is true, then ıCg �ı
C

gC1
, whenever gD5 .mod 6/.
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Another consequence concerns the question of when the inequality ıg � ıCg is strict.
In [14] and [1] it is shown that ı5 < ıC5 . Table 1 shows the following.

Corollary 1.8 For g D 4; 6 and 8 we have

ıg < ı
C
g :

Theorem 1.4 and Proposition 4.3 imply the following.

Proposition 1.9 If the LT-conjecture is true, then for all even g � 4 we have

ıg < ı
C
g :

For large g , it is known that ıg and ıCg converges to 1. Furthermore,

log.ıg/�
1

g
and log.ıCg /�

1

g
(1)

(see Penner [23], McMullen [20], Minakawa [22] and Hironaka–Kin [11]). The LT-
conjecture together with (1) leads to the natural question:

Question 1.10 (See McMullen [20, page 551], Farb [5, Problem 7.1]) Do the se-
quences

.ıg/
g and .ıCg /

g

converge as g grows? What is the limit?

Theorem 1.4 and Theorem 1.5 imply the following.

Theorem 1.11

lim sup
g!1

.ıg/
g
�

3C
p

5

2
and lim sup

g¤0.mod 6/

.ıCg /
g
�

3C
p

5

2
:

This leads to the question:

Question 1.12 (Golden Mean Question) Do the sequences .ıg/g and .ıCg /
g satisfy

lim
g!1

.ıg/
g
D lim

g!1
.ıCg /

g
D

3C
p

5

2
D .golden mean/2 ?
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For any pseudo-Anosov mapping class � , let M.�/ be the mapping torus of � .
Conversely, given a compact hyperbolic 3–manifold with torus boundary components
M , let ˆ.M / be the collection of pseudo-Anosov mapping classes � such that
M D M.�/. Let † be the suspensions of singularities of the stable and unstable
foliations of � and let

M �.�/DM.�/ n†:

Theorem 1.13 (Farb, Leininger and Margalit [6, Theorem 1.1]) The set

TP D
˚
M �.�/ W � 2ModpA

g ; �.�/� P1=g
	

is finite for any P > 1.

The asymptotic equations (1) and Theorem 1.13 imply that

T D
˚
M �.�/ W � 2ModpA

g ; �.�/D ıg
	

and T C D
˚
M �.�/ W � 2ModpAC

g �.�/D ıCg
	

are finite.

This leads to the question:

Question 1.14 How large are the sets T and T C?

If the LT-conjecture is true, then our results imply that a single 3–manifold Msb would
realize ıCg for all g D 2; 4 .mod 6/. The manifold Msb is the complement of the 62

2

braid (see Rolfsen’s tables [24], and Figure 1). Another 3–manifold that produces
small dilatation mapping classes is the complement M�2;3;8 of the .�2; 3; 8/–pretzel
link in S3 . These have been studied independently by Kin and Takasawa [14] and
by Aaber and Dunfield [1]. For certain genera the mapping classes in ˆ

�
M�2;3;8

�
have smaller dilatation than the minima realized by Msb , but the asymptotic behavior
of the minimal dilatations for large genus, supports the affirmative to Question 1.12.
Both M�2;3;8 and Msb can be obtained from the magic manifold by Dehn fillings (see
Martelli and Petronio [19]). The pseudo-Anosov braid monodromies with smallest
known dilatations found in Hironaka–Kin [11] are also realized on the magic manifold
(see Kin–Takasawa [13]).

Section 2 contains a brief review of Thurston norms, fibered faces and the Teichmüller
polynomial. These are the basic tools used in this paper. In Section 3 we describe our
family of examples, and in Section 4 we prove Theorem 1.4 and Theorem 1.5.
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2 Background and tools

In this section we give a brief review of invariants and properties of fibrations of a
hyperbolic 3–manifold M , emphasizing the tools that we will use in the rest of the
paper. For more details see, for example, Thurston [25], Fathi–Laudenbach–Poenaru [7],
and McMullen [20; 21].

The theory of fibered faces of the Thurston norm ball and the existence of Teichmüller
polynomials provides a way to study in a single picture a collection of pseudo-Anosov
mapping classes defined on surfaces of different Euler characteristics and genera.
Assume M is a compact hyperbolic 3–manifold with boundary. Given an embedded
orientable surface S on M , let ��.S/ be the sum of j�.Si/j, where Si are the
connected components of S with negative Euler characteristic. The Thurston norm of
 2 H1.M IZ/ is defined to be

k kT Dmin��.S/;

where the minimum is taken over oriented embedded surfaces .S; @S/ � .M; @M /

such that the class of .S; @S/ in H2.M; @M IZ/ is the Poincaré dual of  .

Elements of H1.M IZ/ are canonically associated with epimorphisms

�1.M IZ/! Z:

We thus make the following natural identification:

H1.M IZ/D Hom.�1.M /;Z/D Hom.H1.M IZ/;Z/

We consider this as a lattice ƒM inside Rb1.M / , where b1.M / is the first Betti number
of M . If  2ƒM corresponds to a fibration

 W M ! S1

we say that  is fibered. In this case the Thurston norm of  is given by

k kT D ��.S/;

where S is homeomorphic to the fiber of  . Let

‰.M /D
˚
 W M ! S1

W  is a fibration
	
:

Algebraic & Geometric Topology, Volume 10 (2010)
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The monodromy � of  2‰.M / is the mapping class �W S ! S , such that M is the
mapping torus of � , and  is the natural projection to S1 . Since M is hyperbolic, �
is pseudo-Anosov.

Let B be the unit ball in Rb1.M / with respect to the extended Thurston norm.

Theorem 2.1 (Thurston [25]) The Thurston norm ball B is a convex polyhedron and
for any top-dimensional open face F of B , .F �RC/\‰.M / is either empty or equal
to .F �RC/\ƒM .

If .F �RC/\‰.M /¤∅, we say F is a fibered face of B . An element of ‰.M / is
called primitive if its fiber is connected. The elements of ƒM project to the rational
points on the boundary of B . If F is a fibered face, then each rational point x on
F corresponds to a unique primitive element  x 2 ‰.M /, namely the element of
.x �RC/\‰.M / that lies closest to the origin.

Theorem 2.2 (Fried [8, Theorem E]) There is a continuous function Y , homogeneous
of degree one, defined on the fibered cone in Rb1.M / , so that if  is fibered with
monodromy � , then

Y. /D
1

log.�.� //
:

The function Y is concave and tends to zero along the boundary of the cone.

Corollary 2.3 For each fibered face F ,

�. /D �.� /
k kT ;

extends to a continuous function on F �RC that is constant on rays through the origin,
and � achieves a unique minimum on F .

Let G be a group and  W G! Z a homomorphism. If f 2 ZŒG� is given by

f D
X
g2G

˛gg;

then the specialization of f at  is the polynomial in ZŒt � defined by

f  .t/D
X
g2G

˛gt .g/:
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Theorem 2.4 (McMullen [20]) Let F be a fibered face for a 3–manifold M , and let
G DH1.M IZ/. Then there is an element �F 2 ZŒG� such that for all integral lattice
points  in the fibered cone of F ,

�.� /D
ˇ̌
�
 
F

ˇ̌
:

The polynomial �F is called the Teichmüller polynomial of M for the fibered face F .

3 The mapping torus for the simplest hyperbolic braid

We now look at a particular 3–manifold, and study properties of its fibrations. This
example has also been studied by McMullen [20, Section 11], and the first part of this
section will be a review of what is found there.

K1

K2

K1 K2

Figure 1: Two diagrams for the link 62
2

Let M D S3 nN.L/, where L is the link drawn in two ways in Figure 1, and N.L/

is a tubular neighborhood. As seen from the left diagram in Figure 1, M fibers over
the circle with fiber a sphere with four boundary components S0;4 . Let  0W M ! S1

be the corresponding fibration, and let �0W S0;4! S0;4 be the monodromy. Then �0

is the mapping class associated to the braid written with respect to standard generators
as �1�

�1
2

(see Figure 2) and its dilatation is given by

�.�0/D
3C
p

5

2
:

The braid �1�
�1
2

has been called the “simplest hyperbolic braid” (see McMullen [20,
Section 11]).

Algebraic & Geometric Topology, Volume 10 (2010)
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S

D1 D2

Figure 2: Braid monodromy associated to �1�
�1
2

Let K1 and K2 be the components of L as drawn in Figure 1. Let �1 be the meridian
of K1 and �2 be the meridian of K2 . These determine coordinate functions for
H 1.M IZ/

.�1; �2/. /D . .�1/;  .�2// 2 Z�Z:

With respect to these coordinates, the Thurston norm and the Alexander norm both are
given by

k.a; b/k Dmaxf2jaj; 2jbjg:(2)

The lattice points ƒM in the fibered cone F �RC defined by  D .0; 1/ is the set

‰ D f.a; b/ 2 Z�Z W b > 0;�b < a< bg

as shown in Figure 3. For the rest of this paper, we will only be concerned with the
subset ‰prim �‰ consisting of elements of ‰ with connected fibers, i.e., the primitive
elements. Thus,

‰prim D f.a; b/ 2 Z�Z W b > 0;�b < a< b; gcd.a; b/D 1g:

The Alexander polynomial for L is given by

�L.x;u/D u2
�u.1�x�x�1/C 1(3)

(see Rolfsen’s table [24]), and the Teichmüller polynomial is given by

‚L.x;u/D u2
�u.1CxCx�1/C 1(4)

(see [20, page 47]).

Specialization to the element .a; b/ 2 H1.M IZ/ is the same as plugging .ta; tb/ into
the equations for the Alexander and Teichmüller polynomials (see Section 2).

Algebraic & Geometric Topology, Volume 10 (2010)
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u

Fibered cone

Thurston norm ball

.0; 1/

x

Figure 3: Fibered cone ‰ containing  D .0; 1/

Proposition 3.1 If .a; b/ 2 ‰prim , then the associated monodromy �.a;b/ is pseudo-
Anosov with geometric dilatation given by

�.a;b/ D
ˇ̌
‚L.t

a; tb/
ˇ̌
D
ˇ̌
t2b
� tb.1C ta

C t�a/C 1
ˇ̌
;

and homological dilatation given by

�hom
.a;b/ D

ˇ̌
�L.t

a; tb/
ˇ̌
D
ˇ̌
t2b
� tb.1� ta

� t�a/C 1
ˇ̌
:

Corollary 3.2 If .a; b/ 2‰prim , then the associated monodromy �.a;b/ is orientable if
a is odd and b is even.

Proof If a is odd and b is even, then the roots of ‚L.t
a; tb/ are the negatives of the

roots of �L.t
a; tb/. This implies that the geometric and homological dilatations of

�.a;b/ are equal, and therefore �.a;b/ is orientable.

Later in this section, we prove the converse of Corollary 3.2. First we consider how
the monodromy behaves near the boundary of S.a;b/ .

Proposition 3.3 Let �.a;b/W S.a;b/! S.a;b/ be the monodromy associated to .a; b/ 2
‰prim . The boundary components of S.a;b/ has gcd.3; a/ components coming from

Algebraic & Geometric Topology, Volume 10 (2010)
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T .K1/ and gcd.3; b/ coming from T .K2/. Thus, the total number of boundary
components of S.a;b/ is given by(

2 if gcd.3; ab/D 1

4 if gcd.3; ab/D 3

Proof The number of components in T .Ki/\ S.a;b/ is the index of the image of
�1.T .Ki// in Z under the composition of maps

�1.T .Ki//! �1.M /! Z

induced by inclusion and  .a;b/ .

For i D 1; 2, let `i be the longitude of Ki that is contractible in S3 nKi . Then, for
T .K1/ we have

 .a;b/.�1/D a and  .a;b/.`1/D 3 .a;b/.�2/D 3b;

so the number of boundary components contributed by T .K1/ is

gcd.a; 3b/D gcd.3; a/;

since we are assuming that gcd.a; b/D 1. The contribution of T .K2/ is computed
similarly.

Proposition 3.4 The genus of S.a;b/ , for .a; b/ 2‰prim is given by

g.S.a;b//D jbjC

�
1�

gcd.3; a/C gcd.3; b/
2

�
D

(
jbj if gcd.3; ab/D 1

jbj � 1 if gcd.3; ab/D 3:

Proof Equation (2) gives

2jbj D ��.S.a;b//D 2g� 2C gcd.3; a/C gcd.3; b/:

Proposition 3.5 Let .a; b/ 2‰prim , and let F be a �.a;b/–invariant foliation. Then F

(1) has no interior singularities,

(2) is .3b= gcd.3; a//–pronged at each of the gcd.3; a/ boundary components com-
ing from T .K1/, and

(3) is .b= gcd.3; b//–pronged at each of the gcd.3; b/ boundary components coming
from T .K2/.
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Figure 4: Train track for �W S ! S

Proof Let L be the lamination of M defined by suspending F over M considered as
the mapping torus of � . From the train track for � (Figure 4), one sees that each of the
boundary components of S are one-pronged, and that there are no other singularities.
It follows that L has no singularities outside a neighborhood of the Ki , and near each
Ki the leaves of L come together at a simple closed curve 
i 2 H1.T .Ki//. Write


i D ri�i C si`i

for i D 1; 2.

For .a; b/ 2 ‰prim , the number of intersections of 
i with S.a;b/ is the image of 
i

under the epimorphism
 .a;b/W �1.M /! Z

defining the fibration. Figure 4 shows that s1 D 1 and r2 D 1. Using the identities

s1 D 1; `1 D 3�2;

r2 D 1; `2 D 3�1;

we have

 .a;b/.
1/D r1 n.�1/C 3 n.�2/D r1aC 3b

 .a;b/.
2/D  n.�2/C 3s2 n.�1/D 3s2aC b:

Let m1 D gcd.3; a/ and m2 D gcd.3; b/. Then �.a;b/ is .r1aC 3b/=m1 –pronged at
m1 boundary components and .3s2aC b/=m2 –pronged at m2 boundary components.
We find r1 and s2 by looking at some particular examples.

In general, if f W †! † is pseudo-Anosov on a compact oriented surface † with
genus g and n1; : : : ; nk are the number of prongs at the singularities and boundary

Algebraic & Geometric Topology, Volume 10 (2010)
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components, then by the Poincaré-Hopf theorem

kX
iD1

.ni � 2/D 4g� 4:(5)

For .a; b/ D .1; n/, n not divisible by 3, we have two singularities with number of
prongs given by:

 n.
1/D r1C 3n

 n.
2/D 3s2C n:

Plugging into (5) gives
r1C 3s2 D 0:

The mapping class �.1;2/ is the unique genus 2 pseudo-Anosov mapping class with
dilatation equal to �2 (see Cho and Ham [4], and Lanneau and Thiffeault [16]) and
has one 6–pronged singularity (see Hironaka and Kin [11]). Thus, r1 D s2 D 0 and


1 D `1 D 3�2 and 
2 D �2:

The claim follows.

Corollary 3.6 The map �.a;b/ has singularities with number of prongs (or prong-type)
given by 8̂<̂

:
.3b; b/ if gcd.3; ab/D 1

.3b; b=3; b=3; b=3/ if gcd.3; b/D 3

.b; b; b; b/ if gcd.3; a/D 3

The degree of a singularity and the number of prongs differ by 2, yielding Table 1.

Corollary 3.7 If b is odd, then �.a;b/ is not orientable.

Corollary 3.8 For .a; b/ 2‰prim , �.a;b/ is 1–pronged at one or more boundary com-
ponents of S.a;b/ if and only if .a; b/ 2 f.0; 1/; .˙1; 3/; .˙2; 3/g.

Corollary 3.9 If .a; b/ 62 f.0; 1/; .˙1; 3/; .˙2; 3/g, then �.a;b/ extends to the closure
of S.a;b/ over the boundary components to a mapping class x�.a;b/ with the same
dilatation as �.a;b/ .

Table 2 describes the pairs .a; b/2‰prim that give rise to an orientable (or non-orientable)
genus g pseudo-Anosov mapping class. (Here g � 4.)
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g .mod 6/ orientable non-orientable
0 no example b D gC 1, aD 0.mod 3/

1 b D gC 1, aD 3.mod 6/ b D g, aD 1; 2.mod 3/

2 b D g, aD 1; 5.mod 6/ b D gC 1, aD 1; 2.mod 3/

3 b D gC 1, aD 3.mod 6/ no example
4 b D g, aD 1; 5.mod 6/ b D gC 1, aD 0.mod 3/

5 b D gC 1, aD 1; 5.mod 6/ b D g, aD 1; 2.mod 3/

Table 2: Fibrations of M according to genus

4 Minimal dilatations for the fibered face.

Let ‰prim be the primitive elements of the fibered cone discussed in Section 3. Let

dg Dmin
˚
�. / W  2‰prim; genus of  is g

	
; and

dCg Dmin
˚
�. / W  2‰prim; genus of  is g; the monodromy of  is orientable

	
:

In this section, we finish the proofs of Theorem 1.4 and Theorem 1.5 and their conse-
quences by determining dg and dCg .

Proposition 4.1 Let .a; b/ 2‰prim . Then

�.a;b/ < �.a0;b0/

if either

(1) jaj< ja0j and jbj D jb0j; or

(2) jaj D ja0j and jbj> jb0j.

Proof One compares the slopes of rays from the origin to .a; b/ and .a0; b0/. The
claim follows from Theorem 2.2.

Proposition 4.2 For b � 3, we have

�.1;b/ � �.3;bC1/;

with equality when b D 3.
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Proof Let �D �.3;bC1/ . We will show that LT.1;b/.�/ < 0. Multiplying by �2 and
using the fact that LT.3;bC1/.�/D 0 gives

�2LT.1;b/.�/D �
2LT.1;b/.�/�LT.3;bC1/.�/

D �bC4
��bC3

��bC2
C�b�2

C�2
� 1

D .�� 1/.�bC3
��b�2.�3

C�2
C�C 1/C�C 1/

D .�� 1/�b�2Œ�5
��3

��2
��� 1C�2�b.�C 1/�:

Thus, it is enough to show that for � > 1 and b > 3

�5
��3

��2
��� 1C�2�b.�C 1/ < 0:

Let C be the quantity on the left side of this inequality. Then

C < �5
��3

��2
D �2.�3

��� 1/:

One can check that the right hand side is negative for

1< � < 1:3:

By Proposition 4.1, � decreases as b increases. A check shows that

1< �.3;5/ < 1:3;

and hence C < 0 for b � 4. For b D 3, one checks directly that

�.1;3/ D �.3;4/:

Remark The mapping class �.1;3/ is defined on a genus 2 surface with four boundary
components, with prong-type (3,1,1,1) and is not orientable. The mapping class �.3;4/ is
defined on a genus 3 surface with prong-type (4,4,4,4) and is orientable. By Proposition
4.2 these two examples have the same dilatation.

Proposition 4.1 and Proposition 4.2 imply the following.

Proposition 4.3 The sequences �.1;b/ and �.3;b/ satisfy:

�.1;b/ > �.3;bC1/ > �.1;bC1/:

Table 3 describes the pairs .a; b/ 2 ‰prim that give rise to the minima dg and dCg
realized on M .
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g mod 6 �.�.a;b//D dCg , �.a;b/ orientable �.�.a;b//D dg

0 no example (3;gC 1)
1 (3;gC 1) (3;gC 1)
2 (1;g) (1;gC 1)
3 (3;gC 1) (3;gC 1)
4 (1;g) (3;gC 1)
5 (1;gC 1) (1;gC 1)

Table 3: Pairs .a; b/ giving smallest dilatations for � 2ˆ.Msb/

Proposition 4.4 For n� 2,

lim
n!1

.�.a;n//
n
D

3C
p

5

2
;

for any fixed a.

Proof The rays through the lattice points .a; n/ 2 ƒM on the fibered face of  
converge to the ray through .0; 1/.

Corollary 4.5 For the minimal dilatations dg and dCg that are realized on M , we
have

lim
g!1

.dg/
g
D

3C
p

5

2
; and lim

g!1

g¤0 .mod 6/

.dCg /
g
D

3C
p

5

2
:

Table 3 and Corollary 3.9 complete the proofs of Theorem 1.4 and Theorem 1.5. A
pictorial view of how the elements of ‰ giving the least dilatations for each genus up
to 12 lie on a fibered cone of M is shown in Figure 5.

The results of this paper and those in Aaber and Dunfield [1], Kin and Takasawa [14],
and Lanneau and Thiffeault [16] imply that for genus g D 2; 3; 4; 5; 7; and 8,

ıCg D �.a;b/

where

.a; b/D

8̂<̂
:
.1;g/ if g D 2; 3; 4 or 8

.1;gC 1/ if g D 5

.2;gC 2/ if g D 7

and
ıC

6
� �.1;6/:

These results suggest the following generalization to Question 1.3.
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Fibered cone

orientable

smaller dilatation nonorientable

Thurston norm ball

level sets of
Thurston norm

1

2
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11

3

4

6

7
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10

12

b

a

1

2

3

4
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Figure 5: Minima for dg and dCg in genus g D 1; : : : ; 12

Question 4.6 For every g � 2, is it true that

ıCg D �.a;b/

for some a; b with b � g � a� 1?
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