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The beta elements B, 2/, in the homotopy of spheres

KATSUMI SHIMOMURA

In [1], Miller, Ravenel and Wilson defined generalized beta elements in the E,—term
of the Adams—Novikov spectral sequence converging to the stable homotopy groups
of spheres, and in [4], Oka showed that the beta elements of the form B;,2,, for
positive integers ¢ and r survive to the homotopy of spheres at a prime p > 3, when
r<2p—2andr <2pift>1.Inthis paper, for p > 5, we expand the condition so
that B;p2/, fort > 1 and r < p? — 2 survives to the stable homotopy groups.

55Q45; 55Q10

1 Introduction

Let BP be the Brown—Peterson spectrum at a prime p, and consider the Adams—
Novikov spectral sequence converging to homotopy groups 7« (X) of a spectrum X
with E;—term E5"(X) = Ext . (BPx, BP(X)). Here,

BP. (BP)
BP, = Z(p)[vl, Vo, .. ] and BP*(BP) = BP*[Zl, t,.. ]
for v; € BP,i 5 and t; € BP,,i > (BP). In [1], Miller, Ravenel and Wilson defined
generalized Greek letter elements in the E;—term of the Adams—Novikov spectral
sequence converging to the homotopy groups m«(S°) of the sphere spectrum S° at
each prime p. For the beta elements, we consider the mod p Moore spectrum M and
finite spectra V,; for a > 0 defined by the cofiber sequences
1) S° A0 Ly ist and 9y & M 4y, 4 waaty
where p € my(S°) = Z(py, o € [M, M], is the Adams map, and
q=2p-—2.

Since the maps j and j, induce trivial homomorphisms on the BP,.—homologies, these
cofiber sequences yield short exact sequences

0— BPx > BP, 2> BP, /(p) —0,
(1.2) vf iax a
0 —BP. /(p) —BPx« /(p) = BP« /(p,v]) —0,
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2080 Katsumi Shimomura

where

(1.3) BP«(M) =BP« /(p) and BP«(V,) =BPs /(p,v]).
The beta elements of the E,—terms are now defined by

’B_;/a—b = Sa(vl; v;) c Ezl,(SP+S—a+b)q (M)’

(1'4) o o/ 2,(sp+s—a+b)q ; <0

for s>0and a>b>0,if v2v € Eg’(”"”H’)‘I(Va

homomorphisms associated to the short exact sequences (1.2). We abbreviate B s/1 10 ,g s
as usual. Now assume that the prime p is greater than three. Then L Smith [7] showed
that every B for s > 0 survives to a homotopy element B € T(sp+s—1)g—2(S 9), and
S Oka showed the following beta elements survive:

), where § and 8, are the connecting

Bip/r for ¢ > 0 and r < p with (¢,r) # (1, p) in [2; 3],
Bip2/r fort >0and r <2p—2in[2],
Bip2/r fort>1andr <2pin [4].

Letting W denote the cofiber of the beta element 1 € mpq—2(S 9), we have a cofiber
sequence

(15) spa=2 PLogo Ly W Gpg-t1,

Then E3"Y(W A V) = E3"(V,). In [6], we showed the following:

Theorem 1.6 [6, Theorem 1.4] Suppose that v§ € EY*PTDUW AV,). If the
element v3 survives to w«(W A'V,), then ,gs,/, fort >0 and 0 <r <a—1 survives
to T[*(SO) .

In this paper, we show the following theorem:

Theorem 1.7 Let p be a prime greater than five. Then the element vé’ ‘cE g (WAV,2)
is a permanent cycle.

We work at a prime p greater than three throughout the paper except for Lemma 3.8,
which requires us to exclude the case p = 5.

Corollzary 1.8 Let p be a prime greater than five. Then the beta elements Etpz /r €
Ej’(tp (P+1)=r)4(§0) for¢ >0 and 0 < r < p? — 1 are permanent cycles.
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2 Vanishing lines for Adams—Novikov E;—terms for W

Ravenel constructed a ring spectrum 7'(m) for each integer m > 0 characterized
by BP« (T (m)) = BP4[t1, ..., tm] [5]. He then showed the change of rings theorem
ES'(T(m)AU) = Exti:imH) (BP4,BP,(U)) foraspectrum U and the Hopf algebroid
I'(m + 1) = BP«(BP)/(#1,...,tm). It follows from the Cartan—Eilenberg spectral

sequence that

(2.1) E5'(T(1)AU) is a subquotient of BP+(U)®);5,. j>o(E(hi,j))®P(bi)).
where E(h;,j) and P(b; ;) denote an exterior and a polynomial algebras on the gener-
ators /; j and b;,j, which have bidegrees (1,2p/ (p' —1)) and (2,2p/ T1(p' —1)).
Ravenel further constructed a spectrum Xj, which is denoted by 7'(0)) in [5],

characterized by BPx—homology BPx (X)) = BP«[t;]/(tf k) as a BP«(BP)—comodule,
and a diagram

b . _ A
Xi_ ok Ep"_quk <k Epquk—l
22) Lkl / Lk{ %
Xi Epk“qu

in which each triangle is a cofiber sequence with inclusion ¢ or L;c . Hereafter, we abbre-
viate X7 to X . Since Ay and )»;C induce the zero homomorphisms on BP,—homologies,
applying the Adams—Novikov E;-terms Ej;(—) = EJ(— A M) to the diagram gives
rise to an exact couple (Df, E) with D = Ef(Xx_1), Df”l = Ejyr(X%) and
E{ = Ey;(Xy), which defines the small descent spectral sequence (see [5, 7.1.13]
with k = 00):

(2.3) SPET = E(hg—1) ® P(bg—1) ® Efy(Xi) = Ejy(Xs_1),

1,0,p*—1 2,0,p"
where hy_, € SPE 1 P71 and by—y € SPE 1 P are represented by the cocycles
k—1

tP" and
k—1 _ k—1
= S L) gt
p\k

k=1
respectively, of the cobar complex

Q* = Qgp*(Bp) BP« /(p)
for computing Ejy (S°) = E5(M). Note that

(2.4) 8.8k (x) = bg_yx for x € Ejy(Xg—1),
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where 8_k and g;{ denote the connecting homomorphisms corresponding to Ay and )\;C,
respectively. Besides,

(2.5) bo = PBi.

Hereafter, we abbreviate Ej;(S°) to Ejy.

Lemma 2.6 The homomorphism B E;,I_z’t_p 7 E;,’It is a monomorphism if

Exy"'(X)=0 and Ej;>'79(X)=0,
and an epimorphism if

Eyf(X)=0 and Ej;""9(X)=0.

Proof This follows immediately from the exact sequences

_ % s—1d—ag, = & X
Ex M () By TR S B R B (),
(2'7) §—2,t— K;* s§—2,t— gi s—1,t—q, v L/l* s—1,t—
Ey X)) — By TP — By (X)) —~ By T(X)
associated to the cofiber sequences in (2.2) for k = 1. O

For a non-negative integer s, we consider the integer 7(s) defined by

(s/2)p? if 5 is even,

_ 2 _
(2.8) t(s) = puls)p” +e@s)p = {((s —1)/2)p*+ p if sisodd,

where e(s) and u(s) are the integers given by

2.9 2e(s) =1—(=1)° and 2u(s) =s—=s(s).
Lemma 2.10 E;/(X)=0ift < t(s)q.

Proof By an iterate use of the small descent spectral sequences (2.3) for k, we see
that E]f,’[t(X) is a subquotient of E(hj:j > 0)® P(bj:j > 0)® Ey;(T(1)). For
each dimension s, minding (2.1), the (additive) generator with the smallest internal
degree is hi(s)bi‘(s) , whose bidegree is (s, 7(s)g). |
Let E If,’[t(U ) denote the Adams—Novikov E3—term E g’t(U A M). Since the Adams—
Novikov spectral sequence has the sparseness: E;,’[t = 0 unless ¢ | ¢, we see that
Eyi(S% =E;f .
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Lemma2.11 E ;,’[t (W) = 0 if one of the following conditions holds:

1) qgte@+1).
2) gltandt <(t(s—1)+1)q.
B3) gl@+1)andt+1<(z(s)+ 1)q.

Proof The cofiber sequence (1.5) induces the short exact sequence
0 — Eyf W E5f (W) E3f P9 s 0

of the E,—terms. Therefore, EX,’;(_W) =Ey ® gE]{,’,t_qu for an element g €
E](\),,’p q-1 (W). Since d»(g) = iw«(B1) in the Adams—Novikov spectral sequence, we
have the long exact sequence

2.12) ES P B ESH e Bt () s pri-pat) B ESFat

of the E3—terms. The sparseness of the spectral sequence implies that i, and jp,
in (2.12) are zero if ¢ t ¢ and ¢ } (¢ + 1), respectively. This immediately shows the
lemma under the first condition. If the second (resp. third) condition holds, then Lemma
2.10 and Lemma 2.6 imply that the left (resp. right) ﬂ_ 1 in (2.12) is an epimorphism
(resp. a monomorphism). |

Remark Lemma 2.10 and Lemma 2.6 hold by the same proof after replacing Epz(—)
and Ear(—) by E;(—) and E3(-).

We state here relations in the E;—term Ejy = EJ(M):

Lemma 2.13 In the Adams—Novikov E,—term EJ%/I’ vfbo =0 and vf_lbl =0.

Proof Note that d(t;) = —t; ® tf’ + vy yo in Q2 (see [5, 4.3.15]). Then vfyo
cobounds c¢g = —t1ng(vy) + vity — (1/2)vft12, since vy and #; are primitive, and
nr(wy) =vy + vltp — vptl mod (p) in BP4« BP (see [5, 4.3.21]).

Consider the cobar complex Q3 =Qx BP. /(p?). We define the element we Q! by

BP..(BP)
(2.14) d(vf)zvlzlp —vf tlp-l—pvlweﬂé.

It is well defined, since pv;: Q% — QF is a monomorphism. Noticing that d (#{ l+1) =
—py; and d(vy) = pt; in QF, send the equation (2.14) to 522 under the differential d,
and we obtain 0 = —pv1 y1+ pvp Yo + pvld(w) eQ2, Wthh is pulled back to Q2
under p1 to give d(w) = vf lyl —v”2 yo € Q2. It follows that vl yl cobounds

w—i—v” —3¢o. O
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3 Adams-Novikov E,—terms for X A M

Ravenel computed the small descent spectral sequences to determine £ ;’t(T (m)) in
[5, 7.2.6, 7.2.7] below internal degree 2(p™*3 — p2). In particular, below internal
degree (p® + p?)q,

Bl P E(T) =k« {v3br s = 0} & E(hz0) ® P(bao).

§=2
Here, E and P denote an exterior and a polynomial algebras over Z/ p,
(3.2) k(m)x = Z/ plvm]

and v3byo denotes the element corresponding to vs+1 / pvy in [5, 7.2.6]. We here read
off the following formulas on the differential of the cobar complex CJ = Q* BP,,<
from the Hazewinkel and the Quillen formulas (see [1, (1.1), (1.2), (1. 3)])

sy  do0=o d(vy) = ps,
d(v3) =vit] —vf"t+ pty — plo1d(v]),  d(12) =0.

By virtue of these, we see that the generators vy, /1,9 and vgbzo are represented by
vy, Iy and Y2 s = p_ld()_;Z,s) for

s+1 )
yzsz—z( ) W (P PP

i=1
respectively, in the cobar complex CJ° for computing E5(7'(1)).

Corollary 3.4 The Adams-Novikov E,—terms Ejf (T (1)) below internal degree
(p3 + p?)q are given as follows:

P Exi" (T(1)) = baok ()4lv3] @ Elhzo, ha1) ® P(bzo)

§=2

Here, the generators have the following bidegrees:
[v2] = (0.(p + Dg).  [vs] = (0.(p> + p +1)g).
|haol = (1, (p+1)g),  |hail = (1, (p> + p)g) and |byo| = 2, (p* + p)g).
Proof Consider the long exact sequence
ES'(T(1) P EY(T() = Eyf (1)) - ESTY(T () B BT (T (1)

associated to the first cofiber sequence in (1.1). Note that this is a sequence of Z[v{]—
modules.
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The s—th line Ej; (T (1)) for s > 2 is the direct sum of the image i % *(T(1)) = E*
of i, and the module isomorphic to the image of §. Here E* = h (s b“ (s)k(2) [v3]
for the integers of (2.9). Since vy, 5 = d(v”;H) € Q*( )BP* /(p) we see that 3, ¢
is a cocycle that represents v3/;1, and §(v3/21) = v3byo by definition. Therefore, the
image of § is byg E5~! = SH *(T(1)), which is 1somorphlc to hp E571. O

By (2.4) for k = 2, we have a homomorphism by: Eyy >~ v 1X)— Eyf(X). As
Lemma 2.6, the following lemma follows from the exact sequences

L2

Ey '™ M<Xz) Ei/(X)aEi;(Xz),

BP0 5 B ) B )

associated to the cofiber sequences in (2.2):

_ _n2
Lemma 3.5 The homomorphism by: Eyy > ~?"9(X)— Ejj (X) is an epimorphism if

Eyf(X2) =0 and Ej "'"?9(X,) =0.

For each integer s and ¢, we consider the set

3.6) S(s,t) = {(s,t), (s—1Lt—pqg),(s—1,t+(p—2)q), (s—2,t—2q)}

Corollary 3.7 If E]s\,’[l (X3) =0 for (s,t) € S(a, b), then (see (2.5))

2p 2EM - Igl E}c\l/l—Z,b+(p—2)q.

Proof Consider the diagram (2.2) for £ = 1 smashing with M . Then for any element
xeESP,
L4 (x) =b1x; € ERP(X)  for some x; € Ef(X)
by Lemma 3.5. Since
Ll*(vf_lx) = v1 b1x1 =0
by Lemma 2.13, there is an element x, € Ey, Lo+(p=2) (X) such that

§1(xp) = vp 'x.

a—2,b+(p—2)q

In the same manner, we have an element x3 € Ej, such that
81 (x3) =v{ " X2
It follows that
2p—2 -13 < T =
viP T x =0l 81 (x0) = 8187 (x3) = Bi(x3) o
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We now consider the integer

u=p3—|—p2—2p+2.
Lemma 3.8 If p > 5, then the E, —terms Ej,’[t(Xz) =0 for (s,t) € S(g+1, (u+1)q).

Proof By use of the small descent spectral sequences (2.3) for k > 2, we see that our
E3(X3) is a subquotient of the module A5 = Exf (T (1)) @ ho Eyp ' ~P4(T (1)) by
degree reason. It suffices to show that A*! = 0 for (s,7) € S(¢ + 1, (u + 1)q). The
integers ¢ fit in the table:

t/q Hu+1‘u+1—p‘u+p—l‘u—1
t/gmod (p+1)| 5 6 2 3
t/qg mod (p) 3 3 1 1

Corollary 3.4 implies that the module A%! is generated by elements of the form
v’2 ;h’;héoh’znl b3, with k,l/,m € {0, 1} and i, j,n > 0. The internal degree of it is ¢
times

(3.9) a=(p*+p+1)j+p*k+(p+Di+1+ pim+n)),

which is congruent to j +k modulo (p+1) and i + j +/ modulo (p). Since s > ¢g—1
and s =k +/+m+2n, wesee that n> p—3. Then a> (p?>+p+1)j+p>—2p*—-3p>
u+ p—1if j > 3. Tt follows that j + k < 3, and the first two cases in the above table
are excluded if p > 5. The last case is also excluded. Indeed, in this case, j = 2 and
k =1, which shows a > 3p2 +2p+2+p>—2p?>—3p>u—1.

In the third case, j + kK =2, and i + j +/ = rp + 1 for some r > 0. Then
a=2p>+(p+1)(rp+1+ p(m+n)), which equals u + p —1 if and only if r =0,
m=0and n = p—2, since n > p — 2 in this case. The solution m = 0 implies
k=Il=1andso j=1.Then 1 =i+ j+/ =i+ 2, which contradicts to i > 0. O

Remark If p =5, we have elements vzb40 and v2h20h21b20 in AT#FT1=5,

Lemma 3.10 Suppose that § € ,4_1(M) is detected by an element of Effl’(uﬂ)q.
Then iy, (a?P72E) =0 ¢ Tu+2p-2)g—1(W AM).

Proof Let x be an element that detects &. Then by Corollary 3.7 with Lemma 3.8,
we see that vfp_zx = B,y forsome y € Ef, Lutp=1lq , and so lW*(U x) =0¢€

Eq-"1 (ut2p= 1)q(W) The lemma now follows from Lemma 2.11. |
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4 The beta element 82,2 € 7,3, (W A M)

Consider the set

S'(s.t) ={(s +1,0).(s.0), (5,0 —q). (s — 1,1 — q)}.

Lemma 4.1 If E5'(X) =0 for (s,t) € S'(a,b), then B;: E;(,I_z’b_pq — E& isan
epimorphism.

Proof The condition on (s,¢) implies that E;\l/[’b X)=0= E]‘\z,,_l’b_q (X) by the
exact sequence associated to the first cofiber sequence (1.1). The lemma follows from
Lemma 2.6. |

In [5, 7.5.1], Ravenel determined E;’t(X ) for t < (p3 + p)q. In particular, he showed

ES'(X)=0 for(s,t)e S (g+2.(p* + g).

(42) s.t / 3
E;(X)=0 for(s,t) € S(q.(p” —p+2)q).

Remark A preferable gcondition for the second equation is (s, 1) € S'(¢q. (p3—p+1)q),
but by b2y, € EXPTTP (),

Proposition 4.3  The element iw By p2) € E;’Psq(W A M) for the beta element
Bp2/p2 € Ezl’p 9(M) survives to a homotopy element Bp2/p2 € Tp3g_1 (W AM).

Proof The E;—terms Eg+f,(p3+r)q(w) are all trivial by Lemma 2.113f0r r>1.
We also see that dg41 (i« (Bh2) p2) = imwdgr1(Bye; 2) = 0 € Eff > 09w
by Lemma 4.1 with the first equation of (4.2). |

Hereafter, for an element f € [X, Y];, we abbreviate f AZ €[ X AZ, Y AZ]; to f.
Since o?f; =0 € [M, M (p+2)q—2 [8], we have elements o € [W A M, M ], and
o* €[M,W AM](p+2)g—1 such that oy = a? = jyo*.

Lemmadd (@) [WAM W AMy,=2Z/p{a? Swda?t? syaPt28 0% jy},
where Sy = iw jw .
(b) [WAM, M](Z—p)q+1 = Z/p{ozsz}.
© [M,WAMy=17/p{e*in}.
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Proof The homotopy groups [M, M], for t < p?>q — 4 are given in [8, Th.I]. In
particular, the generators are given in the table:

‘ qu\2q+1\(p+2)q 2| (p+2)g-1
2| 0 | serts | artis sert?

We have the exact sequence
B W W B
[M. M, _pgsr = [M. M), 25 (M. W A M2 [M, M pgy1 — [M. M),

associated to the cofiber sequence (1.5). From this sequence and the previous table, we
obtain the following:

t | 2¢ |2q+1] (p+2)g—1
MW AMY || iwe? | 0 | igsa?*2 ipaPt2s 0"

In particular, we have part (c). The cofiber sequence (1.5) also induces the exact
sequence

*

(M, W AMlq41 i[M W AM] p+2)q la[WAM W A My,
B IMW A Mg PR MW A Mg
from which we obtain part (a).
Part (b) is the Spanier—Whitehead dual of (c). O
Lemma4.5 iwo + 0 ji = a? modulo 7/ p{8w8a? ™2, §yaPT28}. In particular,
iwo =a® + @jy for some @.
Proof By virtue of Lemma 4.4 (a), we put
iwo =a;a® + a8 sal T + azdwal 28 + a0t jw € [WAM, W A My,
for a; € Z/p. Send this to [W A M, M |- p)g+1 by jw to obtain
0= jwiwo =ayjwa’ +asjwo’™ jw = a1’ jw + ase’ jw

Since a2 Jw is a generator by Lemma 4.4 (b), we have a; = —ay4. Next send the above
equality to [M, W A My, by iy, and we have

iWcTiW = alaziW.

It follows that a; = 1 by Lemma 4.4 (¢). O
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Proposition 4.6 The element

0Bp2/p2 € T(pssa)g—1(M)
for /31’)2/1,2 € mp34—1(WAM) in Proposition 4.3 is detected by the beta element

El,(p3—2)q‘

Y
Br2ip2—2 € En

Proof The homomorphism on the E,—term induced from o iy = «? is multiplication
by vy, 80 0xfp2) p2 = Oxiw «Bp2) p2 = ViBp2 p2 = B2/ 25 inthe Ex—term. O

Lemma 4.7 O{SiW*(Gﬁll,z/pz) = 0(7,31’,2/1,2 ems(WAM).

Proof Since jW*(EI’,z/pz) =0 in the E,—term, the homotopy element Jw(Bp2)p2)
is detected by an element x of E](f’(p P4 for some > 0. If r = 1, then vix =
E 1 )_c/ for some x’ by Lemma 4.1 with the second equation of (4.2). Therefore, vfx =
v%ﬂlx/ =0 by Lemma g.13. It follows that, in any case, a3jW*(,81/,z/Pz) is detected
by an element of E](f’(p ~PF4 gor some r > 1. Then iW*(a3jW*(,31/;2/P2)) =0 by
Lemma 2.11, and a3jW*(,B;,z/pz) = B1&’ for some homotopy element &’. Now, we

compute
@ iw (0B p2) = &' B2 + 0x (@ jw ik (Bp2yp2))
= 0{7/31/)2/1,2 + s (@?B1E) = ot7ﬂl/,2/p2
by Lemma 4.5 and Lemma 2.13. O

Lemma 4.8 aPZ,BI/,z/Pz =0€m(piqpryg1 (WAM).

Proof Oka[2] constructed the beta element 8,2/, ,_» € Tug—1 (M) such that a?P=2x
B72/2p—2 = 0 in homotopy, thich is detected by v —2P+2ﬂ1/72/p2 in the E,—term.
Consider an element & = o” _21’0,81/,2/1,2 —Bp2/2p—2 € Tug—1(M). Then it goes to
zero in the E,—term, and is detected by an element of ELd T gor 1 > 0. 1f
r>1, ig(§) is zero by Lemma 2.11. If r = 1, then it satisfies the condition of
Lemma 3.10, and so «>?~2ip . (§) = 0. Therefore, by Lemma 4.7,

2 2_»9, —9.
a? B2 e = a? i (0B 2) = PP i (& + By pn) = 0. m

Proof of Theorem 1.7 Consider the second cofiber sequence (1.1) for a = p?. Then,
by Lemma 4.8, we have an element v € Tx W A V,2) such that (jpz)*(vg = ,81’,2/1,2.
As v is detected by an element of Eg’(p to )q(W AVp2), we see v = v]” by degree
reasons. |
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