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The beta elements B,,:,, in the homotopy of spheres

KATSUMI SHIMOMURA

In [1], Miller, Ravenel and Wilson defined generalized beta elements in the E,—term
of the Adams—Novikov spectral sequence converging to the stable homotopy groups
of spheres, and in [4], Oka showed that the beta elements of the form B2/, for
positive integers ¢ and r survive to the homotopy of spheres at a prime p > 3, when
r<2p—2andr <2pift>1.Inthis paper, for p > 5, we expand the condition so
that B,,2/, for > 1 and r < p? — 2 survives to the stable homotopy groups.

55Q45; 55Q10

1 Introduction

Let BP be the Brown—Peterson spectrum at a prime p, and consider the Adams—
Novikov spectral sequence converging to homotopy groups 74 (X) of a spectrum X
with E,—term E;’I(X) = Ext®’ (BP«,BP.(X)). Here,

BP.(BP)
BP, = Z(p)[vl, Va,...] and BP«(BP) =BPy[t1,1,...]
for v; € BP2,i 5 and ; € BP2,i »>(BP). In [1], Miller, Ravenel and Wilson defined
generalized Greek letter elements in the E,—term of the Adams—Novikov spectral
sequence converging to the homotopy groups 74 (S°) of the sphere spectrum S at
each prime p. For the beta elements, we consider the mod p Moore spectrum M and
finite spectra V, for a > 0 defined by the cofiber sequences
a1 S° A S0y st and mM Y om sy, 4 saattyy
where p € 79(S°) = Z(py, o € [M, M], is the Adams map, and
q=2p—2.

Since the maps j and j, induce trivial homomorphisms on the BP,—homologies, these
cofiber sequences yield short exact sequences

0—BP, > BP, 15 BP, /(p) —0,
(12) vi iax
0—BPy /(p) —BPx« /(p) — BPx /(P»Uf) —0,
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where
1.3) BP«(M)=BP« /(p) and BP«(V,) =BP«/(p,v]).
The beta elements of the E,—terms are now defined by

2 1,(sp+s—a+b
Bija-p = balofu) € By 7T,

1.4 2 27 2,(sp+s—a+b)q , 0
Bsja—b =8By 4_p) € E, (%)

fors>0and a>b=>0,if vag € Eg’(sPJer)q(Va), where § and &, are the connecting
homomorphisms associated to the short exact sequences (1.2). We abbreviate E s/1to B s
as usual. Now assume that the prime p is greater than three. Then L Smith [7] showed
that every By for s > 0 survives to a homotopy element B € T (sp+s—1)g—2 (59), and
S Oka showed the following beta elements survive:

Bip/r fort > 0and r < p with (¢,7) # (1, p) in [2; 3],
Bip2/r fort >0and r <2p—2in[2],

Bip2/r  fort>1landr <2pin[4].

Letting W denote the cofiber of the beta element 81 € m,5_2(S 9), we have a cofiber
sequence

(15) spa=2 PL g0 Dy I gpa-1.
Then E;’tq(W AVy) = E;’tq(Va). In [6], we showed the following:
Theorem 1.6 [6, Theorem 1.4] Suppose that v§ € ES*PTDI(W AV,). If the

element vj survives to wx(W A'V,), then ,B_S,/, fort >0 and 0 <r <a—1 survives
to m4(S9).

In this paper, we show the following theorem:

Theorem 1.7 Let p be a prime greater than five. Then the element v} ‘cE g (WAVy2)
is a permanent cycle.

We work at a prime p greater than three throughout the paper except for Lemma 3.8,
which requires us to exclude the case p = 5.

Corollary 1.8 Let p be a prime greater than five. Then the beta elements E,},z /r €

2 _
E;’(tp (p+1) r)q(SO) fort >0 and 0 <r < p? — 1 are permanent cycles.
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2 Vanishing lines for Adams—-Novikov E;—terms for W

Ravenel constructed a ring spectrum 7'(m) for each integer m > 0 characterized
by BP« (T (m)) = BP*[Zl, ..., tm] [5]. He then showed the change of rings theorem
ES T (m)AU) = ExtF(m+1) (BP,, BP.(U)) for aspectrum U and the Hopf algebroid
I‘(m + 1) = BP«(BP)/(¢1,...,tm). It follows from the Cartan—Eilenberg spectral
sequence that

(2.1) E3"(T(1)AU) is a subquotient of BP«(U)®Q;55. j=o(E(hi,)®P(bi.})).

where E(h;,j) and P(b;,j) denote an exterior and a polynomial algebras on the gener-
ators /; j and b; j, which have bidegrees (1, 2pf(pt —1)) and (2,2p/t1(p' —1)).
Ravenel further constructed a spectrum Xj, which is denoted by T'(0)) in [5],

characterized by BPx—homology BP«(X;) = BP[t1]/ (tp ) as a BP«(BP)—comodule,
and a diagram

A 1 — A
Xie— <Ok Zpl quk Epl‘qu |
@2) Lk\ /LkJ %
Xk Epk_quk

in which each triangle is a cofiber sequence with inclusion ¢z or L;{ . Hereafter, we abbre-
viate X7 to X . Since Ay and )\;C induce the zero homomorphisms on BP,—homologies,
applying the Adams-Novikov E,—terms Ej;(—) = EJ(—A M) to the diagram gives
rise to an exact couple (Df, E7) with D12s = Eyr(Xk—1), D2S+1 EM(Xk) and
E{ = Ej;(Xx), which defines the small descent spectral sequence (see [5, 7.1.13]
with £ = o0):

*
23) SPE = E(hk—l) ® P(bk—1) ® Epg(Xx) = Epg(Xg—1),
k— k

where Jj_; € SPE 20PN and by € SPE ?,0,1) ? are represented by the cocycles
tp and

Lty 1(p k—1 k—1

Vi—1 = Z—(k)f{{p ®Zl(p_k)p ,

k=1 P
respectively, of the cobar complex

Q" = Qpp, 5p) BP+ /(P)

for computing Ef,(S°) = E3(M). Note that
2.4 gzgk(x) =bg_1x for x € Eyy(Xi—1),
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where 8 and g;{ denote the connecting homomorphisms corresponding to Ax and A/,
respectively. Besides,

2.5) bo = PBi.

Hereafter, we abbreviate Ef;(S°) to Ef;.

2,0— ‘. o
Ey; '7P% — E37 is a monomorphism if

Lemma 2.6 The homomorphism ,8 1
Eyy"(X)=0 and Ej>'"%(X)=0,
and an epimorphism if

Eyf(X)=0 and Ej;"'79(X)=0.

Proof This follows immediately from the exact sequences

ES Y (0SS B0 B B B (X0,

2.7 o 3 oy
Ep 00 =5 By 2P = By V) = By T ()
associated to the cofiber sequences in (2.2) for k = 1. a

For a non-negative integer s, we consider the integer 7(s) defined by

(s/2) p* if 5 is even,

— 2 —
@8 rO=pOprer= {((s—1)/2)p2+p if 5 is odd,

where e(s) and p(s) are the integers given by

(2.9) 26e(s) =1—(=1)" and 2u(s) =s—e(s).
Lemma 2.10 E;;/ (X)=0ift <1(s)q.

Proof By an iterate use of the small descent spectral sequences (2.3) for k, we see
that E]ff(X) is a subquotient of E(hj:j > 0)® P(bj:j > 0)® Ey;(T(1)). For
each dimension s, minding (2.1), the (additive) generator with the smallest internal

8(S)bM(S)

degree is h whose bidegree is (s, T(s)q). a

Let E57 (U) denote the Adams-Novikov E3—term E3'(U A M). Since the Adams-—

Novikov spectral sequence has the sparseness: E }:,’It = 0 unless ¢ | ¢, we see that
Ey (S°) = Eyf.
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Lemma2.11 E X/’It (W) = 0 if one of the following conditions holds:

(1) qg4e@+1).
2 gltandt<(z(s—1)+1)q.
B3) gl@+1)andt+1<(z(s)+ 1)g.

Proof The cofiber sequence (1.5) induces the short exact sequence
OAESth* E]sWt(W)]W*ESt pq+1 ﬂ0

of the E,—terms. Therefore, EM W) = EM @ E” P4F1 for an element g e
Ey; 9-pq-— 1(W) Since dy(g) = zW*(,Bl) in the Adams—Novikov spectral sequence, we
have the long exact sequence

(2.12) Elf;z’t_l’q EL Ey/ IW*E (W)JW*ESI‘ pg+1 ﬂ1 ;;—2,t+1

of the E;—terms. The sparseness of the spectral sequence implies that iy, and jy
in (2.12) are zero if ¢ 4 ¢ and ¢ }t (t + 1), respectively. This immediately shows the
lemma under the first condition. If the second (resp. third) condition holds, then Lemma
2.10 and Lemma 2.6 imply that the left (resp. right) B 1 in (2.12) is an epimorphism
(resp. a monomorphism). O

Remark Lemma 2.10 and Lemma 2.6 hold by the same proof after replacing Eas (—)
and Epr(—) by E»(—) and E3(—).

We state here relations in the E;—term Ej, = EJ(M):

Lemma 2.13 In the Adams—Novikov E,—term EI%,[, vfbo =0 and vf_lbl =0.

Proof Note that d(f;) = —t; ® t{ + viyo in Q2 (see [5, 4.3.15]). Then v?yo
cobounds ¢g = —t1nr(vy) + vitr — (1/2)vft12, since v; and ¢ are primitive, and
nr(v2) = va +vitf —v{t; mod (p) in BP« BP (see [5, 4.3.21)).

Consider the cobar complex Q7= BP. /(p?). We define the element we Q! by

BP.. (BP)
(2.14) d(vy) = vf’tlp —vf tf + pvjw € Q).

It is well defined, since pv;: Q° — QF is a monomorphism. Noticing that d (1} l+1) =
—pyi and d(v1) = pty in QF, end the equation (2.14) to SZZ under the differential d,
and we obtain 0 = —pv1 1 —|— pvp Yo —21— puid(w) € Q2, Wthh is pulled back to Q2
under pv; to give d(w) = v1 lyl —vf 10 € Q2. It follows that v1 y1 cobounds
w +vf 2_36(). O
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3 Adams-Novikov E,-terms for X A M

Ravenel computed the small descent spectral sequences to determine £ ;’I(T(m)) in
[5, 7.2.6, 7.2.7] below internal degree 2(p™*3 — p?). In particular, below internal
degree (p* + p?)q,

Bl PETT1) =k« {v3br0:5 =0} ® E(hz0) ® P(bso)-

§=2
Here, E and P denote an exterior and a polynomial algebras over Z/ p,
(32 k(m)x = Z/ plvm]

and v3byo denotes the element corresponding to ﬁ;“ / pvy in [5,7.2.6]. We here read
off the following formulas on the differential of the cobar complex C;' = Q;(z) BP,
from the Hazewinkel and the Quillen formulas (see [1, (1.1), (1.2), (1.3)]):

d(vy) =0, d(v2) = pi,
(33) P p? -1 4
d(v3) =vity —vf tr+ pts—p~ vid(vy), d(t) =0.

By virtue of these, we see that the generators vy, /59 and vgbzo are represented by
Vi, 1y and yp o = p~ld(¥a,s) for

s+ 1 ; 2 ;
rae =30 (V1) o e
i=1
respectively, in the cobar complex CJ* for computing E5(T'(1)).

Corollary 3.4 The Adams—Novikov E,—terms Elf,’[t(T(l)) below internal degree
(p? + p?)q are given as follows:

P Exi’ (T(1) = baok(2)«[vs] ® E(h20, h21) ® P(b20)

§=>2

Here, the generators have the following bidegrees:
v2] = (0, (p+1)g),  |v3| = (0, (p* + p + 1)g),
lhaol = (1. (p+1)q),  |hat| = (1, (p> + p)g) and |bao| = 2, (p* + p)g).
Proof Consider the long exact sequence
ES'(T() L B (T (D) S By (1) S~ ESTH () B ESTY(T()

associated to the first cofiber sequence in (1.1). Note that this is a sequence of Z[v{]-
modules.
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The s—th line E]ff(T(l)) for s > 2 is the direct sum of the image iy E % *(T(1)) = E*
of i, and the module isomorphic to the image of §. Here E* = he(s b“ (S)k(2) [vs3]
for the integers of (2.9). Since vy y; s = d(v§+1) € Q*( )BP* /(p) we see that y, ¢
is a cocycle that represents v3/51, and 8(v3/21) = v3b2g by definition. Therefore, the
image of § is byg ES~! = s+1 *(T(1)), which is 1s0m0rphlc to hy E571. a

By (2.4) for k = 2, we have a homomorphism b;: Ejy; 20-p? 9X)— E]f,lt(X) As
Lemma 2.6, the following lemma follows from the exact sequences

2%

Ey '™ ”"(Xz) Eyf (X) 22 Eyf (Xa),

BP0 B B ) B )

associated to the cofiber sequences in (2.2):

Lemma 3.5 The homomorphism b : E]f,l_z’t_p K (X)—>E ]s\,’[t (X)) is an epimorphism if

Eyf(X2)=0 and Ej; "'"?9(X,) =0.

For each integer s and ¢, we consider the set

3.6) S(s,t) = {(s,t), (s—1,t—pqg),(s—1,t+(p—2)q), (s—2,t—2q)}

Corollary 3.7 If E]ff(Xz) =0 for (s,t) € S(a, b), then (see (2.5))

2p ZEM c El Ejt‘z/l—z,b-i-(p—z)q‘

Proof Consider the diagram (2.2) for £ = 1 smashing with M . Then for any element
X € E;\Z/I’b,
x(x)=b1x; € EX,[’b(X) for some x; € Ejp(X)
by Lemma 3.5. Since
Ll*(vf_lx) = v‘lu_lblxl =0
by Lemma 2.13, there is an element x, € Ea_l’b+(p_2)q (X) such that

§1(x) = vp 'x.

a—2,b+(p—2)q

In the same manner, we have an element x3 € E,, such that
8 (x3) = U "%,
It follows that
v = 007181 (xv2) = 818 (x3) = B (x3). o
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We now consider the integer

u=p3+p2—2p—|—2.
Lemma 3.8 If p > 5, then the E, —terms EJ{;,’(XZ) =0 for (s,t) e S(g+1,(u+1)q).

Proof By use of the small descent spectral sequences (2.3) for k > 2, we see that our
E3f(X>) is a subquotient of the module A = E5f (T(1)) ® hy Eyy ' ~P9(T (1)) by
degree reason. It suffices to show that A%" =0 for (s,7) € S(¢ + 1, (u + 1)q). The
integers ¢ fit in the table:

t/q Hu+1‘u+1—p‘u+p—l‘u—l
t/gmod (p+1)|| 5 6 2 3
t/q mod (p) 3 3 1 1

Corollary 3.4 implies that the module A%! is generated by elements of the form
vévéh’z‘hlzoh’z”lbgo with k,/,m € {0,1} and i, j,n > 0. The internal degree of it is ¢
times

(3.9) a=p*+p+1)j+p*k+(p+ 1) +1+ p(m+n)),

which is congruent to j +% modulo (p+1) and i + j +/ modulo (p). Since s >¢g—1
and s =k +/+m+2n, we see that n> p—3. Then a> (p>+p+1)j+p3>—2p*-3p>
u+ p—1if j >3, Itfollows that j +k < 3, and the first two cases in the above table
are excluded if p > 5. The last case is also excluded. Indeed, in this case, j = 2 and
k =1, which shows a > 3p2 +2p+2+4+ p> —2p*—3p>u—1.

In the third case, j +k =2, and i + j +/ = rp 4+ 1 for some r > 0. Then
a=2p>+(p+1)(rp+ 1+ p(m+n)), which equals u + p — 1 if and only if » =0,
m=20and n = p—2, since n > p —2 in this case. The solution m = 0 implies
k=Il=1andso j=1.Then 1 =i+ j +/ =i+ 2, which contradicts to i > 0. O

Remark If p =35, we have elements v%bgo and U%hzohz]b;o in AT#T1-3

Lemma 3.10 Suppose that § € m,4_1(M) is detected by an element of EX]LI’(”H)‘].
Then iy 4 (@??72E) =0 € w(yq2p—2)g—1 (W A M).

Proof Let x be an element that detects §. Then by Corollary 3.7 with Lemma 3.8,
we see that vfp_zx = B,y for some y € E;‘],[_l’(”ﬂ_l)q, and so iW*(vfp_zx) =0¢
E]‘\I,I+1’(u+2p_l)q(W). The lemma now follows from Lemma 2.11. a
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4 The beta element B,:, 2 € w3, (W A M)

Consider the set

S'(s,1) = {(s +1,1),(s,1), (s, t —¢q), (s — l,t—q)}.

Lemma 4.1 If ES"(X) = 0 for (s,1) € S'(a, b), then By: Efy >*774 — E&P is an
epimorphism.

Proof The condition on (s, ) implies that E°(X) = 0 = E&; "**79(X) by the
exact sequence associated to the first cofiber sequence (1.1). The lemma follows from
Lemma 2.6. a

In [5, 7.5.1], Ravenel determined E;’t(X ) for t < (p3 + p)q. In particular, he showed

E3'(X)=0 for (s.1) € S'(q +2.(p* + Dq),

(4'2) s,t ’ 3
E(X)=0 for(s,t) € S'(q.(p” — p+2)q).

Remark A preferable condltlon for the second equation is (s,1) € S'(q, (p*—p+1)q),
but h1b2 3y, € EXP P (x),

Proposmon 4, ; The element zW*(ﬂpz/pz) €eE, L.p q(W A M) for the beta element
,sz/pz €k, 1.p 9(M) survives to a homotopy e]ement ,sz/pz €mp3g1(WAM).

Proof The Ez;—terms Ej Erat2.o’ +r)q(W) are all trivial by Lemma 2.11 for r>1.
2 1

We also see that dq_,_l(zW*(,sz/pz)) =i« q+1(ﬁp2/p2) =0e EL> (PP (W)

by Lemma 4.1 with the first equation of (4.2). a

Hereafter, for an element f € [X, Y];, we abbreviate f AZ €[ X AZ, Y AZ]; to f.
Since a?B; =0 € [M, M](p+2)q—2 [8], we have elements o € [W A M, M],, and
o* €[M, W AM](p42)q—1 such that oiyy =a® = jyo*.

Lemmadd4 () [WAMW AM, )y =27/pla? swéaPt? Sya?™28 0% jw},
where 5W = lW]W
(0) [WAM, Mo-pyg+1=2/pla*jw}.
© [M.WAMhy=1/p{c*in}.
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Proof The homotopy groups [M, M]; for t < p>q — 4 are given in [8, Th.I]. In
particular, the generators are given in the table:

! HM‘24+1MP+2M—2\(p+mq—1
[M,M]t‘oﬂ‘ 0 ‘ SaPt2§ ‘ap+25,5ap+2

We have the exact sequence

B i i s B
[M, M- pgi2 — [M, M), "5 [M, W A M1 (M, M)y— pgi1 > [M, M,

associated to the cofiber sequence (1.5). From this sequence and the previous table, we
obtain the following:

t | 2¢ |2g+1] (p+2)q—1
H iwo? ‘ 0 ‘ iwdaPt2? igaPt2§ o*

In particular, we have part (c). The cofiber sequence (1.5) also induces the exact
sequence

(M, W AMlpg41 ﬁ[M, W AM](p42)q—1 J—*VK [(WAM,W AMlyy
LMW A Mg EE MW A M2y,
from which we obtain part (a).
Part (b) is the Spanier—Whitehead dual of (c). a
Lemma4.5 iyo +0o*ji = a? modulo Z/ p{Sw8aP ™2, §yaP 28} . In particular,
iwo = a? + @jy for some ¢.
Proof By virtue of Lemma 4.4 (a), we put
iwo = ara® + a8y 8aPt? + azdwal 2§ + a0 jy € [WAM, W A My,
for a; € Z/p. Send this to [W A M, M]2— p)q+1 by jw to obtain
0= jwiwo =aijwa’ +asjwo™ jw = a1a® jw + ase® jw

Since a2 Jw 1s a generator by Lemma 4.4 (b), we have a; = —a4. Next send the above
equality to [M, W A My, by iy, and we have

iwoiy = alo(ziW.

It follows that a; = 1 by Lemma 4.4 (c). O
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Proposition 4.6 The element

oBp2/p? € T(p3t2yg—1 (M)
for 131/12/172 € mp3g—1 (W AM) in Proposition 4.3 is detected by the beta element

El,(p3—2)q

Y
ﬂpz/pz_z S M .

Proof The homomorphism on the E,—term induced from oiy = «? is multiplication
2 2 i B _ 23 _z :
by v1, 80 0xfy2) 2 = Oxiw +Bp2/ 2 = ViBp2) p2 = B2/p2_5 inthe Ey—term. O

Lemma 4.7 asiW*(aﬂ;z/pz) = (x7,8;,2/pz ems(WAM).

Proof Since jW*(,Eéz/pz) =0 in the E,—term, the homotopy element jW*(ﬂéz/pz)
is detected by an element x of Eﬁ]’(p‘ ~PH4 for some r > 0. If r = 1, then VX =
B x' for some x’ by Lemma 4.1 with the second equation of (4.2). Therefore, vix =
v%ﬁlx’ = (0 by Lemma 32.13. It follows that, in any case, (x3jW*(ﬁ1’,z/pz) is detected
by an element of E{f’(p ~PH4 for some r > 1. Then iW*(oz3jW*(/31’,z/pz)) =0 by
Lemma 2.11, and a3jW*(,B;,z/pz) = B1&’ for some homotopy element &’. Now, we

compute
i (B2 p2) = &' B2y 2+ 0u (@ jw (B2 2))
= o’ B2y p2 + 0x(0?B18) =’ B2y 2
by Lemma 4.5 and Lemma 2.13. O

Lemma 4.8 cxl’z,Bj,z/pz =0€m(pispryg—1 (WAM).

Proof Oka [2] constructed the beta element 7,2/, ,_, € Tug—1 (M) such that a?P2x
B'52/2p—2 = 0 in homotopy, thich is detected by v? _21’+2,31’,z/p2 in the E,—term.
Consider an element & = a? _21’0/‘31’,2/1,2 —B%2/2p—2 € Tug—1(M). Then it goes to
zero in the E,—term, and is detected by an element of Ej/ FLEFG for 1 > 0. If
r > 1, i (&) is zero by Lemma 2.11. If » = 1, then it satisfies the condition of
Lemma 3.10, and so azP—ziW*(S) = 0. Therefore, by Lemma 4.7,

2 2_»5., 2.
a? B2 e =a’ 21W*(Uﬂ}2/p2) = a?P iy ( +By2/2p—2) = 0. u

Proof of Theorem 1.7 Consider the second cofiber sequence (1.1) for @ = p2. Then,
by Lemma 4.8, we have an element v € T« W A 'V,2) such that (jpz)*(vg = ,Bl’,z/pz.
As v is detected by an element of Eg’(p\ +p_)q(W AVp2), we see v = vé’ by degree
reasons. o
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