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The stable 4–genus of knots

CHARLES LIVINGSTON

We define the stable 4–genus of a knot K � S3 , gst.K/ , to be the limiting value
of g4.nK/=n , where g4 denotes the 4–genus and n goes to infinity. This induces a
seminorm on the rationalized knot concordance group, CQ D C˝Q . Basic properties
of gst are developed, as are examples focused on understanding the unit ball for gst

on specified subspaces of CQ . Subspaces spanned by torus knots are used to illustrate
the distinction between the smooth and topological categories. A final example is
given in which Casson–Gordon invariants are used to demonstrate that gst.K/ can be
a noninteger.
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1 Summary

In order to better understand the smooth 4–genus of knots K � S3 , denoted g4.K/,
we introduce and study here the stable 4–genus,

gst.K/D lim
n!1

g4.nK/=n:

As will be seen in Section 2, the existence of the limit and its basic properties follow
from the subadditivity of g4 as a function on the classical knot concordance group C ;
that is, g4.K # J /� g4.K/Cg4.J / for all K and J .

Neither classical knot invariants nor the invariants that arise from Heegaard Floer theory
as in Oszváth and Szabó [12] or Khovanov homology as Rasmussen [13] can be used to
demonstrate that gst.K/…Z for some K . One result of this paper is the construction of
a knot K for which gst.K/ is close to 1=2. Perhaps of greater interest is the exploration
of the new perspective on the 4–genus and knot concordance offered from the stable
viewpoint. In particular, a number of interesting and challenging new questions arise
naturally. For example, we note that finding a knot K with 0< gst.K/ < 1=2 is closely
related to the existence of torsion in C of order greater than 2. We will also consider
the distinction between the smooth and topological categories from the perspective of
the stable genus.
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2 Algebraic preliminaries

The existence of the limiting value and its basic properties are summarized in the
following general theorem.

Theorem 1 Let �W G! R�0 be a subadditive function on an abelian group G . Then:

(1) The limit �st.g/D limn!1 �.ng/=n exists for all g 2G .

(2) The function �stW G!R�0 is subadditive and multiplicative: �st.ng/D n�st.g/

for n 2 Z�0 . If �.g/D �.�g/ for all g , then �st.g/D �st.�g/ for all g .

(3) There is a factorization of �st through GQ D G ˝Q. That is, there is a mul-
tiplicative, subadditive function x�stW GQ ! R�0 such that �st D x�st ı i where
i W G!GQ is the map g! g˝ 1.

Proof The proof of (1) is a standard elementary exercise using the consequence of
subadditivity, �.ng/� n�.g/ for all g . In the appendix to this paper we summarize a
proof. The rest of the theorem follows easily.

A seminorm on a vector space is a nonnegative multiplicative and subadditive function.
Thus, x�st is a seminorm on GQ .

Notation We will usually drop the overbar notation; that is, we will denote both the
functions �st on G and x�st on GQ by �st and be clear as to what domain we are using.

In our applications we will want to bound gst using homomorphisms on the concordance
group, in particular signatures, the Ozsváth–Szabó invariant � , and the Khovanov-
Rasmussen invariant s . The needed algebraic observation is the following, the proof of
which the reader can readily provide.

Theorem 2 If � W G! R is a homomorphism and �.g/� j�.g/j for all g 2G , then:

(1) j� jW G! R�0 is subadditive.

(2) The stable function j� jst satisfies j� jst D j� j and is a seminorm on GQ .

(3) �st.x/� j�.x/j for all x 2GQ .
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A seminorm can be completely understood via its unit ball.

Definition 3 If � is a seminorm on a vector space V , then B� D fx 2 V j �.x/� 1g.

Theorem 4 Let � be a subadditive nonnegative function on an abelian group G and
let � be a real-valued homomorphism on G .

(1) B�st and Bj� j are convex subsets of GQ .

(2) If �.g/� j�.g/j for all g 2G , then B�st � Bj� j .

3 Elementary examples

We begin exploring the stable genus by computing its value for a few simple examples.

3.1 gst.41/D 0

The first example of a nonslice knot is the figure eight knot, 41 , as originally proved
by Fox and Milnor [5]. Since 41 is amphicheiral, 2.41/ is slice, meaning that
g4.2.41//D 0. It follows immediately that in taking limits, gst.41/D 0.

3.2 gst.31/D 1

The first knot of infinite order in C is the trefoil, 31 , as originally proved by Mura-
sugi [11]. Let �.K/ denote of the classical signature of K : the signature of V CV T

where V is a Seifert matrix for K and V T its transpose. Then we have the Mura-
sugi bound, g4.K/ �

1
2
j�.K/j. Hence Theorem 2 applies to show that gst.31/ �

1
2
j�.31/j D 1. On the other hand, g4.31/D 1, so gst.31/� 1.

3.3 gst.3T2 ;7� 2T2 ;11/D 2

As a final example that illustrates a simple application of Tristram–Levine signatures [9;
14], we consider the knot 3T2;7� 2T2;11 , where Tp;q denotes the .p; q/–torus knot.
We will now apply Theorem 2 to �t for appropriate t , where �t is the Tristram–Levine
signature [9; 14], defined by

�t .K/D signature..1� e2i� t /V C .1� e�2i� t /V T/:

(Formally, to achieve a concordance invariant one forms the two-sided limit � 0t .K/D
lim�!0

1
2
.�t��.K/C �tC�.K//: then � 0 is a homomorphism on the concordance

group for any specific value of t .) For the knot 3T2;7� 2T2;11 this signature function
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Figure 1: Signature function for 3T2;7� 2T2;11

is graphed in Figure 1. Since the function is symmetric about 1=2, we have graphed
the portion of the function on the interval Œ0; 1=2�.

If we let x be any number between 3=14 and 5=22, then the Tristram–Levine bound
g4.K/ �

1
2
j�x.K/j implies gst.K/ �

1
2
j�x.K/j. Thus gst.3T2;7� 2T2;11/� 2. On

the other hand, the reader should have no trouble finding four band moves in the
schematic diagram of 3T2;7�2T2;11 (Figure 2) that converts it into the torus knot T2;1

which is the unknot and in particular bounds a disk. The corresponding surface in the
4–ball constructed by performing these band moves and capping off with the disk is of
genus 2. Thus gst.3T2;7� 2T2;11/� 2.

7 7 7 �11 �11

Figure 2: Schematic diagram for 3T2;7� 2T2;11

4 Families of knots: xT2 ;7CyT2 ;11

A nice illustrative example is given by restricting to the subspace S of CQ spanned by
the torus knots T2;7 and T2;11 . We want to understand the unit ball of gst on S in terms
of the unit ball associated to the function Max0�t�1f�tg; for any particular example it is
more straightforward to directly analyze the signature function. In the present case, the
signature functions for T2;7 and T2;11 are zero near t D 0 and increase by two at each
of the jumps at the points f1=14; 3=14; 5=14g and f1=22; 3=22; 5=22; 7=22; 9=22g,
respectively. For the readers convenience, we order the union of these two sets:

f1=22; 1=14; 3=22; 3=14; 5=22; 7=22; 5=14; 9=22g:
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Evaluating the signature functions �t .xT2;7CyT2;11/ at values between each of these
numbers and for some t close to 1=2 yields the following set of inequalities:

gst.xT2;7CyT2;11/� jyj

gst.xT2;7CyT2;11/� jxCyj

gst.xT2;7CyT2;11/� jxC 2yj

gst.xT2;7CyT2;11/� j2xC 2yj

gst.xT2;7CyT2;11/� j2xC 3yj

gst.xT2;7CyT2;11/� j2xC 4yj

gst.xT2;7CyT2;11/� j3xC 4yj

gst.xT2;7CyT2;11/� j3xC 5yj:

Based on these, we find that the unit ball Bgst restricted to the span of T2;7 and T2;11

is contained in the set illustrated in Figure 3.

.�3=2; 1/

.�1; 1=2/

.�1=3; 0/

.0;�1=5/

.1=2;�1=2/

.3=2; 1/

.1;�1=2/

.1=3; 0/

.0; 1=5/

.�1=2; 1=2/

Figure 3: The unit ball for gst in the span of T2;7 and T2;11

By convexity, to show that this set is actually the unit ball for gst , we need to check
only the vertices. For instance, we want to see that gst.

3
2
T2;7 �T2;11/D 1. That is,

we need to show gst.3T2;7� 2T2;11/D 2. That calculation was done in the previous
section. The other vertices are handled similarly. (That is, one shows that g4.T2;7/D 3,
g4.T2;7�T2;11/D 2, g4.3T2;7�2T2;11/D 2 and g4.2T2;7�T2;11/D 2. The point
.0; 1=5/ is not a vertex so need not be considered.)
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Note Rick Litherland [10] has proved that for any pair of two stranded torus knots,
the 4–genus of a linear combination xT2;k C yT2;j is determined by its signature
function.

5 A smooth versus topological comparison: xT3;7CyT2 ;5

We now summarize a more complicated example of the computation of the gst unit
ball on the 2–dimensional subspace spanned by T3;7 and T2;5 . The added complexity
occurs because the signature function of T3;7 does not determine its smooth 4–genus;
this signature function has positive jumps at 1=21; 2=21; 4=21; 5=21 and 8=21 but a
negative jump at 10=21. Thus its maximum value is 5, and its value at t D 1=2 is 4.
On the other hand, the Ozsváth–Szabó � or Khovanov–Rasmussen invariant s both
take value 6, and thus determine the smooth 4–genus of T3;7 to be 6. (See [12; 13] for
details.)

Considering only the signature function, we can show that the unit gst ball is contained
within the entire shaded region. Using either � or s places additional bounds which
eliminate the two thin darker triangles. The innermost parallelogram represents points
that we know are in the unit ball.

.�1=2; 3=2/

.�1=2; 1/

.�1=3; 1=3/

.0; 1=2/

.1=2;�3=2/

.1=2;�1/

.1=3;�1=3/

.1=5; 0/

.1=6; 0/
.0; 1=2/

Figure 4: Bounds on the topological and smooth unit ball for gst on the span
hT3;7CyT2;5i
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Note Recent work has slightly enlarged the region which we know lies in the unit
gst ball for the span of these two knots, but most of the region remains unknown. We
know of no knots in this span for which the topological and smooth 4–genus differ.

6 A 4–dimensional example

As our final example related to finding a gst unit ball, we consider the span of the first
four knots that are of infinite order in C : 31 , 51 , 52 and 62 . If we identify the span of
these with Q4 via the coordinates x1.31/Cx2.51/Cx3.52/Cx4.62/, then the unit
ball determined by the maximum of the signature function turns out to be a polyhedron
formed as the convex hull of 24 points that come in antipodal pairs. We list one from
each pair:

(1) .2;�1; 0; 0/; .0; 1;�2; 0/; .0; 1; 0;�1/; .2;�1; 0;�1/; .0; 0; 1; 0/; .2; 0;�1; 0/

(2) .0; 1; 0;�2/

(3) .2; 1;�2;�2/; .2; 1;�2;�1/; .0; 1;�2; 1/; .0; 0; 1;�2/; .2; 0;�1;�2/.

Those in the first set of five have all been shown to have g4 D 1. For those in the last
set we have been unable to compute the genus or stable genus. For the second set,
.0; 1; 0;�2/, we have been unable to compute the 4–genus, but we know that twice
this knot has 4–genus 2, and hence its stable 4–genus is 1.

7 A knot K with gst.K / near 1=2. Gilmer, Casson–Gordon
bounds

We begin by presenting Gilmer’s result [7] bounding the 4–genus of a knot K in terms
of Casson–Gordon signature invariants [4].

Let K be a knot and let Md .K/ denote its d –fold branched cover, with d a prime
power. To each prime p and character �W H1.Md .K/;Z/! Zp , there is the Casson–
Gordon invariant �.K; �/ 2Q. By [7], this invariant is additive under connected sum
of knots and direct sums of characters. A special case of the main theorem of Gilmer [6]
states the following:

Theorem 5 If K is an algebraically slice knot for which H1.Md .K/;Z/Š Z2n
p and

g4.K/Dg , then there is a subspace H�Hom.H1.Md .K/;Z/;Zp/ŠH 1.Md .K/;Zp/

of dimension 1
2
.2n� 2.d � 1/g/ such that for all � 2H , j�.K; �/j � 2dg .
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It was observed by Gilmer and the author in [8] that H can be assumed to be invariant
under the deck transformation. Applying this and specializing to the case of d D 3,
we have:

Corollary 6 If K is an algebraically slice knot for which H1.M3.K/;Z/Š Z2n
p and

g4.K/D g , then there is a Z3 –invariant subspace H � Hom.H1.M3.K/;Z/;Zp/Š

H 1.M3.K/;Zp/ of dimension n� 2g such that for all � 2H , j�.K; �/j � 6g .

7.1 The example

Consider the knot illustrated in Figure 5, which we denote K.J1;J2/. This family of
knots has been used throughout the study of knot concordance; a detailed description
can be found, for instance, in [8], in which the details of the results we now summarize
can be found. First, the homology of the 3–fold branched cover is the direct sum
of cyclic groups of order seven: H1.M3.K.J1;J2///Š Z7˚Z7 . Furthermore, the
homology splits as the direct sum of E2 Š Z7 and E4 Š Z7 , the 2–eigenspace and
4–eigenspace of the deck transformation. (Note that 23 D 43 D 1 mod 7.)

Similarly, H�
1
.M3.K.J1;J2/// D Hom.H1.M3.K.J1;J2///;Zp/ splits as a direct

sum of eigenspaces, which we denote E�
2

and E�
4

. Using two eigenvectors as a basis
for H�

1
.M3.K.J1;J2/// and letting �a;b be the character corresponding to .a; b/ via

this identification, as proved in [8] we have:

Theorem 7 The invariants �.K.J1;J2/; �a;0/D �a=7.J1/C �2a=7.J1/C �4a=7.J1/

and �.K.J1;J2/; �0;b/D �b=7.J2/C�2b=7.J2/C�4b=7.J2/. In particular, it follows
that �.K.J1;J2/; �0;0/D 0.

J1 J2

Figure 5: The knot K.J1;J2/
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We can now demonstrate that particular knots in this family have gst.K.J1;J2//

near 1=2.

Theorem 8 For any � > 0, there is a knot J so that 1
2
.1��/� gst.K.J;�J //� 1=2.

Proof By the additivity of 3–genus, for any knot J we have g3.2K.J;�J // D 2.
On the evident Seifert surface for 2K.J;�J / there is a curve on the surface with
framing 0 representing the knot J #�J , which is slice. Thus, the Seifert surface
can be surgered in the 4–ball to give a surface of genus one bounded by 2K.J;�J /.
Therefore, g4.2K.J;�J //� 1 and gst.K.J;�J //� 1=2.

We now proceed to show that for each � there is some J for which gst.K.J;�J //�
1
2
.1� �/. For a given J , if this is inequality is false, then for some n > 0, we have

g4.nK.J;�J //< 1
2
.1��/n. (Since this holds for some n, it holds for all n sufficiently

large.) For this n, we have H1.M3.nK.J;�J ///D Z2n
7

. Applying Corollary 6 we
find the relevant subgroup H has dimension dim.H / > n�2.1

2
.1��/n/: Simplifying,

we have dim.H / > �n.

As H1.M3.K.J;�J /// splits as the direct sum of a 2–eigenspace and a 4–eigenspace,
the same is true for H1.M3.nK.J;�J ///. Thus, we also have an eigenspace splitting
of H�

1
.M3.nK.J;�J ///. The subspace H given by Corollary 6 is invariant under

the deck transformation, so it too must split as the sum of eigenspaces, H DH2˚H4 .
Given that dim.H / > �n, one of these must have dimension at least 1

2
�n. We will

assume dim.H2/ >
1
2
�n; the case dim.H4/ >

1
2
�n is similar.

We next use the fact, easily established using the Gauss–Jordan algorithm, that a
subspace of dimension a in Zb

p contains some vector with at least a nonzero coordinates.
Thus, H2 contains a vector h with at least 1

2
�n nonzero coordinates.

For the character �h given by h, by the additivity of Casson–Gordon invariants and
Theorem 7,

�.K; �h/D
X

�.K.J;�J /; �ai ;0/D
X

�ai=7.J /

where the sum has at least 1
2
�n elements and each ai D 1; 2; or 3. Now, letting M > 0

be a fixed constant assume that �ai=7.J / > M for ai D 1; 2; 3. Such a J is easily
constructed using the connected sum of .2; k/–torus knots. Then �.nK.J;�J /; �h/ >
1
2
�nM . Thus, we will have a contradiction to Corollary 6 if 1

2
�nM � 6.1

2
.1� �/n/.

Simplifying, we find that there is a contradiction if M � 6..1� �/=�/. In conclusion,
if �a=7 � 6..1� �/=�/ then gst.K/� .1� �/

1
2

.

In the case that we are working with the 4–eigenspace instead of the 2–eigenspace,
the same condition appears, since Corollary 6 concerns the absolute value of the
Casson–Gordon invariant, and switching eigenspaces simply interchanges �a=7.J /

with �a=7.�J /.
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7.2 Other noninteger examples

The 4–genus of the knot K.J;�nJ / illustrated in Figure 6 can be shown to satisfy
g4..nC1/K.J;�nJ //�n=.nC1/, in much the same way as the special case of nD 1,
K.J;�J /. Thus, gst.K.J;�nJ / � n=.nC 1/. The argument used above, based on
the 3–fold cover, cannot be successfully applied to find a lower bound. However, using
the 2–fold cover we have been able to prove a weaker result. Given n, there is a J so
that .n� 1/=n� gst.K.J;�nJ //� n=.nC 1/.

J �nJ

Figure 6: The knot K.J1;J2/

8 Questions

(1) Is gst a norm on CQ ? That is, if gst.K/D 0, does K represent torsion in C?

(2) Is there a knot K such that 0 < gst.K/ <
1
2

? This question relates to that of
finding torsion of order greater than 2 in C . For instance, if there is a knot K of order
three, then g4.3K/D 0. A simpler question than that of finding such a knot is to find
a knot satisfying g4.3K/D 1 but g4.2K/� 2.

(3) Is gst.K/ 2Q for all K? Presumably the examples constructed in the previous
section satisfy gst D n=.nC 1/ for some n, though this seems difficult to prove.

(4) Related to this previous question, is there a knot for which gst.K/¤ g4.nK/=n

for any n?

(5) Let fKig be finite set of knots and let S be the span of these knots in CQ . Is the
gst ball in S a finite sided polyhedron?

(6) For some pair of distinct nontrivial positive torus knots, Tp;q and Tp0;q0 , with
p; q;p0; q0 > 2, determine the unit gst ball on their span in CQ , in either the smooth or
topological category.
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8.1 Stable commutator length

If g 2 ŒG;G� is an element in the commutator subgroup of a group G , it can be
expressed as a product of commutators. The shortest such expression for g is called the
commutator length, cl.g/. The limit limn!1 cl.gn/=n is called the stable commutator
length. The notion was first studied by Bavard [1]. Although no formal connections
between this and the stable 4–genus are known at this time, the possibility of such
connections is provocative. We note that Calegari’s work [3] has revealed much of
the behavior of the stable commutator length for free groups. In particular, the stable
commutator length is always rational for free groups, though this is not true for all
groups by Zhuang [15]. Further details can be found in Calegari [2].

Appendix A Limits

We sketch the proof of Theorem 1, restated as follows.

Proposition 9 Let f W ZC! R�0 satisfy f .nm/ � nf .m/ for all n and m. Then
limn!1 f .n/=n exists.

Proof Let L be the greatest lower bound of ff .n/=ngn2ZC
. For any � there is an N

such that f .N /=N �LC�=2. Any n can be written as nD aNCb where 0� b<N .
Also, f .b/�BDmaxff .b/g0�b<N . By subadditivity we have f .n/�af .N /Cf .b/.
Dividing by n we have

f .n/

n
�

af .N /

aN C b
C

f .b/

aN C b
�
f .N /

N
C

B

aN
:

Thus, if n is chosen large enough that B=.aN / � �=2, (for instance, choose n �

2B=�CN ) we have f .n/=n�LC � .
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