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Topology of configuration space
of two particles on a graph, II

MICHAEL FARBER

ELIZABETH HANBURY

This paper continues the investigation of the configuration space of two distinct points
on a graph. We analyze the process of adding an additional edge to the graph and the
resulting changes in the topology of the configuration space. We introduce a linking
bilinear form on the homology group of the graph with values in the cokernel of
the intersection form (introduced in Part I of this work). For a large class of graphs,
which we call mature graphs, we give explicit expressions for the homology groups
of the configuration space. We show that under a simple condition, adding an edge to
a mature graph yields another mature graph.

55R80, 57M15

1 Introduction

Denote by F.X; n/ the space of configurations of n distinct points lying in a topo-
logical space X . The configuration spaces F.X; n/, first introduced by E Fadell and
L Neuwirth in [7], play an important role in modern topology and its applications. The
topology of F.X; n/ under various assumptions on X was studied by V I Arnol 0d [2],
Cohen [4], V A Vassiliev [20] and B Totaro [19].

Recently, important progress in the analysis of the topology of configuration spaces
of graphs was made in the work of A D Abrams [1] and D Farley and L Sabalka [12;
10; 11; 13]. The cohomology algebras of unordered configuration spaces of trees were
computed; the case of two point configuration spaces of trees was studied by the first
author [8].

In this paper, which continues [3], we study the special case F.�; 2/ where � is a finite
graph. The spaces F.�; 2/ appear in topological robotics as configuration spaces of two
objects moving along a one-dimensional network without collisions; see Ghrist [14],
Ghrist and Koditschek [15], and Farber [8; 9]. The space

F.X; 2/DX �X ��X
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is also known under the name of “deleted product”; the deleted products of graphs
were studied by A H Copeland [5], Copeland and C W Patty [6] and Patty [17; 18].
The reader should be warned that many statements in the Copeland and Patty papers
are incorrect.

In the first part of this work [3] the main emphasis was on planar graphs; in this paper
we focus predominantly on graphs which are nonplanar.

The symbol H�.X / denotes homology groups with integral coefficients.

Let � be a connected finite graph1. Consider the inclusion ˛ W F.�; 2/! � �� and
the induced homomorphism

˛�W H1.F.�; 2//!H1.� ��/:

We know that ˛� is an epimorphism if � is not homeomorphic to the circle; see
Proposition 1.3 from [3].

Definition 1 We say that a finite connected graph � which is not homeomorphic to
the interval Œ0; 1� is mature if the homomorphism ˛� is an isomorphism.

The term “mature” intends to emphasize that this property is common to all “large, well-
developed” graphs. The results presented in this paper justify this intuitive statement.

No planar graph can be mature; see [3, Corollary 7.2]. A mature graph cannot have
vertices of valence one (as follows from Theorem 7 below). The two Kuratowski
graphs K5 and K3;3 are mature as shown in [3, Section 4]. The property of a graph to
be mature is a topological property, ie it is invariant under subdivisions of the graph.

For a mature graph � one has

b1.F.�; 2//D 2b1.�/(1)

and the second Betti number b2.F.�; 2// equals

b1.�/
2
� b1.�/C 1�

X
v2V .�/

.�.v/� 1/.�.v/� 2/(2)

(see [3, Section 4]). Here V .�/ denotes the set of vertices in � and �.v/ is the valence
of a vertex v 2 V .�/. Furthermore, when � is mature, H1.F.�; 2// and H2.F.�; 2//

are free abelian; see Proposition 2. Thus, we completely describe the homology groups
of the configuration space F.�; 2/ for any mature graph � .

1In this paper the term graph means a 1–dimensional simplicial complex.
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The following theorem illustrates the results of this paper:

Theorem 1 Let � be mature and let y� D � [ e be obtained from � by adding an
edge connecting two vertices u; v 2 � . If the complement � �fu; vg is connected then
y� is mature as well.

Applying this theorem inductively, one may find examples of many mature graphs. In
particular we show that complete graphs Kn and bipartite graphs Kp;q are mature
assuming that n � 5 and p � 3, q � 3; this fact was also established by K Barnett
(unpublished) by a different method.

Comparing the results of [3] and the present paper we see that there is a trichotomy
reflecting properties of F.�; 2/ for various classes of graphs: (1) in the case of trees the
homomorphism ˛� WH1.F.�; 2//!H1.� ��/ has a large kernel; (2) if � is planar,
all its vertices have valence � 3 (and some other technical conditions are satisfied; see
Corollary 7.4 in [3]) then ˛� has kernel Z; (3) for mature graphs ˛� is an isomorphism.

The paper is organized as follows. In Section 2 we recall the intersection form introduced
in [3] and the formulae for the Betti numbers of F.�; 2/ given in terms of this form.
In Section 3 we look at how the topology of F.�; 2/ is changed under two elementary
operations on graphs. In Section 4 we introduce the linking homomorphisms and in
Sections 5 and 6 we use these to describe what happens to F.�; 2/ when we attach
an extra edge to � . In Section 7 we use these results to investigate necessary and
sufficient conditions for a graph to be mature and we give methods for constructing
mature graphs. In the final section, Section 8, we mention some open questions and
conjectures.

We would like to thank the referee for reading the paper very carefully and making
many useful comments.

2 The intersection form

In this section we recall a construction from [3].

Let � be a connected finite graph. For x 2 � the notation suppfxg stands for the
closure of the cell containing x . The subset D.�; 2/�F.�; 2/ is known as the discrete
configuration space; it consists of all pairs .x;y/2��� with suppfxg\suppfygD∅.
It is well-known that F.�; 2/ deformation retracts onto D.�; 2/.

Paper [3] introduced an intersection form

I D I� W H1.�/˝H1.�/!H2.N� ; @N�/(3)
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which helps to study the homology of the configuration space F.�; 2/. Here N�
denotes the neighborhood of the diagonal � � � � � defined as the set of all pairs
.x;y/ 2 � �� such that x and y admit arbitrarily small perturbations x0 and y0 with
suppfx0g\ suppfy0g 6D∅. This neighbourhood can also be described as

N� D � �� �D.�; 2/:

The boundary @N� � N� consists of all pairs .x;y/ 2 N� admitting an arbitrarily
small perturbation .x0;y0/ which does not lie in N� .

The intersection form (3) is defined as follows. Consider the injection

j W � ��! .� ��;D.�; 2//

and the induced homomorphism

j�W H2.� ��/!H2.� ��;D.�; 2//

on the two-dimensional homology. The group H2.� � �/ can be identified with
H1.�/˝H1.�/ (by the Künneth theorem) and the group H2.� ��;D.�; 2// can be
identified with H2.N� ; @N�/ (by excision). After these identifications j� turns into
the homomorphism (3).

The intersection form can also be described geometrically as follows. Let z D
P

niei

and z0 D
P

mj e0j be cycles in � , where ei and e0j are oriented edges of � . Then

I.z˝ z0/D
X

.i;j/2A

nimj .eie
0
j /;

where A is the set of pairs .i; j / such that ei \ e0j ¤∅. See [3, Section 3].

For � 6Š S1 , the intersection form enters the exact sequence

(4) 0!H2.F.�; 2//
˛�
!H1.�/˝H1.�/

I�
!H2.N� ; @N�/

@
!H1.F.�; 2//

˛�
!H1.� ��/! 0:

It is convenient to introduce a shorthand notation

Q� D coker I� :(5)

The sequence (4) gives a short exact sequence

0!Q� !H1.D.�; 2//
˛�
!H1.� ��/! 0;(6)

and thus Q� can be regarded as a subgroup of H1.F.�; 2//. Note that the invo-
lution � W F.�; 2/! F.�; 2/ given by �.x;y/ D .y;x/ acts on .N� ; @N�/ and for
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z; z0 2H1.�/ one has I�.z˝ z0/ D ���I�.z
0˝ z/; see [3, Lemma 2.2]. It follows

that (6) is an exact sequence of ZŒZ2�–modules with � acting on H1.�/˝H1.�/ by
z˝ z0 7! �z0˝ z .

The relevance of the intersection form I� to the problem of calculating the homology
of the configuration space F.�; 2/ can be illustrated by the following statement (see
[3, Proposition 2.3]):

Proposition 2 Let � be a finite connected graph which is not homeomorphic to the
circle. Then the group H2.F.�; 2// is isomorphic to the kernel of the intersection form

H2.F.�; 2//Š ker.I�/(7)

and the group H1.F.�; 2// is isomorphic to the direct sum

H1.F.�; 2//ŠQ� ˚H1.�/˚H1.�/:(8)

Corollary 3 For a graph � as in Proposition 2 one has

b1.F.�; 2//D 2b1.�/C rank Q� ;(9)

b2.F.�; 2//D b1.�/
2
� b1.�/C 1C rank Q� �†;(10)

†D
X

v2V .�/

.�.v/� 1/.�.v/� 2/:where

In the last formula V .�/ denotes the set of vertices of � and �.v/ denotes the number
of edges incident to v 2 V .�/ (ie the valence of v ). In the exceptional case, � Š S1 ,
it is easy to see that F.�; 2/' S1 so the first and second Betti numbers are 1 and 0

respectively.

Corollary 3 follows from Proposition 2 and from Corollary 2.5 in [3] giving explicitly
the rank of the group H2.N� ; @N�/. By Corollary 3, knowing the rank of the cokernel
of the intersection form I� is equivalent to knowing the Betti numbers of F.�; 2/.

It should be noted that in many examples the intersection form I� is epimorphic or
has a small cokernel; see [3]. In this respect we may mention Theorem 7.3 from [3]
which deals with the case of planar graphs with all vertices of valence � 3.

Corollary 4 A graph is mature (see Definition 1) if and only if Q� D 0, ie if the
intersection form I� is surjective.

This follows from the exact sequence (4).

Algebraic & Geometric Topology, Volume 10 (2010)



2208 Michael Farber and Elizabeth Hanbury

3 Enlarging graphs, I

Let � 0 � � be a subgraph. This means that the set of vertices of � 0 is contained
in the set of vertices of � and the set of edges of � 0 is a subset of the set of edges
of � . Denote by N� and N� 0 the corresponding subcomplexes of � �� and � 0 �� 0

correspondingly. Recall that N� can be described as the union of all squares ee0D e�e0

where e; e0 are (closed) edges of � with e \ e0 6D ∅. We see that N� 0 is naturally
contained in N� .

Similarly @N� is the union of all products veD v�e and evD e�v where e 2E.�/

and v 2 V .�/ such that v is connected by an edge to one of the ends of e . Clearly,
@N� 0 � @N� .

Proposition 5 For a subgraph � 0 � � , the inclusion

.N� 0 ; @N� 0/! .N� ; @N�/

induces a monomorphism

H2.N� 0 ; @N� 0/!H2.N� ; @N�/:

Proof Consider the cellular chain complex C�.N� ; @N�/. The group C2.N� ; @N�/ is
free abelian generated by ordered pairs ee0 where e; e0 are edges of � such that e\e0 6D

∅. Moreover, since N� has dimension 2, the homology group H2.N� ; @N�/ coincides
with the kernel of the boundary homomorphism @W C2.N� ; @N�/! C1.N� ; @N�/.

The chain complex C�.N� 0 ; @N� 0/ admits a similar description and therefore the
inclusion .N� 0 ; @N� 0/! .N� ; @N�/ induces a monomorphism of chain complexes
C�.N� 0 ; @N� 0/!C�.N� ; @N�/: Thus, the induced homomorphism H2.N� 0 ; @N� 0/!

H2.N� ; @N�/ is a monomorphism, as the restriction of the chain homomorphism
C2.N� 0 ; @N� 0/ ! C2.N� ; @N�/.

Corollary 6 For any two cycles z; z0 2 H1.�
0/ lying in a subgraph � 0 � � the

intersection I.z ˝ z0/ 2 H2.N� 0 ; @N� 0/ vanishes if and only if the intersection of
their images I.i�.z/˝ i�.z

0// 2H2.N� ; @N�/ vanishes. Here i denotes the inclusion
� 0! � .

We use Corollary 6 in the proof of the following theorem:

Theorem 7 (a) Let � be obtained from a connected graph � 0 by adding an edge e

such that � 0\e is a single point (see Figure 1 (a)). Then H2.F.�
0; 2//ŠH2.F.�; 2//

and the difference b1.F.�; 2//� b1.F.�
0; 2// equals 2�.v/� 2 where �.v/ denotes

the valence in � 0 of the vertex v which is incident to the newly attached edge e .
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v
e

� 0

(a)

� 0 � 00

e

(b)

Figure 1: Enlarging graphs, I

(b) Let � be obtained from a graph � 0 having two connected components � 0D� 0
1
t� 0

2

by adding an edge e connecting the components � 0
1

and � 0
2

(see Figure 1 (b)). Then

b2.F.�; 2//D b2.F.�
0
1; 2//C b2.F.�

0
2; 2//C 2b1.�

0
1/b1.�

0
2/:(11)

Proof The first part of statement (a) follows from Proposition 2, Corollary 6 and from
the following commutative diagram

H1.�
0/˝H1.�

0/
I�0

! H2.N� 0 ; @N� 0/

#Š #

H1.�/˝H1.�/
I�
! H2.N� ; @N�/

where the vertical map on the left is an isomorphism induced by the inclusion � 0! �

and the vertical map on the right is injective according to Proposition 5. The second
part of statement (a) is a consequence of Corollary 1.2 from [3].

To prove statement (b) one notes that H1.�
0/ŠH1.�

0
1
/˚H1.�

0
2
/ and therefore the

tensor product H1.�
0/˝H1.�

0/ is the direct sum of the four groups H1.�
0
1
/˝H1.�

0
1
/,

H1.�
0
2
/ ˝ H1.�

0
2
/, H1.�

0
1
/ ˝ H1.�

0
2
/ and H1.�

0
2
/ ˝ H1.�

0
1
/. The intersection

form I� 0 restricts as I� 0
1

and I� 0
2

on the first and the second summands correspondingly.
On the other hand the intersection form I� 0 vanishes on the two remaining summands.
Now, taking into account Proposition 2 we obtain Equation (10).

If we are only interested in computing the second Betti number of F.�; 2/ then, by
statement (a) of Theorem 7 applied inductively, we may always simplify our graph by
removing all “freely attached trees”.
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4 The linking homomorphism

Let � be a connected finite graph. Let u; v 2 V .�/ be two vertices of � which are not
connected by an edge. We denote by �0 the graph obtained from � by removing u

u v

�

�0

Figure 2: Linking

and v and all edges incident to u; v . Note that �0 is connected if and only if ��fu; vg
is connected. Our goal is to examine the changes in the homology of F.�; 2/ when
one attaches an edge connecting u and v .

We define a linking homomorphism

Lkv;uW H1.�0/!Q�(12)

where Q� is the cokernel of the intersection form (3). Consider a homology class
z 2H1.�0/ and the corresponding cycle c 2 C1.�0/. Since � is connected we may
find a chain

a 2 C1.�/ with @aD u� v:(13)

Then ac 2 C2.� ��/ is a chain satisfying

@.ac/D uc � vc:

Note that the boundary cycles uc and vc lie in the subcomplex

C�.D.�; 2//� C�.� ��/

and therefore ac determines a cycle of the relative chain complex

C�.� ��;D.�; 2//D C�.N� ; @N�/:

We consider the homology class of ac as an element of H2.N� ; @N�/ and denote by
Lkv;u.z/ its image in Q� .

Proposition 8 The linking homomorphism Lkv;u is well-defined, ie for z 2H1.�0/

the result Lkv;u.z/ 2Q� does not depend on the choice of the chain a; see (13).

Algebraic & Geometric Topology, Volume 10 (2010)
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Proof If a0 2 C1.�/ is another chain satisfying @a0 D u� v then

ac � a0c D .a� a0/c 2 C2.� ��/

is a cycle and its image under

H2.� ��/!H2.� ��;D.�; 2//ŠH2.N� ; @N�/

lies in the image of the intersection form (3) as it coincides with the intersection of
cycles a� a0 and c . This shows that the difference between the images of ac and a0c

under
C2.� ��/! C2.� ��;D.�; 2//Š C2.N� ; @N�/

lies in the image of I� . Hence the coset of ac in Q� is well-defined.

To compute the linking form explicitly one may represent elements of H2.N� ; @N�/

as integer linear combinations of symbols ee0 corresponding to ordered pairs of edges
of � with e\ e0 6D∅; see [3, Section 3].

Consider the graph shown on Figure 3. The group H2.N� ; @N�/ is a subgroup of

v

e1
e2

e3

e4

e5 u

Figure 3: Linking

C2.N� ; @N�/ and the latter group is free abelian with basis eiej where i; j D 1; : : : ; 5

with omission of the symbols e1e5 , e5e1 , e4e3 , e3e4 , e4e5 , e5e4 corresponding to
disjoint pairs of edges. If z2H1.�0/ is the homology class of the cycle cD e1Ce2Ce3

then Lkv;u.z/ is represented by the element .e4C e2C e5/.e1C e2C e3/D e4e1C

e4e2Ce2e1Ce2e2Ce2e3Ce5e2Ce5e32H2.N� ; @N�/ and one needs to take its coset
in Q� . In this example we have only one generator z 2H1.�/ and the intersection
I.z ˝ z/ equals .e1C e2C e3/.e1C e2C e3/. We see that in this case the linking
Lkv;u.z/ 2Q� is nontrivial.

Next we mention several simple properties of the linking homomorphism. Reversing
the order of the vertices .v;u/ 7! .u; v/ results in changing the sign of the linking
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homomorphism,

Lkv;u.z/D�Lku;v.z/;(14)

z 2H1.�0/. Besides,

Lkv;u.zC z0/D Lkv;u.z/CLkv;u.z0/(15)

where z; z0 2H1.�0/.

Lemma 9 Suppose that a homology class z 2 H1.�0/ can be realized by a cycle
c D

P
niei 2 C1.�0/, ni 2 Z, ni 6D 0 and there is a chain a D

P
mj e0j 2 C1.�/,

mj 2 Z, mj 6D 0 satisfying @aD u� v and ei \ e0j D ∅ for all i; j (in other words,
the chain a connecting v and u and the cycle c are disjoint). Then Lkv;u.z/D 0:

This follows directly from the definition of Lkv;u.z/.

Lemma 9 shows that Lkv;u.z/ measures “linking phenomenon“ (similar to the classical
linking of a pair of disjoint closed curves in R3 ) between the cycle z and the zero-
dimensional sphere S0 � � represented by the pair of vertices v;u.

Corollary 10 Suppose that the graph �0 is disconnected and there are at least two
connected components of �0 which are connected by edges with both vertices u and v .
Then Lkv;u.z/D 0 for any z 2H1.�0/.

The Corollary is illustrated by Figure 4.
u

v

�0

Figure 4: The case when �0 is disconnected

Proof Let �0 D
Fk

iD1 �
i
0

be the connected components of �0 . Then H1.�0/ DLk
iD1 H1.�

i
0
/. It is enough to show that Lkv;u.z/ D 0 for any z 2 H1.�

i
0
/. Using

our assumptions we see that given i D 1; : : : ; k we may connect u and v by a path
in � which avoids � i

0
. The result now follows from Lemma 9.
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Next we consider the embeddings

lv; luW �0!D.�; 2/;(16)

where for x 2 �0 one has

lv.x/D .v;x/; lu.x/D .u;x/:

Here the symbol l stands for “left”. The similar “right” embeddings ru; rvW �0 !

D.�; 2/ are given by

ru.x/D .x;u/; rv.x/D .x; v/:

The following result gives a relation between the induced homomorphisms .lu/� , .lv/�
on homology and the linking homomorphism.

Lemma 11 For a homology class z 2H1.�0/ one has

.lu/�.z/� .lv/�.z/D @.Lkv;u.z// 2 H1.D.�; 2//;(17)

where @ denotes the composition

H2.N� ; @N�/!H1.@N�/!H1.D.�; 2//(18)

of the boundary homomorphism and the homomorphism induced by the inclusion
@N� !D.�; 2/. Similarly, one has

.ru/�.z/� .rv/�.z/D ��.@.Lkv;u.z/// 2 H1.D.�; 2//;(19)

� W D.�; 2/!D.�; 2/where

is the involution acting by �.x;y/D .y;x/.

Note that the composition @ ıLkv;u (which appears in (17)) is well-defined as follows
from the exact sequence

� � � !H1.�/˝H1.�/
I�
!H2.N� ; @N�/

@
!H1.D.�; 2//! � � � ;

see [3, Formula (12)]. This exact sequence also implies that @W Q� !H1.D.�; 2// is
injective.

Proof of Lemma 11 The statement follows directly from our definitions. Indeed, given
z 2H1.�0/ and a cycle c 2 C1.�0/ representing it, consider a chain a 2 C1.�/ with
@aD u� v . Then the chain ac 2 C2.� ��;D.�; 2// is a cycle representing Lkv;u.z/.
The class @Lkv;u.z/2H1.D.�; 2// is represented by the cycle @.ac/Duc�vc which
equals .lu/�.z/� .lv/�.z/.

The second statement follows from the first since ru D � ı lu and rv D � ı lv .
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5 Enlarging graphs, II

In this section we use the linking homomorphism introduced in the previous section to
describe the homology of the configuration space of two particles on a graph in the
situation when a new edge is added to the graph.

Let � be a finite connected graph not homeomorphic to Œ0; 1� and let u; v 2 V .�/ be
two vertices which are not connected by an edge in � . The new graph y� is obtained
from � by adding an edge e connecting u and v ; see Figure 5. The inclusion �! y�
gives an embedding of the configuration spaces F.�; 2/!F.y�; 2/. Denote by �0 the
graph obtained from � by removing u, v and all edges emanating from u and v .

u ve

y� �

�0

Figure 5: Enlarging graphs, II

Theorem 12 In the notation introduced above, consider the inclusion i W F.�; 2/!

F.y�; 2/ and the involution �.x;y/D .y;x/ acting on the spaces F.�; 2/ and F.y�; 2/.
The homology groups H�.F.�; 2// and H�.F.y�; 2// are ZŒZ2�–modules via the
induced action �� .

(a) There exists a short exact sequence of ZŒZ2�–modules

0!H2.F.�; 2//
i�
!H2.F.y�; 2//!X ! 0(20)

where X is the subgroup of H1.�0/˚H1.�0/ consisting of elements z˚ z0 such that

Lkv;u.z/C ��.Lkv;u.z0//D 0 2Q� :

The involution � acts on X by �.z˚ z0/D z0˚ z .

(b) The relations between the one-dimensional homology of F.�; 2/ and F.y�; 2/ can
be described by an exact sequence

H1.�0/˚H1.�0/
F
!H1.F.�; 2//

i�
!H1.F.y�; 2//

k
!H0.�0/˚H0.�0/! 0

where F acts by the formula

(21) F.z˚ z0/D @� Lkv;u.z/C ��@� Lkv;u.z0/; z; z0 2H1.�0/:
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Proof We will deal with the discrete configuration spaces D.�; 2/ and D.y�; 2/ instead
of F.�; 2/ and F.y�; 2/. It will be convenient to denote D DD.�; 2/, yD DD.y�; 2/.
One has

yD DD[ e�0[�0e;(22)

where e�0 and �0e denote the cartesian products e��0; �0�e �D.y�; 2/: Note that
e�0\DD u�0[v�0 and similarly �0e\DD �0u[�0v . Besides, e�0\�0eD∅.
The involution � maps e�0 onto �0e and vice versa. Thus we obtain

Hi. yD;D/DHi..e; @e/��0/˚Hi.�0 � .e; @e//DHi�1.�0/˚Hi�1.�0/

and we obtain the following long exact sequence of ZŒZ2�–modules

0!H2.D/
i�
!H2. yD/

k
!H1.�0/˚H1.�0/

F
!H1.D/

i�
!H1. yD/

k
!H0.�0/˚H0.�0/! 0:

The homomorphism F acts as follows: for z; z0 2H1.�0/ one has

F.z˚ z0/D .lu�� lv�/.z/˚ .ru�� rv�/.z
0/;

where lu; lv; ru; rv are defined before Lemma 11. Applying Lemma 11 we obtain
Equation (21).

We can describe the homomorphism kW H1. yD/!H0.�0/˚H0.�0/ (which appears
in the proof above) explicitly, as follows. Given a vertex w 2 �0 consider the loop
˛wW S

1! yD of the following form. Represent S1 as the union of two arcs S1DA[B

and define ˛wjA as the path in D.y�; 2/ where the first point stays constantly at w and
the second point travels along the edge e from u to v . The restriction ˛wjB is a path
in D.�; 2/ which starts at .w; v/ and ends at .w;u/. The homomorphisms k sends
the homology class of the loop ˛w to 1w˚02H0.�0/˚H0.�0/ where 1w 2H0.�0/

denotes the class represented by the connected component of w .

Since homology classes of loops of type ˛w and their images under the involution �
generate the cokernel of i�W H1.D/!H1. yD/, this description fully defines k .

Corollary 13 Suppose that under the assumptions of Theorem 12 one knows that the
linking homomorphism Lkv;uW H1.�0/!Q� vanishes. Then one has the following
exact sequence of ZŒZ2�–modules

0!Hr .F.�; 2//
i�
!Hr .F.y�; 2//!Hr�1.�0/˚Hr�1.�0/! 0

where r D 1; 2 and the involution � acts on Hr�1.�0/˚Hr�1.�0/ by interchanging
the summands.
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6 Proof of Theorem 1

In this section we consider again the process of adding an edge to a graph and examine
its effect on the group Q� .

Theorem 14 Let � be a finite connected graph homeomorphic to neither Œ0; 1� nor S1 .
Let u; v be two vertices in � that are not joined by an edge and let y� be obtained
from � by adding an edge joining u and v . Then one has the exact sequence

0! .AC �A/!Q� !Qy� !G! 0;

where A�Q� denotes the image of the linking homomorphism

Lkv;uW H1.�0/!Q�

and G is a free abelian group of rank 2b0.�0/� 2. Here �0 is obtained from � by
removing u; v and all edges incident to these vertices.

Proof Consider the following commutative diagram:

0 0

# #

AC �A AC �A 0

# # #

0 ! Q� ! H1.F.�; 2//
˛�
! H1.� ��/ ! 0

#  # #

0 ! Qy� ! H1.F.y�; 2//
˛�
! H1.y� � y�/ ! 0

# # #

0 ! G ! H0.�0/˚H0.�0/
ˇ
! Z˚Z ! 0

# # #

0 0 0

The vertical exact sequence in the middle is given by statement (b) of Theorem 12. The
vertical exact sequence on the right is obvious: adding an edge adds a summand Z to
the first homology group of the graph. This gives the vertical exact sequence on the
left; in other words, the kernel of  is AC �A and the cokernel of  is a free abelian
group of rank 2b0.�0/� 2, as claimed.

Note that the condition that there is no edge joining u and v can be achieved by
subdividing any edges between u and v , if necessary.
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Corollary 15 Let y� D � [ e be obtained from a finite connected graph � (which is
homeomorphic to neither Œ0; 1� nor S1 ) by adding an edge e attached to two vertices
fu; vg such that there is no edge between u and v in � and � �fu; vg is connected. If
Q� D 0 then Qy� D 0.

Corollary 15 is equivalent to Theorem 1.

It would be interesting to characterize all graphs which can be obtained from the
Kuratowski graphs K5 and K3;3 by subdivision and by subsequent adding of edges
satisfying the condition of Corollary 15.

u vf1

f2

f3

�

Figure 6: Graph � with Q� D Z

Example 1 Consider the graph � shown in Figure 6. It is planar and satisfies the
conditions of Theorem 7.3 from [3]; thus by Corollary 7.4 from [3] one has Q� D Z.
Removing the vertices u and v does not disconnect the graph. Let y� be the result of
adding an edge e connecting u and v . Clearly one has y� DK5 and therefore Qy� D 0.
Applying Theorem 14 we see that the subgroup AC�A is isomorphic to Z in this case,
ie AD �AD Z. One also sees that u and v are linked with respect to the triangular
cycle in � and the equation AD �AD Z can be confirmed by a direct calculation.

At this point, we may compare Theorem 14 (in conjunction with Equation (10)) with
Theorem 4.2 of [18]. In [18], the author considers attaching a new edge to a graph
by gluing each of its endpoints to a univalent vertex. Theorem 4.2 of [18] implies in
particular that the resulting change in the second Betti number of the configuration
space is always an even number. Let us test this statement in the case of the graph y�
we considered above. Note that y� may be obtained from � by first attaching two “free”
edges (as in Theorem 7, (a)), one with �\e1Du, one with �\e2Dv and then attaching
an edge joining the two resulting univalent vertices, in the manner of [18, Theorem 4.2].
The first of these steps does not alter b2.F.�; 2//, by Theorem 7. The graph � has
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u

v

�

Figure 7: Graph � with Q� D Z

b2.F.�; 2// D 0 by Theorem 6.1 in [3] and the graph y� has b2.F.y�; 2// D 1, by
Example 4.1 in [3]. Thus we conclude that Theorem 4.2 of [18] cannot be correct.

As another example illustrating Theorem 14, consider the graph � shown on Figure 7:
one has Q� D Z and adding an edge connecting the vertices u; v produces a graph
y� DK3;3 ; we know that Qy� D 0, ie K3;3 is mature. In this case we also have ADZ
and AD �A.

7 Examples of mature and nonmature graphs

Proposition 16 Let � be a graph having a univalent vertex. Then � is not mature.

Proof We may assume that � is not homeomorphic to Œ0; 1�. Suppose that v is a
univalent vertex of a graph � which is incident to an edge e . Let u be the other
vertex incident to e . Without loss of generality we may assume that ��.u/ � 3; in
the case ��.u/D 2 we may change the subdivision of the graph and amalgamate it
with the following edges. Here ��.u/ denotes the number of edges of � incident
to u. Applying Theorem 7 (the second statement of part (a)) and Equation (8) of
Proposition 2, we see that Q� has rank � 2��.u/�4� 2 which implies that � is not
mature. See Figure 8, left.

Proposition 17 Let � be a graph such that removing the closure of an edge makes it
disconnected. Then � is not mature.

Proof Let e be an edge of � with end points u; v . Let � 0 denote the result of
removing the interior of e from � ; see Figure 8, right. Then � is obtained from
� 0 by adding an edge with end points u; v 2 � 0 . Suppose first that � 0 is connected.
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v

u

e

v

u

e

Figure 8: Nonmature graphs

Since � 0�fu; vg is disconnected, Theorem 14 implies that Q� contains a free abelian
subgroup of rank 2b0.�

0�fu; vg/� 2� 2. Thus � is not mature. Now suppose that
� 0 is not connected. Then � and � 0 are related as in Theorem 7(b). Equations (10)
and (11) imply that

rk Q� D rk Q� 0
1
C rk Q� 0

2
C 2.�.u/� 1/C 2.�.v/� 1/C 1:

Here � 0
1

and � 0
2

are as in Theorem 7(b) and �.u/ and �.v/ denote the valences of u

and v in � 0 . Thus we again see that � is not mature.

We say that a graph has a double edge if it is homeomorphic to a 1–dimensional cell
complex containing a pair of edges with the same endpoints. If � is a graph having
a double edge then � is homeomorphic to a graph which can be disconnected by
removing the closure of an edge. Thus we have the following:

Proposition 18 If � is a graph with a double edge then � is not mature.

A graph � is a wedge of two subgraphs �1; �2�� if �D�1[�2 and the intersection
�1\�2 is a single vertex.

We say that a graph � is a double wedge of two subgraphs �1; �2 � � if � D �1[�2

and the intersection �1\�2 consists of two vertices; see Figure 9.

Proposition 19 If a graph � is a wedge or a double wedge of two subgraphs �1; �2�

� such that each of �1 and �2 is connected and not homeomorphic to Œ0; 1�, then � is
not mature.

Proof Note that if � decomposes as a wedge, it can be disconnected by removing the
closure of an edge and hence is not mature by Proposition 17. We offer an alternative
proof of nonmaturity below.
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e1

e2

f1

f2

u

�1 �2

e1

el

f1

fl

u

v

�1 �2

Figure 9: Wedge (left) and double wedge (right)

We will use Corollary 4 and show that for the graphs mentioned in the Proposition the
intersection form I� is not surjective.

We assume that the intersection �1 \�2 consists either of one (case one) or of two
(case two) vertices.

Denote by ei and fj the edges of �1 and �2 respectively which are incident to the
intersection �1\�2 . We will assume that ei and fj are oriented towards the vertices
of �1\�2 ; see Figure 9.

Recall that for every pair of oriented edges e and e0 of � with e \ e0 6D ∅ one has
defined the cohomology class

ffee0g 2H 2.N� ; @N�/D Hom.H2.N� ; @N�/IZ/

(see [3, Section 5]). Thus we may consider the homomorphism

J D
X
ffeifj

gW H2.N� ; @N�/! Z;(23)

where summation is taken over all pairs ei and fj with ei \fj 6D∅. Intuitively, given
two cycles z; z0 2H1.�/, the number J.I�.z˝ z0// “counts instances” when z and
z0 are close to each other and z lies in �1 and z0 lies in �2 . We claim that

(a) in case one J vanishes on the image of the intersection form

I� W H1.�/˝H1.�/!H2.N� ; @N�/I

(b) in case two J takes even values on the image of I� .

Note that in case one, H1.�/ D H1.�1/˚H1.�2/. Similarly, in case two one has
H1.�/DH1.�1/˚H1.�2/˚Z where the additional summand Z is represented by
a cycle z0 that is the union of a path in �1 from u to v and a path in �2 from v to u;
here �1\�2 D fu; vg.
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In case one, examining J.I�.z ˝ z0// 2 Z for z; z0 lying in H1.�1/ or in H1.�2/

(four cases) one obtains (a). In case two, one has to consider the number J.I�.z˝z0//

for z; z0 lying in H1.�1/ or in H1.�2/ or for z; z0 being equal to z0 (nine cases in
total); the only nonzero result is J.I�.z0˝ z0//D�2. Thus (b) follows.

In view of (a) and (b) Proposition 19 follows once we show that there exists a homology
class a2H2.N� ; @N�/ with J.a/D 1. Choose wi 2�i to satisfy one of the following:

g1

g2

w1 c w2

h1

h2

Figure 10: Construction of a 2H2.N� ; @N�/

(i) wi has valence � 3 in �i or (ii) wi 2 fu; vg and wi has valence � 2 in �i . We
do not exclude the case that w1 D w2 . The assumption that �1; �2 © Œ0; 1� implies
we can always choose such wi . Let c be a simple path in � connecting w1 to w2 .
We view c as a cellular chain c 2 C1.�/ with @c D w2 �w1 . Consider the edges
g1;g2 2 �1 , h1; h2 2 �2 incident to w1; w2 , as shown on Figure 10. We may assume,
by subdividing if necessary, that the graph shown in Figure 10 is embedded in � . The
product

aD .g1C cC h1/.g2C cC h2/ 2 C2.� ��;D.�; 2//D C2.N� ; @N�/

is a relative cycle and obviously J.a/D 1. Here D.�; 2/ is the discrete configuration
space; see Section 2. This completes the proof.

Note that statement (b) from the proof becomes false for triple and higher order wedges.

As a useful result producing mature graphs we may mention the following.

Proposition 20 Assume that � D � 0[� 00 is the union of two mature subgraphs such
that the edges incident to any vertex v 2 � 0\� 00 lie either all in � 0 or all in � 00 (see
Figure 11). If the intersection � 0\� 00 is connected then � is mature.

Proof From Proposition 5 we know that the inclusions .N� 0 ; @N� 0/! .N� ; @N�/ and
.N� 00 ; @N� 00/! .N� ; @N�/ induce monomorphisms in two-dimensional homology.
We want to show that the images of the groups H2.N� 0 ; @N� 0/ and H2.N� 00 ; @N� 00/

generate H2.N� ; @N�/.
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u1

u2

f1

f2 u

e v v1

v2

g1

g2

� 0

� 00

� 0\� 00

Figure 11: Union of mature graphs

Denote by C the cellular chain complex C�.N� ; @N�/. Similarly denote by C 0 and
C 00 the cellular chain complexes C�.N� 0 ; @N� 0/ and C�.N� 00 ; @N� 00/. An explicit
description of C;C 0;C 00 is given in [3, Section 3]. The assumptions of the Proposition
imply that C D C 0CC 00 . Thus we have the exact sequence:

� � � !H2.C
0/˚H2.C

00/
f
!H2.C /

@
!H1.C

0
\C 00/! � � �

It is easy to see that the intersection C 0\C 00 coincides with the cellular chain complex
C�.N� 0\� 00 ; @N� 0\� 00/.

Let us first deal with the case that � 0 \� 00 © S1 . The conditions of the proposition
guarantee that � 0\� 00© Œ0; 1�. This is because if � 0\� 00Š Œ0; 1� then the intersection
has some extremal vertex v and contains a single edge e emanating from v . The other
edges emanating from v must all be contained in � 0�� 00 or all contained in � 00�� 0 .
This means that v is univalent in one of � 0 , � 00 and hence one of them is not mature,
by Proposition 16.

Now since we know � 0\� 00 © Œ0; 1� and we are assuming � 0\� 00 © S1 , we can use
Corollary 2.5 from [3] to conclude that H1.C

0\C 00/D 0. Thus, the exact sequence
above implies that the images of H2.C

0/ and H2.C
00/ generate H2.C /.

Consider the image of the intersection form I� W H1.�/˝H1.�/!H2.N� ; @N�/D

H2.C /. Since each of the graphs � 0 and � 00 is mature, the images of the intersection
forms I� 0 and I� 00 coincide with the subgroups H2.C

0/ � H2.C / and H2.C
00/ �

H2.C /. Thus, it follows that the intersection form I� is surjective.

Now let us look at the case that � 0\� 00 Š S1 . In this case

H1.C
0
\C 00/ŠH1.NS1 ; @NS1/ŠH1.S

1
�S1;F.S1; 2//Š Z:

Thus cokerf ŠZ. Since we know that I� 0 and I� 00 are surjective, it suffices to display
an element ˛ of H2.C / that generates coker.f / and show that it lies in Im.I�/.
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Let e be an edge of � 0\� 00 joining vertices u and v such that all edges emanating
from u lie in � 0 and all edges emanating from v lie in � 00 ; see Figure 11. Let
fi ;gi ;ui ; vi be as indicated in Figure 11 for i D 1; 2.

We construct our element ˛ as follows. Since � 0 is mature, � 0�xe is connected (by
Proposition 17) so there is a path 1 in � 0 � xe from v1 to u1 . Similarly there is a
path 2 in � 00�xe from v2 to u2 . Let z1 , z2 be the cycles

z1 D 1Cf1C eCg1; z2 D 2Cf2C eCg2

and let ˛ D I�.z1˝ z2/.

Next we show that ˛ generates coker.f /. Note that all elements I� 0.z˝z0/ in Im.I� 0/
that contain ee must contain g1g1 and vice versa. Similarly, all elements of Im.I� 00/
that contain ee must contain f2f2 and vice versa. It follows that all elements of Im.f /
that contain k.ee/ for some k 2 Z must also contain m.g1g1/C n.f2f2/ for some
m; n 2 Z with mC n D k . Note that ˛ does not satisfy this property (as it has no
terms g1g1 or f2f2 ), so ˛ … Im.f /.

Suppose that ˛ does not generate coker.f /. Then there is some l � 2 and some
ˇ 2H2.C / such that ˛� lˇ 2 Im.f /. The coefficient of ee in ˛� lˇ is of the form
k D 1C lk 0 , the coefficient of g1g1 is of the form m D lm0 and the coefficient of
f2f2 is of the form nD ln0 . These can never satisfy k DmCn, so ˛� lˇ cannot be
in Im.f /.

We will use Theorem 1 to prove the following statements.

Proposition 21 The complete graph Kn is mature for n� 5.

Proof We use induction on n starting with n D 5; we know that K5 is mature as
shown in [3].

Assuming that Kn with n� 5 is mature, we modify it by a sequence of moves ending
at KnC1 , such that all the intermediate graphs we obtain are mature.

Let u1; : : : ;un denote the vertices of Kn . Consider the edge e connecting u1 and u2

(see Figure 12, left). We subdivide it by introducing an additional vertex unC1 in the
middle. It is obvious that the new graph is also mature.

Next we add an edge e0 connecting u3 and unC1 ; see Figure 12, right. We claim
that we may apply Theorem 1 to conclude that the graph we obtain is mature. Indeed,
removing the vertices u3 and unC1 from the graph obtained in the previous stage
yields a connected graph; the graph we get deformation retracts onto Kn�1 with an
edge removed.
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eu1 u2

u3 un

Kn�2 Kn�2

e0

e00

eu1 u2

u3 un

unC1

Figure 12: Modifying the complete graph

Now we add a new edge e00 connecting u1 and u2 . By Theorem 1 the result is a
mature graph.

Finally, we add (one by one) the edges connecting u4; : : : ;un with unC1 ; in each of
these cases Theorem 1 is applicable. The graph obtained at the end is KnC1 .

Proposition 22 The bipartite graph Kp;q with p � 3 and q � 3 is mature.

Proof We assume that Kp;q is mature for p � 3; q � 3 and prove that Kp;qC1 is
mature; the result follows by induction as we know from [3] that K3;3 is mature.

Let V D P tQ be the set of vertices of Kp;q where jP j D p , jQj D q and every
vertex of P is connected by an edge to every vertex of Q.

Add a new edge e connecting two vertices v1; v2 2 P . The condition of Theorem 1
is satisfied since the graph obtained by removing two vertices from P deformation
retracts onto Kp�2;q which is connected.

Next, subdivide e by introducing a new vertex q in the middle. The result is still
mature.

Now we add an edge connecting q to one of the remaining vertices vi 2 P �fv1; v2g.
This edge addition satisfies Theorem 1 and produces a mature graph. This procedure
may be repeated for every one of the vertices vi 2 P �fv1; v2g and the final result is
the graph Kp;qC1 .

Corollary 23 For the complete graph � D Kn with n � 5 the configuration space
F.�; 2/ has the Betti numbers

b1.F.�; 2//D .n� 1/.n� 2/;

b2.F.�; 2//D
n.n� 2/.n� 3/.n� 5/

4
C 1:
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Proof Since we know that Kn is mature we may apply Equations (1) and (2). The
first Betti number of � is the difference between the total number of edges and the
number of edges in a spanning tree. Thus we have b1.�/ D

�
n
2

�
� .n� 1/ D

�
n�1

2

�
and �.v/ D n� 1 for every vertex v . Substituting into (2) and making elementary
transformations gives the indicated answer for the second Betti number.

The expression for b2.F.�; 2// given by Corollary 23 agrees with that found in [6].

Similarly we obtain:

Corollary 24 For the bipartite graph �DKp;q with p�3 and q�3 the configuration
space F.�; 2/ has the Betti numbers

b1.F.�; 2//D 2.p� 1/.q� 1/;

b2.F.�; 2//D .p
2
� 3pC 1/.q2

� 3qC 1/:

Proof In this case we have b1.�/D .p�1/.q�1/ and �.v/D p (for vertices in Q)
and �.v/ D q (for vertices in P ). Now one uses Proposition 22 and Equations (1)
and (2).

8 Further questions

In this section we mention several open questions and conjectures.

(1) We conjecture that a connected nonplanar graph is mature if and only if it admits
no decomposition as a wedge or double wedge. This conjecture is inspired by Proposi-
tions 18 and 19 and the fact that we do not know of any nonmature graphs other than
those covered in these propositions.

(2) Consider a random graph � 2 G.n;p/. Here n is an integer, 0 < p < 1, and
G.n;p/ denotes the probability space of all subgraphs of the complete graph Kn with
each edge of Kn included in � with probability p , independently of all other edges.
This is the well-known Erdös–Rényi model of random graphs. Note that the cardinality
of G.n;p/ is 2.

n
2/ and the probability that a specific graph � appears as a result of a

random process equals

P .�/D pE� .1�p/.
n
2/�E� ;

where E� denotes the number of edges of � ; see [16].

We believe that a random graph � 2G.n;p/ with parameter p large enough is mature
with high probability. One may want to find a threshold 0< pc < 1 for maturity such
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that a random graph � 2 G.n;p/ with p > pc is mature with probability tending
to one as n!1 and a random graph � 2 G.n;p/ with p < pc is immature with
probability tending to one as n!1.

(3) The concept of maturity may have interesting higher analogues relevant to the
study of configuration spaces F.�; k/ with k > 2, ie when one considers more than
two points on a graph � . The inclusion

˛k W F.�; k/! �k

(where �k denotes the Cartesian product of k copies of � ) induces an epimorphism

.˛k/�W H1.F.�; k//!H1.�
k/

(under very general assumptions on � ; compare [3, Proposition 1.3]) and one says
that a graph � is k –mature if .˛k/� is an isomorphism. It would be useful to find
examples and investigate properties of k –mature graphs for k > 2.

(4) We do not know examples of graphs � such that the homology group H1.F.�; 2//

has nontrivial torsion and we conjecture that this group is always torsion free. This
property is equivalent to the absence of torsion in the cokernel of the intersection
form I� (see (3)), as follows from (8).
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