
Algebraic & Geometric Topology 10 (2010) 2251–2275 2251

Heegaard splittings with large subsurface distances

JESSE JOHNSON

YAIR MINSKY

YOAV MORIAH

We show that subsurfaces of a Heegaard surface for which the relative Hempel
distance of the splitting is sufficiently high have to appear in any Heegaard surface of
genus bounded by half that distance.

57M99; 57R99

1 Introduction

It was shown by Scharlemann and Tomova [20] that if a 3–manifold has a Heegaard
surface † so that the Hempel distance d.†/ of the splitting [7] is greater than twice
its genus g.†/, then any other Heegaard surface ƒ of genus g.ƒ/ < d.†/=2 is a
stabilization of †, ie, the result of attaching trivial handles to †. Hartshorn [5] had
proved a similar result in which the surface ƒ is incompressible.

In this paper, we generalize this theorem to the case where the Heegaard splitting † is
not necessarily of high distance but has a proper essential subsurface F �† so that
the “subsurface distance” measured in F is large:

Theorem 1.1 Let † be a Heegaard surface in a closed 3–manifold M of genus
g.†/ � 2, and let F � † be a compact essential subsurface. Let ƒ be another
Heegaard surface for M of genus g.ƒ/. If

dF .†/ > 2g.ƒ/C c.F /;

then, up to ambient isotopy, the intersection ƒ\† contains F .

Here c.F / D 0 unless F is an annulus, 4–holed sphere, or 1– or 2–holed torus, in
which case c.F /D 2.

Here, dF .†/ is the distance between the subsurface projections of the disk sets of the
handlebodies on the two sides of † to the “arc and curve complex” of F . For precise
definitions see Section 2. This result can be paraphrased as follows: If the two disk sets
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of a Heegaard splitting intersect on a subsurface of the Heegaard surface in a relatively
“complicated” way, then any other Heegaard surface whose genus is not too large must
contain that subsurface.

One can view this in the context of a number of results in 3–manifold topology
and geometry where “local” complication, as measured in a subsurface, yields some
persistent topological or geometric feature. An example with a combinatorial flavor is
in Masur–Minsky [15; 16], where one studies certain quasi-geodesic paths in the space
of markings on a surface. If the endpoints of such a path have projections to the arc
and curve complex of a subsurface F which are sufficiently far apart, then the path is
forced to have a long subinterval in which @F is a part of the markings.

In [18; 3], Brock, Canary and Minsky consider the geometry of hyperbolic structures on
†�R, as controlled by their “ending invariants,” which can be thought of as markings
on †. A subsurface F for which the projections of the ending invariants are far apart
yields a “wide” region in the manifold isotopic to F � Œ0; 1�, where the length of @F is
very short.

A similar, but incompletely understood, set of phenomena can occur for Heegaard
splittings of hyperbolic 3–manifolds, where the disk sets play the role of the ending
invariants. This is the subject of work in progress by Brock, Namazi, Souto and others.

In the purely topological setting, Lackenby [14] studies Heegaard splittings of mani-
folds obtained by sufficiently complicated gluings along incompressible, acylindrical
boundaries of genus at least 2. Bachman and Schleimer [1] obtain lower bounds on
Heegaard genus in a surface bundle whose monodromy map is sufficiently complicated.
Bachman, Schleimer and Sedgwick [2] study Heegaard genus for manifolds glued
along tori by complicated maps.

The methods of our proof are extensions, via subsurface projections, of the work in
Johnson [10], which itself builds on methods of Rubinstein and Scharlemann [19]. To
a Heegaard splitting we associate a “sweepout” by parallel surfaces of the manifold
minus a pair of spines, and given two surfaces ƒ and † and associated sweepouts, we
examine the way in which they interact. In particular under some natural genericity
conditions we can assume that one of two situations occur:

(1) ƒ F –spans †, or
(2) ƒ F –splits †.

For precise definitions see Section 3. The case of F –spanning implies that, up to
isotopy, there is a moment in the sweepout corresponding to † when the subsurface
parallel to F lies in the upper half of M Xƒ, and a moment when it lies in the lower
half. It then follows that ƒ separates the product region between these two copies
of F , and it follows fairly easily that it can be isotoped to contain F .
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In the F –splitting case we are able to show that, for each moment in the sweepout
corresponding to †, the level surface intersects ƒ in curves that have essential inter-
section with F . By studying the way in which these intersections change during the
course of the sweepout, we are able to use the topological complexity of ƒ to control
the subsurface distance of F .

Combining these two results and imposing the condition that dF .†/ is greater than a
suitable function of g.ƒ/ forces the first, ie F –spanning, case to occur.

The discussion is complicated by some special cases, where F has particularly low
complexity, in which the dichotomy between F –spanning and F –splitting doesn’t
quite hold. In those cases we obtain slightly different bounds.

Outline

In Section 2 we recall the definitions of Heegaard splittings, curve complexes and
subsurface projections. In Section 3 we discuss sweepouts, pairs of sweepouts and the
Rubinstein–Scharlemann graphic, and use this to define F –splitting and F –spanning
and variations. In Lemma 3.7 we show that F –spanning and F –splitting are generically
complementary conditions, and also work out the situation for the low-complexity
cases.

In Section 4 we consider the F –spanning case, and show that it leads to the conclusion
that ƒ can be isotoped to contain F .

In Section 5 we give a more careful analysis of the local structure of nontransverse
intersections of surfaces in a pair of sweepouts. In particular we use this to quantify the
way in which intersection loops, and their projections to a subsurface F , can change
as one moves the sweepout surfaces.

In Section 6 we show that the F –splitting condition leads to an upper bound on dF .†/.
The proof makes considerable use of the structure developed in Section 5, with a fair
amount of attention being necessary to handle the exceptional low-complexity cases.

Finally in Section 7 we put these results together to obtain the proof of the main
theorem.
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2 Heegaard splittings and curve complexes

Heegaard splittings

A handlebody H is a 3–manifold homeomorphic to a regular neighborhood of a
finite, connected graph in S3 . The graph will be called a spine of the handlebody. A
Heegaard splitting of genus g�2 for a closed 3–manifold M is a triple .†;H�;HC/,
where HC;H� are genus g handlebodies and †D @HC D @H� DHC\H� is the
Heegaard surface so that M DHC[† H� .

Curve complexes and Hempel distance

For any surface † there is an associated simplicial complex called the curve complex
and denoted by C.†/. An i –simplex in C.†/ is a collection .Œ0�; : : : ; Œi �/ of isotopy
classes of mutually disjoint essential simple closed curves in †. On the 1–skeleton
C1.†/ of the curve complex C.†/ there is a natural path metric d defined by assigning
length 1 to every edge. The subcollection D.H˙/, of isotopy classes of curves in †,
that bound disks in H˙ (also called meridians) is called the handlebody set associated
with H˙ respectively.

Given a Heegaard splitting .†;H�;HC/ we define the Hempel distance d.†/:

d.†/D dC1.†/.D.HC/;D.H�//

where distance between sets is always minimal distance.

When a surface F has boundary we can define the arc and curve complex AC.F /,
by considering isotopy classes of essential (nonperipheral) simple closed curves and
properly embedded arcs. If F is an annulus, there are no essential closed curves,
and the isotopy classes of essential arcs should be taken rel endpoints. As before an
n–simplex is a collection of nC1 isotopy classes with disjoint representative loops/arcs.
We denote by dF the path metric on the 1–skeleton of AC1.F / that assigns length 1
to every edge.

If F is a connected proper essential subsurface in †, there is a map

�F W C0.†/!AC0.F /[f∅g

defined as follows (see Masur–Minsky [16] and Ivanov [8; 9]): First assume F is not
an annulus. Given a simple closed curve  in †, isotope it to intersect @F minimally.
If the intersection is empty let �F . / D ∅. Otherwise consider the isotopy classes
of components of F \  as a simplex in AC.F /, and select (arbitrarily) one vertex
to be �F . /. If F is an annulus, let yF ! † be the annular cover associated to F ,
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compactified naturally using the boundary at infinity of H2 , lift  to a collection of
disjoint properly embedded arcs in yF , and arbitrarily select an essential one (which
must exist if  crosses F essentially) to be �F . /. If  does not cross F essentially
we again let �F . /D∅. By abuse of notation we identify AC. yF / with AC.F /.

Now if .†;H�;HC/ is a Heegaard splitting of a 3–manifold M and F � † is a
connected proper essential subsurface, let DF .H

�/D �F .D.H�// and DF .H
C/D

�F .D.HC// – the projections to F of all loops that bound essential disks in H�

and HC , respectively. The F –distance of †, which we will write dF .†/, is the
distance between these two sets,

dF .†/D dAC1.F /.DF .H
C/;DF .H

�//:

We will have use for the following fact, which is a variation on a result of Masur and
Schleimer:

Lemma 2.1 Let † be the boundary of a handlebody H of genus g � 2. Let F �†

be an essential connected subsurface of †. If † X F is compressible in H then
�F .D.H // comes within distance 2 of every vertex of AC.F /, provided F is not a
4–holed sphere. If it is a 4–holed sphere the distance bound is 3.

Proof If F is a 3–holed sphere the diameter of AC.F / is 1, hence the lemma follows
trivially. We next give the proof in the nonannular case. We claim that †XF must
contain a meridian ı 2D.H / such that F can be connected by a path to either side
of ı : Compressibility of †XF yields some meridian, which has the desired property
if it is nonseparating in †. If it is separating, then on the side complementary to F we
can find a nonseparating meridian.

Let 1 and 2 be components of @F which can be connected by paths to the two sides
of ı (possibly 1 D 2 ). If ˛ is any essential embedded arc in F with endpoints on
1 and 2 then ˛ can be extended to an embedded arc meeting ı on opposite sides. A
band sum between two copies of ı along this arc yields a new meridian ı0 .

If ı is not isotopic to either 1 or 2 , then the essential intersection of ı0 with F is
two copies of the arc ˛ , so that �F .ı

0/D ˛ . If it is isotopic to 1 or 2 (or both), then
�F .ı

0/ is an arc or closed curve contained in a regular neighborhood of ˛[ 1[ 2 .

We now need to show that for every vertex ˇ 2 AC.F /, there is a path of length at
most 2 from ˇ to �F .ı

0/, for some choice of ˛ .

Suppose first that 1 D 2 . In this case ı cannot be isotopic to 1 , because 1 cannot
be connected to both sides of ı without going through another boundary component
of F . Hence in this case �F .ı

0/D ˛ . Since F is not an annulus, cutting along ˇ gives
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a surface Fˇ no component of which is a disk. If the component of Fˇ containing 1 is
not an annulus then an essential arc ˛ disjoint from ˇ and with endpoints on 1 exists
in F . This gives dAC.F /.ˇ; �F .D.H ///� 1. If the component of Fˇ containing 1

is an annulus let ˇ0 be an arc or curve in the other component. Apply the previous case
to ˇ0 to obtain dAC.F /.ˇ; �F .D.H ///� 2.

Suppose now 1¤ 2 . If ˇ is disjoint from 1 and 2 and doesn’t separate them, then
we can choose ˛ connecting 1 and 2 and disjoint from ˇ , so dAC.F /.ˇ; �F .ı

0//� 1.

If ˇ does separate 1 from 2 , let X1 and X2 be the components of F X ˇ . If
one of them is nonplanar, it contains a nonseparating closed curve ˇ0 , therefore
dAC.F /.ˇ

0; �F .ı
0//� 1 and hence dAC.F /.ˇ; �F .ı

0//� 2.

If both Xi are planar, and F is not a 4–holed sphere, then at least one, say X1 , has
two boundary components other than ˇ and 1 or 2 . An arc ˇ0 connecting those
boundary components is disjoint from 1 and 2 and does not separate them, so again
we are done using the previous cases.

Now suppose ˇ is an arc with endpoint on 1 or 2 , or both. If it has endpoints on
both, then choose ˛ D ˇ , and note that ˇ is disjoint from �F .ı

0/ in all cases. If ˇ
meets just 1 , say, let ˛ be an arc connecting 1 and 2 and disjoint from ˇ , and
consider a regular neighborhood N of 1[2[˛[ˇ . Then @N X@F is either an arc
or a pair of closed curves which is disjoint from ˇ; 1; 2 and ˛ . The arc, and at least
one of the closed curves, is essential as long as F is not a 4–holed sphere. Let ˇ0 be
this curve or arc, and again we see that the distance from ˇ to �F .ı

0/, via ˇ0 , is 2.

We have yet to handle the case that F is a 4–holed sphere, and ˇ separates 1 from 2 .
Choose ˛ to be an arc intersecting ˇ exactly once. In this case, �F .ı

0/ is either ˛ or
a closed curve separating 1[ 2 from the other two boundary components, and one
can check that dAC.F /.ˇ; �F .ı

0//� 3.

Finally we consider the case that F is an annulus. As before there is a meridian ı that
separates the boundaries of F in †XF . We may assume that ı is not isotopic to @F ,
because if it were then its complement would contain other meridians disjoint from F .
Let ˛0 be an embedded arc connecting the two sides of ı and passing essentially
through F , and let ı0 be the result of the band sum, as before.

Let yF !† be the compactified annular cover associated to F . There is a lift y̨ of ˛0

to yF connecting lifts yı1 and yı2 of ı which meet opposite sides of @ yF . There is then
a lift yı0 of ı0 disjoint from yı1[ y̨ [ yı2 , and connecting opposite sides of yF . This is a
representative of �F .ı

0/.

A Dehn twist of ˛0 around F has the following effect on yı0 : it performs a single Dehn
twist about the core of yF , as well as a homotopy of the endpoints of yı0 which stays
outside of the disks Di cobounded by yıi and @ yF (i D 1; 2).

Algebraic & Geometric Topology, Volume 10 (2010)



Heegaard splittings with large subsurface distances 2257

Now let ˇ be an arc representing a vertex of AC. yF /. There exists a disjoint arc ˇ0

whose endpoints lie in D1 and D2 . It follows that after n Dehn twists on ˛0 we obtain
an arc ˛n whose associated ı0n has lift yı0n which is disjoint from ˇ0 . We conclude that
dAC.F /.ˇ; �F .ı

0
n/� 2.

3 Sweepout pairs

In this section we discuss sweepouts of a 3–manifold representing a Heegaard splitting,
and consider the interaction of pairs of sweepouts using the Rubinstein–Scharlemann
graphic and generalizations of the notions of mostly above and mostly below from
Johnson [10]. We will formulate relative versions of these which allow us to consider
subsurfaces, and from this develop a relative version of the spanning and splitting
relations from [10].

Sweepouts

Given a closed 3–manifold M , a sweepout of M is a smooth function f W M! Œ�1; 1�

so that each t 2 .�1; 1/ is a regular value, and the level set f �1.t/ is a Heegaard
surface. Furthermore each of the sets �CD f �1.1/ and set ��D f �1.�1/ are spines
of the respective handlebodies. When this happens we say the sweepout represents the
Heegaard splitting associated to each level surface. It is clear (with a bit of attention to
smoothness at the spines) that every Heegaard splitting can be represented this way.

Two sweepouts f and h of M determine a smooth function f � hW M ! Œ�1; 1��

Œ�1; 1�. The differential D.f � h/ has rank 2 (or dim Ker.D.f � h// = 1) wherever
the level sets of f and h are transverse. Thus we define the discriminant set � to be
the set of points of M for which dim Ker.D.f � h// > 1. The discriminant, and its
image in Œ�1; 1�� Œ�1; 1�, therefore encode the configuration of tangencies of the level
sets of f and h.

A smooth function 'W M ! N between smooth manifolds M;N is stable if there
is a neighborhood U of ' in C1.M;N / such that any map � 2 U is isotopic to '
through a family of maps in U . (We say that � and ' are isotopic when there are
diffeomorphisms ˇW M ! M and ˛W N ! N , isotopic to the identity, such that
˛ ı�ıˇD ' .) Here the topology on C1.M;N / is the Whitney topology, also known
as the strong topology on C1 . This topology differs from the weak (compact-open)
topology on C1 for noncompact domains, which is relevant here since we consider
stability on the complement of the spines.

Kobayashi and Saeki [13] show that, after isotopies of f and h, one can arrange that
f � h is stable on the complements of the four spines. When that holds, the kernel
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of D.f � h/ (off the spines) is always of dimension at most 2 and it follows from
Mather [17] that � is a smooth manifold of dimension one.

The image .f � h/.�/ is a graph in Œ�1; 1�� Œ�1; 1� with smooth edges, called the
graphic, or the Rubinstein–Scharlemann graphic (see Rubinstein–Scharlemann [19]).

We call f � h generic if it is stable away from the spines and each arc Œ�1; 1�� fsg

in the square intersects at most one vertex of the graphic. The following lemma of
Kobayashi and Saeki [13] justifies this term:

Lemma 3.1 Any pair of sweepouts can be isotoped to be generic.

Suppose therefore that f �h is generic. Points in the square are denoted by .t; s/, and
we define the surfaces ƒs D h�1.s/ and †t D f

�1.t/. If the vertical line ftg� Œ�1; 1�

meets no vertices of the graphic, then hj†t
is Morse, and its critical points are †t \�.

In particular the fact that a Morse function has at most one singularity at any level
corresponds to the fact that the map from � to the graphic is one-to-one over the
smooth points of the graphic. If v D .t0; s0/ is a vertex, we see certain transitions
as t passes through t0 .

(1) Cancelling pair: If v has valence 2, then the edges of the graphic incident to v
are either both contained to the left of ft0g � .0; 1/, or both to the right of it.
As t passes through t0 , a pair of singularities of hj†t

, one saddle and one min
or max (which we call central), is created or annihilated.

(2) Simultaneous singularities: If v has valence 4, it is the intersection of the images
of two disjoint arcs of �. Hence there are two singularities whose relative
heights are exchanged as t passes through t0 . These can be either saddle or
central singularities. Note that the singularities cannot coalesce, for example in
a monkey saddle, as they pass each other, since that would produce a vertex in
the discriminant set �, contradicting the fact that it is a smooth 1–manifold.

Vertices on the boundary of the square can have valence either one or two; we will
however not need to consider these.

Above and below

Let f and h be sweepouts for a manifold M , representing the Heegaard splittings
.†;H�;HC/ and .ƒ;V �;V C/, respectively. For each s 2 .�1; 1/, define V �s D

h�1.Œ�1; s�/ and V Cs D h�1.Œs; 1�/. Note that ƒs D @V �s D @V Cs Similarly, for
t 2 .�1; 1/, H�t D h�1.Œ�1; t �/, HCt D h�1.Œt; 1�/ and †t D @H

�
t D @H

C
t .
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Throughout the rest of the paper, let F � † denote a compact, connected, essential
subsurface, where “essential” means that no boundary component of F bounds a disk.
We exclude 3–holed spheres. Let Ft be the image of F under the identification of †
with †t determined up to isotopy by the sweepout.

Definition 3.2 We will say that †t is mostly above ƒs with respect to F , denoted

†t �F ƒs;

if †t \V �s is contained in a subsurface of †t that is isotopic into the complement
of Ft (or is just contained in a disk, when F D†). Similarly, †t is mostly below ƒs

with respect to F , or
†t �F ƒs;

if †t \V Cs is contained in a subsurface that is isotopic into the complement of Ft (or
contained in a disk).

The case that F D † corresponds to the notion of mostly above and mostly below
from [10]. We will mostly be concerned with the case that F is a proper subsurface.

Define RF
a (respectively RF

b ) in .�1; 1/ � .�1; 1/ to be the set of all values .t; s/
such that †t �F ƒs (respectively †t �F ƒs ). When F D † these are the sets Ra

and Rb of [10].

Figure 1 illustrates some typical configurations of RF
a and RF

b . Their basic properties
are described in the following lemma.

Lemma 3.3 Let f �h be a generic sweepout pair, and let F be an essential subsurface
of †. If F is an annulus assume it is not isotopic into ƒ.

The sets RF
a and RF

b are disjoint, open and bounded by arcs of the graphic, so that all
interior vertices appearing in @RF

a or @RF
b have valence 4.

Moreover RF
a and RF

b intersect each vertical line in a pair of intervals as follows: For
each t 2 .�1; 1/, there are values x � y 2 .�1; 1/ such that

.t; s/ 2RF
a () s 2 .�1;x/

and .t; s/ 2RF
b () s 2 .y; 1/.

Proof We assume F is a proper subsurface of S (the case F D † was done in
Johnson [10], and our argument is a direct generalization). Openness of RF

a and RF
b

is clear from the definition. If the sets intersect then we may select a point .t; s/ in
the intersection which is not in the graphic, so that †t \ƒs is a 1–manifold. This
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s

t

RF
b

RF
b

RF
b

RF
b

RF
a

RF
a

RF
a

RF
a

Figure 1: Four partial graphics of pairs f �h of sweepouts. In the top two
graphics, h F –spans f . In the bottom left, h F –splits f . In the bottom
right, h F –spans f again but the switch between mostly above and mostly
below happens twice along the horizontal arc shown.

1–manifold divides †t into two subsurfaces X�D†t\V �s and XCD†t\V Cs , each
of which can be isotoped off Ft . But this is impossible: If X� can be isotoped off Ft ,
then after isotopy, XC contains Ft and hence can’t be isotoped away from Ft , unless
Ft is an annulus. If Ft is an annulus, this means it is isotopic to a neighborhood of
the common boundary between XC and X� , which is isotopic into ƒs contradicting
the assumption. We conclude that RF

a and RF
b are disjoint.

Now let .t; s/ 2 .0; 1/� .0; 1/ be any point which is not on the graphic. Again †t

and ƒs are transverse, and hence a small perturbation of .t; s/ would yield an isotopic
intersection pattern. In particular a small neighborhood of .t; s/ is either contained
in RF

a or in its complement (and similarly for RF
b ). It follows that the boundary must

be contained in the graphic.

Let .t; s/ 2RF
a . Then †t \V �s can be isotoped out of Ft . Since V �s monotonically

increases with s , the same must hold for each s0 < s . Hence the set fs W .t; s/ 2RF
a g
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must, if nonempty, be an interval of the form .�1;x/. It is nonempty because, for
small enough s , V �s is a small regular neighborhood of a spine and so intersects †t in
a union of disks. Similarly we find that fs W .t; s/ 2RF

b g has the form .y; 1/. Finally,
x � y follows from the disjointness of RF

a and RF
b .

It remains to show that only 4–valent vertices appear in the boundary of RF
a and RF

b .
Suppose v is a 2–valent vertex in @RF

a , say. Then there is a neighborhood U of v
which intersects the graphic in a pair of arcs incident to v , which lie on one side of the
vertical line through v . Such a pair separates U into two pieces, and hence is equal
to @RF

a \U . This contradicts what we have just proven about the intersection of RF
a

with vertical lines.

Relative spanning and splitting

The relations of spanning and splitting were introduced in [10] for pairs of sweepouts.
Here we will extend this notion to spanning and splitting relative to a subsurface F .

Definition 3.4 We say h F –spans f if there is a horizontal arc Œ�1; 1� � fsg in
.�1; 1/� .�1; 1/ that intersects both RF

a and RF
b .

In other words, h F –spans f if there are values s; t�; tC2 Œ�1; 1� such that †t� �F ƒs

while †tC �F ƒs .

Figure 1 also shows examples of graphics of pairs of sweepouts that don’t span, or that
span with two distinct such arcs.

The complementary situation is the following:

Definition 3.5 We say h weakly F –splits f if there is no horizontal arc Œ�1; 1�� fsg

that meets both RF
a and RF

b .

A somewhat stronger condition which under some circumstances is equivalent, is the
following:

Definition 3.6 We say h F –splits f if, for some fsg 2 .�1; 1/, the arc Œ�1; 1�� fsg

is disjoint from the closures of both RF
a and RF

b .

We extend these notions to pairs of Heegaard splittings with no sweepout specified:
That is, if ƒ and † are Heegaard surfaces and there exist some sweepouts h and f
representing ƒ and †, respectively, such that f � h is generic and h F –splits f for
some F � †, we say that ƒ F –splits †; and similarly for F –spanning and weak
F –splitting.
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Dichotomy

By definition F –spanning and weak F –splitting are complementary conditions. Gener-
ically, F –spanning and F –splitting are complementary as well, ie weak F –splitting
implies F –splitting. The proof proceeds along the lines of [10], except when F is one of
a short list of low-complexity surfaces, when weak F –splitting becomes a distinct case:

Lemma 3.7 Let f and h be sweepouts for M , and F a connected, essential subsur-
face of the Heegaard surface † represented by f . Suppose that f � h is generic.

If F is not an annulus, 4–holed sphere or a 1–holed or 2–holed torus, then

h weakly F –splits f H) h F –splits f .

Equivalently, either h F –spans f , or h F –splits f .

In the exceptional cases, if h weakly F –splits f but does not F –split, then there exists
a unique horizontal line Œ�1; 1� � fsg which meets both closures RF

a and RF
b in a

single point, which is a vertex of the graphic.

Proof By Lemma 3.3 the set of heights of horizontal lines meeting RF
a has the form

.�1;x/ and the set of heights of horizontal lines meeting RF
b has the form .y; 1/. If h

does not F –span f , then these sets are disjoint so x � y . If x < y then any line with
height s 2 .x;y/ misses both RF

a and RF
b , so that h F –splits f , and we are done.

If x D y then the line Œ�1; 1�� fxg meets a maximum-height point of RF
a as well as

a minimum-height point RF
b . Such a point lies on the graphic by Lemma 3.3 and it

must be a vertex, for the only other possibility is an interior horizontal tangency of
the graphic. Such a tangency corresponds to a critical point of h away from the spine,
which is ruled out by definition of a sweepout (see [11] for details).

Since f �h is generic, a horizontal line can only meet one vertex, so the maximum of
RF

a and the minimum of RF
b are the same vertex .t;x/ of the graphic. It remains to

show that this can only happen in the given exceptional cases.

The fact that .t;x/ is a vertex (of valence 4 by Lemma 3.3) means that the function
ht � hj†t

has two critical points on � � h�1
t .x/. Choose x� < xC so that x is the

unique critical value in Œx�;xC�, and let

QD h�1
t .Œx�;xC�/;

which is a regular neighborhood of � in †t . Since .t;x�/ 2 RF
a , the subsurface

Y� � h�1
t .Œ�1;x��/ can be isotoped out of Ft . Since .t;xC/ 2RF

b , the subsurface
YC � h�1

t .ŒxC; 1�/ can also be isotoped out of Ft . Equivalently Ft can be isotoped
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out of each of Y� and YC , and it follows that this can be done simultaneously (this is
a general property of surfaces). Therefore after this isotopy we find that Ft �Q.

However Q cannot be very complicated – since h�1
t .x/ has two critical points, Q is

a disjoint union of annuli, disks, 3–holed spheres and possibly one component that is a
4–holed sphere or 2–holed torus. (The detailed analysis of possibilities for Q, which
we will need in Section 6, will be done in Section 5.) The only essential subsurfaces of
†t that can embed in Q are therefore annuli, 3–holed spheres, 4–holed spheres, and
1– and 2–holed tori. This takes care of all the exceptional cases.

4 Spanning implies coherence

In this section we consider the F –spanning case, for which we can show that the
surface F is isotopic into ƒ.

Proposition 4.1 Let † and ƒ be Heegaard surfaces in a closed 3–manifold M and
let F � † be a proper connected essential subsurface. If ƒ F –spans † then after
isotoping ƒ we obtain a surface whose intersection with † contains F .

Proof Let f and h be sweepouts representing † and ƒ, respectively, such that
h F –spans f and f � h is generic. Hence there is a level surface ƒs and values
t�; tC 2 .�1; 1/ such that †t� �F ƒs and †tC �F ƒs . We may assume without loss
of generality that t� < tC .

We may identify the complement of the spines of f , namely f �1..�1; 1//, with
† � .�1; 1/ in a way that is unique up to level-preserving isotopy. Consider the
submanifold F �J �M , where J D Œt�; tC�. Because †t� �F ƒs , the handlebody
V Cs D h�1.Œs; 1�/ intersects †�ft�g in a set that can be isotoped outside of F �ft�g;
equivalently, the subsurface F � ft�g can be isotoped within † � ft�g so that it is
contained in V �s . Similarly, since †tC �F ƒs , we can isotope the surface F � ftCg

inside † � ftCg so that it is contained in V Cs . After a level-preserving isotopy of
†� .�1; 1/, we may therefore assume that F � ft�g and F � ftCg are contained in
V �s and V Cs , respectively. The surface S Dƒs \F �J therefore separates F � ft�g

from F � ftCg within F �J , since ƒs separates V �s from V Cs .

Note that a surface in F�J with boundary in @F�J separates F�ft�g from F�ftCg

if and only if its homology class in H2.F �J; @F �J / is nonzero.

Compressing S if necessary, we obtain an incompressible surface in the same homology
class. Let S 0 be a connected component which is still nonzero in H2.F �J; @F �J /.
Then S 0 separates F � ft�g from F � ftCg and hence (up to orientation) must be
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homologous to F�ft�g. The vertical projection of S 0 to F�ft�g is therefore a proper
map which is �1 –injective and of degree ˙1. By a covering argument it must also
be �1 –surjective, and hence Theorem 10.2 of [6] implies that S 0 is isotopic to a level
surface F � ftg.

Making the isotopy ambient and keeping track of the 1–handles corresponding to the
compressions that gave us S 0 , we can obtain an isotopic copy of ƒ which contains
F �ftg minus attaching disks for the 1–handles. Now we can slide these disks outside
of F � ftg. Hence ƒ itself is isotopic to a surface containing F � ftg, as claimed.

5 Saddle transitions

In this section we examine more carefully the intersections †t\ƒs , and the relationship
between their regular neighborhoods in the two surfaces.

Fix .t; s/ for the rest of this section. The interesting case is when .t; s/ lies in the
graphic, and hence the surfaces are not transversal, or equivalently, t is a critical value
of f jƒs

and s is a critical value of hj†t
. As in the proof of Lemma 3.7, take an

interval Œs�; sC� in which s is the only critical value of hj†t
(if any), and let

QD .hj†t
/�1.Œs�; sC�/�†t :

Similarly choose an interval Œt�; tC� containing t with no other critical values of f jƒs
,

and define
Z D .f jƒs

/�1.Œt�; tC�/�ƒs:

Then Q is a regular neighborhood of � � †t \ ƒs in †t , and Z is a regular
neighborhood of � in ƒs .

To compare Q and Z , fix an identification of f �1..�1; 1// with †� .�1; 1/ such
that f becomes projection to the second factor, and let

pW f �1..�1; 1//!†

denote the projection to the first factor. For convenience identify † with †t so that
pW †t!† can be taken to be the identity. Now we can compare p.Z/ to Q within †.

The trivial case is that of a component of � that contains no critical points; in this case
the components of Q and Z that retract to it are both annuli and the restriction of p

is homotopic to a diffeomorphism between them. Let us record this observation:

Lemma 5.1 Two level curves of f jƒ which are not separated by critical points have
homotopic p–images in †.
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Another simple case is of a component of � which is an isolated (hence central)
singularity, and the corresponding components of Q and Z are disks.

If �0 is a component containing one saddle singularity, then it is a figure–8 graph, and
both associated components Q0 �Q and Z0 �Z must be 3–holed spheres, or pairs
of pants. In this case we have:

Lemma 5.2 If �0 is a figure–8 component of � then pjZ0
is homotopic to a diffeo-

morphism Z0 ! Q0 . In particular p.@Z0/ is homotopic to a collection of simple
disjoint curves in †.

Recall that for any point of the graphic that is not a vertex, � contains exactly one
singularity, so if it is a saddle we have exactly one such figure–8 component of � .

Proof Because each boundary curve of Z0 lies on a level surface †t� or †tC , it
is embedded by p . On the other hand it is homotopic to an essential curve in �0 ,
and since p is continuous the same is true for its image in †. The only essential
simple curves in a 3–holed sphere are parallel to boundary components, so p.@Z0/ is
homotopic to @Q0 . The lemma follows.

The most complicated case is that of a component �0 � � that contains two saddle
singularities. There are only two possible isomorphism types for �0 as a graph with
two vertices of valence 4, and a total of three ways that �0 can embed as a level set of
a function with nondegenerate singularities. These are indicated in Figure 2, which
applies to both Q0 and Z0 .

To understand how p looks in this case, note first that at the vertices of �0 the surfaces
are tangent so p is a local diffeomorphism. Hence it either preserves or reverses
orientation at these points. This determines the local picture of Q0 and Z0 at each
tangency, and the rest of the configuration is determined by how Z0 attaches along
the edges of �0 . Either the two orientations match or they do not. When they match,
one sees that pjZ0

is homotopic to a diffeomorphism – we call this the untwisted case.
If they do not match – the twisted case – then in fact Q0 and Z0 may not even be
diffeomorphic. The three twisted cases are depicted in Figure 3, where in the first
case Q0 is a 4–holed sphere and Z0 a 2–holed torus, in the middle case they change
roles, and in the third case both are 4–holed spheres but p is not homotopic to a
diffeomorphism.

Note as in Lemma 5.2 the boundary curves of Z0 are mapped to simple curves; however
in the twisted case their images are not disjoint. Their intersections are prescribed by
Figure 3, and we wish to record something about how they look from the point of
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.1/ .2/ .3/

Figure 2: The three possible types for Q0 or Z0 , depicted as immersed
surfaces in the plane with the level set �0 in heavy lines. The first and third
are 4–holed spheres and the second is a 2–holed torus.

.1/ .2/ .3/

Figure 3: The twisted cases of Q0 and Z0 . In each case Q0 is depicted
immersed in the plane, while Z0 intersects it. The parts of Z0 above the
plane are shaded darker than the parts below. @CZ0 is a heavy line, @�Z0 is
dotted. The map p is essentially projection to the plane.

view of our subsurface F . In fact the only time that this double-saddle case actually
occurs is when h weakly F –splits f , and .t; s/ is the vertex in the intersection of RF

a

and RF
b , as discussed in Lemma 3.7. In this case F (up to isotopy) lies in Q0 , which

allowed us to conclude in Lemma 3.7 that it must be in one of the exceptional cases.

Now divide up @Z0 as @CZ0 DZ0\ f
�1.tC/ and @�Z0 DZ0\ f

�1.t�/, each of
which is embedded by p .
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Lemma 5.3 Suppose that h weakly F –splits f , .t; s/ is the vertex comprising
RF

a \RF
b , and �0 is the component of � D†t \ƒs whose regular neighborhood Q0

in †t contains F . Let Z0 be the regular neighborhood of �0 in ƒs .

If two components ˛C � p.@CZ0/ and ˛� � p.@�Z0/ intersect F �Q0 essentially,
then

dF .˛C; ˛�/� 3:

Proof In the untwisted case all boundary components of Z0 map to boundary com-
ponents of Q0 , and hence are peripheral and the lemma holds vacuously. The same
occurs (via Lemma 5.2) if Q0 is a 3–holed sphere and F is an annulus. We therefore
consider the twisted cases from now on.

Consider first the case that F is actually isotopic to Q0 . Note that since F is essential
it can only be a proper subsurface of Q0 if F is an annulus, or if F is a 1–holed torus
and Q0 is a 2–holed torus. We return to these cases in the end.

We can read off ˛C and ˛� from the diagrams in Figure 3: they are components of
the thickened curves and the dotted curves, respectively. In case (1), they intersect each
other four times, and one can see from Figure 4(a) that they are connected by a chain
of length 3 in which the two middle vertices are the arcs b˙ in the figure. In case (2)

˛C

b� bC

˛�

˛C

˛�

b�

bC

(a) (b)

Figure 4: Checking that dAC.Q0/
.˛C; ˛�/D 3

each possible ˛� intersects each possible ˛C exactly once, and it is easy to see that
the distance is 2. In case (3) they intersect twice (here two components are actually
inessential in Q0 , so we must consider the others), and again the distance is 3.
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Consider now the case that Q0 is a 2–holed torus – case (2) of Figure 3 – and F is a
1–holed torus. Again ˛C and ˛� intersect exactly once, therefore their intersections
with F (if any) intersect at most once. Hence their distance in AC.F / is at most 3.

Finally we consider the case that F is an annulus. We can assume F is not boundary-
parallel in Q0 , because otherwise it would not intersect @Z0 essentially. The possibili-
ties for Q0 are again enumerated in Figure 3.

In case (1), let .˛C; bC; b�; ˛�/ be the sequence from Figure 4(a). We claim that if
F intersects ˛C and ˛� essentially then it must intersect bC and b� essentially as
well. This is because if F misses b� it must be parallel to ˛� , and similarly for bC

and ˛C . This will imply that the same sequence gives a distance bound of 3 in AC.F /,
provided we understand how to lift the arcs b˙ to the annulus complex.

The boundary components of Q0 lift to a union ‚ of boundary-parallel arcs in the
annulus yF (see Figure 5). The arcs b˙ lift to disjoint arcs connecting components

‚

‚

‚

‚

yb�

ybC

yaC

ya�

yF

Figure 5: Lifting curves and arcs to the annulus yF

of ‚, and since they cross F essentially, we can choose lifts with endpoints on arcs
of ‚ adjacent to opposite sides of yF . Given such a lift, we can join its endpoints
to @ yF using arcs in the disks bounded by the components of ‚ that it meets. This
results in disjoint properly embedded arcs yb˙ , such that ybC is disjoint from the lifts
of ˛C because the latter never cross ‚, and similarly for ˛� . We conclude that
dAC.F /.˛

C; ˛�/� 3.

In case (2), Figure 3 shows that any choice of ˛C and ˛� intersect exactly once. If
they intersect F essentially, by the argument given in [4, Section 2.1] their lifts to yF
cross at most twice. We conclude that the distance in AC.F / is at most 3.

In case (3) we can use exactly the same argument as for case (1), using the arcs in
Figure 4(b).
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6 Splitting bounds distance

In this section we put together the results obtained so far to show that F –splitting gives
a bound on dF .†/.

Proposition 6.1 Let † and ƒ be Heegaard surfaces for M , and let F � † be a
proper connected essential subsurface. If ƒ F –splits † then

dF .†/� 2g.ƒ/:

If ƒ weakly F –splits † then

dF .†/� 2g.ƒ/C 2:

Proof Choose sweepouts h and f with f � h generic, such that h F –splits f or
weakly F –splits f , according to our hypothesis.

In the F –splitting case there is a value s such that Œ�1; 1�� fsg is disjoint from the
closures of RF

a and RF
b . In particular this means that there is an interval of such

values and we may choose one such that Œ�1; 1��fsg meets no vertices of the graphic.
It follows that the function f jƒs

is a Morse function, having at most one critical point
per critical value. We fix this s and henceforth identify ƒ with ƒs .

In the weak F –splitting case there is a value of s such that Œ�1; 1�� fsg intersects the
closures of RF

a and RF
b only at their unique intersection point, which is a vertex .t; s/

that we will call the weak splitting vertex. We again fix this s and let ƒDƒs .

The proof proceeds along the following lines: The intersections ƒ\†t are the level sets
of f jƒ , and the idea is to consider them as curves on †, argue using the F –splitting
property that they intersect F essentially, and then use the topological complexity
of ƒ to bound the diameter in AC.F / of the corresponding set. This kind of argument
originates with Kobayashi [12]. It was extended in various ways by Hartshorne [5],
Bachman and Schleimer [1], Scharlemann and Tomova [20] and Johnson [10]. Our
argument is a direct extension of the one used in [10].

We use the map pW f �1..�1; 1//!†, as in Section 5, to map level curves of f jƒ
into †. The lemmas in Section 5 will help us control what happens as we pass through
critical points of f jƒ .

One important complication is the possibility that curves that are essential in one surface
are trivial in the other. To handle this we adapt an argument of [10]:

Lemma 6.2 If dF .†/ > 3, then there is some nontrivial interval Œu; v�� .�1; 1/ such
that for each regular t 2 Œu; v�, every loop of †t \ƒ that is trivial in ƒ is trivial in †t .

Here and below when we say t is regular we mean it is a regular value for f jƒ .
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Proof As in Lemma 5.1, the isotopy classes in † of level sets of f jƒ are constant
over an interval between two critical values. Thus it suffices to find a single regular
value t such that every loop of †t \ƒ that is trivial in ƒ is trivial in †t .

Note also that if †XF is compressible to at least one side of † then dF .†/� 3 by
Lemma 2.1. Hence we may assume that every disk in HC or H� intersects F .

Assume, seeking a contradiction, that for every regular t there is a loop of †t \ƒ that
is essential in †t and trivial in ƒ. We can assume this loop is innermost within ƒ
among intersection loops that are essential in †t . Within the disk that it bounds in ƒ
there might still be intersection loops that are trivial in both surfaces, but after some
disk exchanges we see that we have a loop of †t \ƒ which bounds an essential disk
in H�t or HCt . The loops of †t \ƒ, for regular values of t , are pairwise disjoint
in †t , so if there are loops of †t \ƒ that bound disks on opposite sides of †t then
dF .†/� 1. Note we are using here the fact that all such disks must meet F essentially.

If ƒ F –splits † and s has been chosen as above, then for a nonregular value t0 ,
there is a unique critical point. If it is a saddle point then Lemma 5.2 tells us that the
p–images of loops of intersection of †t \ƒ for the regular values t just before t0
and just after t0 are also pairwise disjoint in †. We call this a saddle transition. So
if the loops switch from bounding a disk on one side of †t0

to the other, we again
find that the distance dF .†/ is at most one. If the point is a central singularity then
(again referring to Section 5) it corresponds to the appearance or disappearance of a
level curve which is trivial in both ƒ and †, and so can be ignored. We call this a
central transition.

If ƒ weakly F –splits † and s has been chosen as above, then a nonregular value t0
could occur at the weak splitting vertex, .t0; s/. In this case, recall that F is in one of
the exceptional cases, and by Lemma 5.3, any level curves just before and just after t0
which intersect F essentially have distance at most 3 in AC.F /. Hence we obtain
dF .†/� 3 if these loops correspond to disks on opposite sides.

Now, for t near �1, all the loops of intersection bound disks on the negative side of †t

and for t near 1, they all bound disks on the positive side. Hence they must switch
sides at some point, thus implying dF .†/� 3. We conclude that there is some regular
value t for which the assumption does not hold. Thus the first paragraph gives the
desired interval Œu; v�.

For a regular value t 2 .�1; 1/ of f jƒ , let Lt denote the set of nontrivial isotopy
classes in † of the p–images of the curves of .f jƒ/�1.t/. For an interval J � .�1; 1/

let LJ denote the union of Lt over regular t 2 J .
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We now observe that for each regular t 2 .�1; 1/, Lt contains a curve that intersects F

essentially, and in particular �F .Lt / is nonempty. This is because both F –splitting
and weak F –splitting tell us that .t; s/ is in neither RF

a nor RF
b (it cannot be the

weak splitting vertex since t is regular), so that both V Cs \†t and V �s \†t cannot
be isotoped off Ft in †t , and hence neither can their common boundary.

We can now bound the diameter in AC.F / of LŒu;v� for Œu; v� satisfying the conclusion
of Lemma 6.2.

Lemma 6.3 Let Œu; v� be an interval such that for each regular t 2 Œu; v�, every loop
of †t \ƒ that is trivial in ƒ is trivial in †t . If .u; v/� fsg encounters no vertices of
the graphic then

diamF .LŒu;v�/� 2g.ƒ/� 2:

If .u; v/� fsg meets the weak splitting vertex then

diamF .LŒu;v�/� 2g.ƒ/� 1:

Proof The critical values of f jƒ cut Œu; v� into intervals. Let t0 < � � � < tn 2 .u; v/

be a selection of one regular point for each interval. Then
S

i Lti
D LŒu;v� .

Consider the transition from Lti
to LtiC1

. If it is a central transition then only the loss
or gain of a curve trivial in both ƒ and † is involved. Hence Lti

D LtiC1
.

Suppose it is a saddle transition (as in the proof of Lemma 6.2), but that at least one of
the curves of the associated 3–holed sphere is trivial in ƒ. Then its p–image is trivial
in †, and the remaining two curves are trivial or homotopic. Once more Lti

D LtiC1
.

If it is an essential saddle transition, meaning all three boundary curves are essential in
ƒ, then Lemma 5.2 implies that all the curves of Lti

and LtiC1
are pairwise disjoint.

Suppose we are in the first case, where .u; v/�fsg encounters no vertices of the graphic.
Then these transitions are the only possibilities.

Since every Lti
intersects F essentially we find that each �i � �F .Lti

/ is nonempty,
and two successive �i are equal unless they differ by an essential saddle, in which
case they are at most distance 1 apart. Since the pants that occur among level sets of
f jƒ are all disjoint, and since the number of disjoint essential pants in ƒ is bounded
by ��.ƒ/D 2g.ƒ/� 2, this gives the desired bound on diam.�F .LŒu;v�//.

If .u; v/� fsg meets the weak splitting vertex then, as in the proof of Lemma 6.2, we
apply Lemma 5.3 to show that the curves before and after have distance at most 3 in
AC.F /. On the other hand such a transition uses up two saddles. If we can show that
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both are essential in ƒ, this will make our count higher by just 1, ie we get a bound of
2g.ƒ/� 1. We therefore proceed to show this.

Note first that only the twisted case can occur here: If Q0 and Z0 are in the untwisted
case then in fact p.@Z0/ is isotopic to @Q0 and hence does not intersect F . This
means that for the level ti just after (or before) the weak splitting vertex, Lti

does not
intersect F , which is a contradiction. Hence this case cannot happen.

Recall that in the weak splitting case F is isotopic into Q0 (notation as in Section 5).
Suppose Q0 is an essential subsurface of † (which holds in particular whenever F is
isotopic to Q0 , since F itself is essential). By the hypothesis on Œu; v� the boundary
curves of Z0 cannot be trivial in ƒ since they map to nontrivial curves in Q0 . Hence
Z0 is essential in ƒ so both saddles are essential.

Suppose that Q0 is not essential in †, and hence F is a proper subsurface of Q0 . If
Q0 is a 4–holed sphere, as in cases (1) and (3) of Figure 3, then F must be an annulus.
Since at least one of the boundary components of Q0 is inessential in †, F must be
isotopic to one of the remaining essential boundary components of Q0 . This means
that F has no essential intersections with @Z0 , which as above contradicts the fact
that Lti

always intersects F essentially.

If Q0 is a 2–holed torus, as in case (2) of Figure 3, then we observe that none of
the boundary curves of Z0 can be inessential in †, since each one has exactly one
intersection point with one of the others. Hence they must be nontrivial in ƒ as well,
so again we get two essential saddles, and therefore obtain a bound of 2g.ƒ/� 1.

We are now ready to complete the proof of Proposition 6.1.

If dF .†/� 3 then the claim of Proposition 6.1 follows immediately, since we assumed
ƒ has genus at least two. Hence we may assume that dF .†/ > 3.

In particular we can obtain at least one interval Œu; v� satisfying the conclusion of
Lemma 6.2. Note that if two such intervals intersect then their union also satisfies the
conclusion of Lemma 6.2. Hence we can let Œu; v� be a maximal such interval. The
endpoints u and v must be critical values, else we could enlarge the interval. Note
also u> �1, since for t close to �1, †t is the boundary of a small neighborhood of
the spine f �1.�1/ and so intersects ƒ in small circles that bound disks in ƒ but are
essential in †t . Similarly we see v < 1. Let u0 < u be a regular value not separated
from u by any critical values. Then ƒ\†u0 must contain a component ˇ that is trivial
in ƒ but essential in †u0 .

Moreover ˇ must in fact be trivial in the handlebody f �1.Œ�1;u0�/ – in other words ˇ
determines an element of D.H�/. To see this, let E be the disk in ƒ bounded by ˇ .
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Let u00 2 .u; v/ be a regular value, and let E1DE\f �1.Œ�1;u00�/. Then E1 contains
a neighborhood of ˇ , and any internal boundary component of E1 is trivial in E , and
hence in ƒ. Since u00 2 Œu; v�, such a curve is also trivial in †u00 , and so after a surgery
and isotopy we can obtain a disk in f �1.Œ�1;u0�/, whose boundary is ˇ .

Similarly, if we consider a regular v0 > v not separated from v by critical values we
obtain ˇ0 2D.HC/ in the level set of v0 .

As before, since dF .†/ > 3 we may assume by Lemma 2.1 that both ˇ and ˇ0

intersect F essentially.

Now assume we are in the F –splitting case, so that all critical values have single
critical points. In that case, by Lemma 5.2, ˇ is disjoint from the regular curves at
level just above u, and ˇ0 is disjoint from the regular curves at level just below v . It
follows that dF .ˇ;LŒu;v�/� 1, and similarly for ˇ0 . We conclude via Lemma 6.3 that
dF .ˇ; ˇ

0/� 2g.ƒ/� 2C 2, which is what we wanted to prove.

In the weakly F –splitting case, there could be one critical value corresponding to a
vertex of the graphic. If this occurs inside .u; v/ then we have already taken account
of it in the bound of 2g.ƒ/� 1 in Lemma 6.3, so we get a final bound of dF .ˇ; ˇ

0/�

2g.ƒ/C 1. If the vertex occurs at u or at v , then we get contribution of 3 instead
of 1 from one of the disks. Lemma 6.3 gives us 2g.ƒ/� 2 in that case, so we get
dF .ˇ; ˇ

0/�2g.ƒ/�2C4D2g.ƒ/C2. That concludes the proof of Proposition 6.1.

7 Proof of the main theorem

Proof of Theorem 1.1 Let f and h be sweepouts for † and ƒ, respectively. Isotope
f and h so that f � h is generic.

Suppose first that F is not an annulus, 4–holed sphere, or 1– or 2–holed torus. If
dF .†/ > 2g.ƒ/ then, by Proposition 6.1, h cannot F –split f . By Lemma 3.7, if h

does not F –split f then h must F –span f , and then Proposition 4.1 implies that
after isotopy the intersection of ƒ and † contains F .

Now suppose F is an annulus, 4–holed sphere, or 1– or 2–holed torus. If dF .†/ >

2g.ƒ/C 2 then, by Proposition 6.1, h cannot weakly F –split f . By definition this
means h F –spans f , and again we are done by Proposition 4.1.
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