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On free discrete subgroups of Diff(/)

AZER AKHMEDOV

We prove that the free group [, admits a faithful discrete representation into
Difﬂr [0, 1]. We also prove that [F, admits a faithful discrete representation of bi-
Lipschitz class into Homeo[0, 1]. Some properties of these representations are
studied.

37E05; 20F65

Introduction

In recent decades and especially in recent years, some remarkable papers devoted to the
study of finitely generated subgroups of Difﬂr [0, 1] have appeared (see Bergman [1],
Calegari [2], Farb and Franks [3; 4], Farb and Shalen [5], Ghys [6], Navas [7; 8; 9],
Tsuboi [12] and Yoccoz [13] for some of the most current developments). In contrast,
discrete subgroups of Diff},_ [0, 1] are much less studied. Very little is known in this area
especially in comparison with the very rich theory of discrete subgroups of Lie groups
started in the works of F Klein and H Poincaré in the 19th century, and expanded
enormously in the works of A Selberg, A Borel, G Mostow, G Margulis and many
others in the 20th century. Many questions which are either very easy or were studied
a long time ago for (discrete) subgroups of Lie groups remain open in the context of
the infinite-dimensional group Diffﬂr [0, 1] and its relatives. In this paper, we address
a question about the existence of discrete faithful representations of nonabelian free
groups into the group DifflL [0, 1].

We assume the usual topology on the group Diffﬁr [0, 1] given by the standard metric
of C1]0, 1]. We will denote this metric by d; .

Theorem 1 A free group [, admits a faithful discrete representation into Diff},_ [0, 1].
We will also be interested in discrete subgroups of Homeo[0, 1] — the group of

orientation preserving homeomorphisms of the closed interval. Here, the metric comes
from the sup norm of the Banach space C[0,1]. For f € C[0, 1] we will denote

I/ lo = supxeqo,1 [/ ()]
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Theorem 2 A free group [, admits a faithful discrete representation into
Homeo [0, 1]. Moreover,

(a) the representation can be chosen from the class C'(0, 1) N BiLip[0, 1].

(b) for any nonempty open neighborhood 2 of the identity in Homeo4[0, 1], the
generators of the faithful discrete representation of I, can be chosen from 2.

Here, BiLip[0, 1] denotes the set of all bi-Lipschitz functions from the closed inter-
val [0, 1] into itself.

Proofs of main theorems

In this section we will prove Theorems 1 and 2.

In the free group F, we will fix the left-invariant Cayley metric with respect to standard
generating set, and denote it by |- |. The following notions will be useful.

Definition 1 Let W be a reduced word in the alphabet of the standard generating set
of the free group F,. We say that a reduced word U is a suffix of W,if W =U,U
where U, is areduced word, and |W| = |U;|+|U|. We also say that a reduced word V'
is a prefix of W, if W = V'V; where V; is a reduced word, and |W| = |V |+ |V1].

Proof of Theorem 1 Let [, = (1/(2n+1),1/(2n)) forany n € N and let C > 0.

We will build two maps f, g € Diffi [0, 1] such that the group I'y,, generated by them
is isomorphic to [, and satisfies the following condition:

(x) Forall g1,g2 €Ty, g1 # g2, the inequality sup,epo 1717 () —g5(1)| > C is
satisfied.

Let ,, = (Uy, Vi), n > 1 be a sequence of pairs of words (elements) in [, satisfying
the following conditions:

(al) Uy # Vy foralln>1.

(@2) |Uy| = |Vy| forall n > 1.

(a3) If m > n then |Uy,| > |Uy|.

(ad) If m > n, |Upy| = |Uy| then |Vy,| = |Vyl.

(@S) Uy #1foralln>1.

(@a6) IfU,VelF,, U#1, |U|>|V| thenthere exists n € N suchthat U=U,, V =1,,.
(@7) If m # n then 7y, # 7p.

Algebraic € Geometric Topology, Volume 10 (2010)



On free discrete subgroups of Diff(1) 2411

For every n € N, the longest common suffix of U, and V,, will be denoted by W,, and
we let s, = |W,]|.

Let also my, = Card{k | 7y = (Ug, Vi), |Ur| = n} for all n > 1, my = 0. Notice that
my grows exponentially as n — oco.

Let o = (a1, a7, ...) be a sequence of positive real numbers such that

(bl) llmr_)oo Oy = 0.
(b2) forevery r e N,s €{0,1,...,r — 1}, the inequality
A+ar)((4+a) ™ -1)>C

is satisfied.

(Notice that such a sequence « exists, eg o1 = C+1, @, = /(C +1)/(r —1),r >2))

Let also 8 = (B, B2, ...) be a sequence such that ; =« forall my +---+mj_; <
i <mp+---+mj_; +mj. We notice that lim, . B, = 0; moreover, for every
n € N, we have B, = a;(,) where i(n) — 0o as n — oo.

Now, for any natural #, let xg be the midpoint of the interval I,,, s = s,, and let f, g
be defined in the interval I, such that

(cl) f(x)=gx)=xforall xe{l/2n+1),1/(2n)}.

©2) f'(x)e[l/(1+Ba+1/n), 14 Bu+1/n], forall x € I,.

(c3) ff(x)=¢g'(x)=1forall x € {l/2n+1),1/(2n)}.

(c4) if |Uy|=r,where U,=ara,—y---as---ay fora; €{f, g, f_l,g_l},lfifr,
and if Un(k) = ay---a1, 0=k <r—1, then aj_  (Un(k)(x()) =1+ Bn.

(c5) if |Vy| = m, where Vi, = bybp—q---by,for bj e {f. g, f~1 g7 1<i <m,
and if V, (k) = by ---b1, m—1=k = s then by (Va(k)(x7)) = 1.
Now, if x € [0, IN(|l,eny In), we set f(x) = g(x) = x (hence f'(x) = g'(x)=1).

Then the functions f, g will belong to Diffﬁr [0, 1]. Moreover, for any n > 1, by the
Chain Rule, we have

Up(xg) = (L4 Bn)". Vy(xg) = (14 Bn) 1™ = (14 Bu)".

Since B, = aj(y) and i (n) =r, the inequality |(Uy (1. g)) (xg)—(Va(f. 2)) (x3)| > C
follows from condition (b2). O
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Remark 1 We indeed prove more than discreteness; the inequality

sup |g't)—1>C >0

t€l0,1],
geF2\{1}
would suffice for discreteness. By proving more general inequality
sup - |g1(1) —g5()] = C >0,
t€[0’1]9

g1,82€F2, g1#g>

we show that the representation is uniformly discrete. Since the metric in Diffﬁ_ [0, 1] is
not left-invariant, discreteness does not necessarily imply uniform discreteness.

Remark 2 Tt is clear from the proof that the functions f(z) and g(z) can be chosen
from an arbitrary nonempty open neighborhood of the identity. This is contrary to
the case of connected Lie groups: the Margulis Lemma states that any connected Lie
group G possesses a nonempty open neighborhood U of the identity such that any dis-
crete subgroup of G generated by elements from U is nilpotent (see Raghunathan [10]).
Thus we have shown that the Margulis Lemma does not hold for the group Diffﬂr[O, 1].

It is easy to put the main idea of the proof of Theorem 1 in words: we take all pairs
(Un, V) in the free group I, that are interesting to us and enumerate them with some
care (conditions (al)—(a7)). For simplicity, let us also assume that V;; = 1,n > 1. Then
we choose countable pairwise disjoint open subintervals Iy, I, ..., I,... of [0, 1]
which are accumulating to the left endpoint of [0, 1], (/; is on the left side of I; for
all i > j). Then, on each of the subintervals we arrange the maps f, g such that
supyey, |//(x) — 1| and sup,ej, [g'(x) — 1| converge to zero as n — oo while for
each midpoint x, € I, we have U, (x,) > C.

To satisfy this condition, one notices that the word U, has length at least log(r) which
goes to infinity as n grows. Then, since U, (x,) is the product of log(n) derivatives
we can have this product to be bigger than C yet each of the factor stay close to 1. (and
converge to 1 as n goes to infinity). For fixed n, each of these conditions imposes only
finitely many conditions on f and g in [, and for the next pair we go to a different
interval [, hence we have no obstruction left to the existence of discrete I, of
C! class.

However, because of the slow growth of log(#), and because the lengths of intervals
of I, converge to zero faster than 1/n, it is easy to see that this construction will
not work in C? class. In fact, as Danny Calegari pointed out, it will not work in any
C %€ class for any € > 0; imposing the same condition will blow-up the Holder norm.
So one cannot achieve higher regularity of representations by taking care of different
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pairs in disjoint areas of the closed interval [0, 1]. If we want to mix fields of actions
for different pairs, we need to take some cautions.

Now we will prove Theorem 2. We need the following definitions.

Definition 2 For open subintervals 7, J C (0,1) we say I < J if any element [ is
less than any element of J .

Definition 3 A two-sided sequence {/,},cz of open subintervals of (0, 1) is called a
chainif I, < I, forall n € Z.

Proof of Theorem 2 Let € > 0, and let A,, B, n € Z be open subintervals of (0, 1)
such that

(1) the two sided sequence {A,, By }nez is a chain of subintervals (that is, we have
---<A_1 <B_1 <A0<B0<A1 <B1 <A2<---).

(ii) forall meZ andall i €{1,2,3,4} we have f*(4,) C Bu, f~(A4,) C B,_;.
(iii) forall n € Z, we have g(By) C An11, g 1(By) C A4,.

(iv) forall n € Z, the inequality supyc 4, ye4,.,, |X — V| <€ holds.

It is straightforward to choose f, g € Homeo4[0, 1] satisfying conditions (i)—(iv).
Now, let A =J,,cz An. B =|J,cz Bn. Notice that by conditions (i)—(ii),
fi(A)S Bforalli € {—4,—3,—2,—1,1,2,3,4} and g'(B)C A foralli e {—1,1}.
This allows us to use a ping-pong argument.

The ping-pong argument is usually used to guarantee existence of free subgroups, here
we will be using it also to satisfy discreteness (which is natural). Using the ping-
pong lemma, we will show the following: Assume conditions (i)—(iv), and suppose
U(f,2).V(f, g) are reduced words satisfying two conditions:

(1) U(f’ g) = foO(f’ g)fz’ V(f’ g) = fVO(f; g)f where UO(f? g)? VO(f’ g)
are both nonempty reduced words starting and ending in letter g.

(2) None of the letters { f, g} occur with exponent other than {—1, 1} in Uy(f, g)
and in Vy(f, 2).

Then U(f,g) and V(f, g) actually generate a free subgroup isomorphic to I, in
Homeo4 [0, 1]. We will have that this subgroup (which we will denote by I') is
discrete.
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Let W(U, V) be any reduced nontrivial word in the alphabet {U = U(f, g),V =

V(/.g)U'=U(f,g)"", V' =V(f,g)"'}. Theninthe alphabet { /. g, /™', g7"}
the word W ends with either f or /!,

Let xo be the midpoint of 4.

We notice that fi(A) C B forall i € {—4,-3,-2,—1,1,2,3,4}. Furthermore,
g*!1(B) C A. Then by a standard ping-pong argument, we have that
W(xo) = WU(/. ). V([. &) (xo) £ Ao,
hence W # 1 in I", and ||W ||g = |Ao|/2.
We now consider the general case of arbitrary distinct &1, /4, € T'. Let hy = Wi (U, V),

hy = Wo(U, V) be two distinct reduced words in the alphabet {U, V,U~!, V11,
Then we can write W, = W W, where W = W(U, V)= W(U(f, g), V([ g)).

Since W7 = Wi(U(f, g),V(f, g)) is a bijective map from [0, 1] onto [0, 1], there
exists z € [0, 1] such that Wj(z) = x¢. Then W, (z) = W(W;(z)) = W(xg) € Ay.

Then we have |W;(z) — Wa(2)| = |xo — W(xo)| > |Ao|/2. Thus we established that
the nonabelian free subgroup generated by U and V is discrete.

For claim (b), suppose 2 contains a ball of radius r, and M = max{|U|,|V|}. Then
by condition (iv), max{||U ||o, ||V ]lo} < €M . Since € is arbitrary we can choose it to
be such that Me < r, and hence we obtain claim (b).

For claim (a), we may choose a sufficiently large natural number N, and further assume
that

1 1 1 1
Ay = , ,Bp=——7,— forallm < —N,
! (5(|n|+ 1)"5|n| +4) " (5|n| +4 5|n|)
1 1 1 1
Ay=1——,1— , Bp=|1- 1= foralln > N
5n Sn+1 Sn+1 S(n+1)
(and we choose A_n+41, B_N+1,..-, AN—1, BNy—1 to be arbitrary open nonempty

intervals such that conditions (i) and (iv) hold). Then it is straightforward to choose
f. g € Homeo[0, 1] such that ' € C'[0,1],g € C'(0,1), and g is a bi-Lipschitz
function with Lipschitz constant at most 5 in [0, 1/(5N)] and in [l —1/(5N), 1]. Then
for any word W in the free group 5, the function W(U(f, g), V(f, g)) will be a
bi-Lipschitz function of class C1(0, 1). m|

Remark 3 We would like to point out what goes wrong if one applies the idea of

the proof to Theorem 2 directly to obtain a faithful discrete representation of I, in
Diff} [0, 1]:

Algebraic € Geometric Topology, Volume 10 (2010)



On free discrete subgroups of Diff(1) 2415

Let A, By, n € Z be mutually disjoint open subintervals in (0, 1) satisfying conditions
(1), (i1) and (iii).
We will show that it is impossible to have the maps differentiable (C! class) under

these conditions (i)—(iii); there are obstructions easily obtained from the Mean Value
Theorem.

Without loss of generality we may assume that A,, B, converge to 1 as n — oco. Let
limy_1—- f/(x) = p. (Then p >0.)

Let pq, p» be positive real numbers such that

e >99 <101
P1<p<p2, D1 10010, D2 10017-

So by the Mean Value Theorem, from condition (i) we obtain that

1 1 1
[Bal > (1 + 92+ p})l | and |Bn|>(—+—2+—3)|An+1|
P2 py P

for sufficiently big positive n. Then

HEA 1
|Bal T |Bal 1/pa+1/p2+1/p3
—1

|g (Bn)l < |An| < 1 .
| Bl | Bl p1+pi+p}

Then, by the Mean Value Theorem, we obtain that for sufficiently big positive n, there
exists uy, v, € By, such that

1 —1y/
and (g7 ) () < ———.
1/p2+1/p3+1/p3 p1+pi+p;

However, since lim,_,;— g’(x) = 1/limy_1-(g~ 1) (x), we obtain a contradiction
because

g (un) <

1 1 1
2 3 2 3 < 27,2 3,35 ° L.
Up2+1/p3+1/p; pr+pi+p7 p1/p2+p1/p3+p7/p;
Remark 4 In the proof of Theorem 2, by slightly changing conditions (1)—(2), it is
possible to replace condition (ii) by the following weaker version:
(i)’ forall i €{1,2},ne€Z, wehave [ (A,) € Bn, [~ (A,) S By_1.
However, a similar argument shows that there are no f, g € Diff}i_ [0, 1] satisfying

conditions (i), (ii)" and (iii). It also follows from the criterion of Calegari [2] that no
C!—class diffeomorphisms exist which satisfy conditions (i), (i)’ and (iii).
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Remark 5 The metric in C [0, 1] is given by the norm || || = || fllo + || f|l1 where

I fllo = supxeqo,11 1./ COL N /NI =supxefo,17 [/ (I I || /]l1 is small and f(0) =0,
then by Mean Value Theorem ||| f|lo cannot be big. However, ||| f||1 can be big even

if ||| f]lo is small. In the proof of Theorem 1, taking f(x) = W(x)— x, we actually
show that ||| f||1 stays big for all W # 1; we do not show that ||| f||o is big. However,
in the proof of Theorem 2, we indeed show a stronger fact that ||| f||o remains big.

Questions

In this section, we raise several questions. We will address these questions in our next
article.

The regularity of the representation is a very interesting question; if a finitely generated
group I' admits a faithful discrete representation in Diffﬂr[O, 1] or in Homeo [0, 1],
it is interesting to know if one can achieve faithful discrete representations of higher
(C kK k>1, Cco°, analytic, etc) regularity.

Question 1 Does a free group I, admit a faithful discrete representation into
Diff! [0, 1]

(a) of Ck regularity for some k > 1?

(b) of Ck regularity for any k > 1?

(c) of C* regularity?

(d) of analytic regularity?

Let I be a finitely generated group, and 7: I' — Diffﬂr [0, 1] be a faithful discrete
representation of it.

Definition 4 The representation 7 is called || - ||o—discrete if there exists C > 0 such
that || (g)|lo > C for all g € I'\{1}.

By Remark 5, || - ||o—discreteness of the representation implies its discreteness in
DifffF [0, 1]. Also, a || - |[o—discrete representation of a group into DifflL [0,1] is just a
discrete representation into Homeo [0, 1] of C!—regularity.

Question 2 Does [, admit a faithful || - ||o—discrete representation into Diff}k[O, 1]?

Definition 5 The representation 7w is called strongly discrete if there exists C > 0
and x¢ € (0, 1) such that || (g)(x¢)|1 > C forall g € T'\{1}.
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Question 3 Does [, admit a faithful strongly discrete representation into Diff}i_ [0,1]?

Similarly, we say that a faithful representation r: I' — Homeo4[0, 1] is strongly dis-
crete (in Homeo [0, 1]) if there exists C >0 and x¢ € (0, 1) such that || (g)(x¢)||o > C
for all g € '\{1}. Notice that in the proof of Theorem 2, the representation of I, into
Homeo [0, 1] is indeed strongly discrete.

Definition 6 Let G be a topological group or a group with a metric. We say that the
Weak Margulis Lemma holds for G, if there exists an open nonempty neighborhood U
of identity such that any discrete subgroup of G generated by elements from U does
not contain a nonabelian free subgroup.

We will be interested in the group Diff}:re[O, 1] where € is a fixed positive real number.
On this group, we are considering the metric d, ie the metric which comes from the
Banach norm of C[0, 1].

Question 4 Does the Weak Margulis Lemma hold for the group Difff’e[o, 1] for
some € > (07

Remark 6 It follows from the proof of Theorem 1 and from Theorem 2 that the
Weak Margulis Lemma does not hold neither for Diffﬂr[O, 1] nor for Homeo [0, 1], in
respective metrics.

The study of discrete subgroups of Diffﬂr [0, 1] is interesting beyond the existence
question of discrete faithful representations of free groups or even of the groups which
contain nonabelian free subgroups. The existence of a faithful representation into
Diffﬂr[O, 1] imposes some algebraic properties onto the group; for example, it is well-
known that any subgroup of Homeo [0, 1] is left-orderable (see Ghys [6]). Furthermore,
if a group is isomorphic to a subgroup of Diff}i_ [0, 1] then it is locally indicable, as
proven by Thurston [11]. It is interesting to consider if discreteness implies further
algebraic restrictions on the group. We would like to ask the following:

Question 5 Is there a finitely generated group which admits a faithful representation
into Diffﬂr [0, 1] but does not admit a faithful discrete representation?
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