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On free discrete subgroups of Diff.I/

AZER AKHMEDOV

We prove that the free group F2 admits a faithful discrete representation into
Diff1

CŒ0; 1� . We also prove that F2 admits a faithful discrete representation of bi-
Lipschitz class into HomeoCŒ0; 1� . Some properties of these representations are
studied.

37E05; 20F65

Introduction

In recent decades and especially in recent years, some remarkable papers devoted to the
study of finitely generated subgroups of Diff1

CŒ0; 1� have appeared (see Bergman [1],
Calegari [2], Farb and Franks [3; 4], Farb and Shalen [5], Ghys [6], Navas [7; 8; 9],
Tsuboi [12] and Yoccoz [13] for some of the most current developments). In contrast,
discrete subgroups of Diff1

CŒ0; 1� are much less studied. Very little is known in this area
especially in comparison with the very rich theory of discrete subgroups of Lie groups
started in the works of F Klein and H Poincaré in the 19th century, and expanded
enormously in the works of A Selberg, A Borel, G Mostow, G Margulis and many
others in the 20th century. Many questions which are either very easy or were studied
a long time ago for (discrete) subgroups of Lie groups remain open in the context of
the infinite-dimensional group Diff1

CŒ0; 1� and its relatives. In this paper, we address
a question about the existence of discrete faithful representations of nonabelian free
groups into the group Diff1

CŒ0; 1�.

We assume the usual topology on the group Diff1
CŒ0; 1� given by the standard metric

of C 1Œ0; 1�. We will denote this metric by d1 .

Theorem 1 A free group F2 admits a faithful discrete representation into Diff1
CŒ0; 1�.

We will also be interested in discrete subgroups of HomeoCŒ0; 1� – the group of
orientation preserving homeomorphisms of the closed interval. Here, the metric comes
from the sup norm of the Banach space C Œ0; 1�. For f 2 C Œ0; 1� we will denote
kf k0 D supx2Œ0;1� jf .x/j.
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Theorem 2 A free group F2 admits a faithful discrete representation into
HomeoCŒ0; 1�. Moreover,

(a) the representation can be chosen from the class C 1.0; 1/\BiLipŒ0; 1�.

(b) for any nonempty open neighborhood � of the identity in HomeoCŒ0; 1�, the
generators of the faithful discrete representation of F2 can be chosen from �.

Here, BiLipŒ0; 1� denotes the set of all bi-Lipschitz functions from the closed inter-
val Œ0; 1� into itself.

Proofs of main theorems

In this section we will prove Theorems 1 and 2.

In the free group F2 we will fix the left-invariant Cayley metric with respect to standard
generating set, and denote it by j � j. The following notions will be useful.

Definition 1 Let W be a reduced word in the alphabet of the standard generating set
of the free group F2 . We say that a reduced word U is a suffix of W , if W D U1U

where U1 is a reduced word, and jW jD jU1jCjU j. We also say that a reduced word V

is a prefix of W , if W D V V1 where V1 is a reduced word, and jW j D jV jC jV1j.

Proof of Theorem 1 Let In D .1=.2nC 1/; 1=.2n// for any n 2N and let C > 0.

We will build two maps f;g 2Diff1
CŒ0; 1� such that the group �f;g generated by them

is isomorphic to F2 and satisfies the following condition:

(?) For all g1;g2 2 �f;g;g1 ¤ g2 , the inequality supt2Œ0;1� jg
0
1
.t/�g0

2
.t/j> C is

satisfied.

Let �n D .Un;Vn/; n� 1 be a sequence of pairs of words (elements) in F2 satisfying
the following conditions:

(a1) Un ¤ Vn for all n� 1.

(a2) jUnj � jVnj for all n� 1.

(a3) If m> n then jUmj � jUnj.

(a4) If m> n, jUmj D jUnj then jVmj � jVnj.

(a5) Un ¤ 1 for all n� 1.

(a6) If U;V 2F2 , U¤1, jU j�jV j then there exists n2N such that UDUn;V DVn .

(a7) If m¤ n then �m ¤ �n .
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For every n 2N , the longest common suffix of Un and Vn will be denoted by Wn and
we let sn D jWnj.

Let also mn D Cardfk j �k D .Uk ;Vk/; jUk j D ng for all n� 1;m0 D 0. Notice that
mn grows exponentially as n!1.

Let ˛ D .˛1; ˛2; : : :/ be a sequence of positive real numbers such that

(b1) limr!1 ˛r D 0.

(b2) for every r 2N; s 2 f0; 1; : : : ; r � 1g, the inequality

.1C˛r /
s..1C˛r /

r�s
� 1/ > C

is satisfied.

(Notice that such a sequence ˛ exists, eg ˛1DCC1; ˛r D
p
.C C 1/=.r � 1/; r � 2.)

Let also ˇD .ˇ1; ˇ2; : : :/ be a sequence such that ˇi D j̨ for all m1C� � �Cmj�1 <

i � m1 C � � � Cmj�1 Cmj . We notice that limn!1 ˇn D 0; moreover, for every
n 2N , we have ˇn D ˛i.n/ where i.n/!1 as n!1.

Now, for any natural n, let xn
0

be the midpoint of the interval In , s D sn , and let f;g
be defined in the interval In such that

(c1) f .x/D g.x/D x for all x 2 f1=.2nC 1/; 1=.2n/g.

(c2) f 0.x/ 2 Œ1=.1CˇnC 1=n/; 1CˇnC 1=n�, for all x 2 In .

(c3) f 0.x/D g0.x/D 1 for all x 2 f1=.2nC 1/; 1=.2n/g.

(c4) if jUnjD r , where UnDar ar�1 � � � as � � � a1 for ai 2ff;g; f
�1;g�1g; 1� i � r ,

and if Un.k/D ak � � � a1; 0� k � r � 1, then a0
kC1

.Un.k/.x
n
0
//D 1Cˇn .

(c5) if jVnj Dm, where Vn D bmbm�1 � � � b1 , for bi 2 ff;g; f
�1;g�1g; 1� i �m,

and if Vn.k/D bk � � � b1; m� 1� k � s then b0
kC1

.Vn.k/.x
n
0
//D 1.

Now, if x 2 Œ0; 1�n.
F

n2N In/, we set f .x/D g.x/D x (hence f 0.x/D g0.x/D 1).

Then the functions f;g will belong to Diff1
CŒ0; 1�. Moreover, for any n � 1, by the

Chain Rule, we have

U 0n.x
n
0/D .1Cˇn/

r ; V 0n.x
n
0/D .1Cˇn/

s1m�s
D .1Cˇn/

s:

Since ˇnD˛i.n/ and i.n/D r , the inequality j.Un.f;g//
0.xn

0
/�.Vn.f;g//

0.xn
0
/j>C

follows from condition (b2).
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Remark 1 We indeed prove more than discreteness; the inequality

sup
t2Œ0;1�;

g2F2nf1g

jg0.t/� 1j � C > 0

would suffice for discreteness. By proving more general inequality

sup
t2Œ0;1�;

g1;g22F2;g1¤g2

jg01.t/�g02.t/j � C > 0 ;

we show that the representation is uniformly discrete. Since the metric in Diff1
CŒ0; 1� is

not left-invariant, discreteness does not necessarily imply uniform discreteness.

Remark 2 It is clear from the proof that the functions f .t/ and g.t/ can be chosen
from an arbitrary nonempty open neighborhood of the identity. This is contrary to
the case of connected Lie groups: the Margulis Lemma states that any connected Lie
group G possesses a nonempty open neighborhood U of the identity such that any dis-
crete subgroup of G generated by elements from U is nilpotent (see Raghunathan [10]).
Thus we have shown that the Margulis Lemma does not hold for the group Diff1

CŒ0; 1�.

It is easy to put the main idea of the proof of Theorem 1 in words: we take all pairs
.Un;Vn/ in the free group F2 that are interesting to us and enumerate them with some
care (conditions (a1)–(a7)). For simplicity, let us also assume that VnD 1; n� 1. Then
we choose countable pairwise disjoint open subintervals I1; I2; : : : ; In; : : : of Œ0; 1�
which are accumulating to the left endpoint of Œ0; 1�, (Ii is on the left side of Ij for
all i > j ). Then, on each of the subintervals we arrange the maps f;g such that
supx2In

jf 0.x/� 1j and supx2In
jg0.x/� 1j converge to zero as n!1 while for

each midpoint xn 2 In we have U 0n.xn/ > C .

To satisfy this condition, one notices that the word Un has length at least log.n/ which
goes to infinity as n grows. Then, since U 0n.xn/ is the product of log.n/ derivatives
we can have this product to be bigger than C yet each of the factor stay close to 1. (and
converge to 1 as n goes to infinity). For fixed n, each of these conditions imposes only
finitely many conditions on f and g in In , and for the next pair we go to a different
interval InC1 , hence we have no obstruction left to the existence of discrete F2 of
C 1 class.

However, because of the slow growth of log.n/, and because the lengths of intervals
of In converge to zero faster than 1=n, it is easy to see that this construction will
not work in C 2 class. In fact, as Danny Calegari pointed out, it will not work in any
C 1C� class for any � > 0; imposing the same condition will blow-up the Holder norm.
So one cannot achieve higher regularity of representations by taking care of different
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pairs in disjoint areas of the closed interval Œ0; 1�. If we want to mix fields of actions
for different pairs, we need to take some cautions.

Now we will prove Theorem 2. We need the following definitions.

Definition 2 For open subintervals I;J � .0; 1/ we say I < J if any element I is
less than any element of J .

Definition 3 A two-sided sequence fIngn2Z of open subintervals of .0; 1/ is called a
chain if In < InC1 for all n 2 Z.

Proof of Theorem 2 Let � > 0, and let An;Bn; n 2Z be open subintervals of .0; 1/
such that

(i) the two sided sequence fAn;Bngn2Z is a chain of subintervals (that is, we have
� � �<A�1 < B�1 <A0 < B0 <A1 < B1 <A2 < � � � ).

(ii) for all n 2Z and all i 2 f1; 2; 3; 4g we have f i.An/�Bn; f
�i.An/�Bn�1:

(iii) for all n 2 Z, we have g.Bn/�AnC1; g�1.Bn/�An .

(iv) for all n 2 Z, the inequality supx2An;y2AnC2
jx�yj< � holds.

It is straightforward to choose f;g 2 HomeoCŒ0; 1� satisfying conditions (i)–(iv).

Now, let AD
S

n2Z An; B D
S

n2Z Bn . Notice that by conditions (i)–(ii),

f i.A/�B for all i 2 f�4;�3;�2;�1; 1; 2; 3; 4g and gi.B/�A for all i 2 f�1; 1g:

This allows us to use a ping-pong argument.

The ping-pong argument is usually used to guarantee existence of free subgroups, here
we will be using it also to satisfy discreteness (which is natural). Using the ping-
pong lemma, we will show the following: Assume conditions (i)–(iv), and suppose
U.f;g/;V .f;g/ are reduced words satisfying two conditions:

(1) U.f;g/D f 2U0.f;g/f
2; V .f;g/D f V0.f;g/f where U0.f;g/;V0.f;g/

are both nonempty reduced words starting and ending in letter g .

(2) None of the letters ff;gg occur with exponent other than f�1; 1g in U0.f;g/

and in V0.f;g/.

Then U.f;g/ and V .f;g/ actually generate a free subgroup isomorphic to F2 in
HomeoCŒ0; 1�. We will have that this subgroup (which we will denote by � ) is
discrete.
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Let W .U;V / be any reduced nontrivial word in the alphabet fU D U.f;g/;V D

V .f;g/;U�1DU.f;g/�1;V �1DV .f;g/�1g. Then in the alphabet ff;g; f �1;g�1g

the word W ends with either f or f �1 .

Let x0 be the midpoint of A0 .

We notice that f i.A/ � B for all i 2 f�4;�3;�2;�1; 1; 2; 3; 4g. Furthermore,
g˙1.B/�A. Then by a standard ping-pong argument, we have that

W .x0/DW .U.f;g/;V .f;g//.x0/ …A0;

hence W ¤ 1 in � , and kW k0 � jA0j=2.

We now consider the general case of arbitrary distinct h1; h2 2� . Let h1DW1.U;V /,
h2 D W2.U;V / be two distinct reduced words in the alphabet fU;V;U�1;V �1g.
Then we can write W2 DW W1 where W DW .U;V /DW .U.f;g/;V .f;g//.

Since W1 D W1.U.f;g/;V .f;g// is a bijective map from Œ0; 1� onto Œ0; 1�, there
exists z 2 Œ0; 1� such that W1.z/D x0 . Then W2.z/DW .W1.z//DW .x0/ …A0 .

Then we have jW1.z/�W2.z/j D jx0�W .x0/j> jA0j=2. Thus we established that
the nonabelian free subgroup generated by U and V is discrete.

For claim (b), suppose � contains a ball of radius r , and M DmaxfjU j; jV jg. Then
by condition (iv), maxfkU k0; kV k0g< �M . Since � is arbitrary we can choose it to
be such that M� < r , and hence we obtain claim (b).

For claim (a), we may choose a sufficiently large natural number N , and further assume
that

An D

�
1

5.jnjC 1/
;

1

5jnjC 4

�
; Bn D

�
1

5jnjC 4
;

1

5jnj

�
for all n� �N;

An D

�
1�

1

5n
; 1�

1

5nC 1

�
; Bn D

�
1�

1

5nC 1
; 1�

1

5.nC 1/

�
for all n�N

(and we choose A�NC1;B�NC1; : : : ;AN�1;BN�1 to be arbitrary open nonempty
intervals such that conditions (i) and (iv) hold). Then it is straightforward to choose
f;g 2 HomeoCŒ0; 1� such that f 2 C 1Œ0; 1�;g 2 C 1.0; 1/; and g is a bi-Lipschitz
function with Lipschitz constant at most 5 in Œ0; 1=.5N /� and in Œ1�1=.5N /; 1�. Then
for any word W in the free group F2 , the function W .U.f;g/;V .f;g// will be a
bi-Lipschitz function of class C 1.0; 1/.

Remark 3 We would like to point out what goes wrong if one applies the idea of
the proof to Theorem 2 directly to obtain a faithful discrete representation of F2 in
Diff1
CŒ0; 1�:
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Let An;Bn; n2Z be mutually disjoint open subintervals in .0; 1/ satisfying conditions
(i), (ii) and (iii).

We will show that it is impossible to have the maps differentiable (C 1 class) under
these conditions (i)–(iii); there are obstructions easily obtained from the Mean Value
Theorem.

Without loss of generality we may assume that An;Bn converge to 1 as n!1. Let
limx!1� f

0.x/D p . (Then p > 0.)

Let p1;p2 be positive real numbers such that

p1 < p < p2; p1 >
99

100
p; p2 <

101

100
p:

So by the Mean Value Theorem, from condition (ii) we obtain that

jBnj> .p1Cp2
1 Cp3

1/jAnj and jBnj>

�
1

p2

C
1

p2
2

C
1

p3
2

�
jAnC1j

for sufficiently big positive n. Then

jg.Bn/j

jBnj
�
jAnC1j

jBnj
<

1

1=p2C 1=p2
2
C 1=p3

2

;

jg�1.Bn/j

jBnj
�
jAnj

jBnj
<

1

p1Cp2
1
Cp3

1

:

Then, by the Mean Value Theorem, we obtain that for sufficiently big positive n, there
exists un; vn 2 Bn such that

g0.un/ <
1

1=p2C 1=p2
2
C 1=p3

2

and .g�1/0.vn/ <
1

p1Cp2
1
Cp3

1

:

However, since limx!1� g0.x/ D 1= limx!1�.g
�1/0.x/, we obtain a contradiction

because
1

1=p2C 1=p2
2
C 1=p3

2

1

p1Cp2
1
Cp3

1

<
1

p1=p2Cp2
1
=p2

2
Cp3

1
=p3

2

<
1

2
< 1:

Remark 4 In the proof of Theorem 2, by slightly changing conditions (1)–(2), it is
possible to replace condition (ii) by the following weaker version:

(ii) 0 for all i 2 f1; 2g; n 2 Z, we have f i.An/� Bn; f
�i.An/� Bn�1 .

However, a similar argument shows that there are no f;g 2 Diff1
CŒ0; 1� satisfying

conditions (i), (ii) 0 and (iii). It also follows from the criterion of Calegari [2] that no
C 1 –class diffeomorphisms exist which satisfy conditions (i), (ii) 0 and (iii).

Algebraic & Geometric Topology, Volume 10 (2010)



2416 Azer Akhmedov

Remark 5 The metric in C 1Œ0; 1� is given by the norm kf k D kf k0Ckf k1 where
kf k0D supx2Œ0;1� jf .x/j; jkf k1D supx2Œ0;1� jf

0.x/j. If jkf k1 is small and f .0/D0,
then by Mean Value Theorem jkf k0 cannot be big. However, jkf k1 can be big even
if jkf k0 is small. In the proof of Theorem 1, taking f .x/DW .x/�x , we actually
show that jkf k1 stays big for all W ¤ 1; we do not show that jkf k0 is big. However,
in the proof of Theorem 2, we indeed show a stronger fact that jkf k0 remains big.

Questions

In this section, we raise several questions. We will address these questions in our next
article.

The regularity of the representation is a very interesting question; if a finitely generated
group � admits a faithful discrete representation in Diff1

CŒ0; 1� or in HomeoCŒ0; 1�,
it is interesting to know if one can achieve faithful discrete representations of higher
(C k ; k > 1; C1 , analytic, etc) regularity.

Question 1 Does a free group F2 admit a faithful discrete representation into
Diff1
CŒ0; 1�

(a) of C k regularity for some k > 1?

(b) of C k regularity for any k � 1?

(c) of C1 regularity?

(d) of analytic regularity?

Let � be a finitely generated group, and � W � ! Diff1
CŒ0; 1� be a faithful discrete

representation of it.

Definition 4 The representation � is called k � k0 –discrete if there exists C > 0 such
that k�.g/k0 > C for all g 2 �nf1g.

By Remark 5, k � k0 –discreteness of the representation implies its discreteness in
Diff1
CŒ0; 1�. Also, a k � k0 –discrete representation of a group into Diff1

CŒ0; 1� is just a
discrete representation into HomeoCŒ0; 1� of C 1 –regularity.

Question 2 Does F2 admit a faithful k � k0 –discrete representation into Diff1
CŒ0; 1�?

Definition 5 The representation � is called strongly discrete if there exists C > 0

and x0 2 .0; 1/ such that k�.g/.x0/k1 > C for all g 2 �nf1g.
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Question 3 Does F2 admit a faithful strongly discrete representation into Diff1
CŒ0; 1�?

Similarly, we say that a faithful representation � W �! HomeoCŒ0; 1� is strongly dis-
crete (in HomeoCŒ0; 1�) if there exists C>0 and x02.0; 1/ such that k�.g/.x0/k0>C

for all g 2 �nf1g. Notice that in the proof of Theorem 2, the representation of F2 into
HomeoCŒ0; 1� is indeed strongly discrete.

Definition 6 Let G be a topological group or a group with a metric. We say that the
Weak Margulis Lemma holds for G , if there exists an open nonempty neighborhood U

of identity such that any discrete subgroup of G generated by elements from U does
not contain a nonabelian free subgroup.

We will be interested in the group Diff1C�
C Œ0; 1� where � is a fixed positive real number.

On this group, we are considering the metric d1 , ie the metric which comes from the
Banach norm of C 1Œ0; 1�.

Question 4 Does the Weak Margulis Lemma hold for the group Diff1C�
C Œ0; 1� for

some � > 0?

Remark 6 It follows from the proof of Theorem 1 and from Theorem 2 that the
Weak Margulis Lemma does not hold neither for Diff1

CŒ0; 1� nor for HomeoCŒ0; 1�, in
respective metrics.

The study of discrete subgroups of Diff1
CŒ0; 1� is interesting beyond the existence

question of discrete faithful representations of free groups or even of the groups which
contain nonabelian free subgroups. The existence of a faithful representation into
Diff1
CŒ0; 1� imposes some algebraic properties onto the group; for example, it is well-

known that any subgroup of HomeoCŒ0; 1� is left-orderable (see Ghys [6]). Furthermore,
if a group is isomorphic to a subgroup of Diff1

CŒ0; 1� then it is locally indicable, as
proven by Thurston [11]. It is interesting to consider if discreteness implies further
algebraic restrictions on the group. We would like to ask the following:

Question 5 Is there a finitely generated group which admits a faithful representation
into Diff1

CŒ0; 1� but does not admit a faithful discrete representation?
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MR1367354

Department of Mathematics, North Dakota State University
Fargo ND 58102, USA

azer.akhmedov@ndsu.edu

Received: 26 April 2010 Revised: 14 September 2010

Algebraic & Geometric Topology, Volume 10 (2010)


