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The general notion of descent in coarse geometry

PAUL D MITCHENER

In this article, we introduce the notion of a functor on coarse spaces being coarsely
excisive – a coarse analogue of the notion of a functor on topological spaces being
excisive. Further, taking cones, a coarsely excisive functor yields a topologically
excisive functor, and for coarse topological spaces there is an associated coarse
assembly map from the topologically excisive functor to the coarsely excisive functor.

We conjecture that this coarse assembly map is an isomorphism for uniformly con-
tractible spaces with bounded geometry, and show that the coarse isomorphism
conjecture, along with some mild technical conditions, implies that a correspond-
ing equivariant assembly map is injective. Particular instances of this equivariant
assembly map are the maps in the Farrell–Jones conjecture, and in the Baum–Connes
conjecture.

55N20; 20F05

1 Introduction

In coarse geometry the term descent usually refers to the fact that the coarse Baum–
Connes conjecture for a group G equipped with a word length metric, along with
a few fairly mild conditions on the space EG , implies rational injectivity of the
analytic Novikov assembly map described by Kasparov [18; 19]. We refer the reader
to Higson and Roe [14; 15] and Roe [34] for details of the argument. This descent
principle has been generalised to nonmetric coarse structures, such as those arising
from compactifications, as described by Higson, Pedersen and Roe [13].

There are similar coarse notions for assembly maps in algebraic K– and L–theory
arising from controlled topology. For example, the descent result involving coarse
structures arising from compactifications was inspired by the work in controlled algebra
of Carlsson and Pedersen [6]. A very strong parallel with methods in the coarse
Baum–Connes conjecture can be found in [2], where methods used to prove the coarse
Baum–Connes conjecture for spaces of finite asymptotic dimension in Wright [41] and
Yu [42] are used to show that the algebraic K–theory assembly map (see Bökstedt,
Hsiang and Madsen [5] and Loday [21]) is injective for groups with finite asymptotic
dimension.
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It is our purpose in this article to give a general theory of coarse assembly maps and
descent techniques that incorporates all of the above. We define a general notion of a
coarse assembly map. Our main result essentially shows that the coarse assembly map
being an isomorphism, along with certain mild technical conditions, implies that the
corresponding equivariant coarse assembly map is injective.

Cases of the equivariant coarse assembly map include the analytic Novikov assembly
map, the Baum–Connes assembly map (see Baum, Connes and Higson [4]), and the
Farrell–Jones assembly map in algebraic K–theory (see Farrell and Jones [9]).

In principle, geometric arguments used to prove the coarse Baum–Connes conjecture
can be adapted to the new abstract framework. For example, the results of the author
in [27] immediately tell us that every coarse assembly map is an isomorphism for finite
coarse cellular complexes.

Wright’s proof of the coarse Baum–Connes conjecture for spaces of finite asymptotic
dimension in [41] is also purely geometric, and should extend to the present set-up.
Finally, there is some hope of applying these ideas to spaces of finite decomposition
complexity, as described by Guentner, Tessera and Yu [11].

The author wishes to take this opportunity to thank the referee of this paper for his
insight and evident hard work.

2 Coarse spaces

Recall that a coarse space is a set X equipped with a number of distinguished subsets
of the product X �X called controlled sets.

The collection of controlled sets is required to be closed under finite unions, taking
subsets, reflections in the diagonal of X �X , and composition in the sense that we
define

M1M2 D f.x; z/ 2X �X j .x;y/ 2M1; .y; z/ 2M2 for some y 2X g

for controlled sets M1 and M2 .

We further require the diagonal, �X D f.x;x/ j x 2 X g, to be controlled,1 and the
union of all controlled sets to be the entire space X � X . We refer the reader to
Roe [36], for example, for further details.

1The assumption that the diagonal is a controlled set is sometimes dropped; a coarse structure where
this axiom does not hold is termed nonunital. Many of our definitions should be modified somewhat in the
nonunital case; see Luu [22].
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Following Wright [40], we call a coarse topological space X separable if there is a
countable locally finite cover .Ui/ of X with

S
i Ui �Ui controlled.

Given a controlled set M �X �X , and a subset S �X , we write

M ŒS �D fy 2X j .x;y/ 2M for some x 2 Sg:

For a point x 2X , we write M.x/DM Œfxg�.

If X is a coarse space, and f;gW S ! X are maps into X , the maps f and g are
termed close or coarsely equivalent if the set f.f .s/;g.s// j s 2 Sg is controlled. We
call a subset B �X bounded if the inclusion B ,!X is close to a constant map, or
equivalently B DM.x/ for some controlled set M and some point x 2X .

The following definition comes from Higson, Pedersen and Roe [13].

Definition 2.1 Let X be a Hausdorff space. A coarse structure on X is said to be
compatible with the topology if every controlled set is contained in an open controlled
set, and the closure of any bounded set is compact.

We call a Hausdorff space equipped with a coarse structure that is compatible with the
topology a coarse topological space.

Note that any coarse topological space is locally compact. In such a space, the bounded
sets are precisely those which are precompact. It also follows from the definition that
any precompact subset of the product of the space with itself is a controlled set, and
the closure of any controlled set is controlled.

Example 2.2 If X is a proper metric space, the bounded coarse structure is the unital
coarse structure formed by defining the controlled sets to be subsets of neighbourhoods
of the diagonal:

NR D f.x;y/ 2X �X j d.x;y/ <Rg

The bounded sets are simply those which are bounded with respect to the metric. If we
give the metric space X the bounded coarse structure, it is a coarse topological space.

The following example is a generalisation of the continuously controlled coarse structure
arising from a compactification, as found for instance in [13].

Example 2.3 Let X be a coarse topological space, and suppose that X is contained
in a Hausdorff topological space xX as a topologically dense subset. Call the coarse
structure already defined on the space X the ambient coarse structure.
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Write @X D xXnX . Call an open subset M �X �X strongly controlled if:

� The set M is controlled with respect to the ambient coarse structure on X .

� Let SM be the closure of the set M in the space xX . Then

SM \ . xX � @X [ @X � xX /��@X :

Then we define the continuously controlled coarse structure with respect to xX by
saying that the controlled sets are composites of subsets of strongly controlled open
sets.

We write X to denote the space X with its ambient coarse structure, and X cc to denote
the space X with the new continuously controlled coarse structure.

Proposition 2.4 The space X cc is a coarse topological space. Further, if B �X cc is
bounded, then xB \ @X D∅.

Proof By construction, we have a coarse structure where every controlled set is a
subset of an open controlled set.

Let B �X cc be bounded. Then the set B is also bounded with respect to the ambient
coarse structure on the space X . Since the ambient coarse structure is compatible with
the topology, the closure of the set B in the space X is compact. Thus the continuously
controlled coarse structure is compatible with the topology.

Since the closure of the set B is compact in the space X , it is also closed in the
space xX . We see xB �X , so xB \ @X D∅.

Let X and Y be coarse spaces. Then a map f W X ! Y is said to be controlled if for
every controlled set M �X �X , the image

f ŒM �D f.f .x/; f .y// j .x;y/ 2M g

is a controlled set. A controlled map is called coarse if the inverse image of any
bounded set is bounded.

We can form the category of all coarse spaces and coarse maps. We call this category
the coarse category. We call a coarse map f W X ! Y a coarse equivalence if there is
a coarse map gW Y ! X such that the composites g ı f and f ı g are close to the
identities 1X and 1Y respectively.

Coarse spaces X and Y are said to be coarsely equivalent, and we write X � Y , if
there is a coarse equivalence between them.
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Definition 2.5 Let X and Y be coarse spaces. Then we define the product, X �Y

to be the Cartesian product of the sets X and Y equipped with the coarse structure
defined by saying a subset M � .X �Y /� .X �Y / is controlled if it is the subset of
a set of the form

f.u; v;x;y/ j .u;x/ 2M1; .v;y/ 2M2g

where M1 �X �X and M2 � Y �Y are controlled sets.

Note that the above product is not in general a product in the category-theoretic sense,
since the projections onto the factors are not coarse maps.

Definition 2.6 Let X be a coarse space, let � be an equivalence relation on X , and
let X=� be the set of equivalence classes. Let � W X ! X=� be the quotient map
sending each point x 2X to its equivalence class, �.x/.

We define the quotient coarse structure on X=� by saying a subset M �X=��X=�

is controlled if and only if M D �ŒM 0� for some controlled set M 0 �X �X .

Note that the quotient map � W X !X=� is not in general a coarse map.

Definition 2.7 Let fXi j i 2 Ig be a collection of coarse spaces. Then, as a set, the
coarse disjoint union,

W
i2I Xi is the disjoint union of the sets Xi .

A subset M � .
W

i2I Xi/� .
W

i2I Xi/ is controlled if it is a subset of a union of the
form �[

i2I

Mi

�
[

� [
i;j2I

Bi �Bj

�
where each set Mi �Xi �Xi is controlled, and Bj �Xj is bounded.

For example, let RC be the space Œ0;1/ equipped with the bounded coarse structure
arising from the usual metric. Then RC _RC �R, where the real line, R, is again
given the bounded coarse structure.

3 Coarse homotopy

The following definition comes from [27].

Definition 3.1 Let R be the topological space Œ0;1/ equipped with a coarse structure
compatible with the topology. We call the space R a generalised ray if the following
conditions hold.
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� Let M;N �R�R be controlled sets. Then the sum

M CN D f.uCx; vCy/ j .u; v/ 2M; .x;y/ 2N g

is controlled.

� Let M �R�R be a controlled set. Then the set

M s
D f.u; v/ 2R�R j x � u; v � y; .x;y/ 2M g

is controlled.

� Let M �R�R be a controlled set, and a 2R. Then the set

aCM D f.aCx; aCy/ j .x;y/ 2M g

is controlled.

For example, the space RC (with the bounded coarse structure) is a generalised ray.
The space Œ0;1/ equipped with the continuously controlled coarse structure arising
from the one point compactification is also a generalised ray.

In order to look at the notion of homotopy for coarse spaces, we first consider cylinders.
Our first definition is inspired by Section 3 of Dranishnikov [8].

Definition 3.2 Let X be a coarse space equipped with a coarse map pW X!R. Then
we define the p–cylinder of X :

IpX D f.x; t/ 2X �R j t � p.x/C 1g

We define coarse maps i0; i1W X ! IpX by the formulae i0.x/D .x; 0/ and i1.x/D

.x;p.x/C 1/ respectively.

The following definition is inspired by Mitchener, Norouzizadeh and Schick [32].

Definition 3.3 Let f0; f1W X ! Y be coarse maps. An elementary coarse homotopy
between f0 and f1 is a coarse map H W IpX ! Y for some pW X ! R such that
f0 DH ı i0 and f1 DH ı i1 .

More generally, we call the maps f0 and f1 coarsely homotopic if they can be linked
by a chain of elementary coarse homotopies.

A coarse map f W X ! Y is termed a coarse homotopy equivalence if there is a coarse
map gW Y !X such that the compositions g ı f and f ıg are coarsely homotopic
to the identities 1X and 1Y respectively.
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Example 3.4 Let X and Y be spaces, and let pW X !R be a coarse map. Consider
two close coarse maps f0W X ! Y and f1W X ! Y . Then we can define a coarse
homotopy H W IpX ! Y between the maps f0 and f1 by the formula

H.x; t/D

(
f0.x/ x < 1;

f1.x/ x � 1:

Thus, close maps are also coarsely homotopic. In particular, any coarse equivalence is
also a coarse homotopy equivalence.

4 Coarse homology

The following definition comes from Higson, Roe and Yu [16], where it is a condition
for the existence of a coarse version of the Mayer–Vietoris sequence.

Definition 4.1 Let X be a coarse space. Then we call a decomposition X DA[B

coarsely excisive if for every controlled set m � X � X there is a controlled set
M �X �X such that m.A/\m.B/�M.A\B/.

The following definition is now a slight variant of the definition in [27].

Definition 4.2 A coarse homology theory is a collection of functors, fhcoarse
n j n 2Zg,

from the coarse category to the category of abelian groups such that the following
axioms are satisfied:

� Let X be a coarse space, and let f;gW X ! Y be coarsely homotopic coarse
maps. Then the induced homomorphisms f�;g�W hcoarse

� .X /! hcoarse
� .Y / are

equal.
� Let X be a coarse space, and let X DA[B be a coarsely excisive decomposition.

Let i W A\B ,!A, j W A\B ,!B , kW A ,!X , and l W B ,!X be the associated
inclusion maps. Then there are natural maps @W hcoarse

n .X /! hcoarse
n�1

.X / such
that we have a long exact sequence:

!hcoarse
n .A\B/

.i�;�j�/
������!hcoarse

n .A/˚hcoarse
n .B/

k�Cl�
����!hcoarse

n .X /
@
�!hcoarse

n�1 .A\B/!

The above long exact sequence is called a coarse Mayer–Vietoris sequence.

The above axioms are a coarse variant of the Eilenberg–Steenrod axioms used to define
a generalised homology theory in the world of topological spaces.

The following definition essentially comes from [13; 34].
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Definition 4.3 We call a coarse space X flasque if there is a map t W X ! X such
that:

� Let B �X be bounded. Then there exists N 2N such that tnŒX �\B D∅ for
all n�N .

� Let M �X �X be controlled. Then the union
S

n2N tnŒM � is controlled.

� The map t is close to the identity map.

In the above definition, the map t is controlled by the second property, but is not
necessarily coarse.

Observe that any generalised ray is flasque; the relevant map t W R!R is defined by
the formula t.s/D sC 1.

Definition 4.4 We call a functor, E , from the coarse category to the category of
spectra coarsely excisive if the following conditions hold.

� The spectrum E.X / is weakly contractible whenever the coarse space X is
flasque.

� The functor E takes coarse homotopy equivalences to weak homotopy equiva-
lences of spectra.

� For a coarsely excisive decomposition X DA[B we have a homotopy push-out
diagram

E.A\B/ ! E.A/

# #

E.B/ ! E.X / :

The following is immediate.

Proposition 4.5 Let E be a coarsely excisive functor. Then the sequence of functors
X 7! �nE.X / forms a coarse homology theory.

Definition 4.6 Let X be a compact Hausdorff space. Then we define the open cone
to be the space

OX D
X � Œ0; 1/

X � f0g

equipped with the continuously controlled coarse structure arising from the compactifi-
cation

X � Œ0; 1�

X � f0g
:
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Suppose that X is a subset of the unit sphere of some Hilbert space, H . Let 'W Œ0; 1/!
Œ0;1/ be a homeomorphism. Then we have an induced map '�W OX !H defined
by writing

'�.x; t/D '.t/x

and we define O'X to be the image of the above map '� , equipped with the bounded
coarse structure arising from the metric of the Hilbert space H .

Proposition 6.2.1 of [15] tells us the following.

Proposition 4.7 Let X be a compact subset of the unit sphere of a Hilbert space H .

� Let 'W Œ0; 1/! Œ0;1/ be a homeomorphism. Then every controlled set for the
space O'X is also controlled for the space OX .

� Let M be a controlled set for the space OX . Then there is a homeomorphism
'W Œ0; 1/! Œ0;1/ such that the set M is controlled for the space O'X .

The idea of a functor being coarsely excisive is an analogue of the following notion
from Weiss and Williams [39].

Definition 4.8 Let C be the category of topological spaces that are homotopy equiv-
alent to CW–complexes. We call a functor, F , from the category C to the category
of spectra excisive if it takes homotopy equivalences of spaces to weak homotopy
equivalences of spectra, up to homotopy takes disjoint unions of topological spaces to
coproducts in the category of spectra, and given a space X D U [V , where U and V

are open sets we have a homotopy push-out diagram

F.U \V / ! F.U /

# #

F.V / ! F.X / :

Given an excisive functor F , the sequence of functors X 7! �nF.X / forms a general-
ized homology theory.

Theorem 4.9 Let E be a coarsely excisive functor. Then the assignment X 7!E.OX /

defines an excisive functor on the category of compact Hausdorff spaces homotopy
equivalent to CW–complexes.

Proof Let f W X!Y be a continuous map. Then the obvious induced map f�W OX!

OY is coarse.
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The space Œ0; 1/, equipped with the continuously controlled coarse structure arising
from the one point compactification, can be considered to be a generalised ray. We
have a coarse map pW OX ! Œ0; 1� defined by the formula pŒ.x; t/�D t .

Consider a homotopy F W X � Œ0; 1�! Y . Then the induced map is a coarse homotopy
F W IpOX ! Y . Thus, given a homotopy equivalence f W X ! Y , we have an induced
homotopy equivalence f�W E.OX /!E.OY /.

Suppose we have a decomposition X D U [ V , where U and V are open subsets.
Embed X in the unit sphere of a Hilbert space, H , and choose a homeomorphism
'W Œ0; 1/! Œ0;1/. Since the space X is precompact, and the subsets U and V are open,
for any R> 0 we can find S > 0 such that NR ŒO'U �\NR ŒO'V ��NS ŒO'.U \V /�.

It follows that the decomposition O'X DO'U [O'V is coarsely excisive. It follows
by Proposition 4.7 that the decomposition OX DOU [OV is also coarsely excisive.
It follows that we have a homotopy push-out square

E.O.U \V // ! E.OU /

# #

E.OV / ! E.OX / :

The result now follows.

5 Coarse assembly

Let X be a coarse topological space. Then we define the open square to be the space
SX DX � Œ0; 1/ equipped with the continuously controlled coarse structure arising by
considering SX as a dense subspace of the topological space X � Œ0; 1�.

We define the closed cone to be the quotient coarse space CX DX � Œ0; 1�=X � f0g.
Note that there is no element of continuous control in the definition of the coarse
structure on the closed cone; the coarse structure comes from the ambient coarse
structure on the space X , and taking products and quotients.

Proposition 5.1 Let X be a coarse topological space. Then the open square SX is
flasque.

Proof Define a map ˛W Œ0; 1/! Œ0; 1/ by the formula

˛.s/D
1

2� s
:
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Then the map ˛ is a continuous monotonic increasing map, and for any point s0 2

Œ0; 1/, if we define the sequence .sn/ iteratively by the formula snC1 D ˛.sn/, then
limn!1 sn D 1.

Define a map t W SX ! SX by the formula

t.x; s/D .x; ˛.s//:

Now, let M � SX �SX be strongly controlled. Then, looking at the ambient coarse
structure, we have

M �MX � Œ0; 1/� Œ0; 1/

where MX � X �X is controlled. Here we are indulging in some slight abuse of
notation involving the order of our factors.

SM \ ..X � Œ0; 1��X � f1g/[ .X � f1g �X � Œ0; 1�//��X�f1g:Further,

t ŒM ��MX � Œ0; 1/� Œ0; 1/It follows that

t Œ SM �\ ..X � Œ0; 1��X � f1g/[ .X � f1g �X � Œ0; 1�//��X�f1g:and

Iterating, we see that [n2N tnŒM � is controlled with respect to the continuously con-
trolled coarse structure on the space SX . In particular, it follows that the map t is
coarse.

Let M D
˚�
.x; s/; .x; ˛.s//

�
j x 2X; s 2 Œ0; 1/

	
:

Then the set M is certainly controlled with respect to the ambient coarse structure
on X .

Let .sn/ be a sequence in the space Œ0; 1/. Observe that sn! 1 as n!1 if and only
if ˛.sn/! 1 as n!1. Hence

SM \ ..X � Œ0; 1��X � f1g/[ .X � f1g � .X � Œ0; 1�//D f..x; 1/; .x; 1// j x 2X g

D�X�f1g:

We see that the set M is controlled with respect to the continuously controlled coarse
structure on the space SX . Hence the map t is close to the identity 1SX .

Finally, let B � SX be bounded. Then, as we remarked earlier, B � X � Œ0; a� for
some a 2 Œ0; 1/. It follows that we have N 2 N such that tnŒSX �\B D ∅ for all
n�N .

In conclusion, we see that the space SX is flasque.

Proposition 5.2 Let X be a flasque coarse space. Then the closed cone CX is also
flasque.
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Proof Let t W X ! X be a coarse map with the required properties to make the
space X flasque. Let � W X � Œ0; 1�! CX be the quotient map.

Define a map zt W CX ! CX by the formula

zt.Œx; s�/D Œt.x/; s�:

Let �M � CX � CX be a controlled set. Then �M � �ŒM � Œ0; 1�� Œ0; 1�� where M is
a controlled set for the coarse space X ; here we are indulging in some mild abuse of
notation involving the order of factors. We know that the set

S
n2N tnŒM � is controlled.

It follows that the set
S

n2N zt
nŒ �M � is controlled. In particular, we have shown that the

map zt is controlled.

Now, the map t is close to the identity map on the space X . Therefore the set

M D f.x; t.x// j x 2X g

is controlled. Let �M D f.Œx; s�; zt Œx; s�/ j Œx; s� 2 CX g:

Observe �M D f.Œx; s�; Œt.x/; s�/ j Œx; s� 2 CX g � �ŒM � Œ0; 1�� Œ0; 1��

so the set �M is also controlled, and the map zt is close to the identity map.

Finally, let zB � CX be bounded. As above, we have zB � �ŒB � Œ0; 1�� for some
bounded set B � X . Now we have a natural number N such that tnŒX �\B D ∅
whenever n�N . Hence ztnŒCX �\ zB D∅ whenever n�N .

Thus the space CX is also flasque, as claimed.

Lemma 5.3 Let X be a Hausdorff space equipped with a coarse structure compatible
with the topology. Let E be a coarsely excisive functor. Then we have a weak fibration

E.X /
j
!E.CX /

v
!E.OX /:

Proof We have a coarsely excisive decomposition

OX D
X � Œ0; 1=2�

X � f0g
[X �

�
1

2
; 1

�
:

Observe that the first space in the decomposition is coarsely equivalent to the space CX ,
and the second space is coarsely equivalent to the space SX . By Proposition 5.1, the
space SX is flasque, so the space E.SX / is weakly contractible.
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Hence, by the homotopy push-out property of the functor E , we have a weak fibration

E.X /!E.CX /!E.OX /

as claimed.

Definition 5.4 We call the boundary map

@W �E.OX /!E.X /

associated to the above weak fibration the coarse assembly map associated to the
functor E .

Definition 5.5 Let X be a coarse space. We say X is uniformly locally finite if for
any controlled set M , there is a number k such that jM.x/j � k for all x 2X .

We say X has bounded geometry if it is coarsely equivalent to a uniformly locally
finite coarse space.

For example, any subset of Euclidean space, Rn , has bounded geometry.

Definition 5.6 Let X be a coarse topological space. We call X uniformly contractible
if for every open controlled set M , there is a controlled set N �M such that for all
x 2X , the inclusion M.x/ ,!N.x/ is homotopic to the constant map onto the point x .

For example (see [36]), a contractible metric space on which some group acts cocom-
pactly by isometries is uniformly contractible.

Definition 5.7 The coarse isomorphism conjecture associated to the functor E asserts
that the coarse assembly map is a stable equivalence whenever X is a uniformly
contractible space with bounded geometry.

Proposition 5.8 Let E be a coarsely excisive functor. The coarse isomorphism con-
jecture holds for a space X if and only if the spectrum E.CX / is weakly contractible.

Proof We have a long exact sequence

�nC1E.CX /
v�
�! �nC1E.OX /

@�
�! �nE.X /

j�

�! �nE.CX /:

If the spectrum E.CX / is weakly contractible, then the groups �nC1E.CX / and
�nE.CX / are both zero, so the map @� is an isomorphism. It follows that the coarse
isomorphism conjecture holds for X .
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Conversely, suppose the coarse isomorphism conjecture holds for X . Then the above
map @� is an isomorphism, and the maps j� and v� are both zero.

But we can extend the above long exact sequence to the right:

�nE.X /
j�

�! �n.E.CX //
v�
�! �nE.OX /

We know that j� D 0, v� D 0, and im j� D ker v� . Thus �nE.CX / D 0, and the
spectrum E.CX / is weakly contractible, as desired.

In [27; 30], the author introduced the notion of a finite coarse CW–complex. The
definition of a coarse CW–complex is similar to that of a CW–complex in topology,
but the n–dimensional cells are products .R_R/n �R; the boundary of an n–cell is
the space .R_R/n � f0g.

The following is an immediate consequence of the results of [27].

Theorem 5.9 Let E be a coarsely excisive functor. Then the coarse isomorphism
conjecture associated to E holds for any finite coarse CW–complex.

As mentioned in the introduction, it is likely to be possible to extend this result.

6 Examples

Let R be a ring. We call a category, A, an R–algebroid (see [25]) if each morphism
set Hom.a; b/A is a left R–module, and composition of morphisms

Hom.b; c/A �Hom.a; b/A! Hom.a; c/A

is R–bilinear.

Let A be an R–algebroid, and consider objects a; b 2 Ob.A/. Then an object a˚ b

is called a biproduct of the objects a and b if it comes equipped with morphisms
iaW a! a˚ b , ibW b ! a˚ b , paW a˚ b ! a, and pbW a˚ b ! b satisfying the
equations

paia D 1a pbib D 1b iapaC ibpb D 1a˚b:

Observe that a biproduct is simultaneously a product and a coproduct. We call an
R–algebroid A additive if it has a zero object (that is, an object that is simultaneously
initial and terminal), and every pair of objects has a biproduct.

The following construction can be found in several articles on controlled algebraic K–
theory; see for example Anderson et al [1], Bartels [2] and Carlsson and Pedersen [6].
Our functorial approach comes from Weiss [38].
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Definition 6.1 Let X be a coarse space, and let A be an additive R–algebroid. Then
a geometric A–module over X is a functor, M , from the collection of bounded subsets
of X 2 to the category A such that for any bounded set B the natural mapM

x2B

M.fxg/!M.B/

induced by the various inclusions is an isomorphism, and the support

Supp.M /D fx 2X jM.fxg/¤ 0g

is a locally finite subset of X .

Here, by a subset S �X being locally finite, we mean that S \B is finite whenever
B is a bounded set.

For convenience, we write MxDM.fxg/. A morphism �W M!N between geometric
A–modules over X is a collection of morphisms �x;y W My !Nx in the category A
such that for each fixed point x 2X , the morphism �x;y is nonzero for only finitely
many points y 2X , and for each fixed point y 2X , the morphism �x;y is nonzero
for only finitely many points x 2X .

Composition of morphisms �W M !N and  W N ! P is defined by the formula

. ı�/x;y.�/D
X
z2X

 x;z ı�z;y.�/:

The local finiteness condition ensures this makes sense. We define the support of a
morphism �

Supp.�/D f.x;y/ 2X j �x;y ¤ 0g:

Definition 6.2 The category AŒX � consists of all geometric A–modules over X and
morphisms such that the support is controlled with respect to the coarse structure of X .

Observe that AŒX � is again an additive R–algebroid. In particular, we can form
its algebraic K–theory spectrum KA.X / (constructed for instance by Pedersen and
Weibel [33]). The algebraic K–theory groups KnA.X / are the stable homotopy groups
of this spectrum.

Given a coarse map f W X!Y , we have an induced additive functor f�W AŒX �!AŒY �.

For a geometric A–module, M , over X , we define a geometric A–module f�ŒM � by
writing f�ŒM �.S/DM.f �1ŒS �/.

2Regarded as a category by looking at the usual partial ordering.
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Let �W M ! N be a morphism in the category AŒX �. We define a morphism
f�Œ��W f�ŒM �! f�ŒN � by writing

f�Œ��h1;h2
D

X
g12f

�1.h1/

g22f
�1.h2/

�g1;g2
:

With these induced maps, we have a functor X 7!AŒX �, and so a functor X 7!KAŒX �.

Theorem 6.3 The functor X 7!KAŒX � is coarsely excisive.

Proof To begin with, let X be a coarse space, and let pW X !R be a coarse map
to a generalised ray. Consider the inclusion i0W X ! IpX defined by the formula
i.x/D .x; 0/. Let qW IpX !X be defined by the formula q.x; t/D x . Then certainly
q ı i0 D 1X , and i0 ı q.x; t/D .x; 0/.

Let M be a geometric A–module over IpX . Then

.i0 ı q/�.E/.x;t/ D

(
0 t ¤ 0;L

0�t�p.x/C1 E.x;t/ t D 0:

It follows that we have a natural isomorphism M ! .i0 ı q/�.M /. Hence the functor
.i0/�W AŒX �!AŒIpX � is an equivalence of categories. The same argument proves that
the functor .i1/�W AŒX �!AŒIpX � where i1.x/D .x;p.x/C1/ is also an equivalence
of categories.

Certainly an equivalence of categories induces a homotopy equivalence at the level of
K–theory spectra. We conclude that the functor X 7!KAŒX � takes coarse homotopy
equivalences to homotopy equivalences. In particular, if two maps f;gW X ! Y are
coarsely equivalent, the maps f�;g�W KAŒX �!KAŒY � are coarsely homotopic.

Now, let X be flasque. Then we have a map � W X !X which gives us the flasqueness
property. Given a geometric A–module, M , the direct sum

1M
nD0

�n
� ŒM �

is also a geometric A–module since the powers of � eventually leave any bounded
subset of X .

Given a morphism f W M!N in the category AŒX �, the fact that the union
S1

nD0�
nŒM �

is controlled whenever M � X �X is a controlled subset tells us that we have an
induced morphism

1X
nD0

f��
n
� W

1M
nD0

�n
� ŒM �!

1M
nD0

�n
� ŒN �

in the category AŒX �.
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Hence, by definition of the K–theory of an additive category (see for example Wald-
hausen [37]), given a K–theory class � 2 KnAŒX �, we have an induced K–theory
class

1X
nD0

�n
� Œ��D �C ��Œ��C �

2
� Œ��C � � � 2KAŒX �:

Now the map � is close to the identity map on X . Hence, by the first part of the current
proof, the map �� is the identity at the level of K–theory groups. We see that

1X
nD0

�n
� Œ��D �C�C � � � D �C .�C�C � � � /:

Thus, by an Eilenberg swindle, we see that �D 0. Thus KnAŒX �D 0, meaning the
stable homotopy groups of the spectrum KAŒX � are all zero. Therefore the spectrum
KAŒX � is weakly contractible.

We now look at homotopy push-out squares. Let X D U [V be a coarsely excisive
decomposition of a coarse space X . Consider the sequence

0!AŒU \V �
.i�;j�/
����!AŒU �˚AŒV �

k��l�
����!AŒX �! 0

where i; j ; k; l are the relevant inclusions.

Clearly the functor .i�; j�/ is faithful, the functor k��l� is surjective on each morphism
set, and .k�� l�/ ı .i�; j�/D 0.

We claim that the above sequence is a short exact sequence. Consider morphisms
�; W M !N between geometric A–modules over U and V respectively such that
k�� � l� D 0, and the supports of � and  are controlled.

We see that �x;y D 0 and  x;y D 0 unless x;y 2 U \ V , and �x;y D  x;y when
x;y2U\V . Define a morphism � W M jU\V !N jU\V by restricting the morphism � .
Then certainly .�;  /D .i�; j�/.�/.

The support of the morphism � is certainly controlled. By the fibration theorem in
algebraic K–theory (see [24; 37]). we have a fibration

KAŒU \V �!KAŒU �_KAŒV �!KAŒX �:

It follows that we have a homotopy push-out

KAŒU \V � ! KAŒU �
# #

KAŒV � ! KAŒX �

and we are done.
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The above result, along with Theorem 4.9, gives us a new proof of the fact that the
functor X 7!KAŒOX � is excisive.3

Corollary 6.4 The set of functors fX 7!KnAŒX � j n 2 Zg on the category of coarse
spaces is a coarse homology theory.

As observed in [13; 27], one can construct a coarse homology theory by taking the
analytic K–theory of the Roe C �–algebra of a coarse space. However, this particular
construction needs to be modified to make something that is functorial at the level of
spectra.

Let A be a C–algebroid. Then we call A a Banach category if each morphism
set Hom.a; b/A is a Banach space, and given morphisms x 2 Hom.a; b/A and y 2

Hom.b; c/A , we have the inequality kyxk � kyk � kxk.

An involution on a Banach category A is a collection of conjugate-linear maps
Hom.a; b/A!Hom.b; a/A , written x 7!x� , such that .x�/�Dx for every morphism
x , and .xy/� D y�x� whenever x and y are composable morphisms.

A Banach category with involution is termed a C �–category if for every morphism
x 2 Hom.a; b/A the C �–identity kx�xk D kxk2 holds, and the element x�x is a
positive element of the C �–algebra Hom.a; a/A .

We refer the reader to Ghez, Lima and Roberts [10] and Mitchener [29] for more
information on the theory of C �–categories. As in Joachim [17] and Mitchener [28],
one can associate a K–theory spectrum K.A/ to a C �–category A. The stable
homotopy groups of the K–theory spectrum of a C �–algebra are the usual analytic
K–theory groups of a C �–algebra.

A functor between C �–categories that is linear on each morphism set and compatible
with the involution is called a C �–functor. A C �–functor ˛W A! B is automati-
cally continuous on each morphism set, with norm at most one, and induces a map
˛�W K.A/!K.B/ of K–theory spectra. With these induced maps, formation of the
K–theory spectrum defines a functor, K, from the category of C �–categories and
C �–functors to the category of spectra.

The functor K takes short exact sequences of C �–categories to fibrations of spectra,
and takes equivalences of C �–categories to homotopy equivalences of spectra.

The following definition is a slight generalisation of a construction inspired by [12,
Section 2.2].

3For other proofs of this fact, see for instance Anderson et al [1] and Weiss [38].
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Definition 6.5 Let A be an additive C �–category. Then we define Ab ŒX � to be the
category of geometric A–modules over X , and morphisms �W M !N such that the
linear map

T� W
M
x2X

Mx!

M
x2X

Nx

defined by the formula

T�.v/D
X
y2X

�x;y.v/; v 2Mx;

is bounded. In this case, we define the norm of the morphism � by writing k�kDkT�k.

Observe that Ab ŒX � is a pre–C �–category in the sense that it has all of the properties
required of a C �–category apart from the morphism sets being complete. As explained
in [29], we can therefore complete it to form a C �–category, which we label A�ŒX �.

The following result can now be proved in the same way as Theorem 6.3.

Theorem 6.6 Let A be a C �–category. Then the functor X 7!KA�ŒX � is coarsely
excisive.

The classical coarse Baum–Connes conjecture, as described for instance by Higson and
Roe [14], can be considered the prototype of the other conjectures in this article. In
that conjecture, the right-hand side is the K–theory of the Roe C �–algebra, C �.X /,
of a coarse space X .

The following result is proved in the discussion in Section 2.2 of [12].

Theorem 6.7 Let V be the C �–category where the objects are the Hilbert spaces Cn ,
and the morphisms are bounded linear maps. Let X be a separable coarse topological
space with bounded geometry.

Then we have isomorphisms �nKV�ŒX �ŠKnC �.X /.

Actually, the spectrum on the left is built using for instance a topological version of
Waldhausen’s S�–construction from [37]. This agrees with the analytic approach to
K–theory spectra in [28]; see [26] for details.

The above establishes that we have a functor X 7!KV�ŒX � where the stable homotopy
groups are isomorphic to the K–theory groups of the Roe C �–algebra. Note that it is
far from obvious if looked at directly to see that the assignment X 7!KC �.X / is a
functor.
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In any case, we have an assembly map

�KV�ŒOX �!KV�ŒX �

where the domain and codomain of this map agree with the domain and codomain of
the map in the coarse Baum–Connes conjecture [14]. However, we do not yet know
whether the map itself agrees with the coarse Baum–Connes conjecture, although similar
methods of proof apply, and the map being an isomorphism has similar consequences.
We show in Theorem 8.8 that an equivariant version of this map is the same, up to
stable equivalence, as the usual Baum–Connes assembly map.

7 Equivariant assembly

Let G be a discrete group.

Definition 7.1 A coarse space equipped with an action of the group G by coarse maps
is termed a coarse G –space.

We will assume that a group G acts on the right of a space. We call a subset, A, of a
coarse G –space X cobounded if there is a bounded subset B�X such that A�B �G .

Definition 7.2 The coarse G–category is the category where the objects are coarse
G –spaces, and the morphisms are controlled equivariant maps where the inverse image
of a cobounded set is cobounded.

If X is a coarse G –space, and pW X !R is a map to a generalised ray, the group G

acts on the cylinder IpX by writing .x; t/gD .xg; t/. The inclusions i0; i1W X! IpX

are morphisms in the coarse G –category.

Definition 7.3 Let f0; f1W X ! Y be morphisms between coarse G–spaces. An
elementary coarse G–homotopy between f0 and f1 is an equivariant coarse map
H W IpX ! Y for some pW X !R such that f0 DH ı i0 and f1 DH ı i1 .

More generally, we call the maps f0 and f1 coarsely G–homotopic if they can be
linked by a chain of elementary coarse homotopies.

A morphism f W X ! Y in the coarse G–category is termed a coarse G–homotopy
equivalence if there is a morphism gW Y !X such that the compositions g ıf and
f ıg are coarsely G –homotopic to the identities 1X and 1Y respectively.
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Definition 7.4 We call a coarse G –space X G –flasque if there is an equivariant map
t W X !X such that:

� Let B �X be bounded. Then there exists N 2N such that tnŒX �\B D∅ for
all n�N .

� Let M �X �X be controlled. Then the union
S

n2N tnŒM � is controlled.

� The map t is close to the identity map.

Note that the above map t is controlled by the above axioms.

As in the nonequivariant case, if a coarse G–space X is G–flasque, then so is the
closed cone CX . If X is any coarse G –space, the open square SX is G –flasque.

Definition 7.5 We call a functor EG from the coarse G –category to the category of
spectra coarsely G –excisive if the following conditions hold.

� The spectrum EG.X / is weakly contractible whenever the coarse space X is
G –flasque.

� The functor EG takes coarse G–homotopy equivalences to weak homotopy
equivalences of spectra.

� Given a coarsely excisive decomposition X DA[B , where A and B are coarse
G –spaces, we have a homotopy push-out diagram

EG.A\B/ ! EG.A/

# #

EG.B/ ! EG.X / :

� Let X be a cobounded coarse G–space. Then the constant map cW X ! C

induces a stable equivalence c�W EG.X /!EG.C/.

Our next definition comes from Davis and Lück [7].

Definition 7.6 Let CG be the category of topological spaces equipped with a G –action
that are homotopy equivalent to G–CW–complexes. We call a functor, F , from the
category CG to the category of spectra G –excisive if it takes G –homotopy equivalences
of spaces to homotopy equivalences of spectra, and given a space X D U [V , where
U and V are G –invariant open sets we have a homotopy push-out diagram

F.U \V / ! F.U /

# #

F.V / ! F.X / :
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Recall that we call a G –space X cocompact if there is a compact subset K �X such
that X DKG . The following is proved similarly to Theorem 4.9:

Theorem 7.7 Let EG be a coarsely G–excisive functor. Then the assignment X 7!

EG.OX / defines a G–excisive functor on the category of cocompact Hausdorff G–
spaces.

The following is immediate.

Proposition 7.8 Let EG be a coarsely G–excisive functor. Then the sequence of
functors X 7! �nEG.OX / forms a G –homology theory.

By a G–homology theory, we mean one that satisfies equivariant analogues of the
Eilenberg–Steenrod axioms; see Kreck and Lück [20] for a discussion. In fact, we could
go further and show that the collection of functors X 7! �nEG.OX / for different
groups G defines an equivariant homology theory, but we do not need this stronger
result here.

The following is similar to Lemma 5.3.

Lemma 7.9 Let X be a coarse Hausdorff G –space. Let EG be a coarsely G –excisive
functor. Then we have a weak fibration

EG.X /
j
�!EG.CX /

vG
�!EG.OX /:

So we have an associated boundary map

@G W �EG.OX /!EG.X /:

We call this map the equivariant assembly map associated to the functor EG .

Recall that a G–space, X , is termed free if for every point x 2X , we have xg D x

only when g D e , where e denotes the identity element of a group G . We define EG

to be a weakly contractible free G–CW–complex. The space EG is unique up to
G –homotopy equivalence, and the quotient space EG=G is the classifying space BG .

Definition 7.10 The Novikov conjecture associated to the functor EG asserts that the
equivariant assembly map is injective at the level of stable homotopy groups when
X DEG for some coarse structure on EG compatible with the topology.
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More generally, let F be a family of subgroups of a group G (that is a collection of
subgroups closed under the operations of conjugation and finite intersections). For
instance, we can consider all finite subgroups, or all virtually cyclic subgroups. We
call a G –CW–complex X a .G;F/–CW–complex if the fixed point set X H is empty
if H 62 F .

Each cell in a .G;F/–CW–complex is a G –space, C , with the property that C H D∅
if H 62 F .

We can form a unique (up to G –homotopy) .G;F/–CW–complex E.G;F/, with the
property that the fixed point set E.G;F/H is G –contractible if H 2 F .

As a special case, if the family F consists of just the trivial subgroup of G , then
E.G;F/DEG . If the family F consists of all finite subgroups, then E.G;F/ is the
classifying space EG described for instance by Baum, Connes and Higson [4].

It is shown in [7] that the space E.G;F/ is a classifying space for .G;F/–CW–
complexes in the following sense.

Theorem 7.11 Let F be a family of subgroups of a group G . Let X be a .G;F/–
CW–complex. Then we have an equivariant map uW X !E.G;F/, and any two such
maps are G –homotopic.

Definition 7.12 The .EG ;F/–isomorphism conjecture asserts that the equivariant
assembly map @G W �EG.OX /!EG.X / is a stable equivalence when X DE.G;F/
for some coarse structure on E.G;F/ compatible with the topology.

We will identify examples of these conjectures in the next section.

Definition 7.13 Let E be a coarsely excisive functor. Then we say a coarsely G–
excisive functor EG has the local property relative to E if there is a natural map
i W EG.X / ! E.X /, such that if X D OY , where Y is a free coarse cocompact
G –space, and � W X !X=G is the quotient map, then the composite

�� ı i D i ı��W EG.X /!E.X=G/

is a stable equivalence.

In particular, if the functor EG has the local property relative to E , then the assembly
map in the Novikov conjecture can be regarded as a map

@G W �E.OBG/!EG.EG/:
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Proposition 7.14 Let EG be a coarsely G–excisive functor with the local property
relative to E . Suppose that the assembly map in the .EG ;F/–isomorphism conjec-
ture is injective at the level of stable homotopy groups for some family F , and the
spaces EG and E.G;F/ are both cocompact. Then the Novikov conjecture holds for
the functor EG .

Proof Certainly, the space EG is a .G;F/–CW–complex, therefore we have a map
uW EG!E.G;F/. On the other hand, the space E.G;F/ is a G –space, so we have
a map vW E.G;F/!BG . Since EG is a G –space, up to G –homotopy there is only
one equivariant map EG! BG . But BG DEG=G , so both v ıu and the quotient
map � are such maps.

We conclude that the quotient map � and the composite v ıu are G –homotopic. Since
the functor EG has the local property, and EG is a free G–space, we see that the
composite v� ı u�W EG.OEG/! E.OBG/ is a stable equivalence. In particular,
the functor u�W EG.OEG/!EG.OE.G;F// is split injective at the level of stable
homotopy groups.

Now, the map u induces a commutative diagram

�EG.OEG/ ! EG.EG/

# #

�EG.OE.G;F// ! EG.E.G;F// :

We saw above that the vertical arrow on the left is split injective at the level of stable
homotopy groups, and by hypothesis, the map at the bottom is injective. So the map at
the top is also injective at the level of stable homotopy groups. But this statement is
the Novikov conjecture.

8 Equivariant examples

Let X be a coarse G–space, let R be a ring, and let A be an additive R–algebroid.
Then we call a geometric A–module, M , over X G–invariant if Mxg DMx for
all x 2 X and g 2 G . A morphism �W M ! N between such modules is termed
G –invariant if �xg;yg D �x;y for all x;y 2X .

Definition 8.1 We write AG ŒX � to denote the category of G–invariant geometric
A–modules over X , and G –invariant morphisms.

The following result is similar to Theorem 6.3.

Theorem 8.2 The assignment X 7!KAG ŒX � is a coarsely G –excisive functor.
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The following is obvious from the definition.

Proposition 8.3 The functor KAG has the local property relative to the functor A.

Of course, it follows from the above that the functor X 7!KAG ŒOX � is G –excisive.
An alternative proof of this can be found for instance in [3].

Definition 8.4 Let X be a coarse G–space, and let A a C �–category. Then we
define Ab

G
ŒX � to be the category of G –invariant geometric A–modules over X , and

G –invariant bounded morphisms.

We define A�
G
ŒX � to be the C �–category we obtain by completion.

Similarly to Theorem 6.6, we have the following:

Theorem 8.5 Let A be a C �–category. Then the functor X 7!KA�
G
ŒX � is coarsely

G –excisive.

Again, the functor KA�
G

has the local property relative to the functor KA� .

Now (see for instance [15]), given a coarse G–space X equipped with a topology
compatible with the coarse structure, there is an equivariant analogue of the Roe
C �–algebra, C �

G
.X /.

Let jGj be the coarse space associated to a finitely presented group G , by picking
a word length metric.4 Then it is shown in [35] that the C �–algebra C �

G
jGj has the

same K–theory as the reduced group C �–algebra C �r G .

Just as in the nonequivariant case, we have the following.

Theorem 8.6 Let X be a coarse G –space equipped with a topology compatible with
the coarse structure. Suppose we have a separable coarse space, Y , with bounded
geometry such that X D Y �G .

Then we have isomorphisms KnV�G ŒX �ŠKnC �
G
.X /.

Now, fix an algebroid A, and consider the G –excisive functor defined by the formula

FG.X /D�KAG ŒOX �:

According to [7], the Farrell–Jones assembly map in algebraic K–theory is the map
cW FG.X /! FG.C/ induced by the constant map X ! C. The following result
closely follows the methods described in [12] for controlled assembly.

4The particular choice of word length metric does not affect the coarse structure.
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Theorem 8.7 Let G act cocompactly on the space X . Then the Farrell–Jones assem-
bly map cW FG.X /! FG.C/ is stably-equivalent to the equivariant assembly map
@G W �KAG ŒOX �!KAG ŒX �.

Proof Consider the commutative diagram

KAG ŒX � ! KAG ŒCX � ! KAG ŒOX �

# # #

KAG ŒC� ! KAG ŒCC� ! KAG ŒOC�

where the vertical maps are all induced by the constant map X ! C. Since the
G –space X is cocompact, it is cobounded as a coarse G –space, so the constant map
X !C is a morphism in the coarse G –category.

The rows of the above diagram are fibrations. The space CC is clearly flasque, so the
spectrum KAG ŒCC� is weakly contractible. We therefore have a commutative diagram

�KAG ŒOX � ! KAG ŒX �

# #

�KAG ŒOC� ! KAG ŒC�

where the bottom row is a stable equivalence.

Since the group G acts cocompactly on the space X , there is a bounded set K such
that GK D X , and xg 62K if x 2K and g ¤ e . Thus, if we give the space K the
trivial G–action, by definition of the functor AG , the categories AG ŒX � and AG ŒK�

are equivalent.

But the spaces K and C are equivariantly coarsely equivalent, and so equivariant coarse
homotopy equivalent. Hence the map aW KAG ŒX �!KAG ŒC� is a stable equivalence.

The desired result now follows.

The corresponding result for the Baum–Connes assembly map follows similarly, al-
though we need the fact that the assembly map fits into the picture in [7]; see for
example [31].

Theorem 8.8 Let G act cocompactly on the space X . Then the Baum–Connes
assembly map for the G –space X is stably-equivalent to the equivariant assembly map
@G W �KV�

G
ŒOX �!KV�

G
ŒX �.
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9 Descent

Let G be a discrete group, and let A be a G–spectrum. Then we define the homo-
topy fixed point spectrum, AhG , to be the spectrum of continuous equivariant maps
�W EG!A. Each space in the spectrum AhG has the compact open topology.

The following result is well-known.

Proposition 9.1 Let A and B be G–spectra. Let f W A! B be a (nonequivariant)
weak homotopy equivalence. Then the obvious induced map f�W AhG!BhG is also
a weak homotopy equivalence.

In particular, if the spectrum A is weakly contractible, then so is the spectrum AhG .

A proof of the second assertion (at least for spaces) can be found in [34]; the first then
follows by looking at mapping cones.

Applying the above to a coarsely excisive functor immediately gives us the following.

Proposition 9.2 Let E be a coarsely excisive functor. Then the functor X 7!E.X /hG ,
defined on the category of coarse G–spaces and equivariant coarse maps, is coarsely
G –excisive.

Thus the sequence of functors X 7! �nE.OX /hG forms a G –homology theory, and
we have a boundary map

@hG W �E.OX /hG
!E.X /hG :

Lemma 9.3 Let EG be a coarsely G –excisive functor with the local property relative
to a functor E . Then we have a natural transformation j W EG.X /!E.X /hG .

Further, let X D
W

g2G Yg , where each space Yg is a copy of the same coarse space Y ,
which is a cone of some compact space, and the group G acts by permutations. Then
the map j W EG.X /!E.X /hG is an isomorphism.

Proof By hypothesis, we have a natural map i W EG.X /!E.X /.

Observe we have a natural homotopy equivalence

EG.X /'Map.EG;EG.X //

DMap.EG;MapG.G;EG.X ///

DMapG.EG;Map.G;EG.X ///

DMap.G;EG.X //
hG :
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We have a natural map Map.G;EG.X //!E.X / defined by composing the evaluation
of a map f W G!EG.X / at the identity element 1 2G , with the natural map i .

Taking homotopy fixed point sets, we have a natural transformation j W EG.X /!

E.X /hG .

Now, let X D
W

g2G Yg as above. Let Y DOZ . Then X DO.Z �G/.

Let � W X ! Y be the quotient map. Then by the local property, the map �� ı i D

i ı��W EG.X /!E.Y / is a stable equivalence. Now, looking at disjoint unions,

E.X /D
W

g2G E.Yg/DMap.G;E.Y //:

So in this case the above map Map.G;EG.X //!E.X /DMap.G;E.Y // is weakly
homotopic to the stable equivalence Map.G;EG.X //!Map.G;E.Y // induced by
the composite �� ı i . In particular, it follows that our map is a stable equivalence.

Taking homotopy fixed points, the map

j W EG.X /!E.X /hG

is also a stable equivalence, and we are done.

So we have natural maps i1W EG.CX /!E.CX /hG and i2W EG.OX /!E.OX /hG

fitting into a commutative diagram

EG.CX /
vG
! EG.OX /

# #

E.CX /hG
vhG
! E.OX /hG :

Proposition 9.4 The map i2W EG.OX /!E.OX /hG is a stable equivalence when-
ever X is a finite cocompact free G –CW–complex.

Proof Let hG
� be a G–homology theory. Let X be a finite free G–CW–complex.

Then the equivariant version of the Atiyah–Hirzebruch spectral sequence (see for
instance [23]) gives us a half-plane spectral sequence, fE�p;qg, that converges to hG

� .X /,
with E2 –term E2

p;q Š H G
p .X I h

G
q .�

0//, that is classical G–homology with coeffi-
cients in the group hG

q .�
0
G
/, where �0

G
is the free 0–dimensional G –cell.

Further, this spectral sequence depends functorially on the CW–complex X and G–
homology theory hG

� . The space �0
G

is just a copy of the group G , which acts on
itself by right-translations.

The induced map .i2/�W ��EG.OX /!E.OX /hG is a map between G–homology
theories. By the above, it is an isomorphism when the space X is a 0–dimensional free
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G –cell. Thus the corresponding Atiyah–Hirzebruch spectral sequences are isomorphic,
and the map .i2/� is an isomorphism for any finite free G –CW–complex.

We now have the ingredients to prove our main result.

Theorem 9.5 Let EG be a coarsely G–excisive functor. Let X be a free coarse
G–space, that is, as a topological space, G–homotopy equivalent to a finite G–CW–
complex.

Suppose the coarse isomorphism conjecture holds for the functor E and the space X .
Then the map @G W �EG.OX /!EG.X / is injective at the level of stable homotopy
groups.

Proof By Proposition 5.8, the coarse isomorphism conjecture for the space X tells us
that the spectrum E.CX / is weakly contractible.

Hence, by Proposition 9.1, the spectrum E.CX /hG is also weakly contractible.

Now we have a commutative diagram

EG.CX /
vG
! EG.OX /

# #

E.CX /hG
vhG
! E.OX /hG

and by Proposition 9.4 the map i2W EG.OX /!E.OX /hG is a weak equivalence.

Hence the map vG must be zero at the level of stable homotopy groups. The weak
fibration in Lemma 7.9 gives us a long exact sequence

�nC1EG.CX /
.vG/�
����! �nC1EG.OX /

.@G/�
����! �nEG.X /:

As we have just mentioned, the map .vG/� is zero. Thus the map .@G/� is injective.

Applying the above result to the examples in the previous section, we immediately
obtain the following.

Corollary 9.6 Let X be a free coarse G–space, that is, as a topological space, G–
homotopy equivalent to a finite G –CW–complex.

Let R be a ring, and let A be an additive R–algebroid. Suppose the coarse assembly
map @W �KA.OX /!KA.X / is an isomorphism. Then the Farrell–Jones assembly
map is injective for the space X , R–algebroid A and group G .

Algebraic & Geometric Topology, Volume 10 (2010)



2448 Paul D Mitchener

Corollary 9.7 Let X be a free coarse G–space, that is, as a topological space, G–
homotopy equivalent to a finite G –CW–complex.

Suppose the coarse assembly map @W �KV�.OX /! KV�.X / is an isomorphism.
Then the Baum–Connes assembly map is injective for the space X and group G .
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