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Hyperbolic graphs of surface groups

HONGLIN MIN

We give a sufficient condition for the fundamental group of a reglued graph of surfaces
to be hyperbolic. A reglued graph of surfaces is constructed by cutting a fixed graph
of surfaces along the edge surfaces, then regluing by pseudo-Anosov homeomor-
phisms of the edge surfaces. By carefully choosing the regluing homeomorphism, we
construct an example of such a reglued graph of surfaces, whose fundamental group
is not abstractly commensurable to any surface-by-free group, ie which is different
from all the examples given by Mosher [10].

20F67, 20F65; 57M07, 20F28

1 Introduction

The fundamental group of the mapping torus of a pseudo-Anosov homeomorphism of
an oriented closed hyperbolic surface is hyperbolic. This was first proved by Thurston.
A direct proof was given by Bestvina and Feighn [1]. Using their idea, Mosher [10]
proved the following theorem.

Consider an oriented closed hyperbolic surface S . Let ˆ1; : : : ; ˆm2MCG.S/ be an in-
dependent set of pseudo-Anosov mapping classes of S , and let �1; : : : ; �m2Homeo.S/
be pseudo-Anosov representatives of ˆ1; : : : ; ˆm respectively. If i1; : : : ; im are large
enough positive integers, then the fundamental group of the graph of spaces G , as
shown in Figure 1, is a hyperbolic group. In the statement of this theorem, by saying a
set B of pseudo-Anosov mapping classes is independent, we mean the sets Fix.ˆ/ are
pairwise disjoint for ˆ 2 B , where Fix.ˆ/ consists of the attractor and the repeller
of ˆ on the space of projective measured foliations PMF.S/.

A graph of surfaces S� consists of an oriented, connected, finite underlying graph � ,
a function which assigns to each vertex a closed hyperbolic surface or orbifold, to each
edge a closed hyperbolic surface, and another function which assigns to each oriented
edge a covering map from the edge surface to the vertex surface of the origin of the
edge. In the cases studied in this paper, we change the canonical graph of surfaces
by cutting along the edge surfaces, then choosing pseudo-Anosov homeomorphisms
of the edge surfaces, precomposing with one of the corresponding attaching maps,
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Figure 1

then regluing. We call it a graph of surfaces with pseudo-Anosov regluing. Thus, the
mapping torus of a pseudo-Anosov homeomorphism can be considered as this type of
space where the underlying graph consists of only one vertex and one edge, and the
vertex and edge spaces are the same hyperbolic surface. The case studied by Mosher is
a different reglued graph of surfaces where the underlying graph consists of only one
vertex and, in addition, the vertex and edge spaces are the same hyperbolic surface S .

We shall extend Mosher’s theorem to the general graphs of surfaces with pseudo-Anosov
regluing. Theorem 1.1 says that if the pseudo-Anosov homeomorphisms are chosen
to satisfy an appropriate independence condition, then the fundamental group of the
reglued graph of surfaces is word hyperbolic, when these homeomorphisms are replaced
with sufficiently high powers of themselves.

We shall describe this cutting and regluing process in more detail. Let S� be a graph of
surfaces with the underlying graph � , let E be the set of oriented edges of � , and let
V be the set of vertices of � . For each e 2E , let Se be the corresponding edge surface.
For each oriented edge e , there is a finite covering map peW Se! Fo.e/ , where Fo.e/

is the vertex surface of the origin o.e/ of the edge e . For each inverse pair of oriented
edges e; xe , there is an inverse pair of homeomorphisms geW Se! Sxe; g�1

e W Sxe! Se .
Let 'Df�e j e 2Eg, where �eW Se!Se is a pseudo-Anosov homeomorphism of Se .
Notice that �xe D ��1

e . Also, let S�' be the graph of surfaces with pseudo-Anosov
regluing obtained from S� by cutting along each Se and regluing using �e , ie in the
reglued graph of surfaces, the effect is to replace the map geW Se ! Sxe by the map
ge ı �e , for e 2 E . Let m D fme j e 2 Eg, where me are positive integers, and let
S�'m be the graph of surfaces obtained from S� by regluing using �me

e for each
e 2E .

Algebraic & Geometric Topology, Volume 11 (2011)



Hyperbolic graphs of surface groups 451

Given a vertex v of the underlying graph � , let Fv be the corresponding vertex
surface (or orbifold). For each v 2 V , let Iv D fi j ei is an oriented edge such that the
origin of ei is vg. For each v 2 V and each i 2 Iv , there is a finite index covering
map pi W Si ! Fv , where Si is a shorthand notation of Sei

. If an oriented edge ei

has v as both its origin and terminal vertex, the covering maps pi W Si �! Fv and
pxi ı gi W Si �! Sxi �! Fv might be different, where gi is a shorthand notation of gei

.
The portion of S�'m around a vertex space Fv could be as in Figure 2.
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For the purpose of Theorem 1.1, fix a hyperbolic structure on each vertex surface Fv .
For each v 2V and each i 2 Iv , suppose Si is equipped with the metric pulled back by
the covering map pi W Si!Fv . Hence, for each covering map pi , there is the derivative
map Dpi W PSi! PFv , where PSi and PFv are the projective tangent bundles of Si

and Fv respectively. For an oriented edge ej , let �mj

j W Sj!Sj be the pseudo-Anosov
homeomorphism for the edge ej , with the stable geodesic lamination ƒs

j � Sj . The
stable geodesic lamination ƒs

xj
� Sxj of .�mj

xj
/ D gj�

�mj

j g�1
j is homotopic to the

image under gj of the unstable geodesic lamination of �mj

j . The geodesic laminations
ƒs

j and ƒs
xj

are independent of the choice of the exponent mj . In the following, let
Tƒs

i denote the unit tangent space of ƒs
i .

The Main Theorem of this paper is:

Theorem 1.1 Let S�'m be a graph of surfaces with pseudo-Anosov regluing. Let �
be its underlying graph. If for each vertex v 2 � , and for each i 2 Iv , the derivative
maps Dpi jTƒs

i are injections and their images are disjoint compact subsets of PFv ,
then the fundamental group of S�'m is hyperbolic, when mi 2 m are sufficiently
large.
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The proof of the hyperbolicity of S�'m depends ultimately on the Combination
Theorem of Bestvina and Feighn [1]. The Combination Theorem says that if the
quasi-isometrically embedded condition (which is automatically satisfied in the cases
studied in this paper) and the hallways flare condition (which is much more difficult
to check) both hold, then S�'m is a hyperbolic space. In order to check that the
hallways flare condition is satisfied, we need to extend the Parallel Corresponds Lemma
of Mosher [10], the key in that paper, to a new version of the Parallel Corresponds
Lemma. The reason is that Mosher’s Parallel Corresponds Lemma only applies to
closed geodesics, but we need to study the preimages of closed curves on the vertex
surfaces, and these might not continue to be closed curves.

The idea of the proof of Theorem 1.1 is this, the new version of Parallel Corresponds
Lemma implies that if a curve is sufficiently far from the stable geodesic lamination ƒs

�

of a pseudo-Anosov � , then it is stretched by �m by a definite amount for sufficiently
large m. The hypothesis of the disjointness of Dpi jTƒs

i implies no curve is close to
more than one of the ƒs

i . Therefore, the “all but one stretch” condition, similar to
Mosher’s “2m� 1 out of 2m stretch”, implies the hyperbolicity of S�'m .

Here are some applications of this theorem.

First: Let S be a closed hyperbolic surface, let G , H be finite subgroups of the
mapping class group MCG.S/, and let ˆ 2MCG.S/ be a pseudo-Anosov mapping
class. Suppose G , H each have trivial intersection with the virtual centralizer of hˆi
in MCG.S/. Then for sufficiently large n, the subgroup A of MCG.S/ generated by
G; ˆnHˆ�n is isomorphic to the free product of these subgroups. Even more, A is a
virtual Schottky subgroup of MCG.S/, in the sense of Farb and Mosher [4].

Second: Let G�m be a graph of surfaces with regluing as in Figure 3, where S and F

��
F

S S

p q

�m

G�m D

Figure 3

are genus 3 and 2 tori, and �W S ! S is a pseudo-Anosov homeomorphism. Suppose
there exist simple closed curves a � F and c � S , as shown in Figure 4, such that
p�1.a/D c; c � q�1.a/, and q�1.a/ is disconnected. In addition, suppose that in the
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group MCG.S/, the virtual centralizer of hˆi has trivial intersection with the deck
transformation groups of p and q , where ˆ is the mapping class of � . Then �1.G�m/

is hyperbolic when m is sufficiently large.

S

a

F

c

Figure 4

More interestingly, we will see that there exists a pseudo-Anosov homeomorphism �

of S , such that �1.G�m/ is not commensurable to �1.S
0/ÌK , for any oriented, closed

hyperbolic surface S 0 , and for any free group K , where G�m is as above. Moreover,
�1.G�m/ is not even quasi-isometric to any surface-by-free group. Therefore �1.G�m/

is different from all the hyperbolic groups constructed by Mosher [10].

Problem Do there exist some reducible homeomorphisms of the edge surfaces, such
that the graph of surfaces with reducible homeomorphism regluing are hyperbolic?

Problem Is Theorem 1.1 still true when the vertex and edge groups are free groups?

2 Preliminaries

In this section, we recall some preliminaries about combinatorial and geometric group
theory and some facts about hyperbolic geometry which will be needed later.

Graphs of surfaces Let � be an oriented, connected, finite graph, let e be an oriented
edge of � and let xe be the inverse edge of e . The vertex o.e/ is the origin of e and
the vertex t.e/ is the terminal of e , obviously o.e/D t.xe/.

A graph of surfaces S� consists of an oriented, connected, finite graph � and a
function which assigns to each vertex v 2� a closed hyperbolic surface or orbifold Fv ,
to each pair of oriented edges e , xe closed hyperbolic surfaces Se , Sxe and an inverse
pair of homeomorphisms geW Se!Sxe , gxeW Sxe!Se , and to each edge e a continuous
map peW Se! Fo.e/ , such that pe induces an injection on the fundamental groups. In
most of our cases, the pe are covering maps for every edge e of � .

Given a graph of surfaces S� , we can define the total space S� as the quotient of
the disjoint union .

S
fFv j v 2 V .�/g/

S
.
S
fSe � I j e 2E.�/g/ by identifying the
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equivalent classes: .s; 1/�pe.s/ for .s; 1/2Se�I , pe.s/2Ft.e/ ; .s; 0/� .ge.s/; 0/

for .s; 0/ 2 Se � I , .ge.s/; 0/ 2 Sxe � I , where geW Se! Sxe . The fundamental group
of the graph of surfaces �1.S�/ is defined to be the fundamental group of the total
space S� . There is a projection map � W S� ! � , such that each vertex surface Fv
maps to the vertex v , and Se � I [Sxe � xI ! e , and � is a surjection.

The universal cover eS� of S� is a union of copies of the universal covers �Se�I and�Fv . In eS� , if we identify each copy of �Fv to a point and each copy of �Se�I to a copy
of I , then we obtain a graph t and there is a canonical projection map z� W eS� ! t . It
is not hard to see that t is a tree, called the Bass–Serre tree. The action of �1.S�/

on eS� descends to an action of �1.S�/ on t , where the quotient graph coincides
with the original graph � , and the stabilizers of each vertex and each edge of t are
conjugates of corresponding fundamental groups of Fv and Se .

Construction of pseudo-Anosov homeomorphisms In a surface S , C is an essential
curve system, if CD fc1; : : : ; cng, where c1; : : : ; cn are nontrivial simple closed curves
on S which are pairwise disjoint and pairwise nonhomotopic.

Let C and D be two disjoint essential curve systems, C hits D efficiently if C inter-
sects D transversely, and no component on Sn.C [D/ is a bigon, ie the interior of a
disk whose boundary consists of one arc of C 2 C and one arc of D 2D . We say that
C [D fills S if the components of the complement of .C [D/ are disks.

The following shows how to construct pseudo-Anosov homeomorphisms.

Theorem 2.1 (Penner [13]) Suppose that C and D are essential curve systems in
an oriented surface F so that C hits D efficiently and C [D fills F . Let R.CC;D�/
be the free semigroup generated by the Dehn twists f�Cc W c 2 Cg [ f��1

d
W d 2 Dg.

Each component map of the isotopy class of ! 2R.CC;D�/ is either the identity or
pseudo-Anosov, and the isotopy class of ! is itself pseudo-Anosov if each �Cc and ��1

d

occur at least once in ! .

Surface group extensions A surface group extension is a short exact sequence of the
form

(1) 1! �1.S;x/! �!G! 1

where S is a closed, oriented surface of genus g � 2. The canonical example is the
Birman exact sequence

(2) 1 �! �1.S;x/
i
�!MCG.S;x/

q
�!MCG.S/ �! 1

Algebraic & Geometric Topology, Volume 11 (2011)
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where MCG.S/ is the mapping class group of S , MCG.S;x/ is the mapping class
group of S punctured at x . This short exact sequence is universal for surface group
extensions, meaning that for any extension in the short exact sequence (1), there exists
a commutative diagram

(3)

1 ����! �1.S;x/ ����! � ����! G ����! 1??y ??y ˛

??y
1 ����! �1.S;x/

i
����! MCG.S;x/

q
����! MCG.S/ ����! 1

where � is identified with the pullback group

(4) �˛ D f.�;  / 2MCG.S;x/�G j q.�/D ˛. /g;

˛ is a homomorphism from G to MCG.S/, and the homomorphisms � ! G and
� !MCG.S;x/ are the projection homomorphisms of the pullback group. We are
more interested in the case where ˛ is an inclusion.

The virtual centralizer of ˆ Given a subgroup H of a group G , the virtual central-
izer VC.H / of H in G is the subgroup of all g 2G which commute with a finite index
subgroup of H . The virtual centralizer of an infinite cyclic pseudo-Anosov subgroup
has a nice geometric description. Let PML.S/ denote the space of projective measured
laminations of the surface S . Let ƒs; ƒu � PML be the fixed points of a pseudo-
Anosov mapping class ˆ, and let Fixfƒs; ƒug denote the subgroup in MCG.S/ whose
elements fix ƒs and ƒu pointwise. Mosher [12] proved that Fixfƒs; ƒug D VChˆi.

Facts of hyperbolic geometry Our proofs make heavy use of the following facts of
hyperbolic geometry:

Fact 1 For any 0 < ı < 1, and D > 0, there exists a number l.ı;D/, such that if
; ˛ are geodesic segments of length at least l.ı;D/, and the end points x; y of 
have distance at most D from the end points x0; y0 of ˛ respectively, then there exist
subsegments  0�  , ˛0� ˛ of lengths at least .1�ı/Length. / and .1�ı/Length.˛/
respectively, such that the Hausdorff distance between  0 and ˛0 is less than ı .

Roughly speaking, for any two geodesic segments, if their end points have bounded
distances from each other, then large subsegments of them are arbitrarily close to each
other provided the segments are long enough.

Fact 2 Given k � 1; c � 0, there exists a constant N0.k; c/, such that any .k; c/
quasigeodesic line or segment in hyperbolic space H2 has Hausdorff distance at most
N0.k; c/ from a geodesic line or segment with the same end points.

Algebraic & Geometric Topology, Volume 11 (2011)
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Fact 3 Let ƒ1 and ƒ2 be two minimal geodesic laminations filling a hyperbolic
surface S . If their lifts zƒ1 and zƒ2 to the universal cover of zS have at least one end
point in common, then ƒ1 Dƒ2 .

A geodesic lamination ƒ is minimal if every leaf L is dense, that is, xL D ƒ. A
geodesic lamination ƒ � S is a filling lamination if no simple closed curve in S is
disjoint from ƒ.

The reason this fact is true is that two minimal filling surface geodesic laminations
either transversely intersect each other or are equal to each other.

From Fathi, Laudenbach and Poenaru [6], we know that the stable and unstable geodesic
laminations of a pseudo-Anosov homeomorphism are minimal and filling.

3 The Main Theorem

We will give a new version of the Parallel Corresponds Lemma and use it to prove
Theorem 1.1. Moreover we will reformulate the hypothesis of Theorem 1.1. The
original Corresponds Lemma was given by Mosher [10].

3.1 All but one stretch

Mosher proved the hyperbolicity of �1.G/ using a lemma called “2m � 1 out of
2m stretch”, where G as shown in Figure 1. The “2m � 1 out of 2m stretch”
Lemma says that for any � > 1, if i1; : : : ; im are sufficiently large integers, then
for any nontrivial element g 2 �1.S;x/, at least 2m � 1 out of the 2m elements
f�

i1

1
; �
�i1

1
; : : : ; �

im
m ; �

�im
m g stretch g by a factor of �. In this lemma, �1; : : : ; �m

are considered as elements in MCG.S;x/, since by taking powers, we can assume
�1; : : : ; �m each have a fixed point x . We use the same symbol � to denote the
corresponding element of Aut.�1.S;x//, for any � 2MCG.S;x/. � stretches g by
a factor of � if the length of �.g/ is greater than � times the length of g , where the
length is the word metric length.

Following Mosher’s idea, we shall prove the hyperbolicity of S�'m by showing that
it satisfies the “all but one stretch” Condition. We say that S�'m satisfies the “all
but one stretch” Condition, if there exist � > 1 and C > 0, such that for any based
geodesic segment  on a vertex surface Fv of S�'m , with length at least C , all but
at most one of the preimages of  are stretched by corresponding �mi

i by a factor of
at least � for any i 2 Iv . The proof of the Main Theorem shows that S�'m satisfies
this condition.

Algebraic & Geometric Topology, Volume 11 (2011)
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3.2 A new version of the Parallel Corresponds Lemma

Consider a pseudo-Anosov mapping class ˆ�MCG.S/ and let � 2 Homeo.S/ be a
pseudo-Anosov representative with the stable and unstable measured foliations f s

�
; f u

�
.

Recall that the transverse measures on f s
�

and f u
�

define a singular Euclidean structure
on S , with isolated cone singularities. We call the leaves of f s

�
the horizontal leaves

and the leaves of f u
�

the vertical leaves. The singular Euclidean structure determines
a metric d� on S in which each path can be homotoped rel end points to a unique
geodesic. The lifts to the universal covers of the hyperbolic metric and the singular
Euclidean metric are quasi-isometric.

In the following, for a homotopy class  of a curve rel end points, let  h denote
the hyperbolic geodesic segment in the homotopy class of  , and let E denote the
singular Euclidean geodesic segment in the same homotopy class. For a homotopy
class  , let j j denote the hyperbolic length of  h , let j jE denotes the singular
Euclidean length of E .

Given 0< � < 1, define slope�� to be the set of all homotopy classes  , such that the
(unsigned) Euclidean angle between E and f s

�
is at least �, on a subset of E of

length at least � � j jE . Given � > 1, let stretch�� D f j j.�. //j> �j jg. Let n be a
large enough integer, such that if the vector v 2 E2 makes an angle of at least � with
the horizontal axis, then the matrix  

��n
�

0

0 �n
�

!

stretches v by a factor of at least �=�, where �� D limi!1 j�
i.˛/j1=i is the stretching

factor of � , ˛ is a simple closed geodesic on S . Since the singular Euclidean metric is
quasi-isometric to the hyperbolic metric, it follows that given � , 0< � < 1 and � > 1,
there exists N such that if n�N , then slope�� � stretch��n .

An �–lever is a homotopy from a singular Euclidean geodesic segment ˛ to a horizontal
segment ˇ , where ˇ is a segment of a nonsingular leaf of the horizontal foliation f s

�
,

such that each track of the homotopy is a vertical geodesic segment, possibly degenerate,
and each point of int(˛ ) is disjoint from singularities during the homotopy, and int(˛ )
makes an angle of at most � with the horizontal leaves. In Mosher [10], ˇ is not
necessarily a segment of a nonsingular leaf. But we can always assume ˇ is a segment
of a nonsingular leaf, because there exist nonsingular leafs which are arbitrary close to
a singular leaf. Notice that the angle between a singular Euclidean geodesic and the
horizontal leaves changes only when the singular Euclidean geodesic passes through a
singularity. Therefore, the interior of ˛ has a constant angle with the horizontal leaf.

Algebraic & Geometric Topology, Volume 11 (2011)
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A lever is denoted by .˛; ˇ/, where ˛ is called the inclined edge of the lever, and ˇ is
called the horizontal edge of the lever. A lever is maximal if and only if a singularity
is contained in the track of each end point of ˛ . The length of the lever is j˛jE , the
height of the lever is the maximum singular Euclidean length of the tracks of the points
of ˛ , which is achieved at the endpoints.

Proposition 3.1 (Mosher [10]) For any l , H > 0, there exists �.l;H / > 0, so that
every maximal �–lever has length at least l and height at most H .

The proof is given in the first seven paragraphs of the proof of the sublemma on page
3451 of Mosher [10]. This proposition will be used in the proof of the following lemma.

In the proof of the following lemma, we need some facts. It is well known that the
measured foliations f s

�
, f u

�
can be straightened to measured geodesic laminations

ls
�

, lu
�

. Actually, there is a 1–1 correspondence between leaves of ls
�

and smooth
leaves of f s

�
, where a smooth leaf is either a nonsingular leaf or the union of two

singular half-leaves meeting at a singularity with angle 1800 . Similarly for f u
�

. The
singularities are discrete, so the length of any geodesic connecting them has a positive
lower bound.

Lemma 3.2 (A new version of Parallel Corresponds Lemma) Given any pseudo-
Anosov homeomorphism � and 0< � < 1, there exist 0< � < 1 and L> 0 such that
for any homotopy class  , if  … slope�� and j jE � L, then on a subset of  h of
length at least .1� �/j j, the distance between the tangent line of  h and the set ls

�
,

measured in PS , is at most � .

The differences between the Parallel Corresponds Lemma of Mosher [10] and this
new version are as follows. In [10], the Parallel Corresponds Lemma works only for
closed based geodesics, and the word metric is used to define the stretching factor; in
this paper, the new version of the Parallel Corresponds Lemma works for nonclosed
geodesics as well, and the hyperbolic metric is used to define the stretching factor.

Proof The first step is to find long subsegments ˛i � 
E and segments ˇi of leaves

of f s
�

, such that ˛i is homotopic to ˇi . Then we shall project ˛i to a subsegment of  h

and project ˇi to a segment of a leaf Bh
i of ls

�
, and show that the long subsegments

of these projections are very close to each other. Finally we shall prove the long
subsegments of  h are almost covered by the long subsegments of these projections.

For  … slope�� , let f.˛i ; ˇi/g be the set of all maximal �–levers of E , where the
inclined edge ˛i is a subsegment of E and the horizontal edge ˇi is a segment of
some nonsingular leaf BE

i of f s
�

.
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Step 1 First, let H D 1. By Proposition 3.1, we know that for any l > 0, there exists
� > 0 such that every maximal �–lever f.˛i ; ˇi/g has length at least l and height at
most H D 1. The first step is proven.

Step 2 we shall construct long subsegments of  h from the inclined edges ˛i � 
E

of the maximal levers, such that these long subsegments of  h have small distance
from ls

�
measured in PS . For the remainder of the proof, the distance and length mean

hyperbolic distance and length, unless we will use the terminology Euclidean distance
and length.

We know that any nonsingular leaf BE
i of f s

�
is a quasigeodesic under the hyperbolic

metric, and it can be straightened to a unique leaf Bh
i of ls

�
. Denote by ıi �  h and

�i �Bh
i the closest point projections from ˛i � 

E to  h and from ˇi �BE
i to Bh

i ,
respectively. We shall see that a long subsegment of ıi has small distance from �i , for
all i .

Since E is a .k; c/ quasigeodesic segment contained in the N0.k; c/ neighborhood
of  h , and ıi , ˛i are subsegments of  h , E respectively, it follows that the distances
between the end points of ıi and ˛i are not greater than N0 . For the same reason, the
distance between the end points of �i and ˇi are not greater than N0 . The singular
Euclidean distance between the end points of ˇi and ˛i is less than the height H D 1.
The hyperbolic distances between their end point are at most mk , for some m > 0,
because the singular Euclidean and hyperbolic metric are .k; c/ quasi-isometric to
each other. Therefore the distances between the end points of ıi and �i are less than
2N0Cmk . According to Fact 1, for any �1 > 0, there exists a constant L1 depending
on 2N0Cmk and �1 , so that if the length of ıi is greater than L1 , then more than
.1� �1/jıi j portion of ıi has distance less than �1 with �i .

The condition that the length of ıi be greater than L1 is easy to satisfy. Since ˛i is
a quasigeodesic segment whose end points have distances less than N0 from the end
points of ıi , there exists a constant l1 > 0, such that if the Euclidean length of ˛i

is greater that l1 , then the length of ıi is greater than L1 . By applying Step 1, we
may now choose � small enough, so that the Euclidean length of ˛i is greater than l1
for any i . Therefore, more than a .1� �1/jıi j portion of ıi has distance less than �1

from �i .

So far, we have proved that for any �1 , there exists �, such that if  … slope�� , then we
can locate long subsegments ıi of  h , such that more than .1� �1/ of the length of ıi
has distance less than �1 with �i � Bh

i , for any i .

Step 3 we will prove that a .1��1/
P

i jıi j portion of
S

i.ıi/ covers long subsegments
of  h . We call this .1� �1/

P
i jıi j part of

S
i.ıi/ the “good” part of  h .
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Since  … slope�� , on a subset of E of length at least .1��/j jE , the angle between
E and f s

�
is less than �, ie the �–levers cover more than a .1� �/ portion of E .

The worst situation is that the two end subsegments of E are covered by �–levers
with lengths less than l1 . In this case, after straightening, the end subsegments of  h

may not have distances less than �1 from Bh . We will only prove this lemma for the
worst situation, ie when more than a .1� �1/j jE portion of E is covered by the
union of the maximal �–levers .˛i ; ˇi/ and two end �–levers which cover the two end
segments of E respectively and with lengths less than l1 .

In the following, the quasi-isometries will be replaced by bi-Lipschitz maps when
we are dealing with long segments. Keep in mind that in the following, ıi is not the
projection of an end subsegment of E .

.1� �1/
X

i

jıi j � .1� �1/

�X
i

.j˛i j � 2N0/

�
� .1� �1/

�X
i

�
j˛i jE

k
� 2N0

��
:

According to Proposition 3.1, we can take � to be small enough, so that j˛i jE � l2 D

4kN0 for any i , thus

.1� �1/
X

i

jıi j � .1� �1/

P
i j˛i jE

2k
:

Since the union of the maximal �–levers and the two end �–levers, covers more than
.1��1/j jE portion of E , and we can suppose that the two end �–levers have lengths
less than l1 ,

.1� �1/
X

i

jıi j � .1� �1/
.1� �1/j jE � 2l1

2k
;

taking j jE to be long enough, so that j jE �L2 D 2l1=�1 ,

.1� �1/
X

i

jıi j � .1� �1/
.1� 2�1/j jE

2k

�
.1� 2�1/

2j jE

2k
:

.1� �1/
X

i

jıi j �
.1� 2�1/

2j jE

2k
:Hence,
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The “bad” parts of  h are of three kinds. The first kind of bad part are the two end
subsegments of  h which have lengths less than L1 . The sum of the lengths of the
end subsegments of  h is at most 2L1 . We can take j jE to be big enough so that
2L1 � �1j jE .

The second kind of bad part of  h is the �1jıi j portion of ıi ’s which may be outside
of the �1 neighborhood of �i . Since the projection map cannot prolong length, and the
distances between the ends of ˛i and ıi are not greater than N0 ,X

i

�1jıi j � �1

X
i

.j˛i jC 2N0/:

We can take � to be small enough, so that j˛i jE � l2 D 4kN0 for any i . The singular
Euclidean metric and the hyperbolic metric are k bi-Lipschitz; thus, j˛i jE � kj˛i j.
Therefore, 2N0 � 2kN0 � j˛i j=2, thusX

i

�1jıi j � �1

3

2

X
i

j˛i j

� �1

3

2
k
X

i

j˛i jE

� �12kj jE :

A third kind of bad part of  h is the projection of an �1j jE portion of E which
has slope greater than �1 with f s

�
. Let �i denote this kind of subsegment of E .

There is a lower bound b of the Euclidean lengths of �i for all i , and it equals the
minimum of the Euclidean distances between singularities. The sum of the lengths of
the projections from �i to  h is at most

P
i.kj�i jECc/�

P
i.kj�i jEC .n�1/kb/�

n
P

i.kj�i jE/� nk�1j jE , for some n satisfying c � .n� 1/kb .

Therefore, the length of the “bad” part of  h is at most the sum of the above three
kinds, which is .2kC1Cnk/�1j jE . Hence, the ratio of the “good” part of  h to the
“bad” part of  h is at least .1� 2�1/

2=.2k.1C 2kC nk/�1/. From this, it is easy to
see, for any constant � there exists a small enough �1 , such that the ratio of the ‘good’
part of  h to  h is at least .1� �/.

To recap: for any �>0, we can choose �1 small enough so .1�2�1/
2=2k.1C2kCnk/�1

is greater than 1� � ; therefore, the “good” part of  h covers more than .1� �/ of the
total length of  h . Next choose � small enough so that if E … slope�� , then more than
.1� �/jıi j portion of ıi has distance less than �1 from �i . In addition, take j jE to
be at least L, where LDmaxfL2; 2L1=�1g. Hence, if � is small enough,  … slope��
and j jE �L, then the large subsegment of  h has distance at most � to ls

�
, measured

in PS .
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Given a geodesic lamination ƒ and 0< � < 1, let WN�.ƒ/ denote the set of all the
homotopy classes,  , so that on a subset of  h of length at least .1��/j j, the distance
from the tangent line of  h to the set ƒ, measured in PS , is at most � . Using this
notation, the Parallel Corresponds Lemma says that for any 0 < � < 1, there exists
0 < � < 1 and L > 0, such that if  … slope�� and j jE � L, then  2WN�.ƒs/,
where ƒs is the measured stable geodesic lamination of � .

3.3 Proof of the Main Theorem

Proof of Theorem 1.1 We shall prove the “all but one stretch” Condition is satisfied,
ie there exist � > 1 and C > 0, so that for any vertex w 2 � , if a based geodesic
segment  h

w � Fw has length at least C , then all but at most one preimages belong to
stretch��mi

i
for corresponding �i , for any i 2 Iw , where IwDfi j ei is an oriented edge

such that the origin of ei is wg. Therefore, S�'m is a hyperbolic surface.

Let v be a vertex of � , let  h
v � Fv be a based geodesic segment. Consider the set

† D
S

i2Iv
p�1

i . h
v /, where p�1

i . h
v / is the set of all preimages of  h

v under the
map pi . Notice that all the elements of † are based geodesics, since the edge surfaces
of S�'m are equipped with the pullback metrics.

First, we claim that there exist 0< �0 < 1 and H0 > 0, such that if the length of  h
v is

greater than H0 , then at most one of the elements of †, say ˇ 2 p�1
i0
. h
v /, satisfies

ˇ 2 WN�0
.ƒs

i0
/, for some i0 2 Iv ; all other elements of † are not contained in

WN�.ƒs
i / for the corresponding ƒs

i . Second, according to Lemma 3.2, for this �0 ,
there exist 0<�.�0/< 1 and L.�0/> 0, such that for any ˛ 2† with length j˛jD j h

v j

greater than L.�0/, if ˛ …WN�0
.ƒs

j /, then ˛ 2 slope�.�0/
�j

� stretch��mj

j
for sufficiently

large mj . So, for any  h
v with length greater C DmaxfH;L.�0/g, all but at most one

of the preimages of  h
v belongs to stretch��mi

i
for the corresponding �i .

Suppose the claim is not true. In other words, for any �n ! 0, and any Hn !1,
there exist based geodesic segments  h

n � Fv with lengths at least Hn and by passing
to a subsequence, without loss of generality, we can suppose Ah

n 2 p�1
1
. h

n / and
Bh

n 2 p�1
2
. h

n / such that Ah
n 2WN�n

.ƒs
1
/ and Bh

n 2WN�n
.ƒs

2
/. Projecting Ah

n and
Bh

n to ƒs
1

and ƒs
2

respectively, we see that there exist long subsegments �n �ƒ
s
1

and
!n�ƒ

s
2

, such that j�nj, j!nj!1, and the distance between Dp1jT �n and Dp2jT!n

converges to zero. This contradicts with the fact that Dp1jTƒs
1

and Dp2jTƒs
2

are
disjoint.

3.4 Reformulation of Theorem 1.1

Notation here is the same as in the Introduction. The only difference is that here, the
edge surfaces are not necessary equipped with the pullback metrics.
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Let v be a vertex of � , let y be the base point of Fv , and let Iv be as defined before.
Consider the set p�1

i .y/� Si of all the points of Si that cover y via the map pi , for
i 2 Iv . Let X D

S
i2Iv

p�1
i .y/.

Suppose a 2 p�1
i .y/, choose a lift zpaW . zSi ; za/! . zFv; zy/, where zSi and zFv are the

universal covers of Si and Fv respectively. Let ƒs
i � Si be the stable lamination

of �i and let zƒs
i �
zSi be the lift of ƒs

i . Notice that @ zpa.zƒ
s
i /� @

zFv is well defined
independent of the choice of zy and za. If for any a¤ b 2X , @ zpa.zƒ

s
i /\@ zpb.zƒ

s
j /D¿,

where a 2 p�1
i .y/, b 2 p�1

j .y/, then we say v satisfies the disjointness condition. We
only require a ¤ b , but i might equal j . The reformulation of Theorem 1.1 is the
following.

Theorem 3.3 Let S�'m be a finite graph of surfaces with underlying graph � . If for
any vertex v 2� , the disjointness condition is satisfied, then �1.S�'m/ is a hyperbolic
group, when the mi 2m are sufficiently large.

We shall show the equivalence of the hypotheses of Theorem 1.1 and Theorem 3.3.

First, suppose Dpi.Tƒs
i / is disjoint from Dpj .Tƒs

j /, for i ¤ j . Then the images of
the leaves ƒs

i under the map pi must transversely intersect the images of the leaves ƒs
j

under the map pj . Thus, the end points of their lifts in zF are disjoint.

Second, suppose Dpi.Tƒs
i / is injection for all i . If @ zpa1

.zƒs
i /\ @ zpa2

.zƒs
i /¤¿, for

some a1; a2 2 p�1
i .y/, then there exist leaves zL1; zL2 �

zƒs
i such that zpa1

. zL1/ D

zpa2
. zL2/. But this contradicts the injectiveness of Dpi.Tƒs

i /. So, we have finished
the proof of one direction.

Suppose Dpi.Tƒs
i / is not disjoint with Dpj .Tƒs

j /, ie there exist leaves L�ƒs
i and

J � ƒs
j such that Dpi.L/ D Dpj .J /. Then there exist a lift zL of L and a lift zJ

of J such that zpa. zL/ D zpb. zJ / for some a 2 p�1
i .y/ and some b 2 p�1

j .y/. This
contradicts with the hypothesis of Theorem 3.3. The proof of the injectivity of the
Dpi.Tƒs

i / for all i is similar.

4 Applications

The following theorem will be used to prove Corollary 4.3.

Theorem 4.1 (Farb and Mosher [4, Theorem 1.2]) Let �1.S/ be the fundamental
group of a surface S , and let �˛ be the surface group extension of a group G . If �˛
is word hyperbolic, then the homomorphism ˛W G!MCG.S/ has finite kernel and
convex cocompact image.
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Let S�'m be a graph of surfaces with pseudo-Anosov regluings. Let pW Se! Fv be
an index r covering map, where Fv and Se are vertex and edge surfaces of S�'m

respectively and v is an end of e . Let y2Fv be a base point, let fx1; : : : ;xr gDp�1.y/

denote the preimages of y under the covering map p , and let zxi 2
zSe be a covering

point of xi for i 2 f1; : : : ; rg. Let zpi W . zSe; zxi/! . zFv; zy/ be a lift of p . Given a
geodesic lamination ƒ � Se , if @ zpi.zƒ/

T
@ zpj .zƒ/ D ¿ for any i ¤ j 2 f1; : : : ; rg,

we say that the ends of p.ƒ/ are disjoint.

Lemma 4.2 Let pW Se ! Fv be a normal covering map. Let ˆ 2 MCG.Se/ be a
pseudo-Anosov mapping class, and let ƒs , ƒu be the stable and unstable geodesic
lamination respectively. Suppose the virtual centralizer of hˆi has trivial intersection
with GDp , the image of the deck transformation group of p in MCG.S/. Then the
ends of both p.ƒs/ and p.ƒu/ are disjoint.

Proof We shall only prove that @ zp1.zƒ
s/ and @ zp2.zƒ

s/ are disjoint; a similar argu-
ment shows the pairwise disjointness of f@ zpi.zƒ

s/g and the pairwise disjointness of
f@ zpi.zƒ

u/g, for all i 2 f1; : : : ; rg.

Let D12W .Se;x1/! .Se;x2/ be a deck transformation of the covering map p , and
let zD12W . zSe; zx1/! . zSe; zx2/ be a lift of D12 .

Since zp1 D zp2
zD12 , zp1.zƒ

s/ D zp2
zD12.zƒ

s/. Hence, if the boundary points of the
images of zƒs under zp1 and zp2 have one point in common, then zD12.zƒ

s/ and zƒs

have one end point in common. Since zD12.zƒ
s/ and zƒs are the lifts of the geodesic

laminations D12.ƒ
s/ and ƒs respectively, by Fact 3, we know D12.ƒ

s/Dƒs , where
D12 is considered as an element of GDp �MCG.S/. Applying [12, Theorem 3.5], if
D12.ƒ

s/Dƒs , then D12 is contained in the virtual centralizer of hˆi. This contradicts
the hypothesis that the virtual centralizer of hˆi has trivial intersection with GDp .

Corollary 4.3 Let G; H be finite subgroups of MCG.S/, and let ˆ 2 MCG.S/
be a pseudo-Anosov mapping class. If the virtual centralizer of hˆi has trivial in-
tersection with G and H , then for sufficiently large M , hG; ˆM Hˆ�M i is a free
product in MCG.S/, ie hG; ˆM Hˆ�M i ŠG �ˆM Hˆ�M , and its extension group
is hyperbolic.

Remark If G is a finite subgroup of MCG.S/, then G has a faithful representation
as a subgroup of Homeo.S/, which we continue to denote by G . The quotient S=G ,
called F0 , is a hyperbolic surface or orbifold. There exists a canonical embedding
i W PML.F0/ ,! PML.S/, where PML is the projective measured geodesic lam-
inations space. Given a pseudo-Anosov mapping class ˆ 2 MCG.S/, if the stable
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and unstable geodesic laminations ƒs; ƒu … i.PML.F0//, then the virtual centralizer
of hˆi has trivial intersection with G . Therefore, it is easy to find a ˆ �MCG.S/
which satisfies the hypothesis of this corollary.

Proof Let the symbols G; H denote both the finite groups of MCG.S/ and their
faithful representations in Homeo.S/. Let F0 D S=G; F1 D S=H . Let pW S ! F0 ,
qW S ! F1 denote the corresponding covering maps, and let p�W �1.S/! �1.F0/,
q�W �1.S/! �1.F1/ denote the induced maps on fundamental groups.

Let G� be the following graph of groups:

�1.F0/
p�
 ���� �1.S/

ˆM

����! �1.S/
q�
����! �1.F1/

So, �1.G�/ is the fundamental group of the following graph of surfaces S� :

F0

p
 ���� S

�M

����! S
q

����! F1

where � 2 Homeo.S/ is a pseudo-Anosov representative homeomorphism of ˆ.

There exists a short exact sequence

1! �1.S;x/! �G�ˆM Hˆ�M !G �ˆM Hˆ�M ! 1:

It is not hard to see that �G�ˆM Hˆ�M is isomorphic to �G ��1.S/ �ˆM Hˆ�M , and
that �G ��1.S/ �ˆM Hˆ�M is isomorphic to �1.G�/.

By Theorem 4.1, if �1.G�/ is a word hyperbolic group, then ıW G �ˆM Hˆ�M !

MCG.S/ has finite kernel. Since G and ˆM Hˆ�M are finite groups, by applying [14,
Theorem 3.11], a normal subgroup of G�ˆM Hˆ�M must be trivial or of finite index.
Therefore, ı is an injection, which tells us that hG; ˆM HˆM i ŠG �ˆM Hˆ�M .

In order to prove �1.G�/ is word hyperbolic, we only need show that S� is a
hyperbolic graph of surfaces. By Lemma 4.2, we know that the ends of p.ƒs/ and
q.ƒu/ are disjoint. Therefore, S� is hyperbolic by Theorem 3.3.

Let G�m be as in Figure 3, where S , F are genus 3 and 2 tori. Let pW S ! F

and qW S ! F be covering maps and let � be a pseudo-Anosov homeomorphism
of the mapping class ˆ. Abusing of notation, we use Dp , Dq for both the deck
transformations of p , q and the mapping classes of the deck transformations. It is
easy to see that the deck transformation group GDp of p contains only two elements,
Dp and the identity, the same is true for the deck transformation group of q . Further
abusing of notation, we let GDp denote both the deck transformation group of p and
its image in MCG.S/.
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Corollary 4.4 Suppose aW S1! F and cW S1! S are simple closed curves such
that p�1.a.S1//D c.S1/; c.S1/� q�1.a.S1//, and q�1.a.S1// is disconnected, as
in Figure 4. In addition, suppose the virtual centralizer of hˆi has trivial intersection
with the images of the deck transformation groups of p and q in MCG.S/. Then
�1.G�m/ is a hyperbolic group, when m is sufficiently large.

Proof Let z be the base point of F , let x1;x2 be the covering points of z through
the covering map p , and let y1;y2 be the covering points of z through the covering
map q . Let zp1W . zS ; zx1/! . zF ; zz/ and zp2W . zS ; zx2/! . zF ; zz/ be the lifts of p , and let
zDpW . zS ; zx1/! . zS ; zx2/ be the lift of Dp , and similarly for q .

According to Theorem 3.3, we only need to show that f@ zp1.zƒ
s/, @ zp2.zƒ

s/, @zq1.zƒ
u/,

@zq2.zƒ
u/g is a pairwise disjoint set.

First, using Lemma 4.2, we obtain @ zp1.zƒ
s/\@ zp2.zƒ

s/D¿, @zq1.zƒ
u/\@zq2.zƒ

u/D¿.

Second, we claim that if there exist @ zpr .zƒ
s/ and @zqt .zƒ

u/ which are not disjoint, for
some r; t 2 f1; 2g,then p.ƒs/D q.ƒu/ is a geodesic lamination on F . It follows that
ƒs is a fixed point of GDp �MCG.S/. Therefore the virtual centralizer of hˆi and
the deck transformation group have nontrivial intersection. A contradiction.

In the following, we will prove the above claim. Since p�.�1.S//¤ q�.�1.S//, and
they are both index two subgroups of �1.F /, p�.�1.S// \ q�.�1.S// is an index
four subgroup of �1.S/. By calculating the Euler characteristic, we know there is a
genus five surface G , and covering maps i and j , such that the diagram in Figure 5
commutes, ie pi D qj .

G
i

��

j

��
S

p ��

S

q��
F

Figure 5

After straightening, the preimages of i�1.ƒs/ and j�1.ƒu/ are geodesic laminations,
called Ls and Lu , on G .

Without loss of generality, suppose fp1 .zƒ
s/ and eq1 .zƒ

u/ have one end point in common,
then fp1

zi. zLs/ and eq1
zj . zLu/ have one end point in common. Combining this with the
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fact that zp1
zi and zq1

zj W zG! zF are homeomorphisms, we know that zLs and zLu have
one common end point. We claim that Ls and Lu are minimal geodesic laminations and
fill the surface G . Therefore, if they have one common end point in the universal cover
of G , then Ls D Lu . It is not hard to see that Ls is connected and without isolated
leaves; therefore, according to [3, Corollary 4.7.2] Ls is minimal. The laminations Ls

and Lu fill G because they are lifts of filling laminations ƒs and ƒu .

There exists some m such that �mW S ! S is lifts by i and j to homeomorphisms
of G . Denote the lift of �mW S ! S through i as �W G ! G , and the lift of ��m

through j as � W G! G . Notice that Ls is the stable geodesic lamination of � and
Lu is the stable geodesic lamination of � . Since Ls DLu , there exist positive integers
k1; k2 , such that �k1 is homotopic to �k2 .

Since �k1 is homotopic to �k2 and pi D qj , we know that pi�k1 is homotopic
to qj�k2 . Also, p�k1mi is homotopic to q��k2mj , because �k1mi D i�k1 and
��k2mj D j�k1 .

Let p.c/W S1!F be the closed curve which is the composition of cW S1!S with the
covering map pW S ! F . Similar notation are used for other compositions of closed
curves with covering maps. The map c2W S1! S is defined to be the composition
of the map z! z2 on the unit circle S1 with map cW S1! S . Let Œa�, Œc� denote
the conjugacy classes in the fundamental group of F represented by the simple closed
curve a, c .

Since p.c/ is homotopic to a2 and q.c/ is homotopic to a, we see that Œa�…p�.�1.S//,
Œa� 2 q�.�1.S//, and Œa�2 2 p�.�1.S//\ q�.�1.S//. Hence there exists  W S1!G

which is homotopic to a simple closed curve, such that i. / is homotopic to c and j . /

is homotopic to c2 . Therefore, p�k1m.c/, p�k1mi. /, q��k2mj . / and q��k2m.c2/

are homotopic to each other.

We claim that q��k2m.c/ is homotopic to a simple closed curve on F . Let ˇ be the
closed geodesic on F which is homotopic to q��k2m.c/. If ˇ is not simple, then there
exits a point z 2 ˇ.S1/, and a simple closed curve ˛W S1! S which is homotopic
to ��k2m.c/, such that q.˛/D ˇ , and there exists two points x1 ¤ x2 2 ˛.S

1/ such
that q.x1/D q.x2/D z . Since p�k1m.c/ is homotopic to q��k2m.c2/, there exists
a simple closed curve � from S1 to S which is homotopic to �k1m.c/, and whose
image under the map p goes around ˇ twice, to be more precise, p.�/Dˇ2 . It follows
that there are four different points y1;y2;y3;y4 2 �.S

1/ such that p.y1/D p.y2/D

p.y3/D p.y4/D z , which contradicts the fact that pW S ! F is an index 2 covering
map.
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By iterating, we have

pi�nk1 is homotopic to qj�nk2 for all n 2N;

p�nk1mi. / is homotopic to q��nk2mj . / for all n 2N;

p�nk1m.c/ is homotopic to q��nk2m.c2/ for all n 2N:

By using the same argument, we know q��nk2m.c/ is homotopic to a simple closed
curve on F , for all n 2N . Let ˛n denote the geodesic in the free homotopy class of
��nk2m.c/. There exists a subsequence of ˛n , without loss of generality still call it ˛n ,
such that ˛n! ƒu as n!1. Since q��nk2m.c/ is homotopic to a simple closed
curve on F for all n, the geodesics in the free homotopy classes of the q��nk2m.c/

converge to a geodesic lamination ‚� F , after passing to a subsequence. It follows
that q.ƒu/ is a geodesic lamination.

Notice that in the proof, we can only lift �mW S ! S by i and j to homeomorphisms
of G for some m2N , but the end points of @ zpi.zƒ

s/ and @zqj .zƒ
u/ for any i; j 2 f1; 2g

do not depend on m. Therefore, we have proved that f@ zp1.zƒ
s/, @ zp2.zƒ

s/, @zq1.zƒ
u/,

@zq2.zƒ
u/g is a pairwise disjoint set. According to Theorem 3.3, we know �1.G�m/ is

hyperbolic for sufficiently large m.

5 An example which is not abstractly commensurable to a
surface-by-free group

In this section, we will show that there exist a graph of surfaces whose fundamental
group is hyperbolic, but which is not abstractly commensurable to any surface-by-
free group, for any closed hyperbolic surface or orbifold S 0 and any free group K .
Therefore, this group is different from all the groups constructed by Mosher [10]. By
applying [5, Theorem 1.1], it follows that the example constructed here is not even
quasi-isometric to any surface-by-free group.

Recall that, groups G and H are called abstractly commensurable, if there exist finite
index subgroups G1 <G and H1 <H , so that G1 is isomorphic to H1 . A group G is
called a surface-by-free group, if there is a hyperbolic surface or a hyperbolic orbifold S ,
and a free group K , such that there exists a short exact sequence:

1! �1.S/!G!K! 1

First, we shall give a necessary and sufficient condition for a group to be abstractly
commensurable to a surface-by-free group. Second, we shall construct a nonhyperbolic
graph of surfaces G , by applying the condition, whose fundamental group is not
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abstractly commensurable to any surface-by-free group. Finally, we shall construct
a hyperbolic graph of surfaces G�m from G such that �1.G�m/ is not abstractly
commensurable to any surface-by-free group.

Let t denote the Bass–Serre tree of a graph of surfaces S� , and let V; E denote the
set of all the vertices and edges of t , respectively. The group �1.S�/ acts on t with
subgroups stab.v/ and stab.e/, which stabilize the vertex v 2 V and the edge e 2E ,
respectively.

Lemma 5.1 The fundamental group of a graph of surfaces S� is abstractly commen-
surable to a surface-by-free group if and only if Œstab.v/ W

T
w2V stab.w/� <1, for all

v 2 V .

Proof According to Farb and Mosher [5], a finite index subgroup of a surface-by-free
group is a surface-by-free group. If �1.S�/ is abstractly commensurable to a surface-
by-free group, then there exists a finite index subgroup of H of �1.S�/ which is
isomorphic to a surface-by-free group.

The group H acts on t , a locally-finite tree with bounded valence, and the index
Œstab.v/ WH \ stab.v/� � Œ�1.S�/ WH � is finite. H acts on t with compact quotient
and t may be identified with a Bass–Serre tree for H . Since H is isomorphic to a
surface-by-free group �1.S

0/Ì F , where S 0 is a hyperbolic surface and F is a finite
rank free group, there exists a normal subgroup N of H which is isomorphic to �1.S

0/

and so that N acts trivially on t .

Let N denote
T
w2V .stab.w/\H / which is a finite index subgroup of stab.v/\H

for any vertex v 2 t , ie Œstab.v/\H W
T
w2V .stab.w/\H /� <1. Therefore,�

stab.v/ W
\
w2V

stab.w/
�
<

�
stab.v/ W

\
w2V

.stab.w/\H /

�
D Œstab.v/ WH \ stab.v/�

�
H \ stab.v/ W

\
w2V

.stab.w/\H /

�
<1:

This finishes the proof for one direction.

Now we will prove the other direction. The action of �1.S�/ on t induces a homo-
morphism � W �1.S�/! Aut.t/. Let K D

T
w2V stab.w/, K D ker.�/. Since K is

a finite index subgroup of stab.v/ for any v 2 V , �1.S�/=K acts on t with finite
edge and vertex stabilizers. In addition, �1.S�/=K acts on t cocompactly. Therefore
t=.�1.S�/=K/ is a finite graph of finite groups. Applying [14, Theorem 7.3], it follows
that �1.S�/=K is virtually free. Hence, �1.S�/ is abstractly commensurable to a
surface-by-free group.
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In the rest of this paper, let G denote a graph of surfaces as in Figure 6, where S , F ,
p , q and the simple closed curves c � S , a� F are as described in Corollary 4.4.

��

S

F

p q

Figure 6

The conclusion of the next lemma that �1.G/ is not commensurable to a surface-by-free
group was discovered and proved independently by Chris Odden in his thesis, and also
by Lee Mosher. I will give a different proof which will generalize to my later examples.

Define subgroups Li , Ri , Gi of �1.S/, and subgroups Hi of �1.F / by induction as
follows:

� Let H0 D �1.F /, G0 D �1.S/.

� Let H1D p�.G0/\q�.G0/, L1D p�1
� .H1/, R1D q�1

� .H1/, G1DL1\R1 .

� Let HiC1 D p�.Gi/ \ q�.Gi/, LiC1 D p�1
� .HiC1/, RiC1 D q�1

� .HiC1/,
GiC1 DLiC1\RiC1 .

From p�.Œc�/D q�.Œc
2�/D Œa2�, we know Œa2� 2H1 but Œa� …H1 , Œc� 2L1 , Œc2� 2R1

but Œc� …R1 . Therefore, L1 ¤R1 , Œc2� 2G1 , Œc� …G1 .

Similarly, from p�.Œc
2�/D Œa4�, q�.Œc

2�/D Œa2�, we know p�.G1/¤q�.G1/, Œc2�2L2 ,
Œc4�2R2 , but Œc2�…R2 , Œc4�2G2 . Inductively, we have Œc2n

�2Gn , p�.Œc
2n

�/D Œa4n

�,
q�.Œc

2n

�/D Œa2n

�, so p�.Gn/¤ q�.Gn/, Œc2n

� 2 LnC1 , Œc2n

� … RnC1 , but Œc2nC1

� 2

RnC1 . Hence, we get two sequences fLig and fRig of finite index normal subgroups
of �1.S/, the indexes of Œ�1.S/ WLi � and Œ�1.S/ WRi �!1 as i !1.

Lemma 5.2 Suppose Œ�1.S/ WLi � and Œ�1.S/ WRi �!1 as i !1, where Li , Ri

are the sequences of finite index normal subgroups of �1.S/ defined inductively above.
If Li ¤Ri for all i , then �1.G/ is not commensurable to a surface-by-free group.

Proof It is known that every edge or vertex stabilizer in the Bass–Serre tree t is
isomorphic to some edge or vertex group of the graph of groups. Let e1 be an edge
of the Bass–Serre tree t such that the stabilizer stab.e1/ D �1.S/. Let g be the
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generator of the underlying graph � of the graph of spaces G ; by Scott and Wall [14]
we know that if �1.S/ is identified with p�.�1.S//, then q�.�1.S//D g�1�1.S/g .
There exists a unique edge e2 2 t , such that e2 D ge1 . It is easy to see that R1 D

q�1
� .p�.�1.S/\ q�.�1.S/// D stab.e1/\ stab.e2/. Let ej D gej�1 for a positive

integer j , let ˛i be the oriented path e1 � � � � � ei in the Bass–Serre tree t . ThenT
�2˛i

stab.�/ D
Ti

jD1 stab.ej / D Ri . Similarly, there exists another sequence of
oriented paths fˇkg in t such that

T
�2ˇk

stab.�/DLk . Therefore, Œ�1.S/ WLi �!1

and Œ�1.S/ W Ri �!1 imply Œstab.e/ W
T
�2E stab.�/� D 1. For the case studied

here, every edge stabilizer is a finite index subgroup of some vertex stabilizer where
the vertex is an end point of that edge. So, Œstab.e/ W

T
�2E stab.�/� D 1 implies

Œstab.v/ W
T
w2V stab.w/�D1. According to Lemma 5.1, �1.G/ is not commensurable

to a surface-by-free group.

In order to construct a group which is not abstractly commensurable to a surface-by-free
group, a first strategy might be to find a pseudo-Anosov mapping class ˆ which fixes
all the finite index normal subgroups of �1.S/. But unfortunately, the theorem below
tells us that there does not exist such a pseudo-Anosov mapping class.

Theorem 5.3 Let Sn be a closed surface of genus n, where n � 2. For any ˆ 2
Aut.�1.Sn//, if ˆ fixes all the finite index normal subgroups of �1.Sn/, then ˆ 2
Inn.�1.Sn//.

Before proving this theorem, we introduce some related history and preliminaries first.
Lubotzky [9] proved that for any free group Fn , n� 2, if ‰ 2 Aut.Fn/ fixes all the
finite index normal subgroups of Fn , then ‰ 2 Inn.Fn/. In particular, every normal
automorphism of Fn is inner. Bogopolski, Kudryavtseva and Zieschang [2] proved that
for any closed hyperbolic surface Sn of genus n not less than 2, if ˆ 2 Aut.�1.Sn//

fixes all the normal subgroups (not necessarily of finite index) of �1.Sn/, then ˆ 2
Inn.�1.Sn//. The main theorem in that paper says for any nonseparating simple closed
curve ˛ on S , up to conjugate equivalence, ˛ is the only nonseparating simple closed
curve in its normal closure. The theorem in [2] is the following:

Theorem 5.4 (Bogopolski, Kudryavtseva and Zieschang [2]) Let S be a closed
orientable surface and g , h are nontrivial elements of �1.S/ both containing simple
closed two-sided curves  and � , resp. The group element h belongs to the normal
closure of g if and only if h is conjugate to g� or to .gug�1u�1/� , � 2 f1;�1g; here
u is a homotopy class containing a simple closed curve � which properly intersects 
exactly once.

I would like to thank Jason Deblois for help with Lemma 5.5.
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Lemma 5.5 For any two nontrivial, non–freely homotopic, nonseparating simple
closed curves a and b on S, let Œa�; Œb� denote their homotopy classes in �1.S/. Then
there exists a finite index normal subgroup N 2 �1.S/, such that Œa� 2N and Œb� …N .

A group G is said to be residually finite, if for any element g 2G , g ¤ 1, there exists
a finite group K and a homomorphism hW G!K , such that h.g/¤ 1.

A Haken manifold is a compact, orientable, irreducible 3–manifold which contains a
2–sided incompressible surface.

Proof Let M DS�I , where I is the interval Œ0; 1�. �1.M / is isomorphic to �1.S/.
Since a is a simple closed curve on S , attach a 2–handle B to M along a�f0g[a�f1g

obtaining a Haken manifold M 0 . This attachment gives a surjective homomorphism
�W �1.M /! �1.M

0/, and the kernel is the normal closure of Œa�. Since a is the only
nonseparating simple closed curve in the normal closure of Œa�, by applying Theorem
5.4, it follows that Œb� does not belong to the kernel of � .

According to [7, Theorem 1.1], �1.M
0/ is residually finite. So, for Œb� 2 �1.M /, there

exists a finite group K and a homomorphism ıW �1.M
0/!K such that Œb� … ker.ı/.

Let N denote the kernel ker.ı ı �/. Obviously, N is a finite index normal subgroup
of �1.S/, and Œa� 2N , but Œb� …N .

Proof of Theorem 5.3 Let ˆ be an element of Aut.�1.S//, and let � be a repre-
sentative of it in Homeo.S/. According to [2], if ˆ … Inn.�1.S//, then there exists
a nonseparating simple closed curve a on S such that a and �.a/ are not freely
homotopic to each other. By Lemma 5.5, there exists a finite index normal subgroup
N C �1.S/, such that Œa� 2N and Œ�.a/� …N . It follows that ˆ.N /¤N .

In the following, we shall construct a pseudo-Anosov mapping class which does not fix
all the finite index normal subgroups of �1.S/, but fixes Li and Ri as in Lemma 5.2.
Also, let G�m be a graph of surfaces as in Figure 3, where F; S; p; q as described in
Corollary 4.4.

Theorem 5.6 There exists a pseudo-Anosov homeomorphism � 2Homeo.S/, so that
�1.G�m/ is hyperbolic but is not commensurable to a surface-by-free group.

Proof If there exists a pseudo-Anosov homeomorphism � , such that ��.Li/DLi and
��.Ri/DRi , then Œstab.e/ W

T
�2E stab.�/�D1, according to Lemma 5.2. Therefore,

�1.G�m/ is not commensurable to a surface-by-free group.
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d c

˛0

ˇ

˛

S

Figure 7

F

a

p.˛/� q.˛/
p.ˇ/� q.ˇ/

Figure 8

The curves mentioned in this theorem are shown in Figure 7 and Figure 8, which are a
refinement of Figure 4.

First, we will describe the covering maps p and q in more detail. Let p�1.a2/D c ,
q�1.a/ D c [ d . It is easy to see that p.˛/ is homotopic to q.˛/ � F and p.ˇ/ is
homotopic to q.ˇ/�F , where ˛; ˇ�S are as in Figure 7. Therefore Œ˛�; Œˇ�2Li\Ri

for all i .

Second, we claim that if  is a simple closed curve in S , such that Œ � 2 Li for
some i , then the induced map .� /� of the Dehn twist � fixes Li . Let S 0 be the
cover of S corresponding to Li , and let � be the finite set of preimages of  to S 0 .
Then .��/� D .� /�jLi

, where �� W S 0! S 0 .

If we can find disjointly essential curve systems C and D which satisfy the conditions
in Theorem 2.1 and if all the homotopy classes of the elements of C and D belong to
Li and Ri for all i , then we can construct a pseudo-Anosov homeomorphism � as
described in Theorem 2.1, such that �� fixes Li and Ri for all i .

In the following, we will prove that there exist disjointly essential curve systems
C D ˛[ y̨ , and D D ˇ[ y̌, such that C [D fills S , where ˛ , ˇ as in Figure 7. In
addition, Œ˛�, Œy̨�, Œˇ� and Œ b̌� 2Ti.Li \Ri/.
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In order to find a simple closed curve y̨ satisfying the above conditions, first, we will
show that there exists a simple closed curve ˛0 such that Œ˛0�2

T
i.Li\Ri/. Since Li

and Ri are finite index normal subgroups of �1.S/ and Œ˛�2
T

i.Li\Ri/, the normal
closure N˛ of Œ˛� is a subgroup of

T
i.Li \Ri/. Recall that the normal closure N˛

of Œ˛� is the smallest normal subgroup of �1.S/ which contains Œ˛�. Applying Theorem
5.4, we only need the easy direction of this theorem, the separating curve ˛0 as in
Figure 7 represents an element in N˛ .

Second, we shall construct a simple closed curve y̨ on S from the simple closed
curve ˛0 . From Mosher [11], we know there exists a short exact sequence

1! hT˛i ! stab.˛/!MCG.S �˛/! 1

where hT˛i is the cyclic subgroup of MCG.S/ generated by the mapping class T˛ of
the Dehn twist �˛ around ˛ , stab.˛/ is a subgroup of MCG.S/ which fixes ˛ , S�˛ is a
surface obtained by cutting S along ˛ . The homomorphism �W stab.˛/!MCG.S�˛/
is defined by ˆ!ˆjS�˛ , for ˆ 2 stab.˛/.

Choose a pseudo-Anosov homeomorphism  2Homeo.S �˛/. Pass to a high enough
power of  , so that y̨ D  .˛0/ is very close to the stable geodesic lamination ƒS

 

of  ; therefore, y̨ [ˇ fills S �˛ . Also, y̨ is disjoint from ˛ because ˛0 is disjoint
from ˛ . Using the same method, we can find a simple closed curve y̌ which is disjoint
with ˇ and y̌[˛ fills S �ˇ .

Let C D f˛; y̨g, D D fˇ; y̌g, it is easy to see that C [ D fills S . According to
Theorem 2.1, if �0 is a homeomorphism of S , such that �C˛ , �C

y̨
, ��ˇ and ��y̌ appear

at least once in �0 , then �0 is a pseudo-Anosov homeomorphism. Since Œ˛�, Œy̨�, Œˇ�,
Œ y̌� 2

T
i.Li \Ri/, we have that .�0/� fixes Li and Ri for all i.

In order to finish the proof of this theorem, according to Corollary 4.4, we only need to
show that there exists some pseudo-Anosov homeomorphism � constructed as above,
so that the virtual centralizer VChˆi of hˆi has trivial intersection with the mapping
classes of the deck transformation groups of the covering maps p and q , respectively,
where ˆ2MCG.S/ is the mapping class of � . Abusing notation, denote both the deck
transformations and the mapping classes of the deck transformations by Dp and Dq .
The deck transformation group of p has only two elements Dp and the identity.

Let �0 be a pseudo-Anosov homeomorphism of S constructed above, and let ˆ0 be
its mapping class. Let ƒs

�0
and ƒu

�0
be the stable and unstable geodesic laminations

of �0 , respectively. It is known that ˆ0 fixes Li and Ri for all i .

Suppose the deck transformation group of p has nontrivial intersection with the virtual
centralizer of hˆ0i, ie Dp.ƒ

s
�0
/Dƒs

�0
. We claim that Dp.T˛.ƒ

s
�0
//¤ T˛.ƒ

s
�0
/,
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where T˛ is the mapping class of the Dehn twist �˛ . Notice that T˛.ƒ
s
�0
/ is the

stable geodesic lamination of the pseudo-Anosov mapping class T˛ˆ0T �1
˛ , and that

T˛ˆ0T �1
˛ fixes Li and Ri for all i . If the claim is true and letting ˆ1 D T˛ˆ0T �1

˛ ,
then VChˆ1i has trivial intersection with Dp .

We shall prove the claim. Notice that there exists a simple closed curve  on S ,
which is disjoint from ˛ , such that Dp.˛/ D  . According to [8, Lemma 4.1.C],
DpT˛D�1

p D TDp.˛/ D T .

Suppose DpT˛.ƒ
s
�0
/D T˛.ƒ

s
�0
/, then

DpT˛.ƒ
s
�0
/D TDp.ƒ

s
�0
/D T .ƒ

s
�0
/:

Therefore, T˛.ƒ
s
�0
/ D T .ƒ

s
�0
/. It follows that T �1

˛ T 2 VChˆ0i, but from [12,
Theorem 3.5], we know that VChˆ0i has hˆ0i as a finite index subgroup. Hence, up to
some power m, .T �1

˛ T /
m2hˆ0i, but obviously .T �1

˛ T /
m is neither pseudo-Anosov

nor the identity, so it is not an element of hˆ0i. Therefore DpT˛.ƒ
s
�0
/¤ T˛.ƒ

s
�0
/.

If, in addition, DqT˛.ƒ
u
�0
/¤ T˛.ƒ

u
�0
/, then take ˆDˆ1 and the theorem is proved

in this case.

If DqT˛.ƒ
u
�0
/D T˛.ƒ

u
�0
/, then we claim DqT 2

˛ .ƒ
u
�0
/¤ T 2

˛ .ƒ
u
�0
/. If the claim is

not true, then

DqT 2
˛ .ƒ

u
�0
/D T 2

˛ .ƒ
u
�0
/

D T˛.DqT˛.ƒ
u
�0
//

DDqT� .T˛.ƒ
u
�0
//;

where � DDq.˛/ is a simple closed curve on S disjoint from ˛ . Therefore,

T �1
˛ T �1

� D�1
q DqT 2

˛ .ƒ
u
�0
/Dƒu

�0
:

It follows that T �1
˛ T �1

�
T 2
˛ .ƒ

u
�0
/Dƒu

�0
. Since � , ˛ are disjoint simple closed curves,

we have T˛T �1
�
D T �1

�
T˛ . Therefore, T �1

˛ T �1
�

T 2
˛ .ƒ

u
�0
/ D T �1

�
T˛.ƒ

u
�0
/ D ƒu

�0
.

By the same reason as in the above argument, it is impossible.

Replacing T˛ , T by T 2
˛ , T 2

 in the above proof of DpT˛.ƒ
s
�0
/¤ T˛.ƒ

s
�0
/, we see

that DpT 2
˛ .ƒ

s
�0
/¤ T 2

˛ .ƒ
s
�0
/. Taking ˆD T 2

˛ˆ0T �2
˛ , the theorem is proved.
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