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Morava K –theory of groups of order 32

BJÖRN SCHUSTER

We show that the Morava K–theories of the groups of order 32 are concentrated in
even degrees.

55N20, 55R35; 57T25

Let G be a finite group and BG denote its classifying space. Determining the Morava
K–theory of BG is generally difficult, mainly due to the weakness of existing methods
of calculation, which all require knowledge of the cohomology of p–groups – in
itself a notorious problem. Certain series of groups with particularly simple structure,
such as wreath products, groups having a cyclic maximal subgroup or minimal non-
abelian groups, are quite tractable; see eg the work of Hopkins, Kuhn and Ravenel [2],
Hunton [3], the author [6], the author and Yagita [8], Tezuka and Yagita [9; 10] and
Yagita [12]. A hard example is the 3–Sylow subgroup of GL4.F3/: in [4], Kriz
computes just enough of its 3–primary Morava K–theory to conclude that there are
odd dimensional elements in it, thereby disproving a conjecture of Ravenel. A complete
calculation however is still elusive. In later work by Kriz and Lee, this example was
generalised to all n and all odd primes p [5].

In this note we shall consider the groups of order 32. In many cases the Morava
K–theory is already known, or easily deduced from results in the literature. For the
remaining groups, the author established in [7] that for nD 2 at least, their Morava K–
theory K.n/�.BG/ is generated by transfers of Euler classes of complex representations.
In other words, all groups of order 32 are “K.2/–good” in the sense of Hopkins, Kuhn
and Ravenel. Some of the results however relied on computer calculations. This is to
be remedied here, although we only prove a weaker statement:

Theorem Let G be a group of order 32. Then K.n/odd.BG/D 0.

When starting this project, our objective of course was not to prove such a result, rather
we hoped – rather naively, perhaps – that order 32 would be big enough to find a
2–primary counterexample to the even degree conjecture. In this we have failed and
the problem remains open.
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We have not tried to determine ring structures. This should be possible in principle,
using methods similar to those employed by Bakuradze and Vershinin [1], but since
this paper is already so loaded with computations, we have refrained from doing so.

The article is organised as follows. In Section 1, we recall a few old results used in the
later calculations. Section 2 contains some technical lemmas. Section 3 collects all we
need to know about the Morava K–theories of groups of smaller order. Section 4 lists
the 51 groups of order 32 and disposes of those whose Morava K–theory is either in
the literature or can easily be read off from known computations. Finally, Section 5
contains the remaining calculations.

This paper is very computational, and we found it hard to strike a balance between
completeness and readability. We hope to have provided sufficient detail without
placing an undue burden on the reader’s patience.

1 Preliminaries

Our principal calculational tool shall be the Serre spectral sequence

(1) E2 DH�.BQIK�.BH //)K�.BG/

associated to a group extension

1!H
i
�!G

�
�!Q! 1

for K either integral Morava K–theory zK.n/ or its mod p version K.n/. Here
H�.BQIK.n/�.BH // is the ordinary cohomology of Q with coefficients in the
Fp ŒQ�–module K.n/�.BH /, the action of Q being induced by conjugation in G as
usual. This module structure can be quite messy, even in the simplest cases, since it
involves the formal group law. Recall that as any complex oriented cohomology theory,
Morava K–theory comes equipped with a formal group law induced from the tensor
product of line bundles; we shall write the formal sum as “CK.n/”.

This spectral sequence is, via �� , a module over the Atiyah–Hirzebruch spectral
sequence for BQ.

In [4], Igor Kriz proved a beautiful theorem about the Serre spectral sequence associated
to fibrations over BCp . This theorem is one of the few practical tools for calculation;
Kriz used it to great effect to supply the first counterexample to the even degree
conjecture. His result gives a useful criterion to decide whether a group G has even
Morava K–theory.
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Theorem 1.1 (Kriz [4]) Let G be a p–group and H a normal subgroup of index p

with K.n/odd.BH / D 0. Then K.n/odd.BG/ D 0 if and only if the integral Morava
K–theory zK.n/�.BH / is a permutation module for the action of G=H Š Cp .

For odd primes p , this condition is equivalent to saying that K.n/�.BG/ is a permuta-
tion module, but for p D 2 this is trivially false (all F2ŒC2�–modules are permutation
modules).

At the other extreme, one could use extensions with a trivial action, such as central
extensions. This has the advantage of not needing to know the Morava K–theory of
the subgroup as a module for the quotient, which can be hard to determine, but the
drawback is that the quotient is usually a large (p–)group, whose mod p cohomology
can be quite challenging. So one has to find one’s way between two evils, and a
combination of both strategies will often be our chosen line of attack.

We conclude the section with a list of nonabelian p–groups whose Morava K–theory
is known to be good.

Theorem 1.2 (Hopkins–Kuhn–Ravenel [2]; Hunton [3]; Kriz [4]; Tezuka–Yagita [9];
Yagita [10; 11; 12; 13]) If G belongs to any of the following families of p–groups,
then K.n/odd.BG/D 0:

(a) wreath products of the form H oCp with H good [2; 3],

(b) metacyclic p–groups [10],

(c) minimal nonabelian p–groups, ie, groups all of whose maximal subgroups are
abelian [11],

(d) groups of p–rank 2 [12],

(e) elementary abelian by cyclic groups, ie, extensions V ! G ! C with V

elementary abelian and C cyclic [13; 4].

2 Technical lemmas

The first result describes the Morava K–theory of a central product of a “good”group
with an abelian group. Recall that a group G is called a central product of two
subgroups P and Q if P \Q contains a central subgroup Z of G such that G is
isomorphic to the quotient of P �Q by the inclusion of Z via the diagonal. We denote
the central product by P �Z Q or simply by P ıQ.

Theorem 2.1 Let GDH ıC be a central product of H with a cyclic group C ŠCpm .
If H has even Morava K–theory, then so does G .
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Proof This is an easy argument with the Rothenberg–Steenrod spectral sequence;
alternatively, it follows from Theorem 1.1 and induction.

The theorem clearly generalises to groups where C is replaced by any finite abelian
group.

Remark 2.2 It furthermore follows that the Serre spectral sequence for the extension
1!H ! G! G=H ! 1 is simple, by which we mean that the only differential is
the one inherited from the Atiyah–Hirzebruch spectral sequence for G=H (there is
indeed only one, since G=H is cyclic). On the other hand, the spectral sequence for
the central extension

1 �! C �!G �!G=C �! 1

is not simple unless G D H �C ; there is not even reason to believe that G=H has
even Morava K–theory.

The other technical result required is a lemma which, under favourable circumstances,
describes the Serre spectral sequence associated to a group extension with a dihedral
quotient; it is taken from [7].

Suppose G fits into an extension 1! N ! G ! D! 1, with D isomorphic to a
dihedral 2˙-group. Assume further that the homomorphism  W D! Out.N / defined
by the extension is trivial and has a trivial (set theoretic) lift �W D!Aut.N /. In other
words, every element of D should have a preimage in G which centralises N .

Lemma 2.3 Let G be as above. Suppose that K.n/�.BN / is concentrated in even
degrees, and that in the Serre spectral sequence

E2 DH�.BDIF2/˝K.n/�.BN /)K.n/�.BG/

all elements in E
0;�
4

are permanent cycles. Then K.n/�.BG/ is concentrated in even
degrees.

Proof We first prove the statement when D has order 4; an integral variant of this
case can be found in the paper of the author and Yagita [8]. Consider the inverse
images H of any C2 �D4 . Such H is either abelian or a central product, thus the
associated Serre spectral sequence has only one differential d2nC1�1 D vnQn ; see
Remark 2.2. This implies that the first potentially nontrivial differential has to be of the
form d3z D � mod vn , where � D x2

1
x2Cx1x2

2
2H�.BD4IF2/D F2Œx1;x2�. Thus

we obtain an isomorphism

E4 ŠK˝F2Œx1;x2�=.�/˚H ˝F2Œx1;x2�f�g
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where K D Ker.d3jK.n/�.BN // and H D H.K.n/�.BN /; ��1d3/. By assumption
on E4 , the next differential is d2nC1�1 D vnQn . For M D H�.BD4IF2/ the Qn –
homology H.M IQn/ is finite and even. Let M 0 D M f�g and M 00 D M=.�/.
The short exact sequence 0! M 0 ! M ! M 00 ! 0 gives rise to long exact se-
quences in Qn –homology (one for each degree modulo jvnj). The Qn –homology
of M 00 is easily seen to be concentrated in even degrees at most 2nC1 . Since the
map H.M IQn/! H.M 0IQn/ is onto, all connecting homomorphisms are trivial,
implying that H.M 00IQn/ is even and finite, too. This finishes the proof for this case.

Now let D D hs; t j s2m

D t2 D 1; tst D s�1i ŠD2mC1 with m > 1. Let �1; �2 be
the real representations defined by �1.s/D �2.s/D�1, �1.t/D 1, �2.t/D�1, and
�R the natural representation in O.2/. Then

H�.DIF2/Š F2Œx1;x2; w2�=.x1x2/

with x1;x2; w2 the Euler classes of �1; �1; �R , respectively, and w1 WD w1.�R/D

x1Cx2 . There are two conjugacy classes of maximal elementary abelian subgroups,
represented (say) by K and T , both of rank two, and the maximal cyclic subgroup
C Dhsi. The extension induced by the inclusion C �D is a central product with simple
Serre spectral sequence. Thus restricting to C and furthermore to K;T , applying the
special case just proved, one sees that d3 is either trivial, or has image .w1w2/ mod vn .
If d3 is trivial, we are done by the assumption on E4 and the fact that the Atiyah–
Hirzebruch spectral sequence for the dihedral quotient produces a finite and even
module, since D is a “good” group. Otherwise, we have

E4 ŠK˝M 00
˚H ˝M 0

where K and H are defined as before as kernel and homology of d3 and .w1w2/
�1d3

on K.n/�.BN /, respectively. Here M 0 DM fw1w2g and M 00 DM=.w1w2/, where
M DH�.DIF2/ (note that w1w2 is not a zero divisor in M ). As next differential is
d2nC1�1 D vnQn , we need to calculate the Qn –homology of M 0 and M 00 . We claim

H.M IQn/DF2Œx
2
1 ;x

2
2 �=.x

2
1x2

2 ;x
2nC1

2 ;x2nC1

2 /˝F2Œw
2
2 �=.w

2n

2 /˚F2Œw
2
2 �fw

2n

2 ; �g

with � D
Pn

rD0 x2nC1�2rC2C1
1

w2r

2
2M I

H.M 00IQn/D F2Œw2�f1;x1w2g˚F2Œx
2
1 ;x

2
2 �=.x

2
1x2

2 ;x
2nC1

2 ;x2nC1

2 / ;

H.M 0IQn/D F2Œw
2
2 �fx

2nC1

1 ; Qn.x1w2/; Qnw2g

˚F2fx
2i
1 w

2k
2 ; x

2j
2
w2l

2 j 1� i; j < 2n ; 0� k; l < 2n�1
g :

Assuming this calculation, one finds that the E2nC1 –page

E2nC1 ŠK˝H.M 00
IQn/˚H ˝H.M 0

IQn/
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is still infinite, and there must be further differentials. The only way to arrive at a finite
E1–page is when x1w2 and Qnw2 support differentials, and we obtain an E1–page
concentrated in even degrees.

It remains to prove the claim on the Qn –homologies. Recall Qn.xi/D x2nC1

i ; using
Sq1w2 D w1w2 one sees inductively

Qnw2 D

nX
rD0

w2nC1�2rC2C1
1

w2r

2 :

Since x1w1 D x2
1

, replacing w1 in this sum with x1 yields a cycle � for Qn . Com-
paring coefficients one readily proves that the Qn –cycles are given by

F2Œx
2
1 ;x

2
2 ; w

2
2 �=..x1x2/

2/f1;Qnw2g˚F2Œw
2
2 �f�g

(note x2
1
� D x2

1
Qnw2 and x2

2
� D 0). Clearly the image of Qn in odd degrees is

given by F2Œx
2
1
;x2

2
; w2

2
�=..x1x2/

2/fQnw2g. Furthermore, all classes x2kC2
i w2m

2
with

kC 2m� 2nC1 are also in the image; the first claim follows.

For M 00 the calculation is much simpler: modulo w1w2 , one has

Qn.w2/D

nX
rD0

w2nC1�2rC1C1
1

w2r

2 D 0 ; Qn.x1w2/D 0 ;

giving

H.M 00
IQn/D F2Œw2�f1;x1w2g˚F2Œx

2
1 ;x

2
2 �=.x

2
1x2

2 ;x
2nC1

2 ;x2nC1

2 / :

For M 0 , one could either do this directly, or, since we have calculated H.M IQn/, by
means of the short exact sequence of Qn –modules 0!M 0!M !M 00! 0 and
the associated long exact sequence(s)

� � � !H s.M 0
IQn/

�
�!H s.M IQn/

�
�!H s.M 00

IQn/
ı
�!H sCjQnj.M 0

IQn/! � � � :

We need to determine ı and � . The formulas for the action of Qn give

ı.x2k
i /D ı.w2l

2 /D 0 ;

ı.w2kC1
2

/D w2k
2 Qnw2 (note that Qnw2 is not a boundary in M 0),

ı.x1w
2k
2 /D x2nC1

1 w2k
2 ;

ı.x1w
2kC1
2

/DQn.x1w2/w
2k
2 D

nX
rD1

x2nC1�2rC1C2
1

w2rC2k
2

:
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Reduction modulo w1w2 gives

Ker.�/D F2fx
2i
1 w

2k
2 ; x

2j
2
w2l

2 j 1� i; j < 2n ; 0� k; l < 2n�1
g :

Splitting the long exact homology sequences into short exact sequences thus yields an
additive isomorphism

H.M 0
IQn/Š F2Œw

2
2 �fx

2nC1

1 ; Qn.x1w2/; Qnw2g

˚F2fx
2i
1 w

2k
2 ; x

2j
2
w2l

2 j 1� i; j < 2n ; 0� k; l < 2n�1
g :

Corollary 2.4 Suppose in addition that all elements in E
0;�
4

are restrictions of good
elements of K.n/�.BG/. Then K.n/�.BG/ is good.

Proof This is a consequence of the following facts: (i) the x2
i are clearly represented

by Euler classes of one-dimensional complex representations of G ; (ii) there is an
extension problem identifying w2 as a polynomial in elements of E

0;�
4

: this can be seen
either by restriction to subgroups, or by appealing to the extension class in (ordinary)
cohomology.

Finally, we need one more fact from the wreath product calculation.

Lemma 2.5 [2] Let G DH oC2 where H has even Morava K–theory. The Serre
spectral sequence of the extension

(2) 1 �!H �H �!G �! C2 �! 1

has only one differential d2nC1�1 (ie, is simple). More precisely, if K.n/�.BH �H /Š

K.n/�.BH /˝K.n/� K.n/�.BH /D F ˚T is the decomposition into free and trivial
summands, then FC2 and T are in the image of restriction from G and thus consist of
permanent cycles.

3 Groups of smaller order

The later sections require a few results about smaller groups, in particular concerning
the behaviour of certain spectral sequences. The first observation is that all groups of
order at most 16 have even Morava K–theory; this follows from the results quoted in
the previous section: the only nonabelian groups of order 8 are D8 and Q8 , and there
are 11 nonabelian groups of order 16, namely
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(a) D8 �C2 , Q8 �C2 ,

(b) D16 , Q16 , the semidihedral group SD16 , the quasidihedral group QD16 , which
are metacyclic,

(c) the central product C4 ıD8 , also known as almost extraspecial group,

(d) H1Dhg1;g2;g3 j g
4
1
D g2

2
D g2

3
D Œg1;g2�D Œg2;g3�D 1;g3g1g3D g1g2iŠ

.C4 �C2/Ì C2 ,

(e) H2 D hg1;g2 j g
4
1
D g4

2
D 1;g�1

2
g1g2 D g�1

1
i Š C4 Ì C4 .

The groups H1;H2 (numbers 9 and 10 in the Hall–Senior list) are minimal nonabelian
2–groups. Although we already know they are both “good”, we shall later use specific
calculations for their Morava K–theories.

H1 (also known as 16�2c ) has a rank 3 elementary abelian subgroup EDhg2
1
;g2;g3i,

and we consider the corresponding extension

(3) 1 �!E �!H1 �! C2 �! 1

with associated Serre spectral sequence E2 DH�.BC2IK.n/
�.BE//.

Lemma 3.1 The Serre spectral sequence for the extension (3) is simple.

Proof This is very similar to the wreath product calculation in Lemma 2.5. Let
�1; �2; �3 be the linear characters of E with �1.g

2
1
/ D �2.g2/ D �3.g3/ D �1 and

�iD1 on the other generators. Then �g1

i D�i for iD1; 3 and �g1

2
D�1�2 . Furthermore,

�3 extends to a character 
 of H D H1 . Set yi D c1.�i/, then g1 acts trivially on
y1;y3 , whereas g�

1
.y2/D y1CK.n/ y2 . Thus K.n/�.BE/ŠM ˝K.n/�Œy3�=.y

2n

3
/

where M is the module for the switch action as in the wreath product calculation.
Clearly y3DResH

E c1.
 / is in the image of restriction from H , but so are .1Cg�
1
/yk

2
D

ResH
E TrH

E .y
k
2
/ and

�
y2 � g

�
1
.y2/

�k
D ResH

E .c2.IndH
E �2/

k/. Thus all invariants are
permanent cycles, as they are in Im.ResH

E /.

The group H2 has the index two subgroup BDhg2
1
;g2iŠC2�C4 with corresponding

extension

(4) 1 �! B �!H2 �! C2 �! 1

and associated Serre spectral sequence E2 DH�.BC2IK.n/
�.BE//.

Lemma 3.2 The Serre spectral sequence for the extension (4) is simple.
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Proof Instead of using the switch action of C2 on C2 �C2 , one can use the action
of C2 on C4 by inversion to calculate K.n/�.BD8/; the invariants of the C2 –action
on K.n/�.BC4/ DW M are again restrictions of Chern classes. If y denotes the
Euler class of the representation � of B with �.g2

1
/ D �1 and �.g2/ D 1, then

E2 Š M ˝K.n/�Œy�=.y2n

/. Since � extends to a complex character of H2 , the
class y is in the image of restriction, whence all invariants are.

4 Groups of order 32 – the easy part

There are 51 groups of order 32, which we shall denote as G1 – G51 , the index
referring to the Hall–Senior number of the group.

4.1 Groups 1–15

The first 7 groups are abelian, and the next 8 have an abelian factor. Thus their Morava
K–theories are generated by Euler classes, and in particular concentrated in even
degrees,

4.2 Groups 16–22

G16 –G22 have a central quotient isomorphic to C2 �C2 . Thus the technical Lemma
2.3 gives the result, provided one can check the condition on the E4 –page of the Serre
spectral sequence. One only has to do this for G16 and G17 , since G18 and G20 are
minimal nonabelian, whereas G19 , G21 and G20 ŠQD16 are split metacyclic.

G16 is a semidirect product .C4 �C4/Ì C2 with presentation

G16 D ha; b; c j a
4
D b4

D c2
D Œa; b�D Œb; c�D 1; cac D ab2

i :

The centre Z is ha2; bi. Consider the Serre spectral sequence of the central extension
1!Z!G16!V ! 1 with E2ŠK.n/�.BZ/˝H�.V IF2/. Then K.n/�.BZ/ is
generated by the Euler classes of the two linear characters �; � defined by �.a2/D�1,
�.b/ D 1, and �.a2/ D 1, �.b/ D i , respectively. The character � extends to a
representation z� of G16 by setting z�.a/D i and z�.c/D 1; therefore the Euler class
of � is in the image of restriction and thus a permanent cycle. On the other hand,
z WD e.�/ is not a permanent cycle, but it suffices to see that z2 is. Let

� D IndG16

ha;bi
.�/

where �.a/D 1 and �.b/D i . Then

ResG16

Z
.�/D 2�;

whence Resg
Z
.e.�//D z2 .
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Secondly,

G17 D ha; b; c j a
8
D c2

D Œa; c�D Œa; b�D 1; b2
D a2; cbc D a4bi

with centre Z D hai cyclic of order 8 and central quotient V Š C2 �C2 . Consider
as above the Serre spectral sequence of the central extension; this time K.n/�.BZ/

is generated by the Euler class of a generator � of RZ . Clearly � extends to a
representation z� of ha; ci. Inducing z� up to G17 and restricting to the centre yields
2� , implying that e.�/2 is a permanent cycle.

4.3 Groups 23–33

The groups G23 –G33 all have centre of order 4 with quotient D8 – again a case for
Lemma 2.3 and henceforth an easy exercise in representation theory. They also share
the same Euler characteristic

�
n;2.G/D

1

2
16n
C 8n

�
1

2
4n :

In fact, one has G23DC2�D16 , G24DC2�SD16 , G25DC2�Q16 , G26DC4ıD16 ,
G31 D C4 oC2 , G33 D .C2 �C2/ oC2 , and

G27 D ha; b; c j a
8
D b2

D c2
D Œa; b�D Œb; c�D 1; cac D a�1bi

G28 D ha; b; c j a
8
D b2

D Œa; b�D Œb; c�D 1; c2
D a4; c�1ac D a3bi

G29 D ha; b j a
8
D b4

D 1; b�1ab D a�1
i

G30 D ha; b j a
8
D b4

D 1; b�1ab D a3
i

G32 D ha; b; c j a
8
D 1; b D c2; c4

D a4; Œa; b�D Œb; c�D 1; c�1ac D a3
i:

Of these latter groups, G29 and G30 are split metacyclic and G32 is nonsplit metacyclic,
so that leaves G27 and G28 . For both groups, a and b generate a maximal abelian
subgroup AŠ C8 �C2 . As prescribed by Lemma 2.3, we consider the Serre spectral
sequence of the central extension

1 �! ha4; bi �!G �! hxa; ci �! 1

E2 DH�.D8IK.n/
�.BZ//with

Š F2Œx1; w1; w2�=.x
2
1 Cx1w1/˝K.n/�Œz1; z2�=.z

2n

1 ; z2n

2 / :

Here z1 and z2 are the Euler classes of �1; �2 corresponding to a4 and b , respectively,
while we keep the notation for H�.D8IF2/ from Section 2.

Since ŒG;G�D ha2bi Š C4 , we have a one-dimensional representation ˇ of G with
ˇ.b/ D �1 (and ˇ.a/ D ˇ.c/ D 1); this restricts to �2 on the centre. Thus z2 is a
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permanent cycle. Now let A D ha; bi Š C8 � C2 as above, and define � 2 RA by
�.a/D exp.� i=4/ and �.b/D 1. Then �c is either ��1 (for G27 ) or �3 (for G28 );
in any case,

ResG
Z IndG

A .�/D ResA
Z .�C �

c/D 2�1 ;

so z2
1

is a permanent cycle, too.

4.4 Groups 34–37

Presentations of G34 –G37 are as follows:

G34 D ha; b; c j a
4
D b4

D c2
D Œa; b�D 1; cac D a�1; cbc D b�1

i

G35 D ha; b; c j a
4
D b4

D Œa; b�D 1; c2
D a2; cac D a�1; cbc D b�1

i

G36 D ha; b; c j a
4
D b4

D c2
D Œb; c�D 1; a�1baD b�1; cac D a�1

i

G37 D ha; b; c j a
4
D c2

D d2
D Œb; c�D 1; d D Œa; c�; b2

D a2; bab�1
D a�1

i

All four groups have centre Z Š C2 �C2 with quotient C 3
2

, and Euler characteristic

�
n;2 D

1

2
16n
C 8n

�
1

2
4n :

G34 and G35 have the maximal abelian subgroup AD ha; bi Š C4 �C4 , on which
the quotient acts (diagonally) by inverting a and b . Since D8 could be written
as a semidirect product C4 Ì C2 with that action, Theorem 1.1 tells us that M WD

zK.n/�.BC4/ is a permutation module for the automorphism inverting the generator of
the group, thus zK.n/�.BA/ŠM ˝M is a permutation module, too. Theorem 1.1
again thus implies that G34 and G35 are both good.

G36 contains the maximal abelian subgroup AD hb; a2; ci Š C4�C2�C2 . From the
relations one reads off that zK.n/�.BA/ ŠM ˝N , where N D zK.n/�.BC2 �C2 )
with the switch action, so this is again a permutation module; the situation is similar
for G37 and the maximal abelian subgroup AD hb; c; di.

4.5 Groups 38–41

Presentations of G38 –G41 are as follows:

G38 D ha; b; c j a
4
D b2

D c4
D Œa; b�D 1; cac�1

D ac2; cbc�1
D a2bi

G39 D ha; b; c j a
4
D b4

D c2
D Œa; b�D 1; cac D a3; cbc D a2b3

i

G40 D ha; b; c j a
4
D b4

D 1; c2
D b2; Œa; b�D 1; c�1ac D a3; c�1bc D a2b3

i

G41 D ha; b; c j a
4
D b4

D c2
D Œa; b�D 1; cac D a3b2; cbc D a2bi
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All these groups have centre C2 � C2 with quotient C 3
2

, a unique index 2 abelian
subgroup, and 14 conjugacy classes of elements. This suffices to conclude that they all
have the same Euler characteristic

�
n;2 D

1

2
16n
C 8n

�
1

2
4n :

The calculation of their Morava K–theories appears to require new arguments and is
thus deferred.

4.6 Groups 42 and 43

G42 and G43 are extraspecial and were dealt with in [8], using a variant of Lemma 2.3.

4.7 Groups 44–48

Presentations of G44 –G48 are given by:

G44 D ha; b; c j a
8
D b2

D c2
D Œb; c�D 1; bab D a�1; cac D a5

i

G45 D ha; b; c j a
8
D c2

D 1; b2
D a4; Œb; c�D 1; b�1ab D a�1; cac D a5

i

G46 D ha; b; c j a
4
D b2

D c2
D Œa; c�2 D 1; Œa; Œa; c��D Œb; c�D 1; bab D aci

G47 D ha; b; c j a
8
D b2

D c2
D Œb; c�D 1; bab D ac; cac D a5

i

G48 D ha; b; c j a
8
D c2

D 1; b2
D a4; Œb; c�D 1; b�1ab D ac; cac D a5

i

For each group, the centre Z is C2 with quotient either D8 �C2 (for G44 and G45 )
or 16�2c , the group we called H1 in Section 3, in the other cases. All five groups
have Euler characteristic

�
n;2 D

7

4
8n
�

3

4
4n :

G44 , G46 and G47 have a normal rank 3 elementary abelian subgroup with cyclic
quotient, so they are covered by Theorem 1.2 (e). Furthermore, G44 can be written as
ha; ciÌ hbi ŠQD16 Ì C2 , and G45 is a nonsplit version of that group, ie, fits into an
extension 1!QD16!G45! C2! 1 with the same action as for G44 . Similarly,
G48 is a nonsplit version of G47 D ha; ci Ì hbi Š QD16 Ì C2 . Thus Theorem 1.1
implies that G45 and G48 are good, too.

4.8 Groups 49–51

G49 is dihedral, G50 semidihedral, and G51 a generalised quaternion group, hence
already covered in the literature, eg by [12].
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We have seen that the theory described in the previous sections covers 47 groups,
leaving four to be calculated. Closer inspection also shows that the Morava K–theory
of those 47 groups is equidistributed (by which we mean rankK.n/�K.n/

2i.BG/ D

rankK.n/�K.n/
0.BG/� 1 for any i 6� 0 mod jvnj); we omit the details.

5 The remaining cases

5.1 Group 38

The centre of G38 is Z D ha2; c2i Š C2 � C2 . The representation ring has three
generators ˛; ˇ; 
 of dimension one, inflated from G=Z , with ˛.a/ D �1, ˛.b/ D
˛.c/ D 1, ˇ.a/ D ˇ.c/ D 1, ˇ.b/ D �1, and 
 .a/ D 
 .b/ D 1, 
 .c/ D �1. Let
ADha; b; c2iŠC4�C2�C2 and �; � 2RA be defined by �.a/D i , �.b/D�.c2/D1

and �.a/D �.b/D 1, �.c2/D�1. The irreducible representations of G38 are ˛rˇs
 t ,
r; s; t 2 f0; 1g, and � D IndG

A .�/, ˛� , � D IndG
A .�/, ˇ� , � D IndG

A .��/, ˛� .

The group A is a maximal abelian subgroup, but we found neither the central extension
Z!G!G=Z nor A!G!G=A suitable for calculation: in the spectral sequence
for the central extension, the first differential d3 produces zero divisors, and for the
second, we found no easy way to see that all invariants for the action of the quotient
on K.n/�.BA/ are permanent cycles, as the rank of K.n/�.BG38/ would suggest.
Thus we consider the normal subgroup E D hbi �Z with quotient V Š C2 �C2 and
consider the Serre spectral sequence of the extension

(5) 1 �!E �!G38 �! V �! 1 :

Define nontrivial characters �; �; � 2RE by the quotients E=ha2; bi, E=ha2; c2i, and
E=hb; c2i, respectively. Then we obtain the following restrictions:

G38 ˛ ˇ 
 � � �

E 1 � 1 .1C �/� 2� .1C �/��

Let x;y; z 2 K.n/�.BE/ be the Euler classes of �; �; � , respectively. Therefore
K.n/�.BE/ Š K.n/�Œx;y; z�=.x2n

;y2n

; z2n

/. Conjugation by a is trivial on RE ,
and �cD �, �cD � , but �cD �� . This gives the following action of V on K.n/�.BE/:

a�x D x ; a�y D y ; a�z D z ; c�x D x ; c�y D y ; c�z D yCK.n/ z :

From the above table we furthermore see x2 D ResG
E c2.�/.

The Serre spectral sequence has E2 –page

E2 DH�.BV IK.n/�.BE// :
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Write M WDK.n/�.BE/, then M DM 0Œx�=.x2nC1

/, where we know M 0 from the
wreath product calculation in Lemma 2.5. More precisely, M decomposes as P ˚T ,
where P is a direct sum of 1

2
.8n � 4n/ copies of K.n/�ŒV =hxai� and T a sum of 4n

trivial summands K.n/�ŒV =V �.

Lemma 5.1 (a) P hxci consists of permanent cycles, and P hxci D F hxciŒx�=.x2n

/

where F is the free part of M 0 .

(b) T D T 0Œx�=.x2n

/, and d3x D x2
1
x2Cx1x2

2
where H�.BV IF2/D F2Œx1;x2�.

Proof Part (a) follows from the fact that ResA
E W K.n/

�.BA/!K.n/�.BE/ is onto and
the double coset formula, which gives ResG

E TrG
A D ResA

E.1C c�/.

For (b), note that z.y CK.n/ z/ D ResG
E c2.�/, which implies that T 0 � Im.ResG

E/.
On the other hand, x cannot be a permanent cycle for size reasons, and looking at the
extensions induced by the three inclusions C2 � V tells us that d3x has to restrict to
zero on all of them: the corresponding subgroups of G38 are C4 �C2 �C2 , H1 and
D8 �C2 , with simple spectral sequences according to Lemma 2.5 and Lemma 3.1.

The lemma implies

E4 D P hxci˝H�.BhxaiIK.n/�/˚T 0Œx2�=.x2n

/˝F2Œx1;x2�=.x
2
1x2Cx1x2

2/ :

Since x2 is a permanent cycle, the next differential is Qn , making E2nC1 even and
finite (we know the Qn –homology of F2Œx1;x2�=.x

2
1
x2Cx1x2

2
/ from the first part of

the proof of Lemma 2.3). This finishes the calculation for this group. A closer look at
the distribution of generators shows that K.n/�.BG38/ is indeed equidistributed.

5.2 Group 39

Let AD ha; bi �G39 , then G39 is the semidirect product A Ì hci Š .C4 �C4/Ì C2 .
The first idea would be to use the extension A ! G ! C2 and show that either
all invariants K.n/�.BA/hci are permanent cycles, or that zK.n/�.BA/ contains no
summand �1. Instead, we turn to the central extension

(6) 1 �! C �!G39 �! hxai �Q �! 1

with C D ha2i Š C2 and QD hxb; xci Š C2 �D8 . Then

E2 DK.n/�.BC /˝H�.BQIF2/

ŠK.n/�Œz�=.z2n

/˝F2Œx1; w1; w2�=.x
2
1 Cx1w1/˝F2Œy�

with x1; wi as before and y 2H 1.BhxaiIF2/.

Algebraic & Geometric Topology, Volume 11 (2011)



Morava K–theory of groups of order 32 517

Lemma 5.2 d3z D w2
1
yCw1y2 mod vn .

Proof Consider subgroups Qj < Q (j D 1; 2; 3/ and the corresponding induced
extensions C ! zQi!Qi in the following cases:

Q1 D hxa; xbi Š C2 �C4 ; zQ1 DAŠ C4 �C4 ;

Q2 D hxa; xb
2; xci Š C2 �C2 �C2 ; zQ2 D ha; ci � hb

2
i ŠD8 �C2 ;

Q3 D hxa; bc; xb2
i Š C2 �C2 �C2 ; zQ3 D ha; bci � hb2

i ŠQ8 �C2 :

Then one has, with y as above,

H�.Q1IF2/Š F2Œy�˝ƒ.u/˝F2Œv� with hu; xai D 1, v D ˇ2.u/,

H�.Q2IF2/Š F2Œy; t1; t2� with t1 dual to xb2 and t2 dual to xc,

H�.Q3IF2/Š F2Œy; t1; t3� with t1 dual to xb2 and t3 dual to bc.

For these extensions, the following table lists restrictions and d3z , which we know (or
can easily deduce) from previous calculations.

Q x1 y w1 w2 d3z mod vn

Q1 u y 0 v 0

Q2 0 y t2 t1t2C t2
2

y2t2Cyt2
2

Q3 t3 y t3 t2
1
C t1t3 t2

3
yC t3y2

The claim follows.

Now let b D w2
1
yCw1y2 , then d3z D b.1CU / for a unit U , since z is nilpotent,

and
E4 ŠK.n/�Œz2�=.z2n

/˝H�.QIF2/=.b/ I

note that b is not a zero divisor. Comparison to the induced extensions again shows that
the next differential is d2nC1�1D vnQn , so we have to determine the Qn –homology of
H�.QIF2/=.b/. Note that x2

1
y2 D x1w1y2 D x1w

2
1
y D x3

1
y etc. There is a splitting

H�.QIF2/=.b/DM ˚N1˚N2

M DH�.QIF2/=.b;y/D F2Œx1; w1; w2�=.x
2
1 Cx1w1/with

N1 D F2Œw2;y�fyg˚F2Œw2;y�fw1yg

N2 D F2Œw2;y�fx1yg˚F2Œw2;x�fx
2
1yg

and this splitting is respected by the action of Qn .

Algebraic & Geometric Topology, Volume 11 (2011)



518 Björn Schuster

Lemma 5.3 (a) Let � D
Pn

jD0 x2nC1�2jC1C1
1

w2j

2
. Then

H.M IQn/D F2Œw
2
2 �f1; �g˚

�
F2fx

2i
1 ; w

2j
1
j 1� i; j < 2n

g˝F2Œw
2
2 �=.w

2n

2 /
�
:

(b) Let #1 D .y
2Cw1y/w2 . Then

H.N1IQn/D F2Œw
2
2 �fy

2i ;y2j#1 j 1� i < 2n; 0� j < 2n
g

˚F2Œw
2
2 �=.w

2n

2 /˝F2fw1y2jC1
j 0� j < 2n

g :

(c) Let #2 D x2
1
yCx1y2 and #3 D #2w2 . Then

H.N2IQn/D F2Œw
2
2 �fy

2i#2;y
2j#3 j 0� i < 2n

� 1; 0� j < 2n
g

˚F2Œw2�=.w
2n

2 /fx2kC1
1

y j 1� k < 2n
g :

Proof The Qn –homology of M we know from the proof of Lemma 2.3 (it is the
Qn –homology of H�.D8IF2/). For (b), we first show that H odd.N1IQn/ vanishes.
Let

X D

dX
iD0

�iy
2d�2iC1wi

2C

d�1X
iD0

�iy
2d�2iw1w

i
2

be a class in degree 2d C 1. Then QnX D 0 implies

0D

dX
iD0

�iy
2nC1C2d�2iwi

2C�dy.Qnw2/C

d�1X
iD0

�iy
2d�2iw2nC1

1 wi
2

C

d�1X
iD0

��
i�iy

2d�2iC1
C i�iw1y2d�2i

� nX
jD0

w2nC1�2jC1C1
1

w2jCi�1
2

�
:

The coefficients of ylwk
2

tell us that all �i must be zero, since the rest of the summands
is divisible by w1 . So we only have to consider zN1Dw1N1 . Let F2Œu; v� be the graded
Qn –module with u; v in degree 1 and QnuD u2nC1

, QnvD v
2nC1

. Then '.y/ WD u,
'.w1/ WD uC v and '.w2/ WD uv defines a monomorphism 'W zN1 ! F2Œu; v� of
Qn –modules. Since H odd.F2Œu; v�IQn/D 0, one also has H 2dC1. zN1IQn/D 0 for
2d C 1� 2nC1C 1. For larger d , comparing coefficients of wm

2
leads to a system of

equations of the form

�2k C�2k�1C � � �C�2k�2rC1C � � �C�2k�2nC1C1 D 0

giving QnX D 0 if and only if X 2 Im.Qn/. One furthermore computes that the even
degree cycles are

Zev
D F2Œw

2
2 ;y

2�fw1y; #1g :
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Now F2Œw
2
2
;y2�fy2nC1

;y2nC1

w1g clearly lies in the image of Qn , as does y2nC1

#1D

Qn.y#1/. Finally, yw1w
2n

2
D
Pn�1

kD1 y2nC1�2kC1C1w1w
2k

2
Cy2nC1�2#1CQn.yw2/;

the claim follows.

The proof of (c) is a similar routine but tedious verification.

Thus E2nC1 ŠK.n/�Œz2�=.z2n

/˝ .Hinf˚Hfin/ where

HinfDF2Œw
2
2 �fy

2i ;y2j#1;y
2k#2;y

2l#3;� j 0� i;j < 2n;0� k < 2n
�1;0� l < 2n

g;

HfinDF2Œw
2
2 �=.w

2n

2 /fx2i
1 ;w

2j
1
;y2kC1w1;x

2lC1
1

y j 1� i;j ;l < 2n;0� k < 2n
g :

denote the infinite and the finite part of the Qn –homology given by the lemma. All
generators in the finite part are squares (recall x3

1
y D x2

1
y2 ) and are represented by

Chern classes of complex representations, namely the complexifications of the real
representations used to define x1; w1; w2 and y . Furthermore, Hfin sits in degrees less
than 2nC2 , whence no further differential can hit this summand.

For the summand Hinf , notice first that w2
2

is represented by a Chern class and thus a
permanent cycle. As modules over F2Œw

2
2
�, the even and the odd degree part have the

same rank. Since E1 has to be finite and #1 is also a permanent cycle, all odd degree
generators have to support a nontrivial differential and we are done.

5.3 Group 40

This group is a nonsplit version of G39 , ie, G40 admits a nonsplit extension A!

G40! C2 with AD ha; bi Š C4 �C4 and the same action of the quotient C2 as for
G39 DA Ì C2 . Thus G40 has even Morava K–theory if and only if G39 does.

5.4 Group 41

This calculation is similar to the one for G38 , so we shall offer less detail. The centre
of G41 is Z D ha2; b2i Š C2 �C2 , and AD ha; bi Š C4 �C4 is an index 2 abelian
subgroup. There are 14 irreducible complex representations, ˛rˇs
 t (r; s; t D 0; 1) of
dimension 1 and �; ˛�; �; ˇ�; �; ˛� of dimension 2, defined as follows. ˛; ˇ; 
 factor
through G=Z Š C 3

2
, with ˛.a/D �1, ˇ.b/D �1, 
 .c/D �1, and ˛.b/D ˛.c/D

ˇ.a/ D ˇ.c/ D 
 .a/ D 
 .b/ D 1. Let �; �W A! C� be given by �.a/ D �.b/ D i

and �.b/D �.a/D 1, then � D IndG
A .�/, � D IndG

A .�/ and � D IndG
A .��/.

As before, we found it hard to show that the invariants K.n/�.BA/hci are all in the
image of restriction, and also the spectral sequence for the central extension posed
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problems with zero divisors. Thus let B be the normal subgroup ha2; bi Š C2 �C4

and V DG=B D hxa; ci Š C2 �C2 , and consider the extension

(7) 1 �! B �!G41 �! V �! 1 :

Let �; � be defined by �.a2/ D �1, �.b/ D i , and �.b/ D �.a2/ D 1, then � and
� generate RB . Furthermore, �c D � , �c D ��2 , and xa acts trivially on RB . The
restriction homomorphism ResG

B W RG!RB is given by the following:

G41 ˛ ˇ 
 � � �

B 1 �2 1 .1C �2/� 2� .1C �2/��

Notice that if we artificially introduce � WD �2 , then this table, as well as the action
of c , is identical to the case of G38 .

The Serre spectral sequence for (7) has

E2 DH�.BV IK.n/�.BB//

Set xD c1.�/, zD c1.�/, and yD c1.�
2/. Then yD Œ2�xD vnx2n

, and the action of c

is given by c�.x/D x and c�.z/D yCK.n/ z . Thus as K.n/�Œhci�–module (but cer-
tainly not as an algebra), K.n/�.BB/ŠM1˝M2 with M1DK.n/�Œy; z�=.y2n

; z2n

/

and M2 DK.n/�Œx�=.x2n

/. The rest of the calculation now proceeds as in the case
of G38 , with one minor difference: since the subgroups of G41 corresponding to the
three inclusions C2 � V are isomorphic to C4 �C4 , H1 , and H2 , we have to appeal
to Lemma 3.2 in addition to Lemma 3.1 for the equivalent of Lemma 5.1 (b), ie, the
formula for the differential d3 .
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