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The self-linking number
in annulus and pants open book decompositions

KEIKO KAWAMURO

ELENA PAVELESCU

We find a self-linking number formula for a given null-homologous transverse link in
a contact manifold that is compatible with either an annulus or a pair of pants open
book decomposition. It extends Bennequin’s self-linking formula for a braid in the
standard contact 3–sphere.

57M25, 57M27; 57M50

1 Introduction

Alexander’s theorem [1] states that every closed and oriented 3–manifold admits an
open book decomposition.

Definition 1.1 Let † be a surface with nonempty boundary and � be a diffeomorphism
of the surface fixing the boundary pointwise. We construct a closed manifold

M.†;�/ D†� Œ0; 1�=�

where “�” is an equivalence relation satisfying .�.x/; 0/� .x; 1/ for x 2 Int.†/ and
.x; �/� .x; 1/ for x 2 @† and � 2 Œ0; 1�. The pair .†; �/ is called an abstract open
book decomposition of the manifold M.†;�/ .

Alternatively, an open book decomposition for M can be defined as a pair .L; � ), where
(1) L is an oriented link in M called the binding of the open book; (2) � W M nL!S1

is a fibration whose fiber, ��1.�/, called a page, is the interior of a compact surface
†� �M such that @†� DL for all � 2 S1 .

One of the central results about the topology of contact 3–manifolds is “the Giroux
correspondence” [11]:�

contact structures � on M 3

up to contact isotopy

�
1–1
 !

�
open book decompositions .†; �/
of M 3 up to positive stabilization

�
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For example, the standard contact structure �stdD ker.dzC r2d�/ on S3DR3[f1g

corresponds to the open book decomposition .D2; id/.

We define a braid and the braid index in a general open book setting:

Definition 1.2 Suppose .L; �/ is an open book decomposition for a 3–manifold M .
A link K �M is called a (closed) braid if K transversely intersects each page †� D
��1.�/ of the open book. That is, at each point p 2K\†� , we have Tp†�˚TpKD

TpM . The braid index of a braid K is the degree of the map � restricted to K . In
other words, if a braid K intersects each page in n points, then the braid index of K

is n.

Bennequin [2] proved that any transverse link in .S3; �std/ can be transversely isotoped
to a closed braid in .D2; id/. Later the second author generalized Bennequin’s result
into the following:

Theorem 1.3 [15, Theorem 3.2.1] Suppose .†; �/ is an open book decomposition
for a 3–manifold M DM.†;�/ . Let � D �.†;�/ be a compatible contact structure.
Let K be a transverse link in .M; �/. Then K can be transversely isotoped to a braid
in .†; �/.

The self-linking (Bennequin) number is a classical invariant for transverse knots. Ben-
nequin [2] gave a formula of the self-linking number for a braid b in .D2; id/:

(1-1) sl.b/D�nC a;

where n is the braid index and a the algebraic crossing number (the exponent sum) of
the braid.

The first goal of this paper is to give a combinatorial description for the self-linking
number of a null-homologous transverse link in the contact lens spaces compatible with
.A;Dk/, the annulus A open book decomposition with monodromy the k –th power
of the positive Dehn twist D . By Theorem 1.3, our problem is reduced to searching
for a self-linking formula for a null-homologous braid in the open book decomposition
.A;Dk/. Such a braid is given by a product of permutations of points in a local disk
on the annulus A and moves of points which turn around the hole of A. We denote
by a� the algebraic crossing number of the local permutations, and by a� the algebraic
rotation number around the hole of A; see Definition 2.5 for precise definitions. With
this notation, we extend Bennequin’s formula (1-1) to the following:
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Theorem 4.1 Let b be a null-homologous closed braid in .A;Dk/ of braid index n.
For k ¤ 0 we have

sl.b/D�nC a� C a�

�
1�

a�

k

�
:

When k D 0 there exists a canonical Seifert surface †b of b and we have

sl.b; †b/D�nC a� :

The Seifert surface †b will be constructed in Section 3. The surface is canonical in
the sense that the way of construction is similar to that of the standard Seifert surface,
or Bennequin surface, of a closed braid in S3 .

Our second goal is to find a self-linking formula for null-homologous transverse links
in a contact Seifert fibered manifold M of signature .g D 0; k1; k2; k3/. Let S be
a pair of pants (a disk with two holes). Let Di (i D 1; 2; 3) be the positive Dehn
twists along the curves parallel to the boundary circles of S . Then M has an open
book decomposition .S;Dk1

1
ıDk2

2
ıDk3

3
/, and is equipped with a compatible contact

structure. A braid in the pants open book is a product of permutations of points in a
local disk on S and moves of points which turn around the holes of S . We denote
by a� the algebraic crossing number of the local permutations and by a�i

(i D 2; 3) the
algebraic winding number around the holes. See Definition 5.4 for precise definitions.
We obtain the following formula which also extends (1-1).

Theorem 5.6 Let b be a null-homologous braid in .S;Dk1
1
ıDk2

2
ıDk3

3
/ of braid

index n. We have

sl.b; Œ†b �/D�nC a� C a�2
.1� s2/C a�3

.1� s3/� .s2C s3/k1;

where †b is some Seifert surface for b . The constants s2 , s3 are determined by
a�2

, a�3
, k1 , k2 and k3 , under the assumption that b is null-homologous; see

Definition 5.4.

The organization of the paper is the following:

In Section 2, we fix notation and study properties of the contact lens space .M.A;Dk/; �k/.

In Section 3, we construct a Bennequin type Seifert surface yFb for a given braid b in
.A;Dk/. In general, this yFb is an immersed surface and the Bennequin–Eliashberg
inequality is not satisfied even for tight cases. We resolve all the singularities and
obtain an embedded surface †b . We develop a theory about resolution of singularities
of an immersed surface and corresponding changes in characteristic foliations.

In Section 4, we prove Theorem 4.1, an explicit formula of the self-linking number
relative to †b , which extends Bennequin’s formula (1-1). As the self-linking number
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is defined to be the Euler number of the contact 2–plane bundle relative to the surface
framing, we measure the difference between the immersed yFb –framing and the em-
bedded †b –framing. We also study the behavior of our self-linking number under a
braid stabilization. Corollary 4.5 states that our self-linking number is invariant under
a positive stabilization and changes by 2 under a negative stabilization, which extends
Bennequin’s result for braids in .S3; �std/.

In Section 5, we apply our surface construction method to some class of contact Seifert
fibered manifolds and prove Theorem 5.6.

Acknowledgements The authors would like to thank John Etnyre for numerous useful
comments and sharing his ideas, especially those on Corollary 3.9, and Matthew Hedden
for helpful comments on Section 4. They also thank the referee for carefully examining
the paper and providing constructive comments. KK thanks Tim Cochran and Walter
Neumann for stimulating conversations. She was partially supported by NSF grants
DMS-0806492 and DMS-0635607.

2 Preliminaries

Let AD S1 � I be an annulus and D˛ the positive Dehn twist about the core circle
˛ D S1 � f1=2g. For simplicity, we denote D˛ by D .

˛

l
D˛

�	
D˛.l/

Figure 1: A positive Dehn twist D˛ about ˛

We study an abstract open book decomposition .A;Dk/.

Claim 2.1 The corresponding manifold M.A;Dk/ to .A;Dk/ is

M.A;Dk/ D

8̂<̂
:

L.k; k � 1/ if k > 0;

S1 �S2 if k D 0;

L.jkj; 1/ if k < 0:
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Proof Let Dı ' D2 be a disk and  WD @Dı . Recall that .Dı; id/ is a planar
open book decomposition for .S3; �std/. Let D� � Dı be a disc with boundary �.
The core of the solid torus D� � S1 � S3 is the unknot, U . The meridian of the
torus T� D @.D� �S1/ is �. Pick a point p 2 �, and define a longitude � of T� as
�D fpg�S1 . Remove D��S1 from S3 , and attach a new solid torus by identifying
its meridian m with � and its longitude l with ��. This is the 0–surgery along the
unknot U . The resulting manifold is S1 � S2 . In this way we get an open book
decomposition .A; idA/ for S1 � S2 , whose page A is the union of the annulus
Dı nD� , shaded in Figure 2 (1), and the annulus bounded by �l and the core  0 of
the solid torus, sketched in Figure 2 (2).

�



�

T�
id

l

 0

m

�D�l


 0

U 0

�

(1) (2) (3)

Figure 2: (1) Removing a solid torus D� �S1 from S3 (2) The attaching
solid torus (3) The page annulus A

The Dehn twist Dk about the core U 0 � .Dı nD�/�A, sketched in Figure 2 (3), of
the page annulus A is equivalent to applying .1=�k/–surgery along the unknot U 0 .
The link .U [U 0/ � S3 is the positive Hopf link. By the slam-dunk operation, the
surgery description is reduced to the k –surgery along U , which represents L.k;�1/D

L.k; k � 1/ when k > 0 and L.jkj; 1/ when k < 0.

Let .M.A;Dk/; �k/ be the contact manifold corresponds to the open book .A;Dk/.

Claim 2.2 The contact manifold .M.A;Dk/; �k/ is overtwisted if and only if k < 0.
When k � 0, this �k is the unique tight contact structure for L.k; k � 1/.

Proof If k < 0, Goodman’s criterion for overtwistedness [12, Theorem 1.2] implies
that �k is overtwisted.

When kD 0, according to Etnyre and Honda [7, Proof of Lemma 3.2], the open book is
a boundary of a positive Lefschetz fibration on a 4–manifold X , so that .S1�S2; �0/

is Stein filled by X , hence tight. Moreover, �0 is the unique tight contact structure on
S2 �S1 due to Eliashberg [4].
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When k > 0, the monodromy is a product of positive Dehn twists. Etnyre and Honda’s
[7, Lemma 3.2] guarantees that the contact structure compatible with such an open
book is Stein fillable, hence tight. The uniqueness for k > 0 follows from Honda’s
classification of tight contact structures for lens spaces [13]. More precisely, we have

�
k

k � 1
D�2�

1

�2� 1

�2����� 1
�2

D Œ�2;�2; : : : ;�2�; repeating .k � 1/ times

and j.�2C1/.�2C1/ � � � .�2C1/j D 1, thus the manifold has the unique tight contact
structure.

We fix notation. See Figure 3. Suppose we have a null-homologous closed braid b

of braid index n in the open book .A;Dk/. Let  [  0 D @A whose orientations are
induced by that of A. Let A� (� 2 Œ0; 1�) denote the page A�f�g �M.A;Dk/ . Under
the identification AD S1 � Œ0; 1�, we set ˛ D S1 � f1=2g. Let ˇ be a circle between
˛ and  which is oriented clockwise.



 0
˛
ˇ

�

x1

x2

xi
�i

xiC1

xn

l1

l2

li

liC1

ln

us

u1 u2

Figure 3

Assumption 2.3 Choose points x1; : : : ;xn sitting between  and ˛ . By braid isotopy,
which preserves the transverse knot class (see Theorem 2.8 (2)), we may assume that

b\A0 D fx1; : : : ;xng:

Let �i (i D 1; : : : ; n � 1) be the generators of Artin’s braid group Bn satisfying
�i �iC1 �i D �iC1 �i �iC1 and �i�j D �j�i for ji�j j � 2. Geometrically, �i acts by
switching the marked points xi and xiC1 counterclockwise. The circle ˇ will appear

Algebraic & Geometric Topology, Volume 11 (2011)



The self-linking number in annulus and pants open book decompositions 559

in Section 3.1. Let � be a braid element which moves xn once around the annulus in
the indicated direction.

Proposition 2.4 An n–strand braid b in .A;Dk/ has a braid word in f�1; : : : ; �n�1;�g.

Proof Let A� be the annulus with n-marked points x1; : : : ;xn . Let C.A; n/ denote
the configuration space of n distinct unordered points in A. The fundamental group
�1.C.A; n// is the n–stranded surface braid group of A. Let Mod.A/ be the mapping
class group of annulus A fixing the boundaries pointwise. Recall the generalized
Birman exact sequence [3; 9, Theorem 9.1]:

1 �! �1.C.A; n//
Push
���!Mod.A�/

Forget
����!Mod.A/ �! 1

Since the map Forget is forgetting the n marked points, ker.Forget/D �1.C.A; n//

is generated by f�1; : : : ; �n�1; �g.

Definition 2.5 Let a� 2 Z (resp. a� 2 Z) be the exponent sum of �1; : : : ; �n�1

(resp. �) in the braid word of b .

Proposition 2.6 If k > 0 (resp. k < 0), we may assume that a� � 0 (resp. a� � 0).

To prove Proposition 2.6, we first define braid stabilization and recall its properties.

Definition 2.7 Let b be a closed braid in an open book .†; �/. Suppose that �� @†
is one of the bindings of the open book and p 2 .†� \ b/ is a point; see Figure 4.
Join p and a point on � by an arc a � .†� n b/. A positive (negative) stabilization
of b about � along a is pulling a small neighborhood of p of the braid, then adding a
positive (negative) kink about � in a neighborhood of a.

positive
stabilization

a

p

†�
�

Figure 4: Positive braid stabilization along a

The second author proved Markov theorem in a general open book setting:
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Theorem 2.8 [15, Theorems 4.1.3 and 4.1.4]

(1) Two closed braids K1 and K2 in an open book decomposition have the same
topological type if and only if they are related by braid isotopy, positive and
negative braid stabilizations.

(2) The above K1;K2 are transversely isotopic if and only if they are related by
braid isotopy and positive braid stabilizations.

Proof of Proposition 2.6 Suppose b is an n–strand braid. Recall that .A;Dk/

has two binding components,  and  0 . Let a be an arc joining xn and  0 and
intersecting ˛ at a point as sketched in Figure 5. Pick a small line segment of the



 0
˛

�nC1

x1

x2 xn

xnC1

a

Figure 5: Definitions of a;xnC1 and �nC1

n–th strand in A� .1� �; 1/, near the top page A�D1 of the open book, and positively
stabilize it along a. As a consequence, it gains a new braid strand, which we call � ,
lying in a small tubular neighborhood of  0 ; see Figure 6 (1). Put a point xnC1 �A

on the right side of xn between  and define �nC1 a braid generator as in Figure 5.
Move � by a braid isotopy supported in A� .1� �; 1C �/ so that � intersects the page
A0DA1 at xnC1 . This isotopy introduces .�nC1/

k in A� .0; �/ as a consequence of
the monodromy Dk . Compare Figure 6 (1) and (2).

We observe that in a stabilized braid, �nC1 plays the role of the old � D �n and as
Figure 6 (3) shows, they are related by

(2-1) �n D �n�nC1�n:

Thus a positive stabilization about  0 takes a word b to .�nC1/
k zb�n; where zb is

obtained from b replacing each � with �n�nC1�n . The data change in the following
way:

n! nC 1; a� ! a� C 1C 2a�; a�! a�C k:
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xn �  0 ˛

�n

xn xn�1



˛

�n

.�nC1/
k

xn xnC1 ˛

�n

�n

�n

�nC1

.�nC1/
k

Figure 6: (1) Positive stabilization about the binding  0 (2) Transversely
isotope � near  0 to xnC1 near  . This introduces k additional �nC1 ’s. (3)
�n and �nC1 are related by �n D �n�nC1�n .

Theorem 2.8 (2) tells that a positive stabilization preserves the transverse knot type, so
if k > 0 (resp. k < 0) we may assume that a� � 0 (resp. a� � 0).

The next corollary introduces a number s :

Corollary 2.9 If k ¤ 0 there exists a nonnegative integer s such that a� D sk . If
k D 0 then a� D 0.

Proof In the homology group H1.M.A;Dk/IZ/, we have Œb�C a�Œˇ�D 0. Since the
braid b is null-homologous a�Œˇ�D Œb�D 0. The meridian � introduced in the proof
of Claim 2.1 is a generator of H1.M.A;Dk/IZ/D Z=kZ. Since a�Œ���D a�Œˇ�D 0

we have a� � 0 (mod k ), implying the existence of s 2 Z with a� D sk for k ¤ 0.
Proposition 2.6 guarantees that we may assume s�0. When kD0, we have a�D0:

3 Construction of Seifert surface †b

The goal of this section is to construct a Seifert surface †b for a null-homologous
braid b whose braid word is written in f�1; : : : ; �n�1; �g. (By abuse of notation, we
use b for both the closed braid and its braid word.) We first construct a surface Fb

and change it to zFb . We further deform zFb!
LFb!

yFb and finally obtain †b .
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3.1 Construction of the surface Fb

Let li �A be a line segment perpendicular to  having xi as one of its endpoints and
with the other end on  ; see Figure 3. Since li is disjoint from the Dehn twist curve ˛ ,
in the resulting manifold, M.A;Dk/ , the arc li swipes a disk ıi WD .li � Œ0; 1�/=�. See
Figure 7. The center of ıi is li \  . We orient ıi so that the binding  is positively
transverse to ıi .

ı1

ı2 ın

Figure 7: Oriented disks ı1; : : : ; ın . The positive (negative) side is light blue
(dark pink).

If the braid word for b has length m. If the j –th (1� j �m) letter is �i (resp. ��1
i )

then we join the disks ıi and ıiC1 by a positively (resp. negatively) twisted band
embedded in the set of pages fA� j .j � 1/=m< � < j=mg. See Figure 8 (1).

(1) (2)

��1

��1

�

ın

�ˇ

�ˇ

ˇ

� Positive band

� Negative band

Figure 8: Construction of Fb (1) Twisted bands (2) A–annuli
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If the j –th letter is � (resp. ��1 ), then we attach to the disk ın an annulus embedded
in fA� j .j � 1/=m < � < j=mg. We call such an annulus an A–annulus. See
Figure 8 (2). Let ˇ � A be an oriented circle between circles ˛ and  as sketched
in Figure 3. One of the boundaries of each A–annulus represents � (resp. ��1 ) and
becomes part of the braid b . The other boundary, which we denote by ǰ (resp. � ǰ ),
is in ˇ� ..j � 1/=m; j=m/.

We call the resulting surface Fb .

By [10, Proposition 4.6.11], we may assume that the characteristic foliation of our
surface is of Morse–Smale type. Each disk ıi has a positive elliptic point. A positive
(negative) band between the ı–disks contributes one positive (negative) hyperbolic
point. The foliation on the disk ın together with an attached A–annulus has a positive
(resp. negative) hyperbolic singularity as sketched in Figure 9 (1) (resp. (2)) if the
corresponding braid word is � (resp. ��1/:

(1)
Chyperbolic

(2)

�hyperbolic

ın ın�
��1

Figure 9: Characteristic foliations of A–annulus for (1) � and (2) ��1

3.2 Construction of the surface zFb

In Section 3.1, we have constructed an embedded oriented surface Fb whose boundary
consists of the braid b and copies of ˙ˇ ’s. Let a� 2Z (resp. a� 2Z) be the exponent
sum of �1; : : : ; �n�1 (resp. �1; : : : ; �n�1 ) in the braid word for b . Let r be the number
of �˙ ’s appearing in the braid word for b of length m (ie, 0 � r �m). Then there
exist 1� j1 < � � �< jr �m and �i D˙1 with �1C �2C � � �C �r D a� such that

@Fb D b[ �1 ǰ1
[ �2 ǰ2

[ � � � [ �r ǰr
:
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Proposition 3.1 By attaching vertical annuli to pairs of ˇ and �ˇ circles as described
in Figure 10, we can construct an embedded oriented surface, which we call zFb , whose
boundary consists of

(3-1) @ zFb D

8̂<̂
:

b and a� copies of ˇ if k > 0,

b if k D 0,

b and �a� copies of �ˇ if k < 0.

(1) (2)

[ Dǰi

� ǰiC1

��

�	

Figure 10: Attaching a vertical annulus to A–annuli

Proof Suppose that @FbD b[�1 ǰ1
[�2 ǰ2

[� � �[�r ǰr
and �1C�2C� � �C�r D a�:

If �1 D �2 D � � � D �r (� and ��1 do not coexist in the braid word for b ), then take
zFb D Fb .

Else, let 1� i � r �1 be the smallest index for which �i ¤ �iC1 . We attach a “vertical”
annulus to .�i ǰi

/[ .�iC1 ǰiC1
/ as sketched in Figure 10. The boundary of the newly

obtained surface (call this surface Fb;1 ) contains two less ˙ˇ–curves:

@Fb;1 D b[ �1 ǰ1
[ � � � [ �i�1 ǰi�1

[ �iC2 ǰiC2
[ � � � [ �r ǰr

;

but it preserves the sum: �1C � � �C �i�1C �iC2C � � �C �r D a�:

Renumber the boundary components,

@Fb;1 D b[ �1 ǰ1
[ �2 ǰ2

[ � � � [ �r�2 ǰr�2

then repeat the procedure for Fb;1 . If i � 1 is the smallest index for which �i�1 ¤ �i ,
then attach the annulus by nesting it inside the one previously attached. See the right
sketch in Figure 11. After at most Œr=2� such attachments of annuli, all the �i ’s have
the same sign, and we get the desired surface zFb . By Proposition 2.6 and Corollary
2.9 we have the equality (3-1).
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i C 2

i C 1

i

i � 1

Figure 11: Nested vertical annuli

3.3 Construction of the immersed surface LFb

We have constructed a surface zFb satisfying the boundary condition (3-1). In particular,
when k D 0 we have already obtained an embedded surface zFb whose boundary is b .
Define †b WD

zFb .

When k ¤ 0, we construct an immersed surface LFb from zFb , by attaching disks about
the binding  0 .

Assume that k > 0. Proposition 2.6 justifies assuming a� � 0. Let A1; : : : ;Aa�
� zFb

be the A–annuli whose boundaries contribute to the a� copies of ˇ–circles as in
Proposition 3.1. Recall the number s D a�=k � 0 defined in Corollary 2.9. Let
u1; : : : ;us � A be arcs (see Figure 3) disjoint from the Dehn twist circle ˛ , such
that one end of each ui sits on the binding  0 . Let !1; : : : ; !s be disks, called !–
disks, obtained by swiping u1; : : : ;us in the open book .A;Dk/ so that the center
of !i is pierced by  0 . For each i D 1; : : : ; s , connect !i smoothly with annuli
Ai ;AsCi ;A2sCi ; : : : ;A.k�1/sCi by k copies of the twisted band as in Figure 12 (1).
When k < 0, attach twisted bands as in Figure 12 (2). We have obtained an immersed
surface, which we denote by LFb ; see Figure 13.

Lemma 3.2 Regardless of the sign of k , all the singularities for the characteristic
foliation of the attached bands and the !–disks are positive elliptic.

Remark 3.3 The surface LFb has s additional positive elliptic points compared to zFb .

Proof By definition of !–disk, its characteristic foliation has a single singularity at
its center and it is of elliptic type (Figure 12). The orientation of !–disk is induced
from that of the A–annuli so that the sign of the elliptic point is positive regardless of
the sign of k .
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(1)
a� > 0

k > 0

disk !i

twisted
band

ˇ

annulus A

�

(2)
a� < 0

k < 0

��1
�ˇ

Figure 12: An !–disk and an A–annulus joined by a twisted brand

 0 !1
!2 A1

A2

A3

A4

A5

A6

Figure 13: A part of immersed surface LFb for k D 3 , a� D 6 , s D 2 . Two
!–disks and six A–annuli joined by twisted bands. Self-intersections are
marked by thin green curves.

In the following, we show that there are no hyperbolic points on the twisted band. See
Figure 14. Parameterize the twisted band as Œ0; 1��Œ�1; 1�. Attach the side f0g�Œ�1; 1�

of the band to the !–disk and f1g � Œ�1; 1� to the ˇ–circle so that the (dashed) line
segment Œ0; 1��f1=2g sit on one page of the open book. We make the resulting surface
smooth near the two attaching sides of the band. Take points on the twisted band
p1 D .0; 1=2/, p2 D .1=2; 1=2/, and p3 D .1; 1=2/. Let vi be a tangent vector (red
arrow) of the band at pi that is perpendicular to the dashed line Œ0; 1�� f1=2g.

When k > 0, with respect to the page of the open book, v1 is vertical, v2 is slanted 45ı ,
and v3 is slanted �–degree (0< � < 45/ because the braid b transversely intersects all
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+ + + +

+
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v2

p2

v2

p2

v1

p1

v3

p3

v3

p3

p1

p2 p3

p1

p2p3

ˇ
!

A �
�ˇ

!

A��1

k < 0k > 0

Figure 14: Proof of Lemma 3.2

the pages of the open book positively. Next we look at contact planes �pi
(light blue

line segment) at pi . In Figure 14, the positive side of a contact plane is marked “C”.
At each point of the bindings ;  0 , we may assume that the contact plane is positively
perpendicular to the binding. Between the bindings, the contact planes rotate 180ı

counter clockwise along the radial lines. Since p1 is close to the binding  0 , for some
�1 > 0, �p1

is slanted .90� �1/–degree with respect to the page of the open book.
While, �p3

is slanted .��3/–degree for some �3 > 0 since p3 is on the circle ˇ which
is between ˛ and  (Figure 3). At any point between p1 and p3 on the dashed line,
the tangent plane is slanted more than the contact plane. It means that they never
coincide. Since the band is a small neighborhood of the dashed line, contact planes are
never tangent to the band, hence there are no singularities in the characteristic foliation
on the twisted band.

When k < 0, at p3 , the tangent vector v3 is slanted .180� �/–degree and the contact
plane �p3

is slanted .��3/–degree. Braid b is a transverse link so it intersects contact
planes positively. Considering that p3 is close to the braid (orange arc), v3 intersects �p3

positively, ie, � > �3 . Therefore, the tangent planes and the contact planes never
coincide along the dashed line from p1 to p3 , hence there are no singularities in the
characteristic foliation on the twisted band.

3.4 Construction of the immersed surface yFb

Let � be a closed braid in .A;Dk/ of braid index D 1. The immersed surface LFb

constructed in Section 3.3 has boundary Œb�C sŒ� C kˇ� in H1.M.A;Dk/IZ/. Each
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closed curve representing �Œ� C kˇ� bounds a disk about the binding  . We call it a
D–disk; see Figure 15. There, the spirals in the bottom annulus page are identified, via



 0

Figure 15: D–disks

the Dehn twist Dk , with the straight line segments in the top annulus page. There are
s copies of D–disk and they are disjoint from each other. Since D–disks are nearly
“vertical” as in Figure 15, the tangent planes and the contact planes, which rotate 180ı

counter clockwise along the radial lines from  to  0 , intersect transversely. This
means that the characteristic foliation of each D–disk has a single singularity, which
occurs at the intersection point with  and whose type is elliptic. The orientations of
the D–disks are compatible with those of the boundaries so that the D–disks and 
intersect negatively. Therefore the signs of the elliptic points are negative.

Definition 3.4 We construct an immersed surface yFb by gluing the D–disks and LFb

along the s copies of the � C kˇ curve.

Remark 3.5 This yFb has s additional negative elliptic singularities given by the
D–disks compared to the surface LFb .
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3.5 Resolution of singularities

We start this section by defining three types of intersection of surfaces – branch, clasp
and ribbon – then study resolution of self-intersections.

Definition 3.6 Let † be an immersed oriented surface with @† D K given by the
immersion i W z†!†. Let l �† be a simple arc where † intersects itself, and denote
by p and q the endpoints of l .

� If p is sitting on K , and q is a branch point of a neighborhood Riemann surface;
see Figure 16 (1), then we call l a branch intersection.

l

(1) (2)

K

p

q

Figure 16: (1) A negative branch intersection l and (2) its resolution

Next assume that the preimage of l , i�1.l/ � z†, consists of two arcs, say zl1; zl2 .
Denote the end points of zli by zpi and zqi for i D 1; 2.

� If zp1; zq2 2 @† and zp2; zq1 2 Int.z†/ then we call the intersection a clasp inter-
section. A local picture of l is the left sketch of Figure 17.

� If zp1; zq1 2 @† and zp2; zq2 2 Int.z†/ then we call the intersection a ribbon
intersection. See the right sketch of Figure 17.

Example 3.7 See Figure 18. The immersed surface, yFb , has:

� ja�j branches formed by A–annuli and D–disks.

� jkj
�

s
2

�
D

1
2
ja�j.s�1/ clasp intersections when s> 1. Recall that yFb is obtained

by attaching s copies of D–disk about the binding  . Each pair among these
s disks interacts as in Figure 18 giving rise to jkj clasp intersections. When
s D 1; 0, there are no clasps.

� several ribbon intersections of D–disks and the (nested) vertical annuli of
Figure 10.
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l
q p

† †

p q
l

†

†

Figure 17: (Left) A clasp intersection (Right) A ribbon intersection

In Section 3.6, we resolve these self-intersections to obtain an embedded surface †b .

In the following, we assume that K is a transverse knot in a contact manifold .M; �/

and † an immersed oriented surface with @† D K . Also, we assume that (i) the
self-intersection set of † consists of ribbon, clasp, or branch intersections; (ii) the
characteristic foliation F† is of Morse–Smale type.

Let l � † be a self-intersection arc. Near a point x 2 Int.l/, † intersects itself
transversely as in Figure 19 (1). Let Fi �† (i D 1; 2; 3; 4) be surfaces meeting at l .
The orientation of Fi is induced from that of †. Resolve the singularity l by cutting †
out along l and regluing F1;F2 along l and F3;F4 along l so that the orientations
of the surfaces agree. See Figure 19 (2). Call the new surface †0 .

We orient the leaves of the characteristic foliation following Ozbagci and Stipsicz [14,
page 80]: For p 2† a nonsingular point of a leaf L of the foliation, let En 2 Tp† be a
positive normal vector to �p . We choose a vector Ev 2 TpL so that .Ev; En/ is a positive
basis for Tp†. This vector field Ev determines the orientation of the characteristic
foliation.

We observe that if both FF1
and FF2

transversely intersect the line l (Figure 19 (1)),
then the orientations of FF1

and FF2
agree at l . Hence, after the cut and glue operation,

the new characteristic foliation F†0 is obtained by smoothly connecting the old FF1

and FF2
, and also FF3

and FF4
. See Figure 19 (2).

Near the endpoints of l , this resolution creates new hyperbolic points and F†0 can be
made into Morse–Smale type. See Figure 16 (2) and Figure 20 (2). The signs of the
new hyperbolic points are determined in the following way:

Proposition 3.8 Suppose that p 2 @l \K and both FF1
and FF2

are transversely
intersecting with l . If p is a positive (negative) transverse intersection of K and †,
then the new hyperbolic point has positive (negative) sign.
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clasp

branch

Figure 18: Clasp (green) and branch (dashed purple) intersections on yFb

Proof Assume that p is a negative intersection, as depicted in Figure 20 (1). We
introduce an .x;y; z/–coordinate system for a small neighborhood N of p : Identify p

with .0; 0; 0/, and identify �K with the z–axis. Regard the surface which K penetrates
as the xy–plane. Since K is a transverse knot, it transverses the contact 2–planes
positively. Thus at a point r 2 K \N the positive normal vector Enr to the contact
plane �r has a negative z–component, ie, Enr �.0; 0; 1/< 0. We may assume that contact
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l

F1

F2

F3

F4

(1) (2)

Figure 19: (1) Immersed surface † (2) New surface †0 after resolution of
singularity l

(1) (2)

l
p

K

h

K

Figure 20: (1) A negative intersection p (2) Creation of a negative hyper-
bolic singularity h by resolving singular arc l

planes are almost parallel to each other in N . Therefore, at the new hyperbolic point
h 2N we have Th†D��h . This means that h is a negative hyperbolic point.

Since the two end points of a ribbon (resp. clasp) singularity have the same sign (resp.
opposite signs), it follows that:

Corollary 3.9 (1) Resolution of a ribbon singularity creates one positive and one
negative hyperbolic points.

(2) Resolution of a clasp singularity creates two hyperbolic points of the same sign.

(3) Resolution of a branch singularity creates one hyperbolic point. See Figure 16.

It makes sense to define the sign for clasp and branch arcs:

Definition 3.10 (1) If both end points of a clasp arc are positive (negative) inter-
sections of K and †, then we say the sign of the clasp is positive (negative).

(2) If the end point p D l \K of a branch arc is a positive (negative) intersection,
then we say the sign of the branch arc is positive (negative).
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3.6 Construction of the embedded surface †b

In Section 3.3 we have defined a Seifert surface †b for the case k D 0.

When k ¤ 0, Example 3.7 shows that the immersed surface yFb has branch, clasp,
and ribbon intersections. In this section, we construct an embedded surface †b by
resolving these singularities.

When k > 0, as shown in Figure 21 (1)–(2), we can make all the branch, ribbon and
clasp arcs transverse to the characteristic foliation F yFb

. We apply the argument in
Section 3.5 and construct an embedded surface †b . Since all the signs of the branch
and clasp arcs are negative, Example 3.7 and Corollary 3.9 imply that, when s > 0,
the resolution of these self-intersections creates, in total, a�C 2.1

2
a�.s � 1//D a�s

negative hyperbolic singularities. When sD 0 there are no branch or clasp intersections,
so no new hyperbolic points are created.

When k < 0, a similar argument holds.

(1) (2)

(3) (4) (5)

Figure 21: Clasp (light green) and branch (dark purple) intersections are
transverse to characteristic foliations (top). Characteristic foliation near a
branch singularity and its resolution (bottom).
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4 The self-linking number

We finally compute the self-linking number sl.b; Œ†b �/ of b relative to the embedded
surface †b .

Theorem 4.1 Let b be a null-homologous transverse braid in the open book decom-
position .A;Dk/ satisfying Assumption 2.3. There exists a Seifert surface †b of b

which satisfies the formula

sl.b; Œ†b �/D�nC a� C a�.1� s/:

In particular, when k ¤ 0, sl.b; Œ†b �/ does not depend on the choice of Seifert surface
and hence we have the general formula

sl.b/D�nC a� C a�.1� s/:

Remark 4.2 � When k ¤ 0, our manifold M.A;Dk/ is a lens space (Claim 2.1)
which has H2.L.k; q/IZ/D 0, ie, the self-linking number does not depend on
choice of a Seifert surface and we can denote sl.b; Œ†b �/ simply by sl.b/.

� The null-homologous condition ensures a� D 0 when k D 0 (Corollary 2.9).

� When a� D 0 we exactly obtain Bennequin’s formula (1-1).

Proof of Theorem 4.1 Let †b be the surface constructed in Section 3.6.

It is known (see Etnyre [6] for example) that

(4-1) sl.b; Œ†b �/D�.e
C
� e�/C .hC� h�/;

where eC (e� ) and hC (h� ) represent the number of positive (negative) elliptic and
positive (negative) hyperbolic singularities of the characteristic foliation F†b

on †b .
Let hC� (h�� ) be the number of �i ’s (��1

i ’s) which appear in the braid word for b .
Then we have a� D hC� � h�� , the sign count of hyperbolic singularities on †b given
by the bands joining ı–disks as in Figure 8 (1).

Based on Remarks 3.3, 3.5 and Section 3.6, we summarize the count of singularities:

eCD .nI on ı–disks/C .sI on !–disks/

e�D .sI on D–disks)

hCD .hC� I on Cbands between ı–disks/C .a�I on bands between ın and A–annuli/

h�D .h�� I on �bands between ı–disks/
C.a�sI by resolution of branches, clasps, ribbons/

By (4-1) we obtain the desired formula.
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The Bennequin–Eliashberg inequality [2; 4] states that the contact structure .M; �/ is
tight if and only if

(4-2) sl.K; Œ†�/� ��.†/

for any .K; †/ a null-homologous transverse knot and its Seifert surface.

Corollary 4.3 The contact structure .M.A;Dk/; �k/ is tight if and only if for any braid
b � .A;Dk/ inequality sl.b/� ��.†b/ holds.

Proof of Corollary 4.3 As �.†b/D .e
CC e�/� .hCCh�/, the inequality sl.b/�

��.†b/ is equivalent to 0 � h� � e� D h�� C s.a� � 1/. Claim 2.2 states that
.M.A;Dk/; �k/ is tight if and only if k � 0.

When k � 0, we have s.a� � 1/D s.ks� 1/� 0, thus h�� e� � 0.

When k < 0, we have s.a� � 1/ < 0 by Corollary 2.9. Therefore, there exists b for
which h�� e� < 0.

Remark 4.4 It is interesting to note that the Bennequin–Eliashberg inequality is not
satisfied for the immersed surface yFb even for the tight cases.

Next, we study behavior of sl.b; Œ†b �/ under braid stabilizations.

Let b be a null-homologous braid in the open book .A;Dk/. For � 2 fC;�g let
b

� (resp. b

0

� ) denote the braid obtained from b after an �–stabilization about the
binding  (resp.  0 ). By Theorem 2.8, braids b; b


C and b

0

C are transversely isotopic
regardless of choice of stabilization arc a. Etnyre’s [5, Theorem 3.8] implies that if b

is a one component link, then a negative stabilization is unique up to transverse isotopy,
regardless of choice of arc a, thus b� D b

0

� .

Corollary 4.5 We have

sl.b; Œ†b �/D sl.bC; Œ†b

C
�/D sl.b�; Œ†b

�
�/C 2;(4-3)

sl.b; Œ†b �/D sl.b
0

C ; Œ†b 0

C
�/D sl.b

0

� ; Œ†b 0
�
�/C 2:(4-4)

Proof of Corollary 4.5 A positive (negative) stabilization about  changes n! nC1

and a� ! a� C 1 (a� ! a� � 1). Applying Theorem 4.1, we get (4-3).

For (4-4), as we have seen in the proof of Proposition 2.6, by a positive (negative) braid
stabilization, we have the following data change:

n! nC 1; a� ! a� C 1C 2a�; s! sC 1; a�! a�C k;

.n! nC 1; a� ! a� � 1C 2a�; s! sC 1; a�! a�C k/:
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Applying Theorem 4.1, we have

sl.b
0

C ; Œ†b 0

C
�/D�.nC 1/C .a� C 1C 2a�/C .a�C k/.1� .sC 1//

D�nC a� C a�.1� s/

D sl.b; Œ†b �/:

A similar computation leads to sl.b
0

� ; Œ†b 0
�
�/C 2D sl.b; Œ†b �/:

5 Seifert fibered manifolds

Let S be an oriented pair of pants with boundary circles i for i D 1; 2; 3. See
Figure 22. Let ˛i be circles parallel to i . Denote the positive Dehn twist about ˛i

1 2 3

˛1

ˇ2 ˇ3

˛2 ˛3

x1

x2

xn xn

�1

�2 �3

Figure 22: A pair of pants S

by Di . Let ki be an integer, i D 1; 2; 3. In this section we study closed braids in the
open book decomposition .S;Dk1

1
ıDk2

2
ıDk3

3
/. The corresponding manifold, which

we denote by Mk1;k2;k3
.DM /, is a Seifert fibered space over the orbifold of signature

.0; k1; k2; k3/. A similar argument as in the proof of Claim 2.1 tells that Mk1;k2;k3

has surgery descriptions as in Figure 23. In Sketch (1), the two circles with slope 0

represent the unlinked unknots through the holes of S , 2 and 3 (cf the unknot U

in the proof of Claim 2.1). Slam-dunk operations are applied in the passage Sketch
.1/! .2/! .3/. Etnyre and Ozbagci [8, page 3136] implies

(5-1) H1.Mk1;k2;k3
IZ/D hc2; c3 j .k1Ck2/c2Ck1c3 D k1c2C .k1Ck3/c3 D 0i;
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0 0

�1=k1

�1=k2 �1=k3
k2 k3

�1=k1

k1 k2 k3

0

(1) (2) (3)

Figure 23: Surgery descriptions for Mk1;k2;k3

where cj 2 �1.S/ is the standard generator corresponding to the boundaries j of S .
We remark that H2.M IZ/ is nontrivial in general, which is distinct from the lens
spaces.

Proposition 5.1 Let �k1;k2;k3
denote the contact structure for Mk1;k2;k3

compatible
with the open book .S;Dk1

1
ıDk2

2
ıDk3

3
/ via the Giroux correspondence [11]. Then

�k1;k2;k3
is tight if and only if k1; k2; k3 � 0.

Proof If k1D k2D k3D 0, then M0;0;0D .S
1�S2/#.S1�S2/. Etnyre and Honda

explain in the proof of [7, Lemma 3.2] that �0;0;0 is Stein fillable, hence tight. In fact,
it is the unique tight structure, which is due to Eliashberg [4].

If k1; k2; k3 � 0 and .k1; k2; k3/¤ .0; 0; 0/, Etnyre and Honda [7, Lemma 3.2] tells
that �k1;k2;k3

is tight.

If one of ki is negative, say k1 < 0, then a properly embedded boundary nonparallel
essential arc whose both ends sit on 1 is a sobering arc; see [12, Definition 3.2]. Thus
Goodman’s [12, Theorem 1.2] implies that �k1;k2;k3

is overtwisted.

Let K be a null-homologous transverse knot in .M; �k1;k2;k3
/. By Theorem 1.3 we can

identify K with a closed n–braid b in .S;Dk1
1
ıDk2

2
ıDk3

3
/.

Assumption 5.2 Applying braid isotopy (transverse isotopy), we may assume that
there exist points x1; : : : ;xn (orange dots in Figure 22) sitting between 1 and ˛1

such that b\ .S � f0g/D fx1; : : : ;xng:

Let �i be a mapping class of S with n fixed points x1; : : : ;xn , exchanging xi and
xiC1 counter clockwise. Let �j (j D 1; 2; 3) be a mapping class which moves xn

around the boundary circle j as described in Figure 22. Since �i ’s and �j ’s are
generators of the mapping class group and �1 D �2C �3; it follows that:
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Proposition 5.3 An n–strand closed braid in the open book .S;Dk1
1
ıDk2

2
ıDk3

3
/

can be written in letters f�1; : : : ; �n�1; �2; �3g.

We define symbols a� ; a�i
and si :

Definition 5.4 Let a� be the exponent sum of �i ’s in the braid word for b . Let
a�i

(i D 2; 3) be the exponent sum of �i in the braid word for b . Since b is null-
homologous, we have 0D Œb�D a�2

c2Ca�3
c3 in H1.M IZ/. By equation (5-1), there

exist s2; s3 2 Z, so that

0D Œb�D s2 f.k1C k2/c2C k1c3gC s3 fk1c2C .k1C k3/c3g :

Therefore,

(5-2) Œa�2
; a�3

�D Œs2; s3�

�
k1C k2 k1

k1 k1C k3

�
:

For special cases,

(1) when k1 D k2 D 0 and k3 ¤ 0, we set s2 D 0, ie, a�2
D 0 and a�3

D s3k3;

(2) when k1 D k3 D 0 and k2 ¤ 0, we set s3 D 0, ie, a�3
D 0 and a�2

D s2k2;

(3) when k1 D k2 D k3 D 0, we set s2 D s3 D 0, ie, a�2
D a�3

D 0.

Lemma 5.5 We may assume that s2; s3 � 0 and that a�2
; a�3

satisfy (5-2).

Proof A similar argument as in the proof of Proposition 2.6 applies. Recall that a
positive braid stabilization preserves the transverse knot type (Theorem 2.8). Since the
point xn is between 1 and ˛1 , positive stabilizations of b about 2 (resp. 3 ) for ˛
times (resp. ˇ times), where ˛; ˇ � 0, change a�i

in the following way:

a�2
7! a�2

C˛.k1C k2/; a�3
7! a�3

C˛k1;

.resp. a�2
7! a�2

Cˇk1; a�3
7! a�3

Cˇ.k1C k3//:

By (5-2), si also changes as

s2 7! s2C˛ if k1C k2 ¤ 0 or k1 ¤ 0;

(resp. s3 7! s3Cˇ if k1C k3 ¤ 0 or k1 ¤ 0/:

Therefore taking ˛; ˇ sufficiently large, we can make s2; s3 � 0, even for the special
three cases in Definition 5.4.

Now we state our main result of this section:
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Theorem 5.6 Let b be a null-homologous closed braid in .S;Dk1
1
ı Dk2

2
ı Dk3

3
/

satisfying Assumption 5.2 and Lemma 5.5. There is a Seifert surface †b of b for which
the following holds:

sl.b; Œ†b �/D�nC a� C a�2
.1� s2/C a�3

.1� s3/� .s2C s3/k1:

Proof We construct an embedded surface zFb after Sections 3.1 and 3.2.

� Construct n copies of the ı–disk (cf Figure 7).

� Join them by twisted bands for each �˙j in the braid word (cf Figure 8 (1)).

� Attach an A–annulus for each �˙
2
; �˙

3
in the braid word (cf Figure 8 (2)).

� Attach vertical nested annuli to remove redundant boundaries (cf Figure 10). This
procedure is more subtle than that of annulus open book case.

If k1; k2; k3�0 or k1; k2; k3�0 then attach vertical nested annuli near the bindings 2

and 3 following the algorithm described in the proof of Proposition 3.1. The boundary
of the resulting surface, zFb; has

@ zFb D b[
˚
j.s2C s3/k1C s2k2j copies of �.k2/ˇ2

	
[
˚
j.s2C s3/k1C s3k3j copies of �.k3/ˇ3

	
where ˇi is the oriented circle as in Figure 22 and �.ki/ is the sign of ki .

Otherwise, by symmetry of the pants surface we may assume that (i) k1; k2 � 0 and
k3 < 0, or (ii) k1; k2 � 0 and k3 > 0: For either case, we change the braid word by
adding dummy letters that preserve the transverse knot type:

(5-3) b 7! .b��s3k3
3 /.�s3k3

3 /

Attach vertical nested annuli to the first part b��s3k3
3

, without touching the remaining
part �s3k3

3
, until all their boundary circles of the A–annuli have the same direction.

The boundary of the resulting surface, zFb; has

@ zFb D b[
˚
.s2C s3/jk1j copies of �.k2/.ˇ2Cˇ3/

	
[
˚
s2jk2j copies of �.k2/ˇ2

	
[
˚
s3jk3j copies of �.k3/ˇ3

	
:

We require the operation (5-3) so that D–disks introduced below can be compatible
with the monodromy of the open book. Note that if the signs of k2 and k3 are different

ja�2
j D j.s2C s3/k1C s2k2j D .s2C s3/jk1jC s2jk2j;

ja�3
j D j.s2C s3/k1C s3k3j ¤ .s2C s3/jk1jC s3jk3j:but
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jk

1
j
�
.s

2
C

s 3
/

jk
2
j
�

s 2

jk
3
j
�

s
3

!

bridge band attached from
above/below A–annuli

depending on �–heights !

D
�2

l1clasp

l2
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l3

clasp

ribbon

�3

D

Figure 24: An immersed surface with k1 D k2 D k3 D 2 and s2 D s3 D 1
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Figure 25: An immersed surface with k1 D k2 D 2 , k3 D�2 , s2 D s3 D 1
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Compare Figure 24, where ki ’s have the same sign, and Figure 25, where k1; k2 > 0

and k3 < 0. Their right bottom parts are different.

Next step is to construct an immersed surface yFb . If k1 D k2 D k3 D 0 we define
yFb D

zFb . Otherwise apply the following:

� If k1 D 0 we skip this step.

If k1¤ 0, join the top two A–annuli around 2 and 3 by a band, called a bridge band
as in Figures 26, 24. The bridge band connects the ˇ2 circle and the ˇ3 circle of zFb .
If the � –coordinate (height) of the A–annulus around 2 is larger (resp. smaller) than
the one around 3 , then the bridge band is attached to ˇ2 from below (resp. above) and
to ˇ3 from above (resp. below). As a consequence, the bridge band does not tangent
to the pages of the open book.

Repeat this for the first .s2C s3/jk1j pairs of A–annuli from the top.

� If k1 D k2 D 0 we skip this step.

Otherwise, put s2 copies of the !–disk, !1; : : : ; !s2
, about 2 (dark pink in Figure 24).

Denote the A–annuli around 2 from the top by A1; : : : ;Ajk1j.s2Cs3/Cjk2js2
. Connect

the disk !i with jk1jC jk2j copies of A–annulus:

As3Ci ; A2s3Cs2Ci ; : : : ;Ajk1js3C.jk1j�1/s2Ci ;

Ajk1j.s3Cs2/Ci ; Ajk1j.s3Cs2/Cs2Ci ; : : : ;Ajk1j.s3Cs2/C.jk2j�1/s2Ci ;

(when k1 D 0; k2 ¤ 0; they are Ai ; As2Ci ; : : : ;A.jk2j�1/s2Ci ;

when k1 ¤ 0; k2 D 0; they are As3Ci ; A2s3Cs2Ci ; : : : ;Ajk1js3C.jk1j�1/s2Ci/

by using the twisted bands. Depending on the signs of k1 and k2 , the twisted band is
attached differently as described in Figure 12.

� Attach s2 copies of D–disk about 1 to the A–annuli around 2 .

� Similarly, attach s3 copies of !–disk (lighter shaded in Figure 24) about 3 , add
jk1jC jk3j copies of twisted bands, and s3 copies of D–disk.

Finally we have obtained an immersed surface yFb with boundary b .

The following two lemmas investigate singularities of the characteristic foliation.

Lemma 5.7 If k1 > 0 (resp. k1 < 0/ then the characteristic foliation for each bridge
band has a single negative (resp. positive) hyperbolic singularity. See Figure 26.
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A ˇ2

2

p2

�2

p0
2

p0
3 p3

3

ˇ3 A

�3

Figure 26: Characteristic foliation on a bridge band when k1 > 0

Proof Let pi (i D 2; 3) be a point on the binding i . Assume p0i 2 ˇi is a point close
to pi and the bridge band connects p0

2
and p0

3
; see Figure 26. At pi , the contact plane

intersects i positively. Along the line segment from p0
2

to p0
3

, the contact planes
rotate .180� �/ı counterclockwise. The contact plane is tangent to the bridge band at
a single point somewhere between p0

2
and p0

3
, where the hyperbolic singularity occurs.

If k1 > 0 (resp. k1 < 0), the negative (positive) side of the band is facing up to the
reader, thus the sign of the hyperbolic point is negative (positive).

Lemma 5.8 All the singularities of the characteristic foliation for . yFb n
zFb/, the

union of !–disks, twisted bands and D–disks, are elliptic. Moreover, the algebraic
count eC� e� of elliptic singularities for the !–disks (resp. D–disks) is s2C s3 (resp.
�s2� s3 ).

Proof As seen in the proof of Lemma 3.2, there are no hyperbolic singularities on the
twisted bands.

We continue the proof of Theorem 5.6.

Figure 24 exhibits branch, clasp and ribbon intersections of yFb . For example, in
Figure 24, the union of arcs l1[ l2[ l3 is a clasp intersection. Each pair among the
s2Cs3 D–disks about 1 gives rise to jk1j clasp intersections. Additionally, each pair
among the s2 D–disks about 1 attached to curves near 2 gives rise to jk2j clasp
intersections, and each pair among the s3 D–disks about 1 attached to curves near 3

gives rise to jk3j clasp intersections. In total, there are

jk1j

�
s2C s3

2

�
Cjk2j

�
s2

2

�
Cjk3j

�
s3

2

�
D

�
s2

2

�
.jk1jC jk2j/C

�
s3

2

�
.jk1jC jk3j/C s2s3jk1j

Algebraic & Geometric Topology, Volume 11 (2011)



584 Keiko Kawamuro and Elena Pavelescu

clasp intersections. Signs are assigned to each intersection according to Definition 3.10.
If we count them algebraically,

algebraic number of branchesD�s2.k1Ck2/�s3.k1Ck3/;(5-4)

algebraic number of claspsD�
�

s2

2

�
.k1Ck2/�

�
s3

2

�
.k1Ck3/�s2s3k1:(5-5)

Resolving all the intersection arcs, we obtain an embedded surface †b .

By Proposition 3.8 and Corollary 3.9, the resolution of branch, clasp and ribbon
intersections create additional hyperbolic singularities. The total algebraically counted
number of such hyperbolic points is

(5-6) .5-4/C 2� .5-5/D�f.s2C s3/
2k1C s2

2k2C s2
3k3g:

In summary we have for elliptic singularities

eC D .nI ı–disks/C .s2C s3I !–disks/;

e� D .s2C s3I D–disks/;

and for hyperbolic singularities

hC� h�

D .a� I bands between ı–disks/C .a�2
C a�3

I bands between ın and A–annuli/

� .k1.s2C s3/I bridge bands; Lemma 5.7/

� ..s2C s3/
2k1C s2

2k2C s2
3k3I resolution of branches, clasps, ribbons (5-6)/

(5-2)
D a� C a�2

C a�3
� s2.a�2

C k1/� s3.a�3
C k1/

D a� C a�2
.1� s2/C a�3

.1� s3/� .s2C s3/k1:

Finally we have

sl.b; Œ†b �/D�.e
C
� e�/C .hC� h�/

D�nC a� C a�2
.1� s2/C a�3

.1� s3/� .s2C s3/k1:
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