
Algebraic & Geometric Topology 11 (2011) 605–624 605

Commensurators of
finitely generated nonfree Kleinian groups

CHRISTOPHER LEININGER

DARREN D LONG

ALAN W REID

We show that any finitely generated torsion-free nonfree Kleinian group of the
first kind which is not a lattice and contains no parabolic elements has discrete
commensurator.

20H10; 20F60, 57M50

1 Introduction

Let G be a group and �1; �2<G . The subgroups �1 and �2 are called commensurable
if �1 \ �2 has finite index in both �1 and �2 . The commensurator of a subgroup
� <G is defined to be

CG.�/D fg 2G W g�g�1 is commensurable with � g:

When G is a semisimple Lie group, and � a lattice, a fundamental dichotomy es-
tablished by Margulis [26], determines that CG.�/ is dense in G if and only if � is
arithmetic, and moreover, when � is nonarithmetic, CG.�/ is again a lattice.

Historically, the prominence of the commensurator was due in large part to its density
in the arithmetic setting being closely related to the abundance of Hecke operators
attached to arithmetic lattices. These operators are fundamental objects in the theory
of automorphic forms associated to arithmetic lattices (see Shimura [38] for example).
More recently, the commensurator of various classes of groups has come to the fore
due to its growing role in geometry, topology and geometric group theory; for example
in classifying lattices up to quasi-isometry, classifying graph manifolds up to quasi-
isometry, and understanding Riemannian metrics admitting many “hidden symmetries”
(for more on these and other topics see Bartholdi and Bogopolski [2], Behrstock and
Neumann [4], Farb and Weinberger [17; 18], Leininger and Margalit [25], Schwartz [34]
and Shalom [37]).
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This article was inspired by a question (apparently first raised by Y Shalom) of whether
there is a broad generalization of the theorem of Margulis alluded to above; where one
replaces the finite covolume hypothesis by the weaker assumption that the group only
be Zariski dense:

Suppose � is a Zariski-dense discrete subgroup of a semisimple Lie group G . If
the commensurator of � is not discrete, must � be arithmetic (and therefore finite
covolume)?

Here we study, and come close to resolving, this question in the first nontrivial case,
namely CG.�/ when G D PSL.2;C/ and � is a finitely generated nonelementary
Kleinian group. In this setting, we will abbreviate the notation for the commensurator
of � to C.�/. When � is of finite covolume and nonarithmetic, identifying C.�/ has
attracted considerable attention (see for example Goodman, Heard and Hodgson [19],
Neumann and Reid [32] and Reid and Walsh [33]). Our focus here are those Kleinian
groups � for which H3=� has infinite volume. Henceforth, unless otherwise stated,
the Kleinian groups � that we consider will always have infinite covolume.

If � is a Kleinian group, we denote by ƒ� and �� the limit set and domain of
discontinuity of � . The Kleinian group � is said to be of the first kind (resp. second
kind) if �� D ∅ (resp. �� ¤ ∅). The only known result for Kleinian groups � as
above is due to L Greenberg [20; 21] who proved the following result (see Section 3.1
for a new proof when there are no parabolics).

Theorem 1.1 Let � be a finitely generated nonelementary Kleinian group of the
second kind and assume that ƒ� is not a round circle. Then ŒC.�/ W �� < 1. In
particular, C.�/ is a discrete subgroup of PSL.2;C/.

The exclusion of the limit set being a round circle is to rule out arithmetic Fuchsian
subgroups of PSL.2;R/, which by Margulis [26] have nondiscrete commensurator.
Thus it remains to understand C.�/ when � is of the first kind. These have been the
most difficult Kleinian groups to understand, even in the case that � is isomorphic
to a closed surface group. Indeed, it is only very recently that their geometry has
been clarified; see Minsky [28], Brock, Canary and Minsky [7], Mj [30], Agol [1] and
Calegari and Gabai [9].

Our main result is:

Theorem 1.2 Let � be a finitely generated torsion-free Kleinian group of the first
kind which is not a lattice. If � is not free and contains no parabolic elements, then
C.�/ is discrete.

Furthermore ŒC.�/ W ��D1 if and only if � is a fibre group. In this case, C.�/ is a
lattice.
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We recall that a Kleinian group � is called a fibre group if there is a finite volume
hyperbolic 3–manifold M DH3=� which fibres over a 1–orbifold such that � <�
is the subgroup corresponding to the fibre.

The torsion-free assumption is simply to make the statement succinct. Since every
finitely generated Kleinian group contains a torsion free subgroup of finite index, it
is clear that Theorem 1.2 holds in the presence of torsion with only a mild change of
terminology for fibre groups in this setting.

We suspect that Theorem 1.2 holds for any finitely generated Kleinian group which
is not a lattice, that is, without the hypothesis on parabolics or freeness. In fact, the
proof can be slightly modified to work without the assumption on parabolics, provided
we further assume that � is not the fundamental group of a compression body with
toroidal lower boundary; see Section 4. However, there remain issues with generalizing
the proof to the case of a free Kleinian group, with or without parabolics.

The proof of Theorem 1.2 makes use of recent progress in understanding finitely
generated geometrically infinite Kleinian groups � . In particular, our proof appeals
directly to work of M Mj [30; 31] on the existence of “Cannon–Thurston maps” (see
also Section 2 for more discussion on this), which in turn relies on existence of
“models for simply degenerate ends” following Minsky [28] and Brock, Canary and
Minsky [7; 8]. In turn, the complete classification of Kleinian groups via their end
invariants also uses the solution to the Tameness Conjecture (by Agol [1] and Calegari
and Gabai [9]), although in our case, the application of the Cannon–Thurston map
arises for geometrically infinite Kleinian surface groups, and tameness of the quotients
of H3 was already established by work of Bonahon [6].

An important ingredient of our proof is of some independent interest. This result is
due to M Kapovich [23] in a special case of fiber groups, and the proof we give here
is essentially the same as that given by Kapovich. We defer a precise statement to
Theorem 3.4, but it can be described informally as follows. The Cannon–Thurston map
� W S1 �! S2 is obtained via a certain decomposition map; in particular it picks out
in the image a collection of exceptional points, namely those points p 2 S2 for which
j��1.p/j> 1. The result of Theorem 3.4 is:

Theorem 1.3 The exceptional points of the Cannon–Thurston map are not conical
limit points.

By the solution to the Tameness Conjecture [1; 9], and the Covering Theorem of
Canary [11] (see Theorem 2.1), every finitely generated geometrically infinite subgroup
of a uniform lattice in PSL.2;C/ is isomorphic to a closed surface group. Thus a
corollary of Theorems 1.1 and 1.2 is the following result. This extends a result of the
third author (see Canary [12, Theorem 8.7]).
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Corollary 1.4 Let � be a uniform lattice in PSL.2;C/, and �<� a finitely generated
subgroup of infinite index for which ƒ� is not a circle. Then C.�/ is a discrete
subgroup of PSL.2;C/.

Recently, inspired by this paper, M Mj has announced that he has proved Theorem 1.2
in complete generality.

Acknowledgements The authors thank Yehuda Shalom for useful correspondence
on the subject of this paper, and Dick Canary, Yair Minsky and Hossein Namazi for
helpful conversations.

2 Ending laminations and Cannon–Thurston maps

The proof of Theorem 1.2 requires some background about hyperbolic 3–manifolds
and from the theory of laminations, ending laminations and Cannon–Thurston maps.
We summarize what we need here.

2.1

We begin by recalling some basic structure for laminations on a closed surface S (see
Casson and Bleiler [15] for further details).

Let S be a closed orientable surface of genus g � 2 equipped with a fixed complete
hyperbolic metric of constant curvature �1. A (geodesic) lamination L on S is a
closed subset foliated by geodesics. A component of S nL is called a principal region
for L, of which there are only finitely many (see [15, Lemma 4.3]). A lamination
L� S is filling if it has no proper sublaminations and all principal regions are ideal
polygons. In particular L has no closed leaves.

Given a lamination L � S , we let zL � zS denote the preimage of L in the univer-
sal cover zS of S . If z̀ (respectively, zP ) is a leaf (respectively, principal region)
of zL, then we write @1 z̀ (respectively, @1 zP ) for the intersection of the closure of z̀

(respectively, zP ) with S1
1 , the circle at infinity of zS .

2.2

Let � be a finitely generated nonelementary Kleinian group without parabolics and
N D H3=� . Throughout the paper the convex core of N will be denoted by CN ;
ie CN D CH.ƒ�/=� , where CH.ƒ�/ is the convex hull of ƒ� in H3 . If CN is
compact, then � is said to be geometrically finite (or convex cocompact), otherwise �
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is called geometrically infinite. We will also write M �N for a fixed compact core
of N . This is a compact submanifold of N for which the inclusion map is a homotopy
equivalence (see Scott [35]).

Fix some component S � @M . Let U � .N nM / be the component with S � xU .
This U is a neighborhood of an end E of N , and we say that E abuts S . This defines
a bijection between the set of ends of N and the components of @M . According to
the Tameness Theorem [1; 9], we may arrange that U Š S � .0;1/.

Following Thurston [40], the end E of N abutting S � @M is called geometrically
finite if E contains a neighbourhood U such that U \ CN D ∅. The group � is
geometrically finite if and only if all ends of CN are geometrically finite. In this case,
we can take M D CN .

If S �@M is incompressible (the only case of interest for us in the following definition),
the end E of N abutting S is simply degenerate if there exists a sequence of simple
closed curves f˛ig in S such that the geodesic representatives f˛�i g in N exit the
end E . The Tameness Theorem implies that every end is either geometrically finite or
simply degenerate.

Furthermore, Thurston [39] and Canary [10] showed how to associate to a simply
degenerate end E , a lamination (the so-called ending lamination of E) which is a
limit of the simple closed curves f˛ig (in an appropriate topology). We shall denote
the ending lamination associated to the simply degenerate end E by �E . If �E is
an ending lamination then it is known to be filling (see Section 8 of Canary [10] for
example). For later reference, we observe that the ending lamination is independent of
the choice of sequence of simple closed curves and it follows that if one takes a finite
sheeted covering zE of an end E , the ending lamination of zE is the preimage under
the induced covering map of the ending lamination of E .

2.3

An important tool for us is Canary’s Covering Theorem [11] (which extended a result
of Thurston [40]; see also Agol [1]). The version we state here can be found in Canary
and Leininger [13].

Theorem 2.1 Suppose that yN DH3=� is a hyperbolic 3–manifold with no cusps and
finitely generated fundamental group and N is a hyperbolic 3–orbifold. If pW yN !N

is a cover which is infinite-to-one on a neighborhood U of a simply degenerate end
of yN , then N is closed and has a finite manifold cover N 0 DH3=� 0!N such that
either
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(1) N 0 fibers over the circle and yN is the cover associated to a fiber subgroup of � 0 ,
or

(2) N 0 fibers over the orbifold S1=hz 7! xzi and yN is the cover of N 0 associated to
a singular fiber subgroup of �1.N

0/.

In the conclusion of the theorem, the group � is a fibre group and N is an R–bundle
over a surface. In the first case, N is a product, while in the second, it is a twisted
R–bundle.

2.4

Now suppose that � is a surface group, so that the compact core is a product M D

S � Œ0; 1�, where S is closed orientable surface of genus at least 2. In this case, there
are exactly two ends EC and E� . If � is geometrically infinite, one or both of the
ends is simply degenerate and we say that � is singly degenerate or doubly degenerate
in these two cases, respectively. For the remainder of this section, we assume that � is
doubly degenerate. For example, � may be a fibre group of the first type described
in the previous subsection. The ending laminations �C D �EC and �� D �E� can be
viewed as laminations on S .

If � contains a finite index subgroup which is the fundamental group of an orientable
surface, then we will say that � is virtually a surface group. It follows from [22,
Theorem 10.5] that if � is virtually a surface group then N DH3=� is an R–bundle
over a surface, and hence either � or a canonical index two subgroup �0 < � is a
surface group.

The inclusion map S ,! S � f1=2g �M �N induces a representation

�W �1.S/! � < PSL.2;C/

and lifts to an equivariant map
�W zS !H3:

The equivariance is with respect to � via the action of �1.S/ on zS by covering
transformations and � on H3

� ı  D �. / ı � for all  2 �1.S/:

In [14], Cannon and Thurston proved that if � is a fibre group, then � admits a
continuous equivariant extension to the compactifications

y�W zS [S1
1!H3

[S2
1:
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The existence of such an extension was subsequently proven by Minsky [27] replacing
the fibre assumption with the weaker assumption of bounded geometry (ie a there is a
lower bound to the injectivity radius). Existence in the general case was proven more
recently by Mj [30], and y� is referred to as a Cannon–Thurston map for � or � . We
state Mj’s Theorem here together with the description of the map that we will need
(see Mj [31, Theorem 1.3]).

Theorem 2.2 Given a representation �W �1.S/! PSL.2;C/ with doubly degenerate
image � D �.�1.S// as above, there exists a Cannon–Thurston map

y�W zS [S1
1!H3

[S2
1:

If �˙ are the ending laminations and a; b 2S1
1 , then y�.a/Dy�.b/ if and only if a and b

are either ideal end points of a leaf, or ideal endpoints of a principal region of one of
z�C or z�� .

It is straightforward to show that if a and b are either ideal end points of a leaf of z�˙
or ideal endpoints of a principal region of z�˙ then they are identified by the Cannon–
Thurston map (see Lemma 3.5 of Mitra [29]). The hard part is to show that this is all
that is collapsed.

3 Proof of Theorem 1.2

The proof of Theorem 1.2 proceeds by examining two cases. The first is the case where
neither � nor an index two subgroup is a surface group.

3.1 The case that � is not virtually a surface group

We will prove the following result. This implies the aforementioned case of Theorem
1.2, and in addition gives a new proof Greenberg’s result when there are no parabolics
(cf Theorem 1.1).

Theorem 3.1 Let � be a finitely generated torsion-free Kleinian group without para-
bolic elements for which ƒ� is not contained in a round circle. In addition, assume
that if � is of the first kind it is not a lattice or isomorphic to a free group or a surface
group.

Then C.�/ is discrete and ŒC.�/ W �� <1.
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The hypothesis that ƒ� is not contained in a round circle can be replaced by the
assumption that ƒ� is not equal to a round circle. The proof is a (simpler) two-
dimensional version of the argument we give here, and we leave the details to the
interested reader.

Proof Let qW H3 �!N denote the universal covering map.

Suppose first that � is of the second kind so that �� ¤ ∅. In this case, there is at
least one geometrically finite end of N D H3=� . Thurston [40] showed that each
component of @CN is a pleated surface (see also Epstein and Marden [16]) which we
may assume is also a component of @M . For each geometrically finite end E of N ,
we let PE denote this pleated surface which E abuts. Let E1; : : : ;Ek denote the
geometrically finite ends of N and write

PN D fPE1
; : : : ;PEk

g:

The preimage of this finite set of pleated surfaces in H3 is a locally finite collection of
connected pleated surfaces in H3

P� D q�1.PN /:

If y� < � is a finite index subgroup then

(1) P� D Py� :

To see this, first observe that compact cores and convex cores are natural with respect
to finite coverings. Therefore every neighborhood of an end of yN finitely covers the
neighborhood of an end of N via the associated covering pW yN ! N , preserving
geometric finiteness. If yE1; : : : ; yEr are the ends of yN with neighborhoods covering a
neighborhood of E , we have

p�1.PE/D fP yE1
; : : : ;P yEr

g:

From this it follows that p�1.PN /D P yN , and consequently (1) holds.

Given  2 PSL.2;C/ observe that

(2) P��1 D  .P�/:

Furthermore, if  2 C.�/, y� D ��1 \� has finite index in both � and ��1 ,
so combining (1) and (2), we have

 .P�/D P� :

C.�/ < Stab.P�/D fg 2 PSL.2;C/ jgP� D P�g;Therefore,

and so discreteness of C.�/ follows from the next claim.
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Claim Stab.P�/ is discrete.

Proof of Claim Each surface in P� , contains countably many flat pieces, each of
which is contained in a hyperbolic plane H2 � H3 . Let fH2

i g be the set of all such
hyperbolic planes with H2

i containing the flat piece Fi of some pleated surface in P� .
The intersection

T
i H2

i is invariant by Stab.P�/ (and so also � ), and since ƒ� is not
contained in a round circle, it follows that this intersection is empty. Therefore, there
are a finite set of flat pieces, say F1; : : : ;Fk , of surfaces in P� so that the associated
hyperbolic planes intersect trivially

H2
1\ � � � \H2

k D∅:

Now suppose that fng
1
nD1
� Stab.P�/ is a sequence converging to the identity. Since

P� is locally finite, after passing to a subsequence we can assume that each Fi is
invariant by n for i D 1; : : : ; k and all n. Therefore, H2

i is invariant by n for each
i D 1; : : : ; k and all n. Since H2

1
\� � �\H2

k
D∅ it follows that n is the identity, and

hence Stab.P�/ is discrete.

We now assume that � is of the first kind. The idea of the proof is similar to the
previous case: to each end E of N we associate a finite, nonempty set of pleated
surfaces PE in N . This will be done so that the preimage P� D q�1.PN / satisfies
(1) and (2). The proof can then be completed exactly as above.

Given an end E � N , let S � @M be the component which it abuts. According
to Bonahon [5, Theorem 2.1] there is a unique (up to isotopy) compression body
BS � M such that homomorphism �1.BS /! �1.M / D � induced by inclusion
is injective. The lower boundary @�BS is a finite disjoint union of surfaces, which
is nonempty since � is not free. We let �1

S
; : : : ; �k

S
< � denote the fundamental

groups of the components—these groups inject into �1.BS / and so also into � . Let
N i

S
DH3=� i

S
!N be the associated covers.

If S is incompressible, then BS Š S � Œ0; 1�, @�BS has one component and the
cover N 1

S
!N is the cover corresponding to �1.S/ < � . Since � is not virtually a

surface group, this is an infinite sheeted cover. By Theorem 2.1, N 1
S

has at least one
geometrically finite end (in fact, it has exactly one geometrically finite end, and one
simply degenerate end with a neighborhood that maps isometrically onto a neighborhood
of E in N ). If S is compressible, then � i

S
has infinite index in �1.BS /, and hence also

in � . Appealing to Theorem 2.1 again we see that N i
S

has at least one geometrically
finite end for each 1� i � k .

For each i , we obtain one or two pleated surfaces in N as the image of @CN i
S

by the
covering map N i

S
!N . Let PE denote the set of all such, as i ranges from 1 to k .
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If E1; : : : ;En are the ends of N , then set

PN D fPE1
; : : : ;PEn

g

P� D q�1.PN /:and put

With this construction of pleated surfaces, together with the observation that the
behaviour of the Bonahon compression bodies is natural with respect to finite coverings,
it is straightforward to check that (1) and (2) hold. The remainder of the proof now
proceeds as in case of �� ¤∅, proving that C.�/ is discrete.

To prove the final statement that ŒC.�/ W �� <1, let P be the union of all the pleated
surfaces in P� . Then

ŒC.�/ W ��D
Area.P=�/

Area.P=C.�//
<1:

This completes the proof.

3.2 The surface group case

Given Theorem 1.1 and Theorem 3.1 the proof of Theorem 1.2 will be completed upon
establishing:

Theorem 3.2 Let S be a closed orientable surface, �W �1.S/! PSL.2;C/ a faithful
discrete representation and let � D �.�1.S//. Assume that � is doubly degenerate.

Then C.�/ is discrete and finitely generated. Furthermore, ŒC.�/ W ��D1 if and only
if � is a fibre group. In this case, C.�/ is a lattice.

Before proving Theorem 3.2 we recall some terminology that will be used.

Definition Let � be a Kleinian group. A point x 2 ƒ� is called a conical limit
point of � if for some (and hence every) geodesic ray � in H3 ending at x , there is a
compact set K �H3 such that f 2 � W  .�/\K ¤∅g is infinite.

We will make use of the following equivalent version of a conical limit point. We
sketch a proof for convenience.

Lemma 3.3 Let � be as above. The limit point x is a conical limit point for � if
and only if � contains a sequence of elements fmg such that the following conditions
hold:

(i) m.x/! xC1 2 S2
1 , and

(ii) mjS2
1nfxg converges uniformly on compact sets to a constant map with value

x�1 ¤ xC1 .
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Proof (Sketch) Let x be a conical limit point and � a geodesic ray in H3 ending
at x . Because x is conical, there exists infinitely many distinct elements fmg �� and
compact set K �H3 such that m.�/\K ¤∅ for all m. Passing to a subsequence if
necessary, it follows that m.�/ limits to an oriented geodesic �1 as m!1. The
positive and negative endpoints xC1 and x�1 , respectively, of �1 clearly satisfy the
conditions of the lemma with respect to the (sub)sequence fmg � � .

Conversely, suppose fmg � � and x˙1 are as in the lemma and let �1 denote the
oriented geodesic from x�1 to xC1 . Suppose � is a geodesic ray ending at x . It is
immediate that m.�/ limits to the geodesic �1 as m!1. Letting K be a closed
ball in H3 of radius 1, say, centered at some point of �1 . Then m.�/ nontrivially
intersects K for all m sufficiently large, and hence x is a conical limit point.

We now commence with the proof of Theorem 3.2.

Proof of Theorem 3.2 Let N D H3=� with ending laminations �C and �� . As
these are distinct filling laminations, �C and �� have the property that they bind in the
following sense (see Minsky [27, Lemma 2.4] and Kerckhoff [24], although in these
papers, this property is called “filling” which we wish to avoid having used it earlier):

� The complement S n .�C[ ��/ is a union of disks.

� Each such disc has boundary a finite collection of compact arcs coming alternately
from �C and �� .

� All but a finite number of these disks have four sides.

We denote by D1; : : : ;Dm those finite number of disks which do not have four sides.
Fix one of these disks D , which is contained in the intersection of two principal
regions PC of �C and P� of �� . Let zD denote some lift of D to the universal
cover zS of S . Associated to zD is a unique pair of lifts zPC and zP� of PC and P� ,
respectively, for which zD D zPC\ zP� .

Let � denote the restriction of the Cannon–Thurston map y� to S1
1 . Theorem 2.2 shows

that the map � collapses @1 zPC and @1 zP� to points xC and x� in ƒ� DS2
1 . Since

the laminations bind, the closure of zD is compact and therefore @1 zPC\ @1 zP� D∅.
It follows that xC and x� are distinct points in S2

1 . We call these points special
points.

Doing this for each of D1; : : : ;Dm determines a finite number of pairs of special points

.x
.1/
C ;x.1/� /; .x

.2/
C ;x.2/� /; : : : ; .x

.m/
C ;x.m/� /

in S2
1 .
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Connect x
.j/
C and x.j/� by a geodesic �.j/ in H3 for each j D 1; : : : ;m and let X .�/

be the � –orbit of this collection of geodesics. We shall refer to a geodesic in X .�/ as
a special geodesic. We record the following observation that is crucial in what follows.

Theorem 3.4 Let x 2 S2
1 have the property that j��1.x/j > 1. Then x is not a

conical limit point. In particular, for each i D 1; 2; : : : ;m, x
.i/
C and x.i/� are not conical

limit points.

Proof Given x as in the hypothesis of Theorem 3.4, Theorem 2.2 shows that there are
a1; : : : ; ak 2 S1

1 (k � 2), which are endpoints of a leaf or ideal vertices of a principal
region of z�C or z�� and which satisfy

x D �.a1/D � � � D �.ak/:

Moreover, by Theorem 2.2, these are the only identifications. We also recall that by
definition of a Cannon–Thurston map, � is equivariant with respect to � via the action
of �1.S/ on S1 D S1

1 and � on S2 D S2
1 .

We now argue by contradiction, and assume that x is a conical limit point. Lemma 3.3
provides a sequence of distinct elements fng

1
nD1
� � so that

(1) n.x/! xC1 2 S2 as n!1, and

(2) njS2�fxg converges uniformly on compact sets to a constant map with value
x�1 ¤ xC1 .

Let fgng
1
nD1
� �1.S/ be such that �.gn/D n , and pass to a subsequence if necessary

so that as n!1, gn.a1/! a1 2 S1 for some a1 2 S1 . Since � is continuous and
equivariant with respect to � , we have

�.a1/D lim
n!1

�.gn.a1//D lim
n!1

�.gn/.�.a1//D lim
n!1

n.x/D xC1:

Next, let b; c 2 S1 n fa1; : : : ; akg be distinct points bounding an interval I � S1

containing a2; : : : ; ak and not containing a1 . (See Figure 1.) Pass to a further
subsequence if necessary so that as n ! 1, gn.b/ ! b1 and gn.c/ ! c1 for
some points b1; c1 2 S1 .

Appealing to continuity and equivariance of � again we have

�.b1/D lim
n!1

�.gn.b//D lim
n!1

n.�.b//D x�1 ¤ xC1 D �.a1/;(3)

�.c1/D lim
n!1

�.gn.c//D lim
n!1

n.�.c//D x�1 ¤ xC1 D �.a1/:(4)
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a1

a2

a3

a4

b c

I

Figure 1

Since the action of �1.S/ on zS [S1 is Fuchsian, a well-known characterization of
Fuchsian groups (see Scott [36, page 484]) now allows us to deduce that �1.S/ acts
properly discontinuously on the space .S1 �S1 �S1/ n� where

�D f.p; q; r/ 2 S1
�S1

�S1
W two of p; q; r are equalg:

Hence .a1; b1; c1/ cannot be a triple of distinct points in S1 since it is the limit of
fgn.a1; b; c/g

1
nD1

. From (3) and (4), a1 ¤ b1 and a1 ¤ c1 . Therefore, b1 D c1 .

It follows that after passing to another subsequence if necessary, fgng restricted to
one of the intervals bounded by b and c , call it J , must converge to a constant map
with value b1 D c1 (this is because each gn is a homeomorphism, and the images
of the endpoints are converging to the same point). We cannot have a1 2 J since
gn.a1/! a1¤ b1 as n!1. Therefore, J D I , which is to say, gn restricted to I

converges to the constant b1 . However, this interval contains a2 , and so gn.a2/! b1
as n!1. Another application of continuity and equivariance of � tells us

�.b1/D lim
n!1

�.gn.a2//D lim
n!1

n.�.a2//D lim
n!1

n.x/D xC1;

which is a contradiction to (3).

Remark It is classical (see Beardon and Maskit [3]) that a finitely generated Kleinian
group without parabolic elements is geometrically finite if and only if all limit points are
conical limit points. It is interesting that properties of the Cannon–Thurston map apply
to produce a natural class of “explicit” nonconical limit points for doubly degenerate
surface groups.

The key claims needed for the proof of Theorem 3.2 are now contained in the following
proposition.
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Proposition 3.5 (1) X .�/ is a locally finite collection of geodesics in H3 .

(2) If �1 is a subgroup of finite index in � then X .�1/D X .�/.
(3) If g 2 PSL.2;C/, then X .g�g�1/D gX .�/.

Proof To prove (1), we suppose to the contrary that there exists a compact set K�H3

that intersects infinitely many geodesics in X .�/ and arrive at a contradiction. As
X .�/ is the orbit of finitely many geodesics f�.1/; : : : ; �.m/g, there exists 1� j �m

and a sequence of distinct elements fng
1
nD1
� � so that K\ n.�

.j//¤∅ for all n.
Equivalently, �1

n .K/\ �.j/ ¤ ∅ for all n. However, �.j/ joins x
.j/
C and x.j/� and

so by definition at least one of these points is a conical limit point. This contradicts
Theorem 3.4, and hence part (1) holds.

For part (2), we let �1 < � be a finite index subgroup and pW S1! S the associated
finite sheeted cover. As we observed earlier, it follows from its well-definition that the
ending laminations for �1 are the preimage p�1.�˙/ of the ending laminations for � .
Since the universal coverings qW zS!S and q1W

zS!S1 satisfy qD p ıq1 , it follows
that �˙ and p�1.�˙/ define the same set of principal regions in zS . Since X .�1/ and
X .�/ are defined in terms of these regions, properties of the Cannon–Thurston map
described in Theorem 2.2 imply X .�1/D X .�/.

To prove (3), we note that for a fixed g 2 PSL.2;C/, the equivariant map associated
to the conjugated degenerate group g �.�1.S//g�1 is obtained as a composition
g ı �W zS �! H3 . Indeed, for all  2 �1.S/, the action of  on zS and on H3 via �
and its conjugate fit into the following commutative diagram:

zS
� //


��

H3
g //

�./
��

H3

g : �. / :g�1

��
zS

� // H3
g // H3

Now g is a hyperbolic isometry and therefore admits an extension to H3[S2
1 and

one sees that the two maps

bg ı �;g ıy� W zS [S1
1 �!H3

[S2
1

agree on the dense set zS , hence everywhere by continuity. Since the geodesics in X
are defined in terms of the boundary values of the Cannon–Thurston map, the result
follows.

The proof of the first part of Theorem 3.2 will follow from the next claim. For if
C.�/ is not discrete we can find a collection of geodesics in X .�/ violating (1) of
Proposition 3.5.
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Claim 1 Suppose that g 2 C.�/, then g leaves X .�/ setwise invariant.

Proof of Claim 1 Let g 2 C.�/. Then � \ g�g�1 has finite index in � and
g�g�1 . Proposition 3.5 (2) shows that the collection of special geodesics associated
to � \ g�g�1 is X .�/, and Proposition 3.5 (3) shows that g.X .�// is the set of
special geodesics associated to g�g�1 . Proposition 3.5 (2) applied to � \g�g�1 as
a subgroup of g�g�1 now completes the proof of the claim.

We now prove:

Theorem 3.6 C.�/ is finitely generated.

Proof For � 2 X .�/, set Stab.�/D fg 2 C.�/ W g� D �g: Since C.�/ is discrete, it
follows that each Stab.�/ is either a finite cyclic or dihedral group, or an extension
of an infinite cyclic or infinite dihedral group by a finite cyclic group. In any case,
Stab.�/ is finitely generated.

Now recall that X .�/ is the � orbit of the finite set of geodesics f�.1/; : : : ; �.m/g. Let
Dr D Stab.�.r// for each r D 1; : : : ;m. Then for any � 2 X .�/, there exists  2 �
and 1� r �m such that � D  .�.r// and so

Stab.�/D  Stab.�.r//�1
D Dr

�1:

Let K1 D hD1; : : : ;Dm; �i, and consider the action of K1 on X .�/. Since � <K1 ,
this has at most m orbits. Suppose that there is an element ˛1 2 C.�/ which identifies
some of the orbits not identified by K1 . Set K2 D h˛1;K1i. We repeat this process:
since the number of orbits can only go down, we may continue in this way until
reaching Kj , a subgroup for which there are no extra orbit identifications (beyond
those arising from Kj ) possible for any choice of an element of C.�/. The proof of
the theorem is completed by the next Claim.

Claim 2 In this situation, Kj D C.�/.

Proof of Claim 2 Pick ˇ 2 C.�/ and choose any geodesic � 2 X .�/. Then ˇ.�/D
k.�/ for some k 2Kj so that k�1:ˇ stabilises � , and therefore lies in  :Dr : 

�1 for
some  2 � and one of the stabiliser groups Dr . Since  :Dr : 

�1 �Kj , it follows
that ˇ 2Kj so proving the claim and completing the proof of the theorem.

Remark Theorem 3.6 follows from the next theorem, but it seemed interesting to
give a direct proof using the structure of the special geodesics.
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We now determine when ŒC.�/ W �� is finite, completing the proof of Theorem 3.2.

Theorem 3.7 The group � is a fibre group if and only if ŒC.�/ W ��D1.

Proof Let �0 < � be the largest surface subgroup (which has index at most 2
inside � ). If � is a fibre group then ŒC.�/ W �� is infinite. Indeed, C.�0/ D C.�/

contains NPSL.2;C/.�0/ (the normalizer of �0 in PSL.2;C/), which is a lattice, and
we deduce that C.�/ is a lattice.

Now suppose ŒC.�/ W ��D1, and consider the infinite sheeted covering

pW H3=� �!H3=C.�/:

The manifold H3=� has at most two ends which are (both) geometrically infinite by
assumption, and so p is infinite-to-one on a neighborhood of at least one of these ends.
It follows from Theorem 2.1, that � is a fibre group.

4 Parabolics

Here we explain the mild generalization of Theorem 1.2 where we allow our groups to
contain parabolics.

Theorem 4.1 Suppose � < PSL.2;C/ is a finitely generated torsion free Kleinian
group of the first kind which is not a lattice. If � is not free and is not the fundamental
group of a compression body with toroidal lower boundary, then C.�/ is discrete.
Moreover, ŒC.�/ W ��D1 if and only if � is a fiber group.

Proof (Sketch) If � has no parabolics, then this reduces to Theorem 1.2, so we
assume that � contains parabolic elements.

We refer the reader to Canary [10; 11] for terminology and a detailed discussion of the
notation used here. Let qW H3!N DH3=� be the universal covering, � > 0 some
number less than the 3–dimensional Margulis constant, and let N 0

� denote the result of
removing the cuspidal �–thin part of N ; the Tameness Theorem implies N 0

� is tame
[1; 9]. Let M �N 0

� denote a relative compact core for N 0
� : a compact core for which

P DM \@N 0
� is a disjoint union of annuli and tori in @M and so that the ends of N 0

�

are in a one-to-one correspondence with the components of @M �P .

For any group � as in the statement of the theorem, we need to find a finite set PN of
finite area pleated surfaces PN in N , such that the locally finite collection of pleated
surfaces

P� D q�1.PN /

satisfies the following two properties (cf (2) and (1) from Section 3.1).
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(1) For any finite index subgroup y� < � we have Py� D P� ,

(2) For all g 2 PSL.2;C/, we have Pg�g�1 D g.P�/.

Given these two properties, the proof of the Theorem follows as in the proof of
Theorem 3.1.

First, suppose that � is not virtually a surface group and fix a nontoroidal component
S � @M , which exists since � is not a lattice. Let BS be the compression body
associated to S from [5] as in the proof of Theorem 3.1. By hypothesis, BS is not a
handlebody and so has some nontrivial lower boundary @�BS ¤∅. Furthermore, we
claim that @�BS cannot be a union of tori. To see this, note that this would imply that
either we could take BS DM , or else some component T � @�BS is not peripheral
in M . The former case is ruled out by the hypothesis that � D �1.M / is not the
fundamental group of a compression body with toroidal lower boundary, while the
latter case is impossible since M is the core of a hyperbolic manifold, so has no
nonperipheral incompressible tori.

Let †1; : : : ; †k�@�BS denote the set of nontoroidal components (which is nonempty)
and let �.1;S/; : : : ; �.k;S/ < � be the associated nonempty, finite collection of
surface subgroups. Since we have assumed that � is not virtually a surface group, we
have Œ� W �.j ;S/�D1 for all 1� j � k .

For each 1 � j � k , let N.j ;S/ D H3=�.j ;S/ and N 0
� .j ;S/ the complement

of the cuspidal �–thin part in N.j ;S/. Appealing to the covering theorem (for 3–
manifolds with cusps; see [11; 13]), we again deduce that at least one end of N 0

� .j ;S/

is geometrically finite. The boundary of the convex core C�.j ;S/ maps into N , and
the set of all such surfaces is a finite collection of finite area hyperbolic surfaces
canonically associated to S . Let PN be the set of these pleated surfaces over all
component S � @M . Properties (1) and (2) are easily verified for this family, and
discreteness of C.�/ follows.

If � is a virtually a surface group, then since we have assumed � has parabolics,
P � @M is a nonempty collection of annuli. For simplicity, assume M D S � Œ0; 1�

(if M is a twisted I –bundle, take the two-fold cover). Let † � @M � P be a
component whose closure nontrivially meets P and let �† � � denote the (injective)
image of �1.†/ in �1.S/ D � . There is at least one such † since P ¤ ∅. Since
† corresponds to a proper subsurface of S , �† has infinite index in � . Letting
N.†/DH3=�† and N 0

� .†/ be the complement of the �–thin cuspidal part, arguing
as above one sees that N 0

� .†/ has at least one geometrically finite end. Therefore,
we can associate to †, the components of C�†

mapped into N , which is a finite
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set of finite area pleated surfaces. The set of all of these taken over all components
†� @M �P as above gives the required set of pleated surfaces.

Setting P to be the union of all the surfaces in P� we have

ŒC.�/ W ��D
Area.P=�/

Area.P=C.�//
:

It follows that under the hypotheses of the theorem, if � has parabolics, ŒC.�/ W��<1.
If � has no parabolics, then applying Theorem 1.2 completes the proof.
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