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Volume distortion in groups

HANNA BENNETT

Given a space Y in X , a cycle in Y may be filled with a chain in two ways: either
by restricting the chain to Y or by allowing it to be anywhere in X . When the pair
.G;H / acts on .X;Y / , we define the k –volume distortion function of H in G to
measure the large-scale difference between the volumes of such fillings. We show
that these functions are quasi-isometry invariants, and thus independent of the choice
of spaces, and provide several bounds in terms of other group properties, such as
Dehn functions. We also compute the volume distortion in a number of examples,
including characterizing the k –volume distortion of Zk in Zk ÌM Z , where M is a
diagonalizable matrix. We use this to prove a conjecture of Gersten.

20F65; 20F67, 57M07

1 Introduction

1.1 Overview

Consider a geodesic metric space X with geodesic subspace Y . Given a pair of points
in Y , there are two ways to measure the distance between them: we can consider
the minimum of the lengths of paths between them that lie entirely in Y , or we can
allow paths to lie anywhere in X . Depending on how Y is embedded in X , the latter
distance may be much shorter. This idea can be generalized to higher dimensions:
given a .k�1/–cycle z , we call the smallest volume of a k –chain whose boundary
is z the filling volume of z and denote this FVk.z/. When z lies in Y , there are two
possibilities: we may fill z with a chain that lies anywhere in X , giving us FVk

X .z/,
or we might require that the chain be restricted to the subspace Y , which gives us
FVk

Y .z/. How do these two volumes compare? The volume distortion function provides
a measurement of the difference in a large-scale sense.

We are particularly interested in the case in which X and Y are spaces on which a
group and subgroup act cocompactly and properly discontinuously by isometries. We
can always find such spaces by constructing a K.G; 1/ CW–complex that contains a
K.H; 1/ complex and then considering their universal covers. Counting k –cells gives
us a combinatorial definition of k –volume in these spaces. If the Eilenberg–Mac Lane
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spaces have a finite k –skeleton, that is, H and G are of type Fk , then we may speak
of subgroup volume distortion, by which we mean volume distortion in the spaces on
which the groups act.

Definition 1 Let H be a subgroup of G , both groups of type Fk , and let X be the
universal cover of an Eilenberg–Mac Lane space of G and Y �X the universal cover
of an Eilenberg–Mac Lane spaces for H . The k –volume distortion function function
of H in G is a function VolDk

.G;H /W N!N given by

VolDk
G;H .n/DmaxfFVk

Y .z/ j z is a .k�1/–cycle in Y and FVX .z/� ng

Notice that if the filling volume is the same in the subspace as the ambient space, we
get a linear volume distortion function. Thus we say that a subgroup H is k –volume
undistorted in G if the volume distortion function is linear.

While length distortion is well-understood and area distortion has been studied to some
extent (see Gersten [10]), higher-dimensional volume distortion is new.

We prove a number of foundational facts in Section 3: up to linear terms, the distortion
functions of two pairs of quasi-isometric CW–complexes are equivalent (Theorem
3.1.1), and thus that volume distortion is independent of the choice of spaces. In this
section we also provide bounds in terms of k –th order Dehn functions and discuss the
computability of volume distortion functions. We then compute a number of examples
in Section 4.

In [10], Gersten proves that the copy of Z2 is always area-undistorted in Z2 ÌM Z
(note that here M 2 GL.2;Z/). He gives the following conjecture.

Conjecture 1 (Gersten [10, page 19]) The group Zk , k � 3, is area undistorted in
Zk ÌM Z if and only if M is of finite order in GL.k;Z/.

In Section 4.4.3 we prove a generalization of this conjecture; we allow M to be any
m–by–m integer-entry matrix, and consider the group

�M D hx1; : : : ;xm; t j Œxi ;xj �D 1; txi t
�1 D �.xi/ for 1� i; j �mi;

where � is a homomorphism taking xi to x
a1

1
x

a2

2
� � �xam

m , where the aj form the i –th
column of M . When det M ¤ 0, �M is an ascending HNN extension of Zm ; in the
special case that det M D 1, we can write �M as the semidirect product Zm ÌM Z.
We then prove the following theorem.

Theorem 1.1.1 Zm is area-undistorted in �M if and only if M has finite order.

Conjecture 1 is then the special case when det M D 1.
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Theorem 1.1.1 is proved by identifying different cases and calculating a lower bound
for the area distortion function in each case. This is illustrated in Figure 1, which charts
the possible cases and the resulting area distortion in each case.

We generalize this to look at higher volume distortion of Zk in �M . In the case of
diagonalizable matrices, we can characterize the k –volume distortion completely. In
the following theorem, W .n/ is the Lambert W function, that is, the inverse of xex .

Theorem 1.1.2 Let M be an integer-entry k –by–k diagonalizable matrix with
det.M /D d � 1, and let �i denote the absolute value of the i –th eigenvalue. Then the
k –volume distortion of Zk in �M depends only on the eigenvalues of M . If M has
at least two eigenvalues off the unit circle, the volume distortion is

VolD.k/.n/� n1Clog d= log˛; where ˛ D 1

d

kY
iD1

maxf�i ; dg:

If M has exactly one eigenvalue off the unit circle,

VolD.k/ n�
�

nk

W .n/

�1=.k�1/

:

Otherwise, VolD.k/.n/� n.

Note that here we obtain a sharp bound. When M is not diagonalizable, we provide a
lower bound for volume distortion in Section 4.4.2.

We can look more generally at groups of the form G D H Ì� hti, where H is any
group and � is an automorphism on H . There is a natural surjection to Z, given by
the second factor, that allows us a well-defined notion of height in the group and in a
BK.G; 1/ such that the height zero subspace is a CK.H; 1/ . Then we can think of � as

sending a k –cell at height h to its image under � at height h� 1. This corresponds to
conjugating by t in the group presentation.

The dynamical properties of � can thus be used to find bounds on the volume distortion
of H . In Section 4.2 we take the idea of complexity from [10] and alter it, so that the
complexity of � , denoted ck.�/, is the maximal k –volume of the image of a k –cell.

Theorem 1.1.3 Let � be an automorphism on H , a group of type Fk , and m D
maxfck.�/; ck.�

�1/g. Then VolDk
.H ÌZ;H /.n/� n �mn .

Corollary 1.1.4 When � has complexity mD 1, then G is k –undistorted in G Ì� Z.

In particular, if a K.G; 1/ has only one k –cell, then � must send this k –cell to itself,
because it induces an automorphism on the k –skeleton. Thus the k –complexity is one,
so G is k –undistorted in G Ì� Z.
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Let M be an integer-entry m–by–m

matrix, with m � 3, det.M / � 1;

Consider Jordan form.

Are there blocks

with eigenvalues

off the unit circle?

Are there such

blocks of size

at least 2?

How many blocks

are there?

Are there at least

two blocks with

eigenvalues on the

same side of the

unit circle?

n2 n

n1C.2m�4/=.2m�3/

n2�2=.aCb/

a and b are

sizes of largest

boxesn2

n2Clogj�j j�j
M is 2–by–2 with

eigenvalues

j�j < 1 < j�j

Is there a block

with eigenvalue on

the unit circle?

n2=W .n1=a/

a is size of

largest such block

Yes
No

m

1

Other

Yes

No

Yes
No

No
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Figure 1: Area distortion flow chart. Circles indicate sharp bounds while
ovals are lower bounds only; n2 is always an upper bound. The function W

is the Lambert W function.
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2 Background

Let G be a group with presentation P D hS jRi. We say a word in F.S/, the free
group on S , is null-homotopic if it represents the identity in G , that is, it can be
written as a product of conjugates of relators. The area of a null-homotopic word is
the minimal number of such relators necessary. The Dehn function for G , denoted by
ıW N!N , is defined by

ı.n/D fA.w/ j l.w/� ng
which provides an upper bound on the area of a word in terms of its length. While this
function appears to depend on the presentation, we can create a relation of functions
f � g when there exists some C > 0 such that

(2-1) f .x/� Cg.CxCC /CCxCC

and we say f � g if f � g and g � f . Under this equivalence, the Dehn function is
a quasi-isometry invariant, and so in particular independent of presentation.

This function can be used to answer the word problem, first asked by Dehn in [6]: given
a word in F.S/, is there an algorithm for determining whether this word represents the
identity? The answer is yes if and only if the Dehn function is computable. However,
the algorithm provided by the Dehn function may not be very efficient. For example, if
a group with exponential Dehn function can be embedded in a group with quadratic
Dehn function, we can use the ambient group to more easily solve the word problem in
the subgroup. In such a case, we may think of the embedding as being (area) distorted.

2.1 Definitions

2.1.1 Area distortion In [10], Gersten defines a function, similar to the Dehn func-
tion, which measures this area distortion. Precisely, let G be a group with finite
presentation P D hS jRi, and let H be a subgroup with presentation QD hS 0 jR0i,
where Q is a subpresentation of P , that is, S 0 � S and R0 � R. Then the area
distortion function of H in G , ADW N!N , is given by

AD.n/DmaxfAreaH .w/ j AreaG.w/� n; w 2N.R0/g:

Algebraic & Geometric Topology, Volume 11 (2011)
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It is not a priori clear that such a maximum must exist—perhaps we could find a
sequence of words representing the identity in H with area in G bounded by n, but
area in H growing arbitrarily large. This, however, cannot happen, precisely because
G and H are finitely presented.

Proposition 2.1.1 (Gersten) The area distortion function is well-defined.

Proof Let m be the length of the longest relator in R, and let w be a word with van
Kampen diagram of area at most n. Separate the diagram into a collection of topological
circles, each with area n1; n2; : : : ; nk (note that k and the ni are all bounded above
by n). In such a topological circle of area ni , the length of the boundary cannot be
more than m � ni . Thus there is a finite number of possible loops for the topological
circle; for each, we can fill in H with some area. Combining these for each i gives an
upper bound on the area in H of the word w which depends only on n. Thus AD.n/
is bounded above for each n, so the function is well-defined.

Note the importance here of dividing w into pieces that contribute to the area. While
we cannot bound the length of w , bounding the lengths of these pieces will often suffice
for our purposes. We will continue to use this approach to bounding volume distortion,
and so it will benefit us to give a name to the boundary of the “area-contributing”
pieces of w . Let D be a van Kampen diagram for w . Define the frontier of D by
FR.D/D @.Dı/. (Note that generally frontier is used as a synonym for boundary; we
are modifying the definition to a subset of the boundary that will play an important
role in bounding volumes.)

We will use the same equivalence for distortion functions as used for Dehn functions,
given in Equation (2-1). If AD is linear, then we say that the area of H is undistorted
in G , as this means that there is essentially no advantage to filling in G over restricting
to H . While this function is closely related to the Dehn functions of both the group
and subgroup, the distortion function cannot in general be written simply as some
combination of the Dehn functions of H and G . In Section 4.4, we shall see a class
of examples of groups in which the Dehn functions of H and G are quadratic and
exponential, respectively, but the area distortion varies between n and n2 .

Another related concept is length distortion, often called simply subgroup distortion,
which compares the lengths of elements in the subgroup to the lengths in the ambient
group. These two concepts are independent: groups may have distorted length but
undistorted area (eg Sol groups), or undistorted length and distorted area (eg examples
constructed in Baumslag et al [3]).

Algebraic & Geometric Topology, Volume 11 (2011)
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2.1.2 Volume distortion Just as Dehn functions have been generalized to higher
dimensions, as “higher order” Dehn functions (see Alonso, Wang and Pride [2] and
Chapter 10 of Epstein et al [7]), denoted ı.k/ , we would like to generalize from area
distortion to volume distortion. For both these definitions, we will need to take a more
geometric approach. We will first define volume distortion on CW–complexes, and
then define volume distortion for groups in terms of complexes on which they act.

In order for the distortion function to be well-defined, we need to put some conditions on
the CW–complex X . The conditions needed are exactly those given in [2, Section 3] for
a k –Dehn complex. X is k –Dehn if X is k –connected, the m–order Dehn functions
are well-defined for m � k , and there is a uniform bound, say r , on the number of
faces on an m–cell, for m� kC 1.

In such a space X , a cellular k –chain is denoted by z DP˛i�i where the ˛i are
integers and �i are k –cells. The volume of z is V k.z/DP j˛i j. Given a k –cycle z ,
we define the filling volume of z , FVkC1.z/, to be minimal volume over all k –chains
which extend z , that is,

FVkC1.z/DminfV kC1.u/ j @uD zg:
Since X is k –connected, every cycle z is the boundary of some chain. Note that this
is the definition given in [7, Chapter 10], but what we call volume they call mass, and
what we call filling volume, they call volume.

Given a subcomplex Y of X , the k –volume distortion function VolDk
.X ;Y /W N!N

is defined by

(2-2) VolDk.n/DmaxfFVk
Y .z/ j FVk

X .z/� n; where z is a .k�1/–cycle in Y g
The uniform bound on the size of the boundary of an m–cell serves the same purpose
as the finite presentation in the definition of AD, that is, it ensures that a maximum
exists. In particular, note that while we have no bound on the volume of z , we do
obtain rn as a bound on the volume of the frontier of any filling of z .

Let H �G be groups and Y �X CW–complexes, where G act cellularly on X so that
restricting to H gives a well-defined cellular action on Y . The choice of Y DCK.H; 1/
and X D BK.G; 1/ with Y in X , will satisfy this. Then the volume distortion of H

in G is defined by VolDk
.G;H /.n/ WD VolDk

.X ;Y /.n/. This definition only makes sense
if the spaces are k –Dehn; this will happen when H and G are of type Fk , that is,
their K.�; 1/’s have finite k –skeleton.

Note that AD and VolD2 are actually defined differently: in the former case, the
function involves homotopy, while in the latter the function involves homology. VolD2

is referred to as weak distortion in [10].
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Both homology and homotopy definitions exist for higher-dimensional Dehn functions
as well. If G acts by cellular automorphisms on X , the homological k –th order Dehn
function ı.k/W N!N is defined as

ı.k/.n/DmaxfFVk.z/ j z a .k�1/–cycle with V k�1.z/� ng:
In the homotopic definition, we restrict to filling spheres by balls. While these two
definitions are often the same in examples in which they are easy to compute, they are
not equivalent in general; an exploration of the differences can be found in Young [17].
One would expect the same to be true of volume distortion, but we do not currently
have any such examples.

2.1.3 Riemannian manifolds Sometimes we will be able to determine the volume
distortion by considering group actions on Riemannian manifolds. In a general sense,
the function will work the same way; what changes is the manner in which we define
the volume and filling volume.

Because we are using pairs of groups, we must take some care to specify that the action
respects this pairing. A group G acts geometrically on a space X if it acts cocompactly
and properly discontinuously by isometries. We say the pair .G;H / acts geometrically
on .X;Y / if G acts geometrically on X and we can restrict this to a well-defined
geometric action of H on Y . Note that in particular we may construct a K.H; 1/

inside of a K.G; 1/ so that .G;H / will act geometrically on .BK.G; 1/;CK.H; 1//;
often this is what we will be considering.

Let M be a connected Riemannian manifold with submanifold N , such that a pair of
groups .G;H / act on .M;N / properly discontinuously by isometries. We will work
with lipschitz K–chains, that is, formal finite sums with coefficients in fC1;�1g of
maps fi W �k!M where fi is K–lipschitz for some universally fixed K . We choose
lipschitz maps so that the functions are differentiable almost everywhere, leading to a
well-defined idea of volume, and so that under quasi-isometry the composition with a
lipschitz map is a bounded distance away from a lipschitz map.

We find the volume of a k –chain in the following way: for each lipschitz map f , we
can consider Dxf at almost every point in the domain. This map sends an orthonormal
basis in Tx�

k to a set of vectors in Tf .x/M . These vectors give a parallelepiped; call
its volume V(x). This is the k –dimensional Jacobian of f at x , and can be found by
considering the matrix

AD

0BBB@
Dxf .e1/

Dxf .e2/
:::

Dxf .ek/

1CCCA
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and taking V .x/D
p

det.A �g �AT /, where g D .gi;j / is the Riemannian metric.

Now we integrate over 4k :

V .f /D
Z
4k

V .x/ dx

More generally, the volume of a k –chain is the sum of the volumes of the component
maps fi .

With this new definition of volume, we may now define the filling volume and distortion
function just as before: given a lipschitz .k�1/–cycle z ,

(2-3) FV.k/.z/D inffV .u/ j u is a lipschitz k –chain with @uD zg:
Before we can define a volume distortion function in this case, we need one last
requirement. Again we define the frontier of a .k�1/–cycle u by FR.u/ D @.zı/
where z is a minimal-volume filling of u. Choose some c 2 RC . Just as the value
of K does not matter so long as our maps are K–lipschitz for some K , this choice
of c will not affect the distortion function up to the usual equivalence of functions,
which allows us to discuss “the” distortion function without specifying c or K .

The k –volume distortion function (with respect to c ) is a function VolD.k/
.M;N /

W N!N
with

VolD.n/D supfFV.k/
N
.z/ j 9 k –chain u with V k

M .u/� n; V
.k�1/

N
.FR.u//� cn g:

Note that, in the case of CW–complexes with a cocompact group action, there is a
natural choice of c : the maximal boundary volume of a k –cell. Once again, the
restriction on the size of the frontier of a filling gives this function an upper bound (in
terms of the Dehn function of the subspace), so a supremum exists.

In the following section we will show that the volume distortion in this case is equivalent
to the version obtained by taking a triangulation that is invariant under .G;H /.

3 General theory

3.1 Equivalence of definitions

The definition of volume distortion appears to depend on the choice of spaces; however,
we will show that up the equivalence of functions given above, it is a quasi-isometry
invariant, and therefore in particular a group invariant.
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A .K;C /–quasi-isometric embedding is a map f W X !X 0 where

1

K
d.x;y/�C � d.f .x/; f .y//�Kd.x;y/CC

for all x;y 2X . This function is a quasi-isometry given the additional requirement that
for all y 2X 0 there is some x 2X with d.y; f .x//� C . This is equivalent to saying
that f has a .K;C /–quasi-isometric inverse gW X 0 ! X with d.x;g.f .x/// � C

and d.x; f .g.x///� C .

As with group actions, we will be considering pairs of spaces .X;Y / where Y �X .
We will say the pairs of spaces .X1;Y1/ and .X2;Y2/ are quasi-isometric if there is
a quasi-isometry f W X1 ! X2 with f .Y1/ � Y2 and f jY1

W Y1 ! Y2 also a quasi-
isometry.

Theorem 3.1.1 Suppose that .X1;Y1/ and .X2;Y2/ are k –Dehn spaces which are
quasi-isometric as pairs. Then the distortion functions VolDk

1 of .X1;Y1/ and VolDk
2

of .X2;Y2/ are equivalent.

Proof Suppose we have .K;C /–quasi-isometries f W .X1;Y1/! .X2;Y2/ and quasi-
isometric inverse gW .X2;Y2/! .X1;Y1/.

See Figure 2 for an illustration of this proof. We start, as in Figure 2(a), with a .k�1/–
cycle z in Y1 , which is filled in X1 with a k –chain u, where V .u/D n. We want to
fill z in Y1 with volume linear in n and VolDk

2 .

In Figure 2(b) we construct a k –chain v in X2 using f .u.0//, that is, the image
of the vertices in u. We want v to have boundary in Y2 and volume at most Akn,
where Ak is independent of u. We do this by noting that for any m–cell � in X1 ,
we can construct an m–chain c.�/ in X2 with m–volume bounded by some constant,
say Am . Further, if the m–cell was originally in Y1 , then we can construct the new
m–chain in Y2 with the same bound A on the volume. We do this construction by
induction on m: when mD 1, we simply note that the distance between the image
of the boundary points of a cell are at a distance at most KCC apart, and choose a
geodesic between these points; this gives a 1–chain with length at most C CK .

Now suppose such a construction exists for dimension .m� 1/ and let � be an m–
cell. Carry out the construction on the boundary of � . Since the spaces are k –Dehn,
there is a universal bound r on the volume of the boundary of any m–cell in X1

when m � k C 1. Thus we have constructed a .k�1/–cycle of .k�1/–volume at
most Ak�1r . Again because the spaces are k –Dehn, we know that the k –th order
Dehn function of X2 is well-defined, so the cycle can be filled in X2 with volume at
most ı.k/

X2
.Ak�1r/. If the original k –cell is in Y1 , then we can do the same thing, now

Algebraic & Geometric Topology, Volume 11 (2011)
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(a) (b)

(c)(d)

X1 X2

Y1 Y2

Y2Y1

�

z

u
v

c.�/

v0

u0
z

Figure 2: Quasi-isometries preserve volume distortion

filling with volume bounded by ı.k/
Y2
.Ak�1r/. The maximum of these two numbers is

then the value of Ak . This constant depends on the spaces, quasi-isometries, and k ,
but is independent of u.

Using this procedure on each k –cell in u, we construct a k –chain v in X2 with
boundary in Y2 and k –volume at most Akn. By definition, the cycle @v can be filled
in Y2 with k –volume at most VolDk

2.Akn/. Call the chain with this filling v0 ; note
that this chain lies entirely in Y2 . This is illustrated in Figure 2(c). Just as above we can
now construct a k –chain u0 in Y1 which contains the 0–skeleton of g.v0/ and has with
volume at most Bk �VolDk

2.Akn/, again with Bk independent of u. The boundary of
this chain will probably not be z , but each vertex in z will correspond to a vertex in u0
which is a distance at most C from the vertex in z ; we can use this fact to construct
a homotopy between the two cycles z and @u0 . Again we do this by building up by
dimension on each cell of z . First we construct paths of length at most C between
a vertex in z and the corresponding vertex in u0 . Given two vertices in z connected
by an edge, their corresponding vertices are connected by a path of length at most
K.KCC /CC . This gives us a loop of length at most K.KCC /C3C C1; this can
be filled in with area at most ıY1

.K.KCC /C 3C C 1/. See Figure 2(d).
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Continue this construction one dimension at a time: Given an m–cell in z , we can
construct a homotopy between each of the boundary cells and a corresponding .m�1/–
chain in u0 with some volume bounded by Dm�1 , again, agreeing on their bound-
aries. This gives an m–cycle with volume at most 1C rDm�1CAmBm , which can
be filled with m–volume at most DkDı.m/Y1

.1C rDm�1CAmBm/. Ultimately this
gives us a homotopy between z and @u0 with k –volume at most DkV .z/. Since
V .z/� rn, combining this with u0 gives us a filling of u with volume bounded above
by DkrnCBk VolDk

2.Akn/. Thus VolDk
1.n/ � DkrnCBk VolDk

2.Akn/. We can
use the same process to reverse the roles of VolDk

1 and VolDk
2 , so the two functions

are equivalent.

We now would like to say that given an appropriate action by groups on Riemannian
manifolds, the volume distortion function for the groups is equivalent to the volume
distortion function of the spaces. To be precise, let M be a .k�1/–connected Rie-
mannian manifold, with .k�1/–connected submanifold N , and let the pair .G;H /

be groups of type Fk that act geometrically as a pair on .M;N /. Let � be a G–
invariant triangulation of M , with �1 an H –invariant subtriangulation of � jN . Then
by definition, the distortion function of H in G is the distortion function VolDk

� of
the k –skeleton of �1 in � .

Theorem 3.1.2 With .G;H /, .M;N /, and .�; �1/ as above, the distortion function
of H in G is equivalent to the geometric distortion function VolDk

.M;N / .

Proof The work done by Burillo and Taback in [5] to show the isoperimetric version
of this theorem provides us with all the tools we need for this proof. In particular, they
prove that, given M , G , and � as above, the following holds.

Lemma 3.1.3 (Pushing Lemma [5]) There exists a constant C , depending only on M

and � , with the following property: Let T be a lipschitz .k�1/–chain in M, such that
@T is included in � .k�2/ . Then there exists another lipschitz .k�1/–chain R, with
@RD @T , which is included in � .k�1/ , and a lipschitz k –chain S , with @S D T �R,
satisfying V .R/� C V .T / and V .S/� C V .T /.

Essentially, this is saying that .k�1/–chains in M are very near .k�1/–chains in
� .k�1/ of comparable area.

Now let z be a .k�1/–cycle in N , and let u be a k –chain in M with @u D z

and V k.u/ � n. Because z has no boundary, we can apply Lemma 3.1.3 to get a
.k�1/–cycle z0 in �1 , with homotopy between them given by the chain S in N ,
where V k.S/ � C n. Now z0 is a cycle in �1 ; we can fill it with the chain u� S ,
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so FV.z0/ � .C C 1/n. Next we can apply Lemma 3.1.3 to u� S ; this gives us a
chain in � with volume at most C.C C 1/n with boundary z0 . By definition, we can
fill z0 with some chain in �1 with volume at most VolD� .C.C C 1/n/. Since G acts
cocompactly on � , there is some maximal volume, say A, of any k –cell in � ; so we
can now fill z0 , say by u0 , in N with volume at most A VolD� .C.C C 1/n/. Then
u0�S fills z with volume at most A VolD� .C.C C 1/n/CC n.

On the other hand, suppose z is a cycle in �1 , with a filling u in � which has volume
at most n. Then we can fill z in M with volume at most An. This means we can fill
z in N with a chain u with volume at most VolD.M;N /.An/. By applying Lemma
3.1.3, we can find a filling u0 of z in �1 with volume at most C VolD.M;N /.An/.

Note that the above proof is independent of the c used to bound the volume of the
boundary in the Riemannian manifold case; thus this constant does not affect the
distortion function.

By combining Theorem 3.1.1 and Theorem 3.1.2, we obtain the following.

Theorem 3.1.4 Given pairs of spaces .M1;N1/ and .M2;N2/ that are quasi-isometric,
and groups .G1;H1/ and .G2;H2/ where .Gi ;Hi/ act cocompactly and properly
discontinuously by isometries on .Mi ;Ni/, the distortion function VolDk

.M1;N1/
is

equivalent to the function VolDk
.M2;N2/

.

Proof Because the group actions are geometric, each pair .Gi ;Hi/ is quasi-isometric
to .Mi ;Ni/. Since the .Mi ;Ni/ are quasi-isometric to each other by assumption,
the .Gi ;Hi/ must be as well. Thus by Theorem 3.1.1 their distortion functions are
equivalent. By Theorem 3.1.4, the distortion functions of the pairs of Riemannian
spaces are equivalent to those of the respective pair of groups. Thus the distortion
functions of the spaces are equivalent as well.

3.2 Distortion and Dehn functions

Because of the closely related definitions of Dehn functions and volume distortion
functions, it can be tempting to believe that one can express the distortion function
easily in terms of the Dehn functions of the group and subgroup. The reality is not so
simple—for example, the subgroup may have a greater or smaller Dehn function than
the ambient group. However, we can use Dehn functions to provide certain bounds for
volume distortion functions.

Theorem 3.2.1 Let H �G be Fk groups, and let ı.k�1/
H

be the .k�1/–order Dehn
function of H . Then VolD.G;H / � ı.k�1/

H
.
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Proof Suppose z is a .k�1/–cycle in H , with filling in G of k –volume n. Because
these groups are Fk , there is an upper bound on the number of boundary faces in a
k –cell in G , say r . Then the .k�1/–volume of FR.u/ is at most rn. We can then fill
FR.u/, and therefore z , in H with volume at most ı.k�1/

H
.rn/.

Note that under the area distortion definition used by Gersten, the upper bound is
instead AD � nıH : this happens because the frontier may be disconnected, which
introduces the presence of a summation. However, it is conjectured (see, for example,
Sapir, Birget and Rips [16]) that Dehn functions are superadditive, in which case we
would regain the simpler bound AD � ıH . When we choose homology, however,
this complication disappears, because there is no requirement that the boundary be
connected.

Theorem 3.2.2 Let H � G be Fk groups, and let ıH and ıG be their respective
.k�1/–order Dehn functions. Suppose ıG is an invertible function. Then VolDk

.G;H /�
ıH ı ı�1

G
.

Proof Let zn be a sequence of .k�1/–cycles with

VH .z/D ı�1
G .n/

FVH .z/D ıH .ı�1
G .n//;and

that is, a sequence of maximally “hard to fill” cycles. Then we know that

FVG.z/� ı�1
G .ıG.n//D n:

3.3 Subgroups

Theorem 3.3.1 Suppose K �H �G are Fk groups. Then

(i) VolDk
.G;K / � VolDk

.H ;K / ıVolDk
.G;H / .

(ii) VolDk
.H ;K / � VolDk

.G;K / .

Proof For (i), let z be a .k�1/–cycle in K so that FVG.z/ � n. Then FVk
H .z/ �

VolDk
.G;H /.n/ and so FVk

K .z/� VolDk
.K ;H /.VolDk

.G;H /.n//.

For (ii), once again let z be a .k�1/–cycle in K , but now suppose that FVH .z/� n

but FVK .z/D VolDk
.K ;H /.n/. Since H �G , a filling in H is also a filling in G , so

FVG.z/� n as well. Thus we have constructed examples of cycles in K whose filling
volume in G is at most n, but whose filling volume in K is VolDk

.K ;H /.n/, so this is
a lower bound for the distortion of K in G .
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This theorem is of particular interest if one of the embeddings is undistorted.

Corollary 3.3.2 Given K �H �G as above,

(i) if VolDk
.G;H / is linear, then VolDk

.H ;K / � VolDk
.G;K / .

(ii) if VolDk
.H ;K / is linear, then VolDk

.G;K / � VolDk
.G;H / .

(iii) if VolDk
.G;K / is linear, then VolDk

.H ;K / is linear.

For an example applying these theorems, see Section 4.3.

3.4 Subcomputability of distortion functions

Papasoglu shows [15, Proposition 2.3] that if H �G are both finitely presented groups,
with a presentation for G that contains a subpresentation for H , then the area distortion
function for H in G is computable. This contrasts significantly with length distortion
and first-order Dehn functions, in which uncomputable functions can be obtained (see
Farb [8]).

In higher dimensions, we can partially generalize.

Theorem 3.4.1 Given groups H � G , where .H;G/ act cocompactly by properly
discontinuous cellular automorphisms as a pair on k –Dehn CW–complexes .Y;X /,
the function VolDk

.G;H / is bounded above by a computable function for k � 2.

Proof To compute a bound on VolDk.n/, note that to fill a k –cycle, it suffices to
fill the connected components of its frontier. We start with a list of all k –cells in the
quotient Y=G . Since there are finitely many of them, there are finitely many possible
ways to combine at most n of them along boundary cells.

We can make a list of all ways of combining at most n k –cells to make chains in XG ;
now pick the subset whose boundary lies entirely in XH . Because we know these must
be trivial in XH , we can find a volume (and thus a minimal volume) of a filling in XH .
The greatest volume necessary to fill any of the chains on our list will provide an upper
bound on the volume distortion. Because we can do this in the process described, this
upper bound is a computable function.

Note that we must know in advance that the groups act on CW–complexes with finite
k –skeleton, which requires that we already know something fairly significant about
the groups in question. This is still notable, however, as even in pairs of groups with
particularly badly-behaved .k�1/–order Dehn functions the distortion function itself
will still be subcomputable.
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While this means that volume distortion is in some ways more nicely behaved than
length distortion, Madlener and Otto[13] provide the following theorem:

Theorem 3.4.2 (Madlener–Otto) Given a computable function f , there exists an
example of a subgroup, group pair with area distortion bounded below by f .

4 Examples

4.1 Motivational examples

There are many geometric examples which demonstrate the concept of area distortion;
we will cover some of them here.

4.1.1 Hyperbolic space Consider a horosphere in three-dimensional hyperbolic
space H3 . Hyperbolic space has a linear isoperimetric function, so that a loop of
length l can be filled in area approximately l . When restricted to the horosphere,
however, we encounter Euclidean geometry, for which we have quadratic isoperimetric
function. As a result, we can find loops with area l in H3 but l2 in the horosphere,
giving quadratic area distortion. We cannot hope for larger distortion, since the quadratic
isoperimetric function provides an upper bound as well.

4.1.2 Sol geometry Consider the three-dimensional Riemannian manifold Sol that
is topologically R3 and has the metric ds2 D ��2tdx2 C .1=�/�2tdy2 C dt2 . If
we project y to zero, we obtain a hyperbolic plane; projecting x to zero gives an
upside-down hyperbolic plane, that is, length in the y –direction increases exponentially
as t increases. Projecting t to zero gives a Euclidean plane. Then the xy–plane
is exponentially length-distorted in Sol, since the point on the x axis of distance n

from the origin can be reached via a geodesic in the hyperbolic plane in the x and z

directions of length approximately log n. The y–axis is similarly distorted, but the
geodesics now travel down instead of up. However, when we consider area, the two
factors cancel each other out: it is exactly as good in the x–direction to go up as it is
bad in the y –direction. This gives us the following well-known result.

Proposition 4.1.1 The xy –plane is area-undistorted in Sol.

Proof Given any chain z , we know we can find the volume of z as

V .z/D
Z s

.��t

�
1

�

��t

dxdy/2C .��tdxdt/2C
��

1

�

��t

dydt

�2

(4-1)

D
Z s

.dxdy/2C .��tdxdt/2C
��

1

�

��t

dydt

�2

(4-2)
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If we project t to zero, we lose the second and third term, which can only decrease
the overall volume; the dxdy term is unaffected since the scalars cancelled out. Thus
projecting t to zero can only decrease area, which means that the xy–plane is area-
undistorted in Sol. Note that here the distortion function is precisely the identity and
not just equivalent to it.

t

y

x

H
2

H2

E2

t

y

x

Figure 3: In Sol, length is distorted (left) but area is not.

4.1.3 Sullivan’s theorem The example above has a generalization due to Sullivan.
If M is a 3–manifold and F is a codimension 1 foliation on M which is transversely
oriented, and such that there is a transverse closed curve through every leaf, then there
exists a Riemannian metric on M for which every leaf of F is quasi-area minimizing.
As a special case, Z2 in Z2 Ì� Z has undistorted area when � 2 GL.n;Z/. Gersten
proves this using a concept he calls complexity; we will adjust the definition slightly,
and generalize it to higher dimensions.

4.2 Complexity

The concept of complexity is defined in [10] for area distortion of G in G Ì� Z, where
� is an automorphism of G and G is finitely presented.

Let G be Fk and let � an be automorphism of G . Then � can be thought of as a
map on the edges of a CW–complex Y DK.G; 1/, where an edge labeled s is sent to
a word representing �.s/. Then each 2–cell is sent to a closed loop, and so we can
fill it in some way in Y . Choose one of minimal area for each 2–cell, and call this
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�.r/. Continue with this process, inductively extending the map to the n–skeleton
of Y given the image of the .n�1/–skeleton, until we have a map �W Y ! Y . We can
then lift this to a map z�W zY ! zY .

t

t D 1

t D 0

Y

r

�.r/

�

Figure 4: We can project to height zero via iterations of � .

We can use this map to construct a K.G Ì� Z; 1/, given by

X D Y � I=Œ.y; 1/� .�.y/; 0/�;
which has universal cover that is setwise given by zX D zY �R, made by taking a copy
of zY �I for each integer, and identifying .y; 1/i with .�.y/; 0/iC1 . This construction
gives us a natural projection � W zX !R, where we call �.x/ the height of the point
x 2 zX . We can describe cells in this complex as follows: either they are cells inherited
from zY , at a height h, or they are built inductively, with two-cells having boundary
tst�1�.s/ and higher-dimensional cells made by constructing the cells on the boundary
and then filling them. See Figure 4 for a pictorial representation.

Let c.�/ be the maximal k –volume of the image of a k –cell under z� . Since G is Fk ,
c.�/ is finite. We will call c.�/ the k –complexity of � .

Remark 1 Gersten defines (2–)complexity in a somewhat different manner: in [10],
the complexity of a map is the sum of the volumes of the images of all 2–cells, minus the
number of 2–cells. His definition of complexity zero will coincide with our definition
of complexity one. With his definition, one can only relate the distortion to complexity
when the complexity is zero. We will be able to create a more general upper bound on
the distortion, which depends on the value of c.�/.
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Theorem 1.1.3 Let G be an Fk group and let � be an automorphism on G , and
define mD maxfck.�/; ck.�

�1/g, with ck.�/ as defined above. Then the distortion
of G in G Ì� Z is bounded above by n �mn .

Corollary 1.1.4 When � has complexity mD 1, then G is k –volume undistorted in
G Ì� Z.

In particular, if a K.G; 1/ has only one k –cell, then G is k –volume undistorted in
G Ì� Z for any automorphism � .

Proof of Corollary 1.1.4 The first statement is trivial; the second is proven by noting
that � must send this k –cell to itself, because it induces an automorphism on the
k –homotopy of the .k�1/–skeleton of the space. Thus the k –complexity is 1.

Remark 2 [10, Theorem B] proves the corollary in the case of kD2 and [10, Theorem
5.1] is related to Theorem 1.1.3; however, Gersten formulates his bound in such a way
that Corollary 1.1.4 does not follow from Theorem 1.1.3.

Proof of Theorem 1.1.3 Let G and � be as in the theorem, and let zX be the universal
cover of a K.G Ì� Z; 1/ as constructed above, with the height projection � W zX !R.
Let z be a .k�1/–cycle in zY with u a k –chain in zX , such that @u D z , and let
nD V k.u/. Assume u has no connected components which are cycles, since these
could be removed to decrease the volume of u, still giving a cycle with boundary z .
Denote by 4p the subset of u at height p , that is, 4p D ��1.p/\u.

Since u is closed, the image of u under � is a bounded subset of R. Note that
zY D ��1.0/, so if �.u/ D 0, we are done because u is actually a chain in zY .
Otherwise, we wish to use u to construct a new chain that is in zY , whose volume
is bounded above by nmn . To do this, we will first consider ��1..0;1//, and then
��1..�1; 0//, which will work similarly.

If ��1..0;1// is empty, we proceed directly to the second set. Otherwise, we may
choose some p 2RC such that p is not an integer, �p ¤∅, and �pC1 D∅, that is,
a height near the top of u. Let U be the set of all cells in u which intersect �p . This
set may consist of a number of different connected components, but we need to break it
up a bit more carefully: partition U into subsets U1;U2; : : : ;Ul so that in each subset,
any two cells can be connected to each other in u without going below height p . Then
any two cells in the same connected component of U will be in the same partition, but
a partition may contain more than one connected component in U .

Each Ui then separates u into two pieces, and gives a homology between some .k�1/–
cycle vi at height hD dpe and the .k�1/–cycle �.vi/ at height h� 1. The cycle vi
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must be the boundary for some subchain ci of u; by our choice of p , ci must be
entirely at height h and thus lie in a copy of zY . Then we can perform surgery on u,
removing Ui and ci and replacing them with z�.ci/ at height h� 1. After doing this
for each i , we have created a new k –chain u0 with height one less than the height
of u. We may continue to do this until the maximal height of our new chain is zero.

We then do the same thing with p < 0 with the obvious adjustment on the choice of
height, where we now use z��1 to move the chain upward.

We must now calculate how much this surgery has increased the area. Any k –cell
that had been at height h has now been moved to height 0, each time multiplying the
volume by at most m, giving a total volume of mh . How big can h be? At most n,
since there must be at least one cell at each height for a top cell to be connected to z .
Thus our n k –cells have been replaced by at most nmn cells at height zero.

Note that this upper bound is often much larger than the actual distortion. By Theorem
3.2.1, if m > 1, then the k –th order Dehn function of the subgroup must be greater
than exponential for the complexity bound to be greater than the one provided by the
Dehn function. One problem is the height—the upper bound of n is almost certainly
too large. In Section 4.4, we will find other ways to bound the height in a particular
class of examples so that mh can be made much smaller.

4.3 Heisenberg groups

One special case of a group G DZ2 Ì� Z is the Heisenberg group, where � D � 1 0
1 1

�
.

This is also commonly written as

H3 D hx;y; z j Œx;y�D z; Œx; z�D Œy; z�D 1i:
(Note that y and z generate the Z2 , and conjugation by x corresponds to the given
isometry.) We can create “higher-dimensional” Heisenberg groups H2nC1 with pairs
of generators xi , yi , along with z , such that each commutator Œxi ;yi � is z , and all
other pairs commute. Note that any Heisenberg group is embedded in Heisenberg
groups of higher order.

These groups are interesting to us in part because, while H3 has cubic Dehn function
(see [7]), all higher dimensional Heisenberg groups have quadratic Dehn function, a
theorem proven analytically by Allcock in [1] and later combinatorially by Olshanskii
and Sapir in [14]. Thus, by Theorem 3.2.2, the distortion of H3 in H5 or any higher-
order Heisenberg group is at least n3=2 .
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Further, we can construct an upper bound as follows: consider the intermediate group
H3 �Z, where Z is generated by y2 . Then we have

H3 �H3 �Z�H5 D .H3 �Z/Ì Z;

with the action given by x2 commuting with H3 and sending y2 to y2z . The first
containment is undistorted, so by Corollary 3.3.2 (ii), the distortion of H3 in H5 is at
most the distortion of H3 �Z in H5 . Directly applying Theorem 1.1.3 would give us
an exponential upper bound, but we can modify it a bit: notice that the automorphism
preserves all relators except commutators Œy2; s� for s D x1;y1 , each of which goes to
two relators: a copy of itself, and the commutator Œz;y2�. Thus repeated applications of
the automorphism only increase the image by one. Thus the final volume is at most nh,
for height h, which is at most n. Therefore n2 is an upper bound for the area distortion,
an improvement over the bound of n3 given by the Dehn function of H3 .

Conjecture 2 The area distortion of H3 in H5 is n3=2 .

The reason for this is that the upper bound fails to take into account the “side area”
coming from any filling; conceptually, any y2 edge of height h ought to be creating a
side with .h� t/ relators at height t , creating a total area of h2 .

4.4 Abelian–by–cyclic groups

Note that in this section, upper bounds are found without regard to the topology of the
objects, and lower bounds are given by filling spheres with balls, so that the methods
and results described work equally well if distortion is defined via homotopy rather
than homology.

A group � is abelian–by–cyclic if there is an exact sequence 1!A! �! Z! 1,
where A is abelian. By a theorem of Bieri and Strebel, given a finitely presented,
torsion-free abelian–by–cyclic group � , there is an m�m matrix M with integer
entries so that � has the presentation

�M D hx1; : : : ;xm; t j Œxi ;xj �D 1; txi t
�1 D �.xi/ for 1� i; j �mi;

where � is a homomorphism taking xi to x
a1

1
x

a2

2
� � �xam

m , where the aj form the
i –th column of M . Several ideas from Farb and Mosher [9] will help us to find the
k –volume distortion of Zm in �M .

We can construct a space XM on which �M acts properly discontinuously and co-
compactly by isometries, so that XM and �M are quasi-isometric. Topologically, this
space is Rm �TM , where TM is a directed tree with one edge entering each vertex
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and det.M / edges leaving each vertex. Let each edge of TM have length 1, and fix a
particular vertex v0 . This choice of v0 gives us a height function from TM to R, where
h.v0/D 0. We can extend this to a height function hW XM !R, where h.v0/D 0, by
projecting to TM . Then .Zm Ì Z;Zm/ and .XM ;Rm � fv0g/ are quasi-isometric as
pairs.

We can also consider the continuous Lie group GM DRm ÌM R. Here multiplication
is given by .x; t/ � .y; s/D .xCM ty; t C s/. This space is a Riemannian manifold
with left-invariant metric

gij .x; t/D
�
.M�t /T M�t 0

0 1

�
:

While this metric involves M , choosing any power of M will give us a quasi-isometric
space, so that we may replace M with M 2 (for example, if det.M / < 0) or M�1 (if
0< det.M / < 1; this amounts to flipping the space vertically) as we wish.

We will then be able to integrate using this metric to find volumes. We also have a
natural height function on GM given by the last coordinate.

The spaces XM and GM generally differ; if j det.M /j > 1, then there is branching
in XM , and it is not a manifold. But there is a relationship between them that allows
us to say that they have the same k –volume distortion. This relationship can be seen
in the form of a commutative diagram, as seen in Figure 5.

XM
gM

{{
h

��

�M

""
GM

� ##

TM

{{
R

Figure 5: Relationship between XM and �M

Lemma 4.4.1 The volume distortion function VolDX of Rm�fv0g in XM is equiva-
lent to VolDG of G0 D ��1.0/ in GM .

Proof Choose some cross-section ygW GM !XM so that the image contains v0 ; this
gives an isomorphic embedding of GM into XM . Given a chain in XM with boundary
in Rm � fv0g, we can map it under gM to a chain in GM with boundary in G0 . We
can then fill the chain in G0 and use yg to pull this back to a filling in Rm � fv0g; this
tells us VolDX � VolDG . The same process can be used to show the inequality holds
the other way, giving us equivalent functions.
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Note that pulling back via yg is possible only because our filling lies entirely at height
zero, on which g and yg act as inverses. (This issue is important when considering Dehn
functions in these groups, where the boundary is no longer restricted to a particular
vertex in the tree; see Brady and Forester [4].)

We may now simplify the situation to considering the height zero subspace Rm inside
of GM . By [9], this group is quasi-isometric to GN , where N is the absolute Jordan
form for M , that is, a matrix with the absolute values of eigenvalues along the diagonal
and ones and zeroes elsewhere, in accordance with the Jordan form. This quasi-isometry
preserves the height-zero subspace, so we may restrict our attention to matrices in
Jordan form with positive real eigenvalues.

4.4.1 Diagonalizable matrices Suppose M is in absolute Jordan form, det.M /� 1.
Call the .i; i/–th entry �i . If M has ones on the superdiagonal, the situation gets
somewhat more complicated; we shall first restrict our attention to the case that M is
diagonal. In this case, the geometry of the resulting Riemannian metric is particularly
easy to understand. Topologically, we have a space of the form Rm �R, where the
last coordinate, denoted t , will be considered the height. The metric either expands (if
�i < 1) or contracts (if �i > 1) the xi direction as the height increases. We have the
metric

ds2 D dt2C
mX

iD1

��2t
i dx2

i :

Further, given a map gW �k!GM , with image given by .g1;g2; : : : ; t/, the k –volume
of g in GM is Z

�k

�X
��2t

I jDI gxj2
�1=2

dx;

where I is a choice of k of the basis vectors, jDI gxj is the determinant of Dg

restricted to those k vectors, �I is the product of the �i of M for i 2 I . Note that
the choice mC 1 gives the t direction; thus �mC1 D 1.

Theorem 4.4.2 Let M be a diagonal k � k matrix, with .i; i/–th entry �i 2RC and
determinant d > 1 and at least two eigenvalues off the unit circle. Then the k –volume
distortion of the height-zero copy of Rk in GM is the function

VolD.k/.n/D n1Clog d=log˛; where ˛ D
� kY

iD1

maxfd; �ig
�ı

d:

This proof has benefitted, both in scope and simplicity, from ideas provided by Brady
and Forester in [4].
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The proof will be approached in this way: in order to show that this is the exact
distortion function, we want to show that it is both an upper and a lower bound. For
the latter we need merely exhibit an example of a cycle whose filling volume in the
ambient space is bounded above by n and whose filling volume in the subspace is at
least n1Clog d=log˛ . By the definition of the volume distortion function, this must be a
lower bound.

Proving that it is an upper bound is more complicated, and we will do this first. Ideally,
we would use an argument analogous to the one that shows that the xy –plane is area-
undistorted in Sol: start with a chain with boundary in Rk and volume n. Take the
integral representing this volume, and show that we can control the increase in volume
that occurs when the height t is projected to zero. This would work if we could bound
the height of the filling by a certain value hD h.M; n/, but unfortunately we cannot.
Instead, we will only project the piece that is below the height h. This projection may
not completely fill the cycle in Rk , but we will show that the chain needed to finish
filling the cycle cannot be too big, which we do by containing it in a k –dimensional
“box” and bounding the volumes of the sides of this box in order to bound the total
volume. We do this by showing that when we project xi to zero, the projection of the
original chain must contain a cylinder whose base is one of these sides and height is h;
since this cannot be greater than n, we get the desired bound on the remaining volume.
This entire process is illustrated in Figure 6–Figure 10.

Proof To simplify later calculations, define pi D d=�i and p DQk
iD1 minfpi ; 1g.

We can then compute that ˛ can also be written as

˛ D dk�1

p
I

this formulation requires more notation, but will better match the approach taken in the
proof.

t

yx

t

yx

Figure 6: Start with a cycle with a filling of volume n and cut off at height h .
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t

yx

t

yx

Figure 7: Project low piece down; we want to bound the volume of the pieces
not filled.

t

yx

Figure 8: Do this by projecting each coordinate to zero; bound the volumes
of the projections.

t

yx

Figure 9: The projection must contain a cylinder; this bounds the volume at
height zero.

h

c

b

a

Figure 10: A cylinder with base wi (and thus base volume vi ) and height h

must appear in the projection.
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We begin by showing this function is an upper bound. Suppose u is a k –chain in GM

with volume n, and boundary contained in Rk . Then it will suffice to prove that we
can fill @u in Rk with volume equivalent to n1Clog d= log˛ .

First, break u into two pieces: the “low” piece uL consisting of all of u with height
less than hD log n= log˛ , and the “high” piece uH .

The projection �t sending t to 0 sends u to a filling of @u, but increases the volume.
We know that the volume of �t .uL/ is an increase of the volume of uL by a factor of
at most dh D d log n= log˛ D nlog d= log˛ .

Now we need only bound the total volume of w , the regions interior to @u not covered
by �.uL/. First note that the map �i projecting xi to 0 is volume nonincreasing. We
will find bounds Vi on the .k�1/–volume of wi D �i.w/; this allows us to bound the
final volume

(4-3) V .w/�
�Y

Vi

�1=.k�1/

In particular, we will show that if pi > 1, then Vi � Cin, where Ci is independent
of n, and if pi < 1, then Vi � Cinph

i .

Given these bounds on the Vi , notice that when we multiply them together, we get a
factor of ph

i for each pi < 1. This is exactly the definition of ph . Thus

(4-4)
Y

Vi � C nkph:

We can use the relationships between p; ˛; h, and n and basic properties of logarithms
to find that

(4-5) ph D n.k�1/ log d=log˛�1:

We can now substitute Equation (4-4) and Equation (4-5) into Equation (4-3) to find

(4-6) V .w/� .C 0n.k�1/.1Clog d=log˛//1=.k�1/ D C 0n1Clog d=log˛:

This allows us to fill all of @u at height zero with volume at most .1CC /n1Clog d= log˛ ,
proving our upper bound.

To finish the proof of the upper bound, it remains to show that these bounds on the Vi

are valid. The process we describe is illustrated in Figure 10.

Without loss of generality, assume i D k . Let a be a point in the cylinder, say with
.x;xk ; t/–coordinates given by .q; 0; h0/. Then .q; 0; 0/ is interior to wk , so there
is some qk such that b D .q; qk ; 0/ 2 u. Now consider the line .q; qk ; t/. This will
intersect u for the first time at some height H > h. In particular, the point .q; qi ; h0/
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is interior to u. Then the line .q;xi ; h/ must intersect u at some point c . Thus
�k.c/D a.

The volume of the cylinder is given by
R h

0 p�t
i Vi dt . We will restrict the height further:

if pi > 1, we will consider only the cylinder from height 0 to 1; if pi < 1 then we will
consider the cylinder from height h� 1 to h. In the former case we haveZ 1

0

p�t
i Vi dt D� 1

log pi
.p�t

i Vi/j10

D Vi

log�i
.1�p�1

i /:

Since this volume is less than n, we must have

Vi � n.log pi/.1�p�t
i /�1 D Cin:

Similarly, in the latter case we haveZ h

h�1

p�t
i Vi dt D� 1

log pi
.p�t

i Vi/jhh�1

D Vi

j log pi jp
�h
i .1�pi/:

Thus Vi � j log pi jnph
i .1�pi/

�1 D C nph , as desired.

To show this function is also a lower bound, we need to construct an example exhibiting
this amount of distortion. We do this by constructing a .k�1/–dimensional box with
side lengths chosen so that each projection �i gives an object with .k�1/–volume
equivalent to the upper bound Vi found above, that is, Vi D n when p > 1, and
Vi D nph

i when pi < 1.

In order to do this, set li D .
Q

Vi/
1=.k�1/=Vj . Now build a .k�1/–hyper-rectangle

with the length in the xi direction equal to li .

This box can be filled in the ambient space by flowing the box up to the height h, where
again hD log n= log˛ and then filling the resulting box at height h. This height was
chosen so that the volume obtained by flowing each side of the box is some C n, and
the volume at height h is also C n. Thus the overall volume of this filling is bounded
above by C 0n.

The subspace is Euclidean, so we know the best filling for the box, which is exactlyQ
Vi D C n1Clog d=log˛ , as calculated in Equation (4-3) through Equation (4-6), which

is exactly the value of the volume distortion function.
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In the case M has one eigenvalue off the unit circle, we must amend the bound
somewhat. In particular, it is necessary to use the Lambert W function, that is, the
inverse of the function enn.

Theorem 4.4.3 If M is as above, but has exactly one eigenvalue off the unit circle,
say � > 1, then the k –volume distortion function is .nk=W .n//1=.k�1/ , where W is
the Lambert W function.

Proof The reason we cannot use exactly the proof of Theorem 4.4.2 is that when we
project x1 to zero, we obtain a space with a Euclidean metric. Thus the volume of the
cylinder will be h �V1 .

Because of this, we must change h to W .n/ and set V1D n=h. Notice that all other Vi

will still be n, since these projections behave as before. With these changes, the
argument for the proof of Section 4.4 works exactly, giving a k –volume distortion
function of �hn, which is equivalent to .nk=W .n//1=.k�1/ .

By Lemma 4.4.1 above, the distortion of Zk in �M is the same as that of Rk in GN ,
where N is the absolute Jordan form for M , so we immediately have:

Theorem 1.1.2 Let M be an integer-entry k –by–k diagonalizable matrix with
det.M /D d � 1, and let �i denote the absolute value of the i –th eigenvalue. Then the
k –volume distortion of Zk in �M depends only on the eigenvalues of M . If M has
at least two eigenvalues off the unit circle, the volume distortion is

VolD.k/.n/� n1Clog d= log˛; where ˛ D
� kY

iD1

maxf�i ; dg
�ı

d:

If M has exactly one eigenvalue off the unit circle,

VolD.k/ n�
�

nk

W .n/

�1=.k�1/

:

Otherwise, VolD.k/.n/� n.

The case in which M has determinant d D 1 is covered by Corollary 1.1.4, since in
this case M gives an automorphism, and Zk has a unique k –cell. This presents one
extreme, the case in which volume is undistorted.

At the other extreme, when all eigenvalues are at least 1, and when at least two
eigenvectors are greater than one, then the k –volume distortion is maximal, ie nk=.k�1/ ,
which is the .k�1/–order Dehn function for Zk .

Algebraic & Geometric Topology, Volume 11 (2011)



Volume distortion in groups 683

We may wish to consider the k –volume distortion of Zm in �M with k < m, that
is, the distortion of a smaller-dimensional volume. We can easily bound this below:
consider projecting m� k of the xi to zero; this gives us some Zk � GM 0 , where
M 0 is a k –by–k matrix. Each projection is volume nonincreasing, so these bound
the distortion from below. Thus the largest such distortion out of all choices of m� k

dimensions provides a lower bound.

Corollary 4.4.4 For any integers m > 1 and 1 < k <m, there exists a pair .G;H /

with distorted k –volume but undistorted m–volume.

Proof Simply choose a group GD�M with M an m–by–m matrix with det.M /D1

and at least one eigenvector off the unit circle, and let H D Zm .

Ideally, we would like groups that exhibit stronger behavior: for example, a pair in
which only the 3–volume is distorted. Examples exist for the area case, (for example,
in [10]) but have proven more difficult to construct in general.

4.4.2 Other matrices When the matrix M is not diagonalizable, the situation be-
comes more complicated. In this case, the automorphism no longer preserves the
eigendirections, but also changes lengths along other directions at a rate proportional
to a polynomial in the height. This means that techniques involving projection become
more difficult to use.

Conjecture 3 Given a matrix M with at least one eigenvalue off the unit circle, the
distortion of Zk in Zk ÌM Z is the same as that of Rk in Rk ÌN R, where N is a
diagonal matrix with diagonal entries given by the norms of the eigenvalues of M .

The idea behind this conjecture is that the exponential change in length created by the
eigenvalues dominates the polynomial change given by the ones on the superdiagonal,
and so, in a large-scale sense, we should be able to ignore the polynomial contribution.

This leaves one more case: when all of the eigenvalues are on the unit circle. In this
case, there is no exponential growth coming from the eigenvalues, and so it is the
polynomial effect that comes into play.

Such a matrix will have absolute Jordan form in which each block has ones on the
diagonal and superdiagonal, and zeroes everywhere else. Thus it can be described
completely by the number of blocks, say c , and the size of each block, which we will
denote by ai for i 2 f1; 2; : : : ; cg.
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Theorem 4.4.5 Let M be a nondiagonalizable integer-entry m–by–m matrix whose
eigenvalues are all on the unit circle. Suppose the absolute Jordan form for M has b

blocks, and denote by ai the size of the i –th block. Then for k <m, Zm is k –volume
distorted in �M .

In fact, by choosing the last ki dimensions from the i –th block, so that
P

ki D k , we
can bound the distortion below by the function

n1Cˇ=˛

˛ D .k � 1/
X

i

ki.ai � ki/C 1

2

X
i

k2
i �

k

2
where

ˇ D
X

i

ki.ai � ki/:and

We will prove this by providing a family of examples with k –volume of n in GM and
n1C˛=ˇ in Rm . Essentially, we do this by constructing the top and sides of a box in
GM , with the lengths and directions of the edges chosen in a way that depends on M

and the ki . Then this is a chain whose boundary is a cycle in Rm ; we can either fill
this with the box given above, or the bottom of the box, which lies entirely in Rm .
These will give us the distortion function in question.

M h

Figure 11: Multiply by M h .

Figure 12: The chain is the top and sides of a box.

Proof As in the diagonalizable case, we need only to find the k –volume distortion
of Rm in GM D Rm ÌM R, where M is in absolute Jordan form. We will show
that distortion exists by providing a family of examples of k –cycles with a particular
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distortion. Note that the k –order Dehn function for Euclidean space, nk=.k�1/ , gives
an upper bound on the volume distortion [12]. However, this will generally not match
the lower bound we will be constructing.

To construct examples, choose a set J D fj1; j2; : : : ; jkg � f1; 2; : : : ;mg where the
corresponding set of rows of M are subject to the following conditions:
� There is at least one block of size aji

> 1 such that at least one, but not all, rows
from that block are included.

� If one row from a block is included, than all later rows in the block are also
included.

The former condition is necessary to ensure that distortion exists; the latter will help
us to calculate the exact distortion, and ensures that the largest possible distortion is
attained in the process that follows.

We will also need k positive real numbers, say l1; : : : ; lk , which will represent the
lengths of the sides of the k –box we will be making.

Let f W Ik ! Rm map the unit box to the box with edges parallel to the xji
with

length li , that is, fji
.u/D liui and fi is zero otherwise. Let pi W Ik�1! Ik be the

map embedding Ik�1 in Ik with ui D 0 and qi the corresponding map with ui D li .

From these maps, we construct the final chain: let F W Ik ! Gm be the function
.M hf; h/, and Fi D .M hf ıpi ; huk/, and Hi D .M hf ıqi ; huk/. The chain will be

F [
k[

iD1

Fi [
k[

iD1

Hi :

The function F will correspond to the top of the box, and the Fi and Hi to the sides.
In the case of two dimensions, we get the picture in Figure 12.

Next we need to compute the volumes for this example. By Section 2.1.3 we know
that the volume is Z q

det
�
.DFi/T .M�t /T M�tDFi

�
for Fi , and similarly for Hi and F .

Case 1 M has one block of size m.

In this case, we must choose J D fm� kC 1;m� k; : : : ;mg. Let Mk be the matrix
containing just the last k columns of M . Then, for F , t D h and DF DM hDf . SoZ q

det
�
.DFT .M�t /T M�tDF

�D Z q
det.DFT DF /

which is the Euclidean volume, or l1l2 � � � lk .
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Next we note that DFi DM hDf , and Df is a matrix with li in the .ji ; i/ position
and 0 elsewhere, but t is now allowed to vary. So we haveZ q

det
�
.DFi/T .M�t /T M�tDFi

�D Z q
det .Df /T .M h�t /T M h�tDf

D
Z q

det .Df /T .M v/T M vDf

D l1l2 � � � lk
Z q

det .M v
i /

T M v
i

where Mi is the matrix made of the columns of M corresponding to the elements
of J , except ji . By the Cauchy–Binet theorem, this equals

l1 � � � lk
Z sX

�

det Mi;�

where Mi;� is the .k�1/� .k�1/ matrix consisting of a choice of k � 1 rows of Mi

(with order preserved).

The largest such determinant is found by choosing the last k � 1 rows of Mi ; this
gives a matrix of the form0BBB@

vm�kC1=.m� kC 1/! vm�k=.m� k/! � � � vm�1=.m� 1/!

vm�k=.m� k/! vm�kC1=.m� kC 1/! � � � vm�2=.m� 2/!
::: � � � : : :

:::

vm�2kC1=.m� 2k/! � � � � � � vm�k=.m� k/!

1CCCA :
Note that, from left to right and bottom to top, the power of v increases by one, but
will jump and increase by 2 at the i –th column, because the ji column was left out.

The determinant of this matrix is v.k�1/.m�k/C.k�i// . Thus the volume we are seeking
is the integral of a polynomial of degree .k � 1/.m�k/C .k � i/, which gives a final
volume of

l1 � � � lk
li

h.k�1/.m�k/Ck�iC1:

The volume for Hi is identical. Next we want to choose the values for li and h so
that the distortion is as large as possible. Do this by setting the volumes of the top and
sides all equal to each other. In particular, this will happen when

li D h.k�1/.m�k/Ck�iC1:
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With this choice of li , we find that the total volume in GM is a polynomial of h of degree

kX
iD1

..k � 1/.m� k/C k � i C 1/D k.k � 1/.m� k/C k2C k2� k

2
:

Note that this is ˛ when there is only one block.

Next we find the volume in Rm of the boundary of this chain: this is

li � � � lk � � � det.M h/D h˛ � hk.m�k/:

If we choose h so that the area in the ambient space is n, then we have hD n1=˛ , and
the area in the subspace will be h˛Cˇ D n1Cˇ=˛ .

Case 2 M has multiple blocks.

In this case, the calculations proceed much as above, but now the different blocks
contribute powers of different sizes. In particular, the volume of Fj is now equivalent to

l1 � � � lk
lj

h

�Pb
iD1 ki .ai�ki /

�
�ajCkjCıj

where the sum is taken over the blocks and ıj is a number between 1 and the number
of dimensions chosen for the block containing the j –th choice. The volume of F is
still the product of the lj , so we choose li , as before, to be power the of h given in
the volume of Fi . Then the volume of the chosen chain is a polynomial in h of degree

kX
jD1

bX
iD1

ki.ai � ki/� aj C kj C ıj D
bX

iD1

.k � 1/ki.ai � ki/C
k2

i C ki

2
D ˛:

Further, the volume in the subgroup is li � � � lk det.M h
J
/, where MJ is the k�k matrix

containing the j –th rows of M , with j 2 J . This is a polynomial in h of degree
˛Cˇ , with

ˇ D
bX

iD1

kI .ai � ki/:

As the ki have been chosen so that there is some .ai �ki/ > 1, this shows that volume
distortion exists.
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4.4.3 Area distortion We can combine these results to answer a question of Gersten
[10, page 19]:

Theorem 1.1.1 The group Zm , m � 3, is area undistorted in �M if and only if M

has finite order.

See Figure 1 for a flow chart for the various possible area distortion functions.

Proof The latter condition is equivalent to saying that M is diagonalizable and all
eigenvalues of M are roots of unity, which, by a theorem of Kronecker, is true if and
only if all eigenvalues of M are on the unit circle (see for example [11]). Then by
Theorem 4.4.2, Zm is undistorted.

Otherwise, let us consider the possible cases.

Case 1 All eigenvalues are on the unit circle.

Since no power of M is the identity, it must be the case that some Jordan block of M

has ones along the superdiagonal. Then Theorem 4.4.5 gives us a lower bound on area
distortion.

Case 2 There is a block of size more than one with eigenvalue off the unit circle.

It will suffice in this case to show that area is distorted in the case M D � � 1
0 �

�
, as this

will always be a subgroup in GM , giving a lower bound on the volume distortion.

Consider the square of side length n��h at height hD log n=log�. Projecting this to
height zero gives a parallelogram in R2 with area at least n2 ; however, we can fill it
in GM with five parallelograms each of area linear in n. Thus area is quadratically
distorted.

Case 3 There are at least two eigenvalues off the unit circle.

Then by Theorem 4.4.2 it must be the case that the distortion is nonlinear.

Notice that if there are at least three such eigenvalues, then two must lie on the same
side of the unit circle, which means that the area distortion is quadratic, the maximum
possible.

Case 4 There is exactly one eigenvalue off the unit circle.

In this case, Theorem 4.4.3 tells us the distortion is bounded below by n2=W .n/.
The distortion may in fact be higher if we have large blocks associated to unit-length
eigenvectors.
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In the case m D 2, we can also classify area distortion, though the conditions are
different: here area is undistorted if and only if det.M /D 1. Otherwise, M has two
eigenvalues, say with absolute values � and �, and by Theorem 4.4.2, area distortion is
quadratic (maximal) if � and � are both greater than one, and n2Clog�.�/ if �> 1>�

and �� > 1. If � > 1 and �D 1, then the distortion is n2=W .n/. The examples from
Section 4.1.2 and Section 4.1.3 (Sol and Nil geometry) are cases of this sort where
det.M /D 1.

While the cases become more complicated with higher dimensions, it should be possible
to generalize Gersten’s conjecture as follows.

Conjecture 4 Let M be a square matrix of size at least m with nonzero determinant,
and let k <m. Then the group Zm is k –volume undistorted in �M if and only if M

has finite order.
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