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The mod-2 cohomology ring of the third Conway group
is Cohen—Macaulay

SIMON A KING
DAVID J GREEN
GRAHAM ELLIS

By explicit machine computation we obtain the mod—2 cohomology ring of the third
Conway group Cos. It is Cohen—Macaulay, has dimension 4, and is detected on the
maximal elementary abelian 2—subgroups.

20J06; 20-04, 20D08

1 Introduction

There has been considerable work on the mod—2 cohomology rings of the finite simple
groups. Every finite simple group of 2—rank at most three has Cohen—Macaulay
mod-2 cohomology by Adem and Milgram [2]. There are eight sporadic finite simple
groups of 2-rank four. For six of these, Adem and Milgram already determined the
mod—2 cohomology ring, at least as a module over a polynomial subalgebra [3, VIIL.5].
In most cases the cohomology is not Cohen—Macaulay. For instance, the Mathieu
groups My, and M;3 each have maximal elementary abelian 2—subgroups of ranks 3
and 4, meaning that the cohomology cannot be Cohen—Macaulay: see [3, page 269].

The two outstanding cases have the largest Sylow 2—subgroups. The Higman—Sims
group HS has size 2° Sylow subgroup, and the cohomology of this 2—group is known
by Adem et al [1]. The third Conway group Cos has size 2!° Sylow subgroup.

In this paper we consider Cojz. It stands out for two reasons, one being that it has
the largest Sylow 2—subgroup. The second reason requires a little explanation. The
Mathieu group M7, has 2-rank three. Milgram observed that 2—locally it looks as
if M1, admits a faithful representation in the Lie group G,, but that is impossible.
Benson and Wilkerson made this more precise [10] by constructing a map of classifying
spaces with good properties in mod—2 cohomology.

Benson took a similar approach to Coj. After 2—completion, its classifying space
admits a map to that of DI(4). This is a monomorphism in mod—2 cohomology, and
H*(Cos3,T,) is finitely generated as a module over its image [4].
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The Dwyer—Wilkerson exotic finite loop space DI(4) has the rank four Dickson invari-
ants as its mod—2 cohomology [15]. So Benson’s result says that the Dickson invariants
form a homogeneous system of parameters for H*(Cos,IF,) in degrees 8,12, 14, 15.
Benson asks if these parameters form a regular sequence [5]. That is, he suggests that
H*(Cos,F,) might be Cohen-Macaulay. Certainly the Dickson invariants constitute a
filter-regular system of parameters by Benson [8, Theorem 1.2].

By a mixture of machine computation and theoretical argument we obtain the following
theorem, answering Benson’s question in the affirmative:

Theorem 1.1 The mod-2 cohomology ring H*(Cos, ;) of the third Conway group
Cos has the following properties:

(1) As a commutative Fy—algebra, it has 16 generators and 71 relations. A full
presentation is given in Appendix A. The smallest generator degree is 3, and the
greatest is 15. The greatest degree of a relation is 33.

(2) It is Cohen—Macaulay, having Krull dimension 4 and depth 4.

(3) It has zero nilradical, and is detected on the maximal elementary abelian 2—
subgroups. These all have rank 4, and form four conjugacy classes.

(4) Its Poincaré€ series is of the form

Q)

(1=5) (1 =12) (A =114 (1 —11%)

where f(t) € Z[t] is the monic polynomial of degree 45 with the coefficients

1,1,1,1,2,3,3,4,4,6,7,8,9, 10, 10, 11, 13, 12, 14, 15, 13, 13, 15,

14,12, 13, 11, 10, 10, 9,8, 7,6,4,4,3,3,2, 1,1, 1, 1.

P(t) =

Remark 1.2 As we can hardly expect each reader to write their own program to check
our computational results, it is highly desirable to have some consistency checks for the
final result. Benson—Carlson duality [9, Theorem 1.1] provides one. It states that if a
cohomology ring is Cohen—Macaulay, then it is Gorenstein in the graded sense with
a—invariant zero.

We find that H*(Cos, ;) is Cohen—Macaulay, and recover Benson’s result that the
Dickson invariants form a system of parameters. Hence Benson—Carlson duality re-
quires the numerator f(¢) in the above Poincaré series to be symmetric of degree
45 =7+ 11 4 13 4 14, in the sense that the coefficients remain the same when read
from back to front. Observe that this is indeed the case.

We computed the cohomology of the Sylow subgroup using our package [21]. Then
we computed the stable elements degree by degree, following Holt [19]. We used our
variant [18, Theorem 3.3] of Benson’s test [8] to tell when to stop.
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Remark 1.3 We actually constructed Benson’s Dickson invariants in H*(Cos,F»),
in order to obtain an explicit filter regular system of parameters.

Structure of the paper

We recall the stable elements method in Section 2, discussing how to reduce the number
of stability checks. In Section 3 we consider how to implement stability checks and
Benson’s test for non— p—groups. We highlight the relevant group theory of Cos in
Section 4, proving Theorem 1.1.

Acknowledgements King was supported by Marie Curie grant MTKD-CT-2006-
042685. Green received travel assistance from DFG grants GR 1585/4-1, GR 1585/4-2.

2 Stable elements

Let p be a prime, G a finite group, and H < G a subgroup whose index is coprime
to p. Following Holt [19, page 352] we compute H*(G,F,) as the ring of stable
elements (see Cartan and Eilenberg [12, XII, Section 10]) in H*(H,F ). Recall that
x € H*(H,F)) is stable if

VgeG ResH, .(x)=g*ResH ,,(x), where g*= cg for cg(h) = ghg™!.

Note that H need not be a Sylow subgroup [6, Proposition 3.8.2]. The stability
condition associated to g only depends on the double coset HgH € H\G/H .

Using intermediate subgroups

Let S be a Sylow p-—subgroup of the finite group G'. Holt observed that the total
number of stability conditions is reduced dramatically if one works up a tower of
subgroups

S=Gy<G; <G, Z---=Gy =G,
where each |G; : G;_1| is as small as possible. One determines H*(G;,F ) as the ring
of stable elements in H*(G;—1,Fp). Often we take G; = Ng(Z(S)).

Discarding double cosets

For some double cosets the associated stability condition is satisfied by every x €
H*(H.,Fp). Such double cosets can be discarded.

For example, the trivial double coset H1H can always be discarded. And HgH can
be discarded if H8 N H has order coprime to p. Proposition 18 of [17] generalizes to
a group-theoretic criterion for the redundancy of some double cosets.
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Lemma 2.1 Let H < G be a subgroup with p’ index. Let g € G, and let T be a
Sylow p—subgroup of H& N H . Suppose that transfer from H*(T,F,) to H*(G,Fp)
is the zero map. Then the stability condition associated to HgH is redundant.

In particular if there is a p—group W # 1 such that T x W < G, then the stability
condition associated to HgH is redundant.

See Remark 4.2 for an application of this result.

Proof We do not claim that the stability condition is always satisfied. The proof of the
stable elements method in [6, Proposition 3.8.2] uses a weaker condition: that stability
holds after transfer from H& N H to G. So if the transfer map is zero, then the double
coset is redundant. But transfer from H& N H factors through transfer from 7" to G,
since transfer from 7' to H& N H is a split surjection.

Last part: Transfer from 7' to G factors through transfer from 7" to 7" x W, which is
zero: for restriction from 7" x W to T is a split surjection, and restriction followed by
transfer is multiplication by |W|. a

To perform the stability test for HgH we first construct the induced homomorphisms
Resggm g and g* Resgm < iy » determining the images of the ring generators. If each
generator has the same image both times then we discard the double coset. Similarly,
we discard it if the pair of maps has been seen already. This too saves effort, for the
most time-intensive step is the next one: working out the matrices of the two linear
maps from H"(H,Fp) to H"(H& N H,I,) degree by degree.

3 Computational aspects

Representing cohomology rings

We consider how to represent the cohomology ring of a finite group on the computer.
Reusing the results of previous computations saves time, but it does involve coherence
issues.

Let G be a finite group and S < G a Sylow p—subgroup. We assume that we already
know the cohomology of a group S isomorphic to S. In order to make use of this
computation we choose an isomorphism f: S — S. We can then store H*(G,F p) by
recording the map f together with the image ring R¢,  given by

Rg.; = [*(Res§ H*(G.Fp)) € H*(S.Fp).
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Now suppose that ¢: G; — G» is a group homomorphism, and that we calculated
H *(_G,-,IFP) for i = 1,2 using the Sylow p-—subgroup S; and the isomorphism
fi: Si — S;i. We represent ¢* as the composition

= o =~
RG2,f2 - H*(G2’Fl7) - H*(GI’FP) - RGl,fl :

As ¢(S1) isa p-subgroup of G,, we may pick g € G, such that ¢'(S;) < S,, where
¢’ =cgo¢p. Then ¢’ =¢*, since Cg is an inner automorphlsm of Gy. Let ¢: S1— S»
be the homomorphism b= f2 o¢’o f1. Then (;5 maps Rg, r, C H* (Sz,]Fp) to
Rg, .5, © H*(S1,F)) in the desired way.

Stability and the representation

Let S < H <G, where S is Sylow in G and H*(H,F ) is known: so we know Ry r
for an isomorphism f: S — S. The stability test for HgH asks for the equalizer of
¢y ¢y H*(H,Fp) — H*(HENH,Fp), where ¢1,¢y: HENH — H are ¢1(h) =h
and ¢y (h) = ghg™!

Typically the cohomology of H8 N H will not yet be known, but the cohomology of
its Sylow subgroup 7" will be. We have two options:

* We compute H*(H® N H,F,) and construct ¢, ¢ as above.

* We take the equalizer of v, v): H*(H,F,) — H*(T,F)) instead, where
Y; = ¢;i|T. This works since Res? NH g injective.

To our surprise, the first method proved to be more efficient. One possible explanation
is that H"(H® N H,F)) often has considerably smaller dimension than H"(T,F ).
This reduces the size of the matrices representing the two maps: and matrix size seems
to have the greatest influence on running time.

Remark Holt [19] chooses good double coset representatives at the outset. In effect
we are taking the first ones we find and then correcting them later on.

Computing stable elements degree by degree

We have translated each stability check into taking the equalizer of two known ring ho-
momorphisms. We now have to determine the equalizers and then take their intersection.
One approach would be to use efficient algorithms for ideals, though we might have to
implement these ourselves. Another would be to compute parameters for H*(G,Fp)
using eg Chern classes, and then to use algorithms for noetherian modules.
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We take a different approach and work degree by degree. Then performing a stability
check just means taking the nullspace of a matrix. This is easier to implement, but
linear algebra on its own cannot tell when to stop.

Following Benson, we write ty H*(G,IF)) for the [F,—algebra generated by the in-
decomposable elements of H*(G,F ) in degree < d, subject to the relations which
hold in H*(G,Fp) in degrees < d. Assume that we already have t;_; H*(G:F)),
and have recorded the image in H*(H,F,) of each generator. So we can construct
the image in HY (H, T p) of each degree d standard monomial of 751 H*(G.Fp). A
degree d relation in H*(G,F,) corresponds to a linear dependence between these
images; and if the images do not span the subspace of stable elements in H d (H,Fp),
then we get new generators. This determines 77 H*(G,F)p).

Remark The third author has implemented the stable elements method in his HAP
system. With Dutour Sikiri¢ he used it to compute the integral homology of the Mathieu
group M4 out to degree four [14].

Constructing filter regular parameters

We use Benson’s test for completion [8, Theorem 10.1] to tell when d is large enough
to ensure that iy H*(G,F,) = H*(G.F)). The key step is to construct homogeneous
elements /iy, ..., h, € 1y H*(G,F,) which form a filter-regular system of parameters
for both 1 H*(G,Fp) and H*(G,F)). Here, r = p-1k(G). We need one technical
result.

Lemma 3.1 Suppose that cy,...,c, € H*(G,Fp) is a filter-regular sequence in
H*(S,Fp). Then it is filter-regular in H*(G,F ) too.

Proof H*(G,F)) is a direct summand of the H*(G,F,)-module H*(S,F,), by
virtue of the transfer map. The result follows. a

Assume that d is large enough, so that H*(G,F)) is finite over 1 H*(G,F)). By
[8, Corollary 9.8] there are filter-regular parameters d, ..., d, which restrict to each
maximal elementary abelian p—subgroup as (powers of) the Dickson invariants.

Parameters in low degrees allow us to terminate the computation earlier. The Dickson
invariants are in rather high degree. Sections 2 and 3 of [18] present several ways
of lowering the degrees. One of these methods can however fail for non— p—groups:
the weak rank-restriction condition [18, Lemma 2.3]. So we proceed as follows. Set
z = p—1k(Z(S)).
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(1) Construct the Dickson invariants d1, ..., d, if this is not too difficult.

(2) Using dy,...,d, or otherwise, find cy,...,c; € 1y H*(G,Fp) which restrict
to parameters for H*(Z(S),F ). For non— p—groups there is no guarantee that
these ¢; may be chosen from among the ring generators.

(3) Using [18, Lemma 2.3], find filter-regular parameters cy, ..., c, for H*(S,F)),
extending cy,...,c;. If ¢;41,..., ¢, are stable then cy, ..., ¢, is filter-regular
for H*(G,F,) by Lemma 3.1.

(4) If only ¢, fails stability, then replace it by any stable class that finishes off the
parameter system.

(5) Use the factorization and nilpotent alteration methods [18, Lemmas 2.5 and 2.7]
to reduce the degrees of dy,...,d, and/or cy,...,cr.

With luck we thus construct a filter-regular system of parameters and can compute
its filter-degree type. Benson’s test then gives us a degree bound involving the sum
of the parameter degrees. If this is too large then we use the existence result [18,
Proposition 3.2] for low-degree parameters over an extension field in order to apply our
variant of Benson’s test [18, Theorem 3.3].

4 The third Conway group

The Sylow 2-subgroup

The third Conway group Cos is simple and admits a degree 276 faithful permutation
representation [13]. The Sylow 2—subgroups have order 2'°. The Online ATLAS [23]
contains explicit permutations for the degree 276 representation. GAP [16] easily
constructs the Sylow 2—subgroup S'.

Despite its size, computing H*(S,F,) is a surprisingly routine application of our
program [21]. The result may be viewed online [20]. Duflot’s lower bound for the
depth [11, Theorem 12.3.3] is one, and the Krull dimension is four. In fact the depth is
three. This led Dave Benson to reiterate to us his conjecture that H*(Cos,F,) could
be Cohen—Macaulay.

The maximal elementary abelian subgroups

There are two conjugacy classes of involutions in Coj: classes 2A and 2B with
centralizer sizes 2,903,040 and 190,080 respectively. Using GAP one sees that Cosz has
four conjugacy classes of maximal elementary abelian 2-subgroups. Each has rank 4,
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and they are distinguished by the number of 2A elements they contain. In ATLAS
notation:

Vi =2A4,Ba4 Vy, =243 B> Vs =2A7Bs Ve =2A4%.

For each 1 <r <4 there is a subgroup 24" < V, containing all the 2A elements.

A tower of subgroups

The Sylow 2—subgroup has 484,680 double cosets in Cos. It is therefore essential that
we find a convenient tower of subgroups.

The order 4 elements in Cos form two conjugacy classes [13]. Type 4A elements have
size 23,040 centralizer, and type 4B elements have size 1,536 centralizer.

Lemma 4.1 Let S be a Sylow 2—subgroup of G = Cos.

(1) The centre Z(S) and the second centre Z,(S) have isomorphism types Z(S) =
C, and Zz(S) >~ CyxCy.

(2) Z,(S) has Frattini subgroup Z(S). So does each copy of C4 in Z5(S).

(3) Precisely one subgroup U < Z,(S) is generated by a type 4A element.

4 Ng(Z2(S)) =Ng(U) = Ng(Z(S)).
Proof The first two are easily checked in GAP [16] using the permutation representation.
For the third statement one inspects the four order 4 elements in Z,(S) = C4 x Cs,

finding two of type 4A, and two of type 4B. The centralizer sizes differ, so the two type
4A elements lie in the same cyclic subgroup.

The last part now follows, for Z(.S) is a characteristic subgroup of U, and no other
subgroup of Z,(S) is conjugate to U in G = Cos. a

Consider the tower of subgroups S = Gog < G; < G, < G3 < G4 = Coj given by
G = Ng(Z2(S)) G2 =Ng(U) G3 = Ng(Z(S)).

G3 is a maximal subgroup of Coj [13]. The sizes of the layers are as follows:

i [1Gi:Gi—1] | 1Gi-1\Gi/Gi—1|
1 3 2
2 15 3
3 63 3
41 170,775 7

As the trivial double coset can be discarded, working up the tower involves a total of
1 +2424 6 =11 stability conditions.
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Remark 4.2 We can discard 4 more double cosets when computing H*(Cos, F,)
from H*(G3,F,). Every maximal elementary abelian has rank 4, so if the Sylow
subgroup of G.f N G is elementary abelian of rank < 3, then Lemma 2.1 applies
with W = C,. There are three double cosets where the Sylow subgroup is elementary
abelian of order 4, and one where it is cyclic of order 2.

Proof of Theorem 1.1 We computed the mod-2 cohomology ring of the Sylow
subgroup using our package [21]. We then used the stable elements method and the
computational methods of Section 3 to work up the tower of subgroups.

The depth is a by-product of a computation based on Benson’s test. The depth of
H*(G;,F,) is weakly increasing in i : see [7, Theorem 2.1], and note that the proof
only requires the index to be coprime to p. We remarked that H*(Gg,F,) already has
depth 3. It turns out that H*(G1,F,) has depth 4. So H*(G;, ;) is Cohen—-Macaulay
for all i > 1. Thus we established (1), (2) and (4).

For (3): The depth is 4, and so by a result of Carlson [11, Theorem 12.5.2] the
centralizers of the rank four elementary abelians detect H*(Cos,F,). We saw above
that there are four conjugacy classes of rank four elementary abelians. Using GAP one
sees that each is self-centralizing. And the nilradical vanishes, as elementary abelian
2—groups have polynomial cohomology. a

Report on filter-regular parameters

The 2-rank of Cos is four, so the Dickson elements are in degrees 8, 12, 14 and 15 for
any subgroup in the tower. As H*(Co3,IF,) contains these Dickson invariants [4], so
does each H*(G;,F,): no higher powers are necessary.

Gy is the Sylow subgroup, with rank one centre. Applying the weak rank-restriction
condition [18, Lemma 2.3] we constructed filter-regular parameters ¢y, ¢3, 3, ¢4 in
degrees 8, 4, 6 and 7. Using [18, Proposition 3.2] we demonstrated the existence of
filter-regular parameters in degrees 8, 4, 2 and 2. This allowed us to terminate the
calculation in degree 14, where the last relation is found.

Our cy,cy,c3 are stable for G3, and so ¢y, ¢y, c3 is a filter-regular sequence in
H*(G;,F,) for i =1,2,3. For i = 1,2 we found a fourth parameter in degree 1,
so the calculations for H*(G,F,) and H*(G,,F,) terminate when the last relation
is found in degree 16. For G3 we found a fourth parameter in degree 7, detecting
completion in degree 21. The presentation is complete after degree 18.

For G4 = Cos we had to construct Benson’s Dickson invariants, detecting completion
in degree 45. The presentation is complete after degree 33.
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Appendix A A minimal ring presentation

Ring generators are denoted by a letter with two indices. H™*(Co3, F5) has no nilradical.
The letter “5” denotes a generator with nilpotent restriction to the centre Z(S) of the
Sylow subgroup. The letter “c” denotes a Duflot element, whose restriction to Z(.S)
is non-nilpotent. The first index gives the degree of the generator, the second is to
distinguish generators of the same degree. This presentation is also available online [20].

A minimal generating set for H*(Co3;F,) is given by

bso, be,1, bs,1, ¢33, b12,1, b12,7, b1a,1, b3,0, bso, b1, b7,1, Do, D115,
bi3,1, b13,7, b15,13.

The following polynomials form a minimal generating set of the relation ideal:
(H) biO + b3,0b7,0 + ba,0bs6,1
(2) b3 obs.0+bs1b3,0 4 ba b1
(3) b3,0b9,0 + baobs 1 + bi,o
(4) bs,obr,0+ b3y +be1b3 o +bg  +b]
(5) bs,0b7,1+baobg,1 + bi,o
(6) be,1b7,1 +ba,0b9.0 +ba0be,1b3,0 + b7 yDs.0
(7) b§,0b7,0 +bg,1b5,0 + ba,0b9,0 + b4,0b6,103,0
(8) b3 gb7,1 +baobe.o +ba b3 o+ b7 obs.0
(9) be,1b3,005,0 + be,1b8,1 + ba,0b3,007,1 + bi,obio + 192,0136,1
(10)  bs,0bg,0 +ba,0b3,0b7,1 + baob3,0b7,0 + b7 o3 o + b7 obe 1
(11)  b7,0b7,1 + ba,0b3,0b7,0
(12) be,1b9,0 +ba,obs,1bs5,0 + b5 gb7.1 + b3 430
(13) b12,703,0 +ba,0b11,5 + ba,ocs 3030
(14) b3 g +bg1b70+be1b3 o +bg b30+ b yb71.0+b; ob3 o
(15) b3,0b13,1 +b8,1b3,0b5,0+b§’1 +biobs,1
(16) b3,0b13,7 +ba,0b12,7 + ¢5,303,0b50
(17) bs,ob11,5 + ba,ob12,7 + ¢s,3b3,0b50
(18)  b7,0b9,0 +ba,0b3 o +baobs,1b5 o +baobg | +bF
(19) b7,1b9,0 + bg1b3,0b5,0 +bg | + b7 4b30bs,0 + b7 obs 1
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(20)
1)
(22)
(23)
(24)
(25)
(26)
27)
(28)
(29)
(30)
€1y
(32)
(33)
(34)
(35)
(36)

(37)

(38)

(39)
(40)
(41)
(42)
(43)

be,1b11,5 +ba0b13,7 + be,1¢8,3b3,0 + ba0¢s,3b50

bg,1b9,0 + b4 0b13,1 + ba,obs,1b5,0

b12,7bs,0 +ba,0b13,7 + ba,0¢s,3D50

biobl 1,5 +ba,0b13,7 + 6‘8,31?;,0 +b4,0¢8,305,0

b3,0b3 | +baobi31 + b7 b3 4

bs,1b12,7 + ba,ob3,0b11,5 +Da,0cs 365
b3,0b15,134b6,1b12,1+b4,0b3 | +ba,0b3 o +baobra1+b3 b3 o +cz3b3,0b7.0
bs.obi3,1 +baob3 | +b3 b3,

bs,0b13,7+ baob3,0b11,5 + c8,3b3,007,0 + ba,o¢s,3b5 o + baobs, ¢33
b7,0b11,5 + ¢8,3b3,007,0

bg,o + b4,0b3,1 + bi,0b350b7:0 + bg,obg,o + bi,obﬁl

be1b13,1 + baobs,1b7,1 + b7 ybs1b3 0

be1b13,7 + b ob11,5 +be,1¢8,3bs 0+ by o¢8.3D3.0

b12,1b7,0

b12,7b7,0

b12,7b7,1 + bg1bi1,s + b3 obi1,s +bs,1¢8,3b3,0 + b3 oCs.3b30

b1a,1bs,0 +bg 1b3,0 + be 1bs,1bs,0 + b 1 b7,0 + baobis3 4+ baobi2,1b30
+ba,0b6,1b3 g +ba0bg 1 b3,0+b7 ybe1b50+D3 (b7,1+b3 (b7.0+baocs 3b70
b14,1b§,0 +b12,103,0b5,0 + b8,1b10 + b6,1b%0 +be,1b14,1 + b6,1b8,1b§,0

+ bg,lb&l + ba,0b6,103,007,0 + bi,ob;,o + bi,oblll + bi,obﬁ,lbg,o + bi,obé,l
+b3 obs,1 + b3

bs,ob1s,13+b12,1b3,005,0 +b6,1b$’0 +b6,1014,1 +b4,0b8,103,0b5,0 +b4,0b§,1
+b3 obs,1 8,303 o+ be,1¢8,3b5 o + b ¢85+ b3 o3

b7,0b13,1

b1,0b13,7 + ¢z 3b3 o + be1¢8,3D3 o +bg (€83 +b] ocs.3

b7,1b13,7 +bg 1b12,7 + bioblzﬂ + b4 0bs, 18,3 + 52,008,3

bo,ob11,5 +bg1b12,7 + b ob12,7 + baobs 1¢8,3 + b} cs.3

b12,1b3 o +b6,1b15,13 + be1512,1b3,0 + ba,0b14,103,0 + ba0b12,1b5 0
+ba,0bs,1b3 o + baobs,1bs,1b3,0 + ba,obg 1bs o + by ob13,1 + b7 obs 1570
+b3 b3 o + b3 obs,1b3,0 + b os.0 + e 1¢s 3b7,0
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(44)
(45)
(46)
(47)
(48)
(49)

(50)
(D
(52)

(53)

(54)

(55)

(56)

(57)
(58)

(59)
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b12,7b9,0 + bg,1b13,7 + 52,0513,7 +bs,108,3D5,0 + b7 oc8.3b5.0
bs,0b7,1b11,5+bs,1b13,74b7 ob13,7+bg 168,35 0+ba0¢8 309 0+ba0¢8,3D3
b3 o +b14,1b7,0
b3 +bg 1bi31 +b2 b13q +b3 boo+b3 b3 +bE b

7,1 8,1¢13,1 4,0713,1 4,0Y9,0 4,0"3,0 4,075,0
b7,0b15,13 +¢5,3b3

b7,1b15,13 + b12,1b3,007,1 + b8,1b%’1 +0bg,1b14,1 + bé,lbio + b6,1b§,1

+bg 1b3,0b7,01Da,0b6,105 o Fbaobg 13 oG obF b (b1a,1 DG bs1b3
+ b3 ob3,0b7,0 + b3 obe,1 +baocs,3b3,007,0

bo.ob13,1 +bs,1b7 | + b3 b7 + b7 ybs.1b3 o + b5 4b3

bo,0b13,7 + ba,0b7,1011,5 + baocs 3b3,007,0 + b5 oC5,3b5 o + b7 ybe, 18,3
b}y s+bi2,1b3,0b7,1+bs,1b3 | +bg 1b14,1+bF (b3 g +be1bg | +bg b3 b0
+ba,obe,1b3 o+ baobs 1b12,1 +baobg (b3 o + b7 ob7 o + b7 (b8 1b3

+ b2’0b3’0b7’0 + bi,Obg,O + b2,0b691 + 6’8’3b%’1 + bZ,OCSJbg,O + C§’3b§’0
bi2,7b11,5 +bg,1b15,13 +be1b12,105,0 + b ob12,1b3,0 + bg,1¢8,3b7,1

+ b 1¢8,3b7,0 + ba,0cs 31,5 + ba 0bs,1¢8,3b3,0 + baocg 3530

b1a,1b9,0 +bs,1b1s,13 + b3 (b7 +be,1b12,1b5,0 + baob12,1b7,1
+ba,0be,1b8,1b5,0 + ba,obg 1 b7,0 + b7 gb1s,13 + b7 gb12,1b3,0 + b7 gbe1b3
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+ b£’0b8,1b3,0b5,0 + biobé,l + bi’obg,l + b8’168,3b3,0b5’0 + b§’16‘8,3

+ b4,008,3bg,0 + b4,0b6,108,3b§’0 + b4,0bé’108,3 + biobS,lCSJ + b2’008,3

2 2
b11,5013,7 + b1, 7+ 3 303,005,0

2

b12,7013,7 4 ba,0b14,1b7,1 + ba,0b12,109,0 + ba,0bs,1013,1 + bf ob1a,1b3,0
2 2

+ b3 ob12,105,0 + ba,0¢8,3b13,7 4 baocs 3b13,1 + bajocg 30500
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+ba,0bs,1¢8,3b3,007,0
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b13,1b15,13 + b14,1b%1 +bg,1b7,1013,1 + b§’1b12,1 + b4,0b6,1b12,1b§,0
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b1,1br1,sbis + b7, 1b3o +bgbi2,1b11s + b3 bro + beabg b3

+bg 1b7,0+ba0b12,7b15,13+ba,0b, b3,0+ba0bs,1b12,17,1+baobg 1b11 s
+ b4,0b6,1014,107,0 + b4,0b6,1b§’1b5,0 + b4,0b§,lbs,1b7,o + b4,ob§,1b§’,0
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+bg,1¢8,3b15,13 + b3 c8.3b7,1 +be1¢8,3D14,1b3,0 + be,1bg 108,303

+bg 1bg,1¢8,3b3,0 + b3 ¢8,3D5.0 +Da,0¢s,3b12,107,1 + baobg g 3b7,0
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2 2
bs,1011,5b13,1+bg,1012,1b12,7+b4,0b14,107 o +ba,0b7, | +Da,0bs,107,1013,1
2 12 3 4 4 32 6 2
+b4’0b12’1 +b4’0b7,1b13’1 +b4’0b3’1b3’0b5,0 +b4,0b8’1 +b4’0bg,1 +Cg,3b12’7

2 2 12 4
+ ba,0¢8,3b7,1013,1 + by obs,18,303,0b5,0 + b by 18,3+ by obs,1¢3.3
2 22 2 2
+ bs,1¢5 303,0b5,0 + by c5 5 + D) obs,1c
bg,1b12,7b13,1 + bg,1b12,1013,7 + ba,0b14,1015,13 + ba,0b12,1014,103,0
2 2 2
+ b4,0075 1050 + ba,0b8,1014,107,1 + bf ob14,1011,5 + by yb12,7b13,1
2 2 2 12 23 2 2
+ b5 oP12,1013,7 + by ob12,1b13,1 + D) obg (b3 o + D) obe,1bg 1D30
2 12 3 3 3
+b; 005.108,105,0 + by ob14,1b7,1 + b5 obe,1015,13 + b} b6, 1b8,157,0
4 4 12 5 5 5
+ b4’0b12,1b5’0 + b4,0b6,1b5=0 + b4,0b13,1 + b4’0b8’1b5’0 + b4’0b6,1b7,0
6 13 6 7 ,
+ b4,0b3,0 + b470b6,1b3,0 + b4,0b5,0 +b4,0c8,3b14,107,1 + b4 ,0c8,3b14,107,0
. : 3 :
+b4,008,1¢8,3b13,1 + ba,0bs,1¢8,3D12,103,0 + b4’0b6,168,3b7,0
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