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Stable systolic category of the product of spheres

HOIL RYU

The stable systolic category of a closed manifold M indicates the complexity in the
sense of volume. This is a homotopy invariant, even though it is defined by some
relations between homological volumes on M . We show an equality of the stable
systolic category and the real cup-length for the product of arbitrary finite dimensional
real homology spheres. Also we prove the invariance of the stable systolic category
under the rational equivalences for orientable 0–universal manifolds.

57N65; 53C23, 55M30

1 Introduction

In this paper, a manifold is assumed to be closed, connected, orientable and smooth.
The systole of a manifold M is the least length of non-contractible closed loops in
M . One can generalize this concept to the least volume of k –dimensional non-zero
homology classes, called the homology systole. Now we can imagine such systoles
have some kind of relations with the entire volume of M , and it is natural to ask what
kind of relationship exists.

As an answer, Gromov proved a theorem which says that the existence of non-trivial
cup product implies the existence of the stable isosystolic inequality as follows.

Gromov’s Theorem [7, 7.4.C] Let M be an n–manifold. If there exist some re-
duced real cohomology classes ˛�

1
; : : : ; ˛�

k
with ˛�i in zH di .M IR/ and a non-zero cup

product ˛�
1

` � � �` ˛�
k

in zH n.M IR/, then there exists C > 0 satisfying

kY
iD1

stsysdi
.M;G/� C �mass

�
ŒM �;G

�
for all Riemannian metrics G on M where stsysdi

is the stable di –systole and ŒM � is
the fundamental class of M with coefficients in Z=2Z.

The greatest k satisfying the stable isosystolic inequality is called the stable systolic
category of M , which was introduced by Katz and Rudyak [8], and is known to
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be a homotopy invariant by Katz and Rudyak [9]. We will show the stable systolic
category of a 0-universal manifold is also invariant under the rational equivalences in
Corollary 4.3.

For an orientable manifold M , Gromov’s Theorem implies that the stable systolic
category is not smaller than the real cup-length. So, is there some manifold M such
that the stable systolic category is greater than the real cup-length? If such M exists,
then the inversion of Gromov’s Theorem will fail for M . This interesting question is
not answered yet, but equality is known for some manifolds, see Dranishnikov and
Rudyak [3] for example. In this paper, we also show more equality later in Theorem 3.6
and Theorem 3.8.

1.1 Definition of the stable systolic category

To define the stable systolic category, we need to consider the flat homology theory
as a metric space whose metric structure is induced by the integration on the space.
One can see the details about currents and homological integration in Federer [4; 5],
Federer and Fleming [6], Serre [10] and White [11]. Since we use the integration theory
to define the norm on real homology vector space, we consider the local Lipschitz
category L whose objects are pairs of local Lipschitz neighborhood retracts in some
finite dimensional Euclidean space and whose morphisms are locally Lipschitzian maps.
One can find the formal definition of L in Federer [4, 4.1.29 and 4.4.1]. In this section,
we define some notations of flat homology theory on L briefly and define systoles and
systolic category for a manifold.

Let .X;A/ be an object of L. Then we can assume that X and A possess the restricted
metrics of Rn . Let G be a Z–module with a norm j � j which makes G a complete
metric space. If G is Z or R, we assume that norm of G is the standard norm. The
comass of a differential form ! on X is defined as

comass.!/ WD sup
˚
j!x.�/j W x 2X; orthonormal q–frame �

	
:

Also, the mass of a q–current T in X is the dual norm of comass, that is,

mass.T / WD sup
˚
T .!/ W differential q–form !; comass.!/� 1

	
:

A Lipschitzian singular q–cube �W Iq ! X , induces a homomorphism �[ from the
module of polyhedral chains Pq.X IG/ to the module of rectifiable currents Rq.X IG/.
Then the mass of � is defined by the mass of the image �[I

q where Iq is the cor-
responding polyhedral q–current of the unit rectangular parallelepiped Iq . This
correspondence of � to �[I

q gives a chain map ˆ of degree 0 from the chain complex
of all Lipschitzian singular cubes into the chain complex of flat chains F�.RnjX IG/.
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Here F�.RnjX IG/ denotes the submodule of the flat chains F�.RnIG/ in Rn which
consists of all flat chains supported in X . Then one can verify that ˆ induces an
isomorphism ˆ� from the singular homology module Hq.X;AIG/ to the homology
module H [

q.X;AIG/ of the flat chains which is called the flat homology.

For a Lipschitzian singular chain c , there exists a representation
P

i �i ˝gi where gi

is contained in G and �i is a Lipschitzian singular q–cube which is not overlapping
each other (subdivide if necessary). Then the mass of c is defined as

mass.c/ WD
X

i

jgi j �mass.�i/ :

The mass or volume of a singular homology class � in Hq.X;AIG/ is defined by

mass.�IG/ WD inf
˚
mass.c/ W �D Œc�; c is a Lipschitzian cycle

	
:

If G is R, the mass is a norm on the homology vector spaces. We will omit G in the
case of Z.

The q–dimensional homology systole of .X;A/ is defined by infimum of mass of
non-trivial q th integral homology classes. However Gromov [2, page 301] claims that
Gromov’s Theorem will fail for S1�S3 , if we consider the homology systoles instead
of the stable systoles. Briefly, we can consider the stable systole as a systole in the
real homology vector spaces. Here we give formal definition for the stable systole.
The inclusion �W Z!R induces the coefficient homomorphism �� on homology. The
stable mass on Hq.X;AIZ/ is defined as the mass of the image ���. Then we can
define the q–dimensional stable systole of .X;A/ as

stsysq.X;A/ WD inffstmass.�/ W � 2Hq.X;AIZ/; ���¤ 0g:

A homology q–systole or a stable q–systole is called trivial, if it is infinite. If the q th
real homology vector space Hq.X;AIR/ is zero, then the stable q–systole is trivial
for all Riemannian metrics on .X;A/. Hence if the q th integral homology module
Hq.X;AIZ/ is a torsion module, then the stable q–systole is trivial for every metric
on .X;A/.

For a given positive integer n> 0, a k –tuple P D .p1; : : : ;pk/ of positive integers is
called a partition of n if nD p1C � � �Cpk and p1 � � � � � pk � n. A partition P is
called positive (or non-negative) if pi > 0 (or pi � 0) for all i . The size of a partition
which denoted by size.P / is defined by the cardinality of positive integers contained
in the partition. Hence if a k –tuple P is a positive partition, then the size of partition
is k . From now on, we suppose a partition is positive unless otherwise stated. For a
partition P , the duplicated number of pi is the cardinality number of elements in P

who are equal to pi .
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Now we define concepts for an n–manifold M . A partition P of n is called stable
systolic categorical for M , if there exists a real number C > 0 and non-trivial stable
pi –systoles such that

size.P/Y
iD1

stsyspi
.M;G/� C �mass

�
ŒM �;GIZ=2Z

�
for every Riemannian metric G on M with fundamental class ŒM � 2Hn.M IZ=2Z/.

Definition 1.1 The stable systolic category of M is defined by

catstsys.M / WD sup.fsize.P / W P is stable systolic categorical partition for M g[ f0g/:

As we said before, the real cup-length is a lower estimate for the stable systolic category
from Gromov’s Theorem, where the real cup-length of M is defined by

cupR.M / WDmin
˚
k � 0 W ˛0 ` ˛1 ` � � �` ˛k D 0 for all ˛i 2

eH �.M IR/	
and eH �.M IR/ denotes the reduced real cohomology ring of M .

If M is non-orientable, then the top dimensional real cohomology vector space
H n.M IR/ vanishes. So every cohomology class in H n.M IR/ vanishes, we can
not apply Gromov’s Theorem for top dimension. This is a reason to consider only
orientable manifolds in this paper.

1.2 Acknowledgments

The author expresses gratitude to Professor Norio Iwase, whose guidance and support
to write this paper.

2 Preliminaries on the stable systoles

Many equations and inequalities for mass are studied. One can find those results at
Babenko [1], Federer [4] and Whitney [12]. Here we state or recall some of them for
the stable systoles, with some appropriate modifications applied. Through this section,
we suppose U and V be open subsets of Rm and Rn respectively.

Proposition 2.1 For a non-empty local Lipschitz neighborhood retract X in Rn , the
stable 0–systole is 1.
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Proof Let D0.X / be the vector space of 0–currents. A map dW X !D0.X / can be
defined as d.x/.!/D dx.!/ WD !.x/ for a point x of X and a differential 0–form
! on X . Then dx is a polyhedral 0–current with mass.dx/ D 1. This implies that
dx is a normal 0–cycle with coefficients Z. Furthermore, the image ��ˆ�1

� Œdx � is not
vanished in H0.X IR/. So we have

stsys0.X /Dmass
�
��ˆ
�1
� Œdx �

�
D 1

for an arbitrary point x in X .

Lemma 2.2 For a local Lipschitz neighborhood retract X in Rn , if one rescale the
standard metric G on Rn by the square of a real number t > 0, then the quotient mass
of a homology class � 2Hq.X IG/ increase by the tq times. Furthermore, the stable
q–systole satisfies

stsysq.X; t
2GjX /D tq

� stsysq.X;GjX /

where GjX is the restriction of G on X .

Proof A similar result was introduced by Whitney [12] for the real flat chains. So the
first result is satisfied for an arbitrary homology class. Also the definition of the stable
systole implies

stsysq.X; t
2GjX /D inf

˚
tq
�mass.���;GjX IR/ W � 2Hq.X;AIZ/; ���¤ 0

	
which means the equality for the stable systoles.

Proposition 2.3 (Whitney [12, X.6 and X.7]) For a locally Lipschitzian map
f W U ! V and an integral rectifiable q–current T whose support is contained in a
compact subset K of U , there exists an inequality

mass.f[T /� Lip.f jK/q �mass.T /

where Lip.f jK/ is the lower bound of Lipschitz constants of the restriction f jK .

Proposition 2.4 If f W .X;A/! .Y;B/ is a locally Lipschitzian map, then for any
homology class � of Hq.X;AIG/ , there is a compact subset K of Rm which satisfies

0�mass.f��IG/� Lip.f jK/q �mass.�IG/

where f�W Hq.X;AIG/!Hq.Y;BIG/ is the induced homomorphism.
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Proof Note that f induces a homomorphism f[W Zq.X;AIG/!Zq.Y;BIG/ on
flat cycles as well as f[Fq.RmjAIG/ � Fq.RnjBIG/ . For a given flat homology
class ˆ��, let T be a representative normal q–cycle in Zq.X;AIG/. The naturality
of ˆ� implies ˆ�f��D f�ˆ��D f�ŒT �D Œf[T �. Also the relation of cosets Œf[T �D

Œf[T Cf[Fq.RmjAIG/�D Œf[T CFq.RnjBIG/� implies that the relation of the sets˚
f[T W ŒT �Dˆ��

	
�
˚
S W ŒS �Dˆ�f��

	
�Zq.Y;BIG/ :

With the definition of the mass of homology class, we obtain

mass.f��IG/� inf
˚
mass.f[T / W ŒT �Dˆ��

	
:

Because of T is compact supported, there is a compact subset K of Rm with supp.T /�
Int.K/. Here we can apply Proposition 2.3 for T , so we have

mass.f��IG/� Lip.f jK/q � inf
˚
mass.T / W ŒT �Dˆ��

	
which implies the result.

Lemma 2.5 Let .X;A/ and .Y;B/ are local Lipschitz neighborhood retract pairs. If
a locally Lipschitzian map f W .X;A/! .Y;B/ induces a monomorphism

f�W Hq.X;AIR/!Hq.Y;BIR/;

then there is a compact subset K in the ambient space of X satisfying

stsysq.Y;B/� Lip.f jK/q � stsysq.X;A/:

Furthermore, if Hq.X;AIR/ is non-zero, then stsysq.Y;B/ is a positive real number.

Proof Proposition 2.4 and f�
�
Hq.X;AIR/ n f0g

�
�
�
Hq.Y;BIR/ n f0g

�
imply the

existence of inequality in the stable systole level.

For integral homology class � with ��� is non-zero, the image f���� does not vanish,
since f� is a monomorphism. Recall that the mass of real homology classes is a norm,
hence mass.f����/ is a positive real number. Furthermore, the stable q–systole does
not converge to zero, since Z is discrete.

Let K.U / be the set of all real valued compact supported continuous functions on U .
We denote KC.U / the subset of non-negative valued functions. For a subset A of U ,
we say a sequence of functions f1; f2; : : : in K.U / suits A, if fi.x/� fiC1.x/ and
limi!1 fi.x/� 1 for every x in A.
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For a rectifiable current T in Rq.U / and a function f in KC.U /, a monotone Daniell
integral kT k can be defined by

kT k.f / WD sup
˚
T .!/ W comass.!x/� f .x/ for all x 2 U

	
where the supremum is taken over all compact supported differential q–forms ! on
U . In addition, there is associated Radon measure

�T .A/ WD inff lim
i!1

kT k.fi/ W f1; f2; : : : suits Ag

for a subset A of U , which satisfying

kT k.f /D

Z
U

f d�T :

If we consider a function 1U which is defined by 1U .x/ D 1 for all x , the mass is
obtained by �T as

�T .U /D kT k.1U /Dmass.T /:

One can find more details about these arguments in Federer [4, 2.5 and 4.1].

Proposition 2.6 For rectifiable currents S in Rp.U / and T in Rq.V /, the mass of
their cross product is equal to the multiplication of their masses, that is,

mass.S �T /Dmass.S/ �mass.T /

with respect to the product metric on U �V .

Proof Since S and T are rectifiable currents, mass can be written by associated
Radon measures �S , �T and �S�T . Therefore Fubini’s Theorem (see Federer [4,
2.6.2.(2)]) implies

mass.S �T /D �S�T .U �V /D �S .U / � �T .V /Dmass.S/ �mass.T /:

Lemma 2.7 Let .X;A/ and .Y;B/ are local Lipschitz neighborhood retract pairs.
For homology classes � 2Hp.X;AIG/ and � 2Hq.Y;BIG/, we can estimate

mass.� � �IG/�mass.�IG/ �mass.�IG/

stsyspCq

�
.X;A/� .Y;B/

�
� stsysp.X;A/ � stsysq.Y;B/and

with respect to the product metric on .X;A/� .Y;B/.

Proof Let S and T be representative rectifiable cycles corresponding to � and
� respectively, that is, ˆ�� D ŒS � with S 2 Z[

p.X;AIG/ and ˆ��D ŒT � with T 2

Z[
q.Y;BIG/. Then the naturality of a cross product implies that there is a representative
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rectifiable current with the form of a cross product S �T in the coset Œc�Dˆ�.� ��/.
Therefore˚

S �T W ŒS �� ŒT �Dˆ�� �ˆ��
	
D
˚
S �T W ŒS �T �Dˆ�.� � �/

	
�
˚
c W Œc�Dˆ�.� � �/

	
�Z[

pCq

�
.X;A/� .Y;B/IG

�
:

Hence Proposition 2.6 implies an inequality

mass.� � �IG/� inf
˚
mass.S �T / W ŒS �� ŒT �Dˆ�� �ˆ��/

	
Dmass.�IG/ �mass.�IG/

on homology level. To show the inequality of the stable systoles, recall that the cross
product homomorphism

Hp.X;AIR/˝Hq.Y;BIR/!HpCq

�
.X;A/� .Y;B/IR

�
is a monomorphism. Therefore we can estimate the stable q–systole as

stsyspCq

�
.X;A/� .Y;B/

�
� inf

�
mass.� � �/ W

� 2Hp.X;AIZ/, ��� ¤ 0,
� 2Hq.Y;BIZ/, ���¤ 0

�
� stsysp.X;A/ � stsysq.Y;B/ :

where the second inequality is obtained by the result on homology level.

Lemma 2.8 Suppose X and Y are local Lipschitz neighborhood retracts. If Y is
connected and the Künneth formula gives an isomorphism of non-trivial vector spaces

Hq.X IR/˝H0.Y IR/ŠHq

�
X �Y IR

�
¤ f0g ;

then the stable q–systole satisfies

0< stsysq

�
X �Y

�
D stsysq.X / <1:

with respect to the product metric on X �Y .

Proof Let pr1W X � Y ! X be the first projection. From the assumption, for a
non-zero homology class � in Hq.X �Y IR/, there exist ŒS �¤ 0 in H [

q.X IR/ and
ŒT �¤ 0 in H [

0
.Y IR/ whose cross product is the image of � in H [

q

�
X �Y IR

�
with

the same positive mass, that is,

mass
�
ŒS �� ŒT �

�
Dmass.�/ > 0:

Note that the vector space of normal 0–chains N0.Y IR/ is equal to the vector space of
polyhedral 0–chains P0.Y IR/ which is generated by fdy Wy 2Y g where d is defined in
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the proof of Proposition 2.1. For all points y and y0 in Y , Œdy �D Œdy0 � implies that there
is a non-zero real number r such that ŒT �D r Œdy � with massŒT �D jr j � dy.1

�
Y
/D jr j.

Also, every ŒS ��ŒT � has representation of Œr �S ��Œdy �, therefore pr1� is an isomorphism
with pr1�

�
ŒS �� ŒT �

�
D Œr �S �. Hence Lemma 2.5 implies

stsysq.X �Y /� stsysq.X / > 0

with the fact of pr1 is a Lipschitzian map with Lip.pr1/D 1. As a result, we obtain
the equality by combining the result of Lemma 2.7.

3 Calculation by dimension and constructing metrics

At first, we will calculate the stable systolic category from the dimensional information
of homology. If the homology group is not so complex, such as in the case of a real
homology sphere, we know the stable systolic category by only using dimensional
information. If an oriented manifold has a relatively simple cup-product structure such
as n–fold producted space of spheres, then the stable systolic category can be also
calculated instantly. Such methods to calculate the stable systolic category can be
generalized as follows.

For a topological space X , let lpd.X / denote the least positive dimension of real
cohomology vector spaces of X . So lpd.X /D l if and only if eH i

.X IR/D f0g for
0< i < l and eH l

.X IR/¤ f0g. If M is an m–manifold, then lpd.M / is less than or
equal to m.

Definition 3.1 An n–dimensional CW space X is said to have maximal real cup
length, if there exist some real cohomology classes ˛1; : : : ; ˛r with ˛i 2

eH di
.X IR/,

a non-zero cup-product ˛1 ` � � �` ˛r 2
eH n
.X IR/ and r WD bn= lpd.X /c where bxc

denotes the floor of a real number x .

Example Let S be a manifold which is a real homology sphere. Then S has maximal
real cup length, because of lpd.S/D dim.S/. The n–fold direct product of S also
has maximal real cup length. The direct product S2 �S3 of spheres has maximal real
cup length.

Corollary 3.2 If an m–manifold M has maximal real cup length, then the stable
systolic category of M is equal to the real cup-length of M , that is,

catstsys.M /D cupR.M /D bm= lpd.M /c:

Algebraic & Geometric Topology, Volume 11 (2011)
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Proof We need to verify that catstsys.M / � cupR.M /. Let r WD bm= lpd.M /c. If
.d1; : : : ; dk/ is a partition of m such that each stable di –systole is non-trivial, then
di � lpd.M /, so there is an inequality

k � lpd.M /�mD d1C � � �C dk < .r C 1/ � lpd.M /

which implies k � r D cupR.M /.

In general, the direct product M �N of manifolds does not have maximal real cup
length even if M and N have maximal real cup-length. For example, the direct product
of spheres S1 �S2 does not have maximal real cup length.

Lemma 3.3 If manifolds M
m1

1
; : : : ;M

mn
n have maximal real cup length, then the

stable systolic category of their n–fold direct product M1 � � � � �Mn is greater than
the sum of stable systolic categories for each Mi , that is,

catstsys .M1 � � � � �Mn/� catstsys.M1/C � � �C catstsys.Mn/:

Proof Since Mi has maximal real cup length, there is non-zero cup product ˛i;1 `
� � �` ˛i;ri

in H mi .Mi IR/ where ri WD bmi= lpd.Mi/c D catstsys.Mi/ for 1� i � n.

By the Künneth formula, the n–fold cross product on the top dimensions induces an
isomorphism

nO
iD1

H mi .Mi IR/ŠH m .M1 � � � � �MnIR/ where m WD
nP

iD1

mi :

This implies that the cross product of all ˛i;1 ` � � �` ˛i;ri
is non-zero which can be

written as a cup product

^n
iD1 pr�i

�
˛i;1 ` � � �` ˛i;ri

�
D pr�1˛1;1 ` � � �` pr�i ˛i;ji

` � � �` pr�n˛n;rn

in the top-dimensional real cohomology vector space H m .M1 � � � � �MnIR/, where
pri W M1 � � � � �Mn!Mi is the i th projection, 1� i � n and 1� ji � ri . This cup
product implies that r1C� � �C rn is a lower estimate for the stable systolic category of
M1 � � � � �Mn from Gromov’s Theorem.

Proposition 3.4 For manifolds M and N , the least positive dimension of cohomology
of M �N is the minimum of lpd.M / and lpd.N /.

Proof From the Künneth formula, the cohomology H i.M �N IR/Df0g for 0< i <

min
�

lpd.M /; lpd.N /
�
. If l WDmin

�
lpd.M /; lpd.N /

�
D lpd.M /, then H l.M IR/ is

non-zero and the cross product homomorphism

H l.M IR/˝H 0.N IR/!H l.M �N IR/
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is a monomorphism. Therefore H l.M �N IR/ is non-zero. The case of lpd.M / >

lpd.N / is shown by using the same arguments.

For integers i and j ¤ 0, let mod.i; j / denotes the remainder from the division of i

by j .

Corollary 3.5 Suppose manifolds M m and N n have maximal real cup length, and
an integer l WD lpd.M �N /. If M and N satisfy the conditions

bm= lpd.M /c D bm= lc; bn= lpd.N /c D bn= lc

mod.m; l/Cmod.n; l/ < l;and

then M �N has maximal real cup length. Therefore,

catstsys.M �N /D catstsys.M /C catstsys.N / :

Proof Let integers r WD bm= lc and s WD bn= lc.

Proposition 3.4 implies that l D min
�
lpd.M /; lpd.N /

�
D lpd.M �N /. So we can

formulate b.m C n/= lpd.M � N /c D r C s C bmod.m; l/ C mod.n; l/c. By the
assumption, bmod.m; lpd.M //Cmod.n; lpd.N //c is zero, so we have

b.mC n/= lpd.M �N /c D r C s:

Thus it is sufficient to show that there is a non-zero cup product with the length of
r C s .

Since M and N have maximal real cup length, there are cohomology classes ˛1; : : : ; ˛r

and ˇ1; : : : ; ˇs with their cup products are non-zero cohomology classes ˛1 ` � � �` ˛r

in H m.M IR/ and ˇ1 ` � � �` ˇs in H n.M IR/. From the proof of Lemma 3.3, there
is a non-zero cup product pr�

1
˛1 ` � � � ` pr�

1
˛r ` pr�

2
ˇ1 ` � � � ` pr�

2
ˇs in the top

dimensional cohomology vector space H mCn.M �N IR/.

Without the condition of the product M �N has maximal real cup length, we can
generalize this corollary as follow.

Theorem 3.6 Let manifolds M m and N n have maximal real cup length. If

mod
�
m; lpd.M /

�
Cmod

�
n; lpd.N /

�
<max

�
lpd.M /; lpd.N /

�
;

then the stable systolic category of their product M �N is the sum of each stable
systolic category, that is,

catstsys.M �N /D catstsys.M /C catstsys.N / :
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Proof Since M and N have maximal real cup length,

r WD bm= lpd.M /c D catstsys.M / and s WD bn= lpd.N /c D catstsys.N / :

In the case of lpd.M /D lpd.N / is Corollary 3.5. So we will assume lpd.M /< lpd.N /.

From Lemma 3.3, catstsys.M �N /� catstsys.M /C catstsys.N /D r C s . Therefore, it
is sufficient to show that any partition of mCn whose size is greater than rCs , is not
a stable systolic categorical partition.

Suppose the partition .d1; : : : ; dk/ of mCn is a stable systolic categorical for M �N

with some integer 1� r 0� k and the condition 0< lpd.M /� d1� � � � � dr 0 < lpd.N /.
For an arbitrary t � 1, let Gt WD t2GMCGN be a Riemannian metric on M �N . Then
Lemma 2.2 and Lemma 2.8 imply that the stable systoles for the partition .d1; : : : ; dk/

satisfies
kY

iD1

stsysdi
.M�N;Gt /�

r 0Y
iD1

stsysdi
.M; t2GM / �

kY
jDr 0C1

stsysdj
.M�N;Gt /

D td1C���Cdr 0 �

r 0Y
iD1

stsysdi
.M;GM / �

kY
jDr 0C1

stsysdj
.M�N;Gt /

Since t � 1, we can obtain the inequality stsysdj
.M �N;Gt /� stsysdj

.M �N;G1/

for each r 0C 1� j � k . On the other hands, the mass of integral fundamental class
ŒM �N � is characterized by Lemma 2.2 and Lemma 2.7 as

mass
�
ŒM �N �;Gt

�
�mass

�
ŒM �; t2GM

�
�mass

�
ŒN �;GN

�
D tm

�mass
�
ŒM �;GM

�
�mass

�
ŒN �;GN

�
:

Here if we assume that d1C � � �C dr 0 >m, then we have

kQ
iD1

stsysdi
.M�N ;Gt/

mass
�
ŒM�N �;Gt

� � t .d1C���Cdr 0 /�m
�

r 0Q
iD1

stsysdi
.M ;GM/ �

kQ
jDr 0C1

stsysdj
.M�N;G1/

mass
�
ŒM �;GM

�
�mass

�
ŒN �;GN

�
where the right-hand side of the inequality diverges as t !1. This contradicts to that
.d1; : : : ; dk/ is a stable systolic categorical partition. Hence we obtain d1C� � �Cdr 0�m

and dr 0C1C � � �C dk � n. This condition for m implies

r 0 � b.d1C � � �C dr 0/= lpd.M /c � bm= lpd.M /c � r :

Let s0 WD k � r 0 . From the assumption, lpd.M /= lpd.N / < 1 and

mod.m; lpd.M //Cmod.n; lpd.N // < lpd.N /;
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so we can calculate as

k D r 0C s0 � r C s

which implies catstsys.M �N /� catstsys.M /C catstsys.N / .

Corollary 3.7 Suppose manifolds M0�M1�� � ��Mk and MkC1�� � ��Mn�MnC1

have maximal real cup length with

lpd.M0/D lpd.M1/D � � � D lpd.Mk/

lpd.MkC1/D � � � D lpd.Mn/D lpd.MnC1/ :and

Let ri WD bdim.Mi/= lpd.Mi/c for 0� i � nC1 . If M0; : : : ;MnC1 satisfy conditions
dim.Mi/D lpd.Mi/ � ri for 1� i � n and

dim.M0/� lpd.M0/ � r0C dim.MnC1/� lpd.MnC1/ � rnC1

<max
�

lpd.M0/; lpd.MnC1/
�
;

then

catstsys

�
nC1Q
iD0

Mi

�
D

nC1X
iD0

catstsys.Mi/D

nC1X
iD0

ri :

Note that Theorem 3.6 is not applied for the product S1 �S2 of spheres, but we will
show the equality for such partial cases as follow.

Theorem 3.8 If manifolds S
m1

1
; : : : ;S

mn
n are real homology spheres, then the stable

systolic category of their n–fold direct product is the number of spheres.

Proof Since every real homology spheres have maximal real cup length, Lemma 3.3
gives us a lower estimate catstsys.S1 � � � � �Sn/� n.

Suppose mi � miC1 for each 1 � i � n. Then a partition .m1; : : : ;mn/ of
P

i mi

can be rewritten as .r1; : : : ; r1; r2; : : : ; rl�1; rl ; : : : ; rl/ where ri is a range. This
corresponding to rewrite

S
m1

1
� � � � �Smn

n D
�
S

r1

1
� � � � �Sr1

s1

�
�
�
S

r2

s1C1
� � � � �S

r2

s1Cs2

�
� � � �

�
�
S

rl

s1C���Csl�1C1
� � � � �S

rl

s1C���Csl�1Csl

�
where ri WDms1C���Csi�1C1 D � � � Dms1C���Csi�1Csi

with ri < riC1 and si > 0 is the
duplicated number of ri , so that s1C � � �C sl D n. For simplicity, let define

Xp WD S1 � � � � �Ss1C���Csp
and Yp WD Ss1C���CspC1 � � � � �Sn
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for 1�p�n. Then S1�� � ��SnDXp�Yp and we can observe that Gp;t WD t2GXp
CGYp

is a Riemannian metric on Xp �Yp for t > 0 when GXp
CGYp

is a Riemannian metric
on Xp �Yp . Now we can apply Lemma 2.8 and Lemma 2.2, so there exist equations

stsysq.Xp �Yp;Gp;t /D stsysq.Xp; t
2GXp

/D tq
� stsysq.Xp;GXp

/

for the non-trivial stable systoles in the dimension of 1� q � s1C � � �C sp .

Let .d1; : : : ; dk/ be the longest stable systolic categorical partition for S1�� � ��Sn with
the condition di � diC1 . Then we can rewrite .d1; : : : ; dk/ by the ranges fr1; : : : ; rlg

with the duplicated number s0i � 0 of ri . We will show that the partition is not longer
than n by induction on p for 1 � p � l and contradiction. Assume that s0i D si for
1� i � p� 1. If s0p > sp , then using a similar argument in the proof of Theorem 3.6,
we can observe that the right-hand side of the inequality

kQ
iD1

stsysdi
.Xp�Yp;Gp;t /

mass
�
ŒXp�Yp �;Gp;t

� � tw
�

pQ
iD1

stsysri
.Xp;GXp

/s
0
i �

lQ
iDpC1

stsysri
.Xp�Yp;Gp;1/

s0
i

mass
�
ŒXp �;GXp

�
�mass

�
ŒYp �;GYp

�
diverges as t approaches1 where w WD r1.s

0
1
�s1/C� � �Crp.s

0
p�sp/D rp.s

0
p�sp/>0.

This contradicts to that the partition .d1; : : : ; dk/ is stable systolic categorical, and
hence we obtain s0p � sp . However we must choose s0p D sp to make the longest
partition. As a result, the size of the longest stable systolic categorical partition can not
exceed nD s1C � � �C sl .

4 Invariance under the rational equivalences

Let U be an open subset of some finite dimensional Euclidean space. For a compact
subset C of U and a flat q–chain T in Fq.U jC IR/, the flat norm is defined by

jT j[C WD inf
˚
mass.T � @S/Cmass.S/ W S 2 FqC1.U jC IR/

	
where Fq.U jC / is the module of all flat q–chains in U whose support is contained in
C .

Suppose M and N are n–manifolds. Let K and L be a triangulation of M and N

respectively. In this section, K and L are subdivided if necessary, but we will use the
same symbol. For a continuous map f W M !N , there is a non-degenerate simplicial
approximation gW K ! L of f . For an open n–simplex e in L, consider a map
hW K

g
!L!L=.Ln e/. We will call deg.h/ the degree of g at e which is denoted by

dege.g/. Let

D.g/ WD sup
˚
j dege.g/j W open n-simplex e in L

	
:
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Here D.g/ is finite, because of we can assume that K and L are finite simplicial
complexes.

For an arbitrary Riemannian metric GN on N , consider an embedding in Rm . Then a
current VN .!/ WD

R
N comass.!x/ dLnx is defined for an arbitrary compact supported

differential n–form ! where Ln is the n–dimensional Lebesgue measure. We can
observe that VN is contained in Fn.RmjN IR/ and satisfying mass.VN /D stsysn.N /.

We take a closed m–ball C in Rm which contains N and L in its internal. For a
sufficiently small " > 0, there is a piecewise linear metric GLD GL."/ on L satisfying

jVL�VN j
[
C � " and

ˇ̌
stsysq.L;GL/� stsysq.N;GN /

ˇ̌
� "

for every non-trivial stable q–systoles (compare Federer [4, 4.1.22]) and the realization
of L with GL is a PL section of the normal bundle over N with GN in Rm . Such
metric can be obtained by subdividing K and L, and translating vertices in L along
the fiber of the normal bundle to do not degenerate any simplex. For 0 < "0 < ", a
suitable metric GL."

0/ also can be acquired by the same way. Hence we can assume
that D.g/ is not changed by " and GL . As " approaches to 0, each L, GL and g�GL

converges to N , GN and a piecewise Riemannian metric on M respectively. Under
this circumstance, we obtain following lemma.

Lemma 4.1 Suppose q th real homology vector space of K and L are non-trivial. If
gW K!L induces a monomorphism g� between the q th real homology vector spaces,
then

stsysq.L;GL/� stsysq.K;g
�GL/�D.g/ � stsysq.L;GL/ <1

for every piecewise linear metric GL on L.

Proof With the pullback PL metric g�GL on K , g is a distance decreasing map.
Combining this with Lemma 2.5,

stsysq.L;GL/� Lip.g/q � stsysq.K;g
�GL/� stsysq.K;g

�GL/:

On the other hands, the inverse image of an arbitrary q–simplex of L is D.g/ of q–
simplices as at most, since g is a non-degenerate simplicial map and every q–simplex
is contained in the boundary of some n–simplex for q < n. Also each simplex in
the inverse image has same mass of the preimage, since the restriction of g on each
simplex is isometry. This implies that the mass of a q–chain c of K is not greater
than D.g/ times of the mass of the image g[.c/ which is not trivial. Therefore we can
verify that

stsysq.K;g
�GL/�D.g/ � stsysq.L;GL/

for an arbitrary PL metric GL .
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Remark If K is not a triangulation of a manifold, we can not sure that every q–
simplex of K is contained in the boundary of some n–simplex for q < n. For example,
a triangulation of the one-point union S1 _S2 has some 1–simplex in S1 which is
not contained in the boundary of any 2–simplex.

Since the stable systolic category is a homotopy invariant, here we obtain following
proposition using similar techniques of Katz and Rudyak [9].

Proposition 4.2 Let M and N are n–manifolds. If there exists a smooth map
f W M ! N which induces a monomorphism on every real homology vector space,
then catstsys.M /� catstsys.N /.

Proof We apply Lemma 4.1,

stsysq.N;GN /� stsysq.L;GL/C "� stsysq.K;g
�GL/C "

stsysq.N;GN /C "� stsysq.L;GL/� 1=D.g/ � stsysq.K;g
�GL/and

where L converges to N in some Euclidean space and g�GL converges to a piecewise
Riemannian metric GM on M as " approaches to 0. Suppose there exists a stable
systolic categorical partition .d1; : : : ; dk/ for M . Then there exist C > 0 and ı D
ı."/ > 0 such that ı converges to 0 as " approaches to 0 and

kY
iD1

stsysdi
.K;g�GL/� C �mass.ŒK�;g�GL/C ı;

because of each metric g�GL can be approximated by some Riemannian metrics on
M . We can assume that "� stsysdi

.N;GN / for all i , so

kY
iD1

stsysdi
.L;GL/� 2k

�

kY
iD1

stsysdi
.K;g�GL/

� 2k
�C �mass.ŒK�;g�GL/C 2kı

� 2k
�C �D.g/ �mass.ŒL�;GL/C 2k.C �D.g/ � "C ı/:

This implies the partition .d1; : : : ; dk/ is also stable systolic categorical for N . There-
fore we obtain the result catstsys.M /� catstsys.N /.

Let X and Y are simply connected spaces. A continuous map f W X ! Y is called a
rational equivalence, if the induced map f �W H�.Y IQ/!H�.X IQ/ is an isomor-
phism.
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Corollary 4.3 The stable systolic category of a 0–universal manifold is invariant
under the rational equivalences.

Proof For a 0–universal manifold M and a rational equivalence to a space X , there
exists a rational equivalence from X to M .
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