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Symplectic manifolds with vanishing action–Maslov
homomorphism

MARK BRANSON

The action–Maslov homomorphism I W �1.Ham.X; !//! R is an important tool
for understanding the topology of the Hamiltonian group of monotone symplectic
manifolds. We explore conditions for the vanishing of this homomorphism, and
show that it is identically zero when the Seidel element has finite order and the
homology satisfies property D (a generalization of having homology generated by
divisor classes). We use these results to show that I D 0 for products of projective
spaces and the Grassmannian of 2 planes in C4 .

53D45; 53D35, 53D40, 20F69

1 Introduction

Let .X; !/ be a monotone symplectic manifold, that is !D �c1 on �2.X / with � > 0.
Polterovich introduced the action–Maslov homomorphism I W �1.Ham.X; !//! R
in [11]. Manifolds where I D 0 have many interesting properties. When I D 0, the
Hamiltonian group has infinite Hofer diameter [11], the asymptotic spectral invariants
descend from eHam.X; !/ to Ham.X; !/ (see McDuff [8]), the Calabi quasimorphism
descends from eHam.X; !/ to Ham.X; !/ (see Entov and Polterovich [3]), and another
non-Calabi quasimorphism exists on Ham.X; !/ (see Py’s thesis [12]). Another very
important result states that a Kähler manifold cannot be Kähler–Einstein unless I

vanishes on all holomorphic Hamiltonian circle actions (see [3] and Shelukhin [15]).

There are a number of manifolds where I is known to vanish:

� CP2 (see [11])

� S2 �S2 (see [11])

� CPn (see [3; 8])

� 2–manifolds (see [15])

� CP2#3CP
2

(see the author’s thesis [2])
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1078 Mark Branson

In [8], McDuff gives several conditions which imply I D 0 (or an equivalent condition
in the nonmonotone case). Essentially, these criteria specify manifolds where most of
the genus zero Gromov–Witten invariants vanish or have carefully controlled properties.
We extend these results by exploring the form of the Seidel element more deeply. For
monotone symplectic manifolds, the Seidel element always has integral coefficients
and a finite number of terms. By studying these constraints on the Seidel element and
properties of the quantum homology, we can show that I vanishes for products of
projective spaces and the Grassmannian G.2; 4/.

Theorem 1.1 I D 0 for CPn1 � : : :�CPnk with a monotone symplectic form.

Theorem 1.2 I D 0 for G.2; 4/ with the monotone symplectic form.

Theorem 1.1 is related to results of Pedroza [10] and Leclercq [5]. They showed that, for
X 0 and X 00 monotone symplectic manifolds,  0 2�1.Ham.X 0//,  00 2�1.Ham.X 00//,
then S. 0� 00/DS. 0/˝S. 00/, where S. / is the Seidel element. This is sufficient
to show that I D 0 for any loop  0 2 �1.Ham.CPm

�CPn// which is a product of
loops in the hamiltonian groups of CPm and CPn . Our result shows that I D 0 for
all loops in �1.Ham.CPm

�CPn//.

Our method for proving that the action–Maslov homomorphism vanishes depends on
showing two facts. First we show that, when X is one of the above manifolds and
 2 �1.Ham.X; !//, there exists k > 0 such that the Seidel element S.k /D 1˝�,
where � is in the Novikov coefficient ring ƒ and 1 is the fundamental class ŒX �.
ŒX � is the unit for both the intersection product on H�.X / and the quantum product
on QH�.X /, and we will use the notation 1 in both. Then, we must prove that
�.1˝�/D 0, where � is the valuation map on quantum homology. These terms will
be defined in Section 2, but are well-known in symplectic topology. The condition we
use which is not well-known is Property D from McDuff [8]. We say that the quantum
homology has property D if the nontrivial genus zero Gromov–Witten invariants with
two homology constraints vanish unless both terms are in the subgroup generated by
the divisors or both are in its additive complement. This condition will also be stated
more explicitly in Section 2.

Proposition 1.3 Let .X; !/ be a symplectic manifold. Suppose that the quantum
homology QH�.X; ƒ/ has property D . Then for all  2 �1.Ham.X; !// such that
S. /D 1˝�, �.1˝�/D 0.

The following theorem is an immediate consequence.
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Symplectic manifolds with vanishing action–Maslov homomorphism 1079

Theorem 1.4 Let .X; !/ be a monotone symplectic manifold. Assume that .X; !/
has property D and that for all  2 �1.Ham.X; !//, there exists n such that the Seidel
element S.n /D 1˝� for some � 2ƒ. Then I D 0.

These conditions are rather restrictive, but they are satisfied for almost all manifolds
where I is known to vanish (with the possible exception of CP2#3CP

2
, which may

not have S.n /D 1˝�).

Property D is trivially satisfied when the even homology classes are generated by
divisors, so it includes many well-studied examples, such as toric varieties. In many of
these cases, it is difficult to show that that S.n /D 1˝�. We will say that such Seidel
elements have finite order (this is not strictly true, but the reason why this is a good
term will be discussed in Section 2), and that Seidel elements without this property
have infinite order.

Acknowledgments I would like to thank my thesis advisor, Dusa McDuff, for in-
spiring this work and guiding me through the process of writing my thesis and thus
this article. Also, I would like to thank Mike Chance, Martin Pinsonnault, Egor
Shelukhin, Yaron Ostrover, Leonid Polterovich, and Aleksey Zinger for conversations
and correspondence regarding the material herein. I would also like to thank Michael
Entov and the Technion for sponsoring me while I completed this work. My work was
partially supported by the Israel Science Foundation grant 723/10.

2 Definitions

Let X be a 2N dimensional symplectic manifold. Most of these definitions can
be found in greater detail in the monograph by McDuff and Salamon [9]. Let Keff ,
the effective cone of .X; !/, be the additive cone generated by the spherical homol-
ogy classes A 2 H S

2
.X / with nonvanishing genus zero Gromov–Witten invariants

ha; b; ciX
A
¤ 0. Consider the Novikov ring ƒenr given by formal sums

(2-1) �D
X

A2K eff

�.A/e�A

with the finiteness condition that, for all c 2R,

(2-2) #
˚
A 2Keff

j �.A/¤ 0; !.A/� cg<1

where �.A/ 2 R. ƒenr has a grading given by jeAj D 2c1.A/. We will call this the
enriched Novikov ring. The universal ring ƒuniv is ƒŒq; q�1�, where ƒ is generated
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by formal power series of the form:

(2-3) �D
X
�2R

��t
��

with a similar finiteness condition and �� 2R. The grading on ƒuniv is given by setting
deg.q/D 2. Note that ƒ is a field. The map 'W ƒenr!ƒuniv is given by taking

'.e�A/D q�c1.A/t�!.A/

and extending by linearity.

While these two rings are thus related, different properties of the quantum homology
become apparent when different coefficient rings are used. In Section 4.1 the enriched
Novikov ring ƒenr will be used to show that the units are of a specific form for X a
product of projective spaces, because the proof fails with the universal ring. In Section 3,
calculations will be carried out using the universal ring ƒ. The quantum homology
with respect to the Novikov ring ƒenr is given by QH�.X; ƒenr/DH�.X;R/˝ƒenr .
The grading on QH�.X; ƒenr/ will be given by the sum of the grading on H�.X;R/
and the grading on ƒenr .

The quantum homology admits a product structure, called the quantum product. Let
�i be a basis of H�.X / and ��i a dual basis with respect to the intersection product.
Then the quantum product of a; b 2H�.X;R/ is defined by:

(2-4) a� b D
X

i;A2K eff

ha; b; �ii
X
A �
�
i ˝ e�A

We can then extend this to QH�.X; ƒenr/ by linearity. The quantum homology
QH�.X; ƒuniv/ is defined analogously and the map id ˝ ' extends to a ring ho-
momorphism ˆW QH�.X; ƒenr/ ! QH�.X; ƒuniv/. We define the valuation map
�W QH�.X; ƒuniv/!R by

�

 X
i2R

�i ˝ qai tbi

!
Dmaxfbi j �i ¤ 0g:

Next, we will discuss S. /, the Seidel element (defined in Seidel [14]). Given a loop
 2 �1.Ham.X; !// with  D f�tg, we define the Hamiltonian fiber bundle P over
S2 with fiber X . This bundle is given by the clutching construction: take two copies
of D2;DC and D� . Then take X �DC and glue it to X �D� (where D� has the
opposite orientation from DC ) via the map

.�t .x/; e
2�it /C � .x; e

2�it /�:
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Symplectic manifolds with vanishing action–Maslov homomorphism 1081

When the loop  is clear from context, we will refer to this bundle as P . P has
two canonical classes: the vertical Chern class, denoted cvert

1
, and the coupling class,

denoted u . cvert
1

is the first Chern class of the vertical tangent bundle. u is the
unique class such that u jX D! and unC1

 D 0. Given a section class � 2H2.P ;Z/,
we can define the Seidel element in QH�.X; ƒenr/ by taking

(2-5) S.; �/D
X

A2H S
2
.X /;i

h�ii
P

�CA
��i ˝ e�A

where H S
2
.X / is the image of �2.X / in H2.X / (the spherical homology classes).

Note that � CA is a slight abuse of notation; we should actually write � C ��.A/,
where �W X ! P is the inclusion map. We will continue this abuse throughout the
paper. The Seidel element can also be defined in QH�.X; ƒuniv/; in this case, the
dependence on � is eliminated by an averaging process.

(2-6) S. /D
X
�;i

h�ii
P

� ��i ˝ q�cvert
1
.�/t�u .�/

Although we have defined the Seidel element differently in these two rings, note that
the first determines the second, via the following lemma.

Lemma 2.1 For any section class � 2 P , there exists an additive homomorphism
ˆ� W QH�.X; ƒenr/! QH�.X; ƒuniv/ which takes S.; �/ to S. /. This homomor-
phism restricts to the identity on H�.X /.

Proof Define
ˆ� .�i ˝ e�A/D �i ˝ q�cvert

1
.�CA/t�u .�CA/:

Extend this map over QH�.X; ƒenr/ by linearity. This is clearly an additive homomor-
phism, and ˆ� .�i/D �i .

We now explain what we mean when we say that the Seidel element is finite order.

Definition 2.2 Let ƒ be any Novikov ring, and let � 2 QH2N .X; ƒ/. We say that �
has finite order if there exists k such that �k D 1˝� for some � 2ƒ, �¤ 0.

This is not strictly the traditional sense of order, as some power is equal to 1˝� rather
than 1. However, by a result of Fukaya, Oh, Ohta and Ono [4, Lemma A.1], we know
that any Novikov ring with coefficients in an algebraically closed field of characteristic
0 is algebraically closed. Therefore, by enlarging ƒ to have coefficients in C (we
will call this ƒC ), we can find � 2 ƒC such that .S. /˝ �/n D 1. Therefore, the
statement that S. / has finite order is true in the classic sense, up to multiplication by
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some � 2ƒC . If S. / does not have finite order in this sense, we will say that it has
infinite order.

Note that the Seidel element S. / is in degree 2N for dimensional reasons. But we
can identify QH2N .X; ƒuniv ) with the ring QHev.X; ƒ/ by taking

 .a˝ q�a tıa/D a˝ tıa

where a 2Hev.X /, the subspace of H�.X / generated by even dimensional homology
classes. This map is an isomorphism, since  �1.a/ D aqN� 1

2
deg.a/ . Since ƒ is a

field, working in this ring is more convenient for us. Therefore, we will frequently use
this isomorphism implicitly, especially in Section 3 and Section 4.2.

Now we can define the action–Maslov homomorphism I of Polterovich [11]. Although
the original definition is the difference of the action functional and the Maslov class,
Polterovich shows in [11, Proposition 3.a] that the homomorphism can also be defined
as the difference between the vertical Chern class and the coupling class. Namely,

(2-7) u D �cvert
1 C I. /PDP .X /:

Here, � is the same constant of monotonicity from before: ! D �c1.X /. We will
use this alternate definition of the action–Maslov homomorphism, because it is more
directly related to our results. Note in particular that if � is a section class with
cvert

1
.�/D 0, then I. /PDP .X /D u .�/.

Finally, we will define Property D . This should be seen as a generalization of the
statement that the even degree homology classes of X are generated by divisors. Here,
we will use the conventions that � represents the intersection product

Hd .X /˝H2N�d .X /!H0.X /�R;

and that all Gromov–Witten invariants are genus-zero invariants. We will use these
conventions throughout this paper. Finally, we restate the definition of Property D :

Definition 2.3 (McDuff [8]) QH�.X; ƒ/ satisfies Property D if there exists an
additive complement V in Hev.X;Q/ to the subring D�Hev.X;Q/ generated by the
divisors and the fundamental class such that:

hd; viˇ D 0 for all ˇ 2H S
2 .X /

for all D 3 d ¤ ŒX �, v 2 V .
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3 Seidel elements with vanishing valuation

Let .X; !/ be a 2N dimensional symplectic manifold,  2 �1.Ham.X; !//, and P
the bundle coming from the coupling construction. Quantum homology and Seidel
elements in this section will always refer to those with respect to the universal Novikov
ring ƒ defined in (2-3).

In this section we will prove Proposition 1.3 and thus Theorem 1.4. Proposition 1.3
states that if X has property D and every  has finite order S. /, then �.�/ D 0.
This in turn implies that I D 0, which proves Theorem 1.4.

The proof is adapted from the methods of McDuff [8]. McDuff proved a similar result
(that the asymptotic spectral invariants descend) which is equivalent to I D 0 for
monotone symplectic manifolds. Her assumptions were Property D and a lower bound
on the minimal Chern number, which in turn implies that S.n /D1˝�Cx . The shift
in conditions requires some minor changes to the proof, which we present below. When
a lemma is cited as being from [8], this means that the same lemma was presented
there, with conditions on the minimal Chern number instead of the Seidel element. If
the proof is not given, then it proceeds exactly as in [8], using the lemmas from this
paper in place of the originals. The proofs that are presented use the same ideas as [8],
but are modified in more significant ways.

We begin by defining a few specific terms which will we use throughout this section.

Definition 3.1 Let Q�.X; ƒ/D
L

i<2N Hi.X /˝ƒ.

Definition 3.2 Let X and  be as above, and suppose that S. /D 1˝�Cx , where
x is any element in Q�.X; ƒ/ and �¤ 0. Consider the sections f�g with cvert

1
.�/D 0

which contribute to the Seidel element S. /. Then define �0 to be a section such that
u .�0/Dminfu .�/g.

Note 3.3 Since ƒ is a field, the condition that �¤ 0 is equivalent to � being a unit in
ƒ.

The main thrust of our argument will be that knowing the Seidel element of  tells
us a great deal about the Gromov–Witten invariants of P . We use this knowledge to
construct a homology representative of the Poincaré dual of u , and to show that this
homology representation has certain properties.

Lemma 3.4 (McDuff [8, Lemma 3.4]) Suppose S. /D 1˝�Cx , where x is any
element in Q�.X; ƒ/, and there is an element H 2H2N .P / such that
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(1) H \ ŒX � is Poincaré dual in X to Œ!�.

(2) H � �0 D 0.

(3) H NC1 D 0.

Then �.1˝�/D 0.

Here conditions (1) and (3) imply that H is a representative of the Poincaré dual of
the coupling class, so that (2) implies �.1˝�/D 0. We wish to construct such an H .
We will do so by “fattening up” a representative of the dual of ! in the fibre. As in [8],
we define a map sW H�.X;R/!H�C2.P;R/ by the identity

(3-1) s.a/ �P v D
1

hptiP�0

ha; viP�0
;

for all v 2 H�.P /. Let HP D s.PDX .!//. Now we need to show that this HP

satisfies the properties in Lemma 3.4. Lemma 3.5 is a variant of parts (ii) and (iii)
of [8, Lemma 4.2]. Note that this version of the lemma eliminates the requirement
on the minimal Chern number, but replaces it with a stronger condition on S. /. In
turn, this gives us a stronger result; the lemma is true for all a 2H�.X /, rather than
a 2H<2N .X / as in [8].

Lemma 3.5 (based on McDuff [8, Lemma 4.2]) Suppose that S. /D 1˝� and let
� D �0�B for some B 2H2.X / where !.B/ > 0. Then for all a 2H�.X /:

(1) ha; biP� D 0 for all b 2H�.X /.

(2) For all w 2H�.P /; ha; wi
P
� depends only on w\X .

Despite these changes, the proof proceeds exactly as in [8], and will not be repeated
here.

We will also need two lemmas from [8]. The first is a special case of [8, Lemma 4.5].

Lemma 3.6 Suppose that S. /D 1˝�. Then:

(1) s.pt/D �0 .

(2) s.a/\X D a, for all a 2H�.X;R/.

The second is [8, Lemma 4.1].

Lemma 3.7 Suppose that a; b 2 H�.X /; v; w 2 H�.P ;R/ and B 2 H2.X;Z/ �
H2.P ;Z/. Then

Algebraic & Geometric Topology, Volume 11 (2011)



Symplectic manifolds with vanishing action–Maslov homomorphism 1085

(1) ha; b; viP
B
D 0.

(2) ha; v; wi D ha; v\X; w\X iX
B

.

For proofs of these two lemmas, see [8]. Lemma 3.6 follows from simple computations
using the definition of s :

s.pt/ � v D �0 � v;

for any divisor class v . Lemma 3.7 essentially depends on the fact that the two fiber
constraints can be located in different fibers. If J is compatible with the fibration, the
J –holomorphic curve will reside entirely in one fiber, and thus can intersect at most
one of the fiber constraints. The second part follows similarly, since the B curve must
lie in the same fiber as a.

The two hypotheses for the results in this section will be that QH�.X; ƒ/ satisfies
property D and that S. /D 1˝�. We use Lemma 3.8 at exactly two places in the
proof of Proposition 1.3 (specifically, in the proofs of Lemma 3.9 and Lemma 3.11).
The other results (and the main result, Proposition 1.3) thus require these conditions
only so that they can use results of Lemma 3.9 and Lemma 3.11.

This lemma is very similar to [8, Lemma 4.8.i], but differs in a crucial way. Namely,
the class a here is permitted to be any class in H�.X /, rather than being restricted to
H<2n.X /. This case will be exactly the one needed in the proof of Lemma 3.9. As
such, the proof varies (the Gromov–Witten invariants vanish for different reasons) and
is presented in its entirety.

Lemma 3.8 Let .X; !/ be a symplectic manifold,  2 �1.Ham.X; !//, and P the
associated bundle. Assume D is the part of Hev.P;R/ generated by divisors fDi ;X g

and S. /D 1˝�. Let a 2H�.X;R/ be a fiber class, v 2D , and B 2H2.X;Z/ such
that !.B/ > 0. Then the Gromov–Witten invariant hv; aiP

�0�B
vanishes.

Proof Suppose not. As in the proof of [8, Lemma 4.8.i], we take a section of minimal
energy such that some invariant of this form does not vanish and call it � 0 . v is
a product of divisors, and we claim we may assume that each of these divisors Di

satisfies Di � �
0 D 0. First, we can show that none of the Di DX . If any of them did,

then v would be a fiber class, and hv; aiP
�0�B

would vanish by Lemma 3.5 (note that
we need here the stronger condition of Lemma 3.5, since we could have a 2H2N .X /).
Then to any other Di , we can add a multiple of X to obtain a new class D0i which
differs from Di by a fiber class and has D0i ��

0DDi ��
0CkX �� 0D 0, for appropriate

choice of k . Lemma 3.5 shows that adding a fiber class to v does not change our
Gromov–Witten invariant. Now consider the set˚

vi j hvi ; ai
P
� 0 ¤ 0

	
:
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Each of these vi is a linear combination of products of k divisors. We will assume,
without loss of generality, that v is one of these vi and it is exactly a product of k

divisors. We will perform induction on k .

If kD 1, the invariant vanishes by the divisor axiom for Gromov–Witten invariants (see
McDuff and Salamon [9, Section 7.5]), which says that hD1; ai

P
� 0 D hai

P
� 0.D1 ��

0/D 0.
If k > 1, we use Lee and Pandharipande [6, Theorem 1], as restated in [8, (4.2)]. This
identity is stated as follows. Take a basis �i of H�.X / and extend it to a basis of
H�.P / by adding classes ��i such that �i � ��j D ıij and ��i � �

�
j D 0 (note that these

��i are not the same as the ��i above, as they form a dual basis in H�.P / rather than
H�.X /). Note that the �i here are fiber classes, but the ��i cannot be fiber classes.
Now take classes u; v; w 2H�.P /;H 2H2N .P / a divisor, and ˛ 2H2.P /. Then
Lee and Pandharipande show that

(3-2) hHu; v; wiP˛ D hu;Hv;wiP˛ C .˛ �H /hu; �v; wiP˛

�

X
i;˛1C˛2D˛

.˛1 �H /hu; �i ; : : :i
P
˛1
h��i ; v; : : :i

P
˛2

where � is a descendant constraint and “: : :” indicates that the w term may appear in
either factor.

Now, assume that the statement is true for all v 2 D of codimension 2k � 2. Let
v DD1 � � �Dk�1 �Dk (where, as above, we can assume that all of these divisors have
Di � �

0 D 0). Given any section class � , McDuff shows in [7, Lemma 2.9] that in the
above sum, a section class can only decompose into � �˛ and ˛ where either ˛ is a
fiber class or ��˛ is a fiber class. In both cases, the other element of the decomposition
will be a section class by necessity. This follows from considering J –holomorphic
curves where J is compatible with the fibration. By combining equation (3-2) and this
decomposition into divisors, one sees that (we take wDD1 � � �Dk�1 and DDDk , to
simplify our notation)

hw �D; aiP� 0 D hw �D; a;X i
P
� 0(3-3)

D hw;D � a;X iP� 0 C .D � �
0/hw; �a;X iP� 0(3-4)

�

X
c2H2.X /;i

..� 0� c/ �D/hw; �i ; : : :i
P
� 0�ch�

�
i ; a; : : :i

P
c(3-5)

�

X
c2H2.X /;i

..� 0� c/ �D/hw; ��i ; : : :i
P
� 0�ch�i ; a; : : :i

P
c(3-6)

�

X
c2H2.X /;i

.c �D/hw; �i ; : : :i
P
c h�
�
i ; a; : : :i

P
� 0�c(3-7)

�

X
c2H2.X /;i

.c �D/hw; ��i ; : : :i
P
c h�i ; a; : : :i

P
� 0�c :(3-8)
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We will go through the right hand side of this equation line by line and show that each
of them must vanish. Line (3-4) has two terms – the first one vanishes because w
is of codimension 2k � 2 and the second one vanishes because D � � 0 D 0. If line
(3-5) does not vanish then we must have either c D 0, or !.c/ > 0 and X in the
first factor (otherwise the second factor would vanish by Lemma 3.7). If c D 0, then
.� 0� c/ �D D � 0 �D D 0 and line (3-5) vanishes. Thus our first factor is

hw; �i ;X i
P
� 0�c

with !.c/ > 0, which vanishes by the minimality of � 0 . Line (3-6) must vanish by
Lemma 3.7 because the second factor is a fiber invariant with two fiber constraints. In
line (3-7), the X must insert into the second term by Lemma 3.7, and thus we have
invariants of the form

hw; �ii
P
c h�
�
i ; a;X i

P
� 0�c :

Note that c ¤ 0, so this vanishes by minimality of � 0 .

Finally, line (3-8) must vanish because the second factor is of the form h�i ; a;X iP� 0�cD

h�i ; ai
P
� 0�c . This invariant vanishes because it has two fiber constraints. Assume that it

does not vanish. Then it would contribute to S. /� a, as in McDuff and Salamon [9,
(11.4.4)],

(3-9) S. /� aD
X
i;�

ha; �ii
P

� ��i ˝ q�cvert
1
.�/t�u .�/:

But since it doesn’t vanish, !.c/ > 0, and thus � 0� c has less energy than �0 , which
contradicts the definition of �0 . Therefore, the entire invariant vanishes, and by
induction, all such invariants vanish.

The following lemma differs from [8, Lemma 4.6] only in the initial conditions, and
the proof follows in the same way, using the modified lemmas where appropriate. The
one significant difference from [8] is highlighted.

Lemma 3.9 Assume the conditions of Proposition 1.3. Then hh; �0i
P
�0
D 0 where

h 2H�.X;R/ is the Poincaré dual of the symplectic form in X .

Proof We can take any divisor class D in P such that D\X D h and add copies of
X to get a class K such that K \X D h and K � �0 D 0. Then the identity of Lee
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and Pandharipande gives us

hh; �0i
P
�0
D hh; �0;X i

P
�0

D hX;K�0;X i
P
�0
C .�0 �K/hX; ��0;X i

P
�0

�

X
˛2H2.P/

..�0�˛/ �K/hX; �i ; : : :i
P
�0�˛
h��i ; �0; : : :i

P
˛

�

X
˛2H2.P/

..�0�˛/ �K/hX; �
�
i ; : : :i

P
�0�˛
h�i ; �0; : : :i

P
˛

The proof of how nearly all of these invariants vanish proceeds as in [8], and will not
be repeated. The one case which differs is that of the invariants in the second sum
when �0�˛ is a section class. The invariant in question is thus of the form:

hX; ��i ;X i
P
�0�˛
h�i ;ptiX˛

with ˛¤ 0 and !.˛/ > 0 since ..� �˛/ �K/D 0. If the second factor does not vanish,
then property D tells us that the class �i is generated by divisors, because pt 2D . If
�i is generated by divisors, ��i must be generated by divisors, and Lemma 3.8 tells us
that the first factor must vanish. Note that here that [8, Lemma 4.8.i] would not be
sufficient, since the fiber class here is X .

Corollary 3.10 [8, Corollary 4.7] Assuming the conditions of Proposition 1.3, we
have H � �0 D 0.

Lemma 3.11 [8, Lemma 4.8] Assuming the conditions of Theorem 1.4,

hH NC1�k ;X \H k
i
P
�0
D 0

for all k .

The proof of this statement follows exactly as [8, Lemma 4.8], and the following
corollary is identical to [8, Corollary 4.9].

Corollary 3.12 [8, Corollary 4.9] Assuming the conditions of Proposition 1.3,
H NC1 D 0.

The proof of Proposition 1.3 now follows from these results.

Proof of Proposition 1.3 X satisfies the conditions of Lemma 3.9. Then HP
��0D0,

by Corollary 3.10. Similarly, Corollary 3.12 shows that H mCnC1 D 0. Thus, H

satisfies the conditions of the Lemma 3.4.
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Proof of Theorem 1.4 Let Œ � 2 �1.Ham.X; !//. Since S.n / is of the form
1˝ � and QH�.X; ƒ/ has Property D , Proposition 1.3 implies that �.S.n //D 0.
This implies that there exists a section class �0 which contributes to S.n / and has
un .�0/ D 0. By the definition of the Seidel element, cvert

1
.�0/ is also 0, and thus

cvert
1
.�0/Dun .�0/D0. Therefore, by Equation (2-7), I.n /D0. But I.n /DnI. /,

so I. /D 0.

4 Manifolds with I D 0

Now we will discuss several monotone symplectic manifolds that we can show have
I D 0. We do this by showing results about property D and the form of the Seidel
element. Note that we need to show that the Seidel element S.k /D 1˝�. In some
cases, it may be easier to show that the enriched Seidel element S.k; k�/ has this
form. Then Lemma 2.1 implies that S.k / has the form 1˝�.

We begin with a lemma which helps us to reduce the potential elements of quantum
homology which can be Seidel elements.

Lemma 4.1 If .X; !/ is monotone and  2 �1.Ham.X; !//, then the Seidel element
S.; � 0/ (and also the Seidel element S. /) will have coefficients in Z and a finite
number of terms.

This result is very straightforward and uses very standard techniques in Gromov–Witten
theory. A full proof can be found in the author’s thesis [2]. Using this lemma, we need
only consider elements in a smaller subring of QH�.X; ƒenr/:

Definition 4.2 Let ƒenr;Z be the subring of ƒenr with integral coefficients. Then
define Qenr.X /D QH�.X; ƒenr;Z/ to be the subring of QH�.X; ƒenr/ which consists
of finite sums of elements with coefficients in Z. Thus, a typical element is

nX
iD0

xie
�Ci

where xi 2H�.X;Z/ and Ci 2H S
2
.X;Z/.

4.1 CP m
�CP n

Let X be CPm
�CPn with the monotone symplectic form, and let N DmC n.
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Note 4.3 In fact, all of the results in this section are true for products of an arbitrary
number of projective spaces with the monotone symplectic form. For simplicity of
notation, though, we will prove them for CPm

�CPn only.

In order to show that I D 0, we need to show that some power of the Seidel element is
of the form 1˝ �. This is a consequence of the algebraic structure of the quantum
homology: namely, that the subring Qenr is an integral group ring over an ordered
group.

Definition 4.4 An ordered group is a group G equipped with a total order < which
is translation invariant: g < h implies g � a< h � a and a �g < a � h for all g; h; a 2G .

Theorem 4.5 If X is CPm
�CPn with the monotone symplectic form, then Qenr.X /

is an Z group ring over an ordered group.

Theorem 4.5 follows directly from Lemmas 4.6 and 4.7.

Lemma 4.6 If Qenr.X
0; ƒX 0

enr;Z/ and Qenr.X
00; ƒX 00

enr;Z/ are both integral group rings
over ordered groups, then Qenr.X

0 �X 00; ƒX 0�X 00

enr;Z / is also an integral group ring over
an ordered group.

Proof First, note that H S
2
.X 0�X 00/ŠH S

2
.X 0/˚H S

2
.X 00/. Therefore, we can write

any eA for A 2H S
2
.X 0 �X 00/ as eA0

eA00

where A0 2H S
2
.X 0/ and A00 2H S

2
.X 00/.

This gives us an isomorphism

ƒX 0�X 00

enr;Z ŠƒX 0

enr;Z˝ƒ
X 00

enr;Z

Therefore, we have

Qenr.X
0
�X 00; ƒX 0�X 00

enr;Z /ŠQenr.X
0
�X 00; ƒX 0

enr;Z˝ƒ
X 00

enr;Z/

ŠH�.X
0
�X 00/˝Zƒ

X 0

enr;Z˝ƒ
X 00

enr;Z

as additive groups. Thus, by the classical Künneth formula,

Qenr.X
0
�X 00; ƒX 0

enr;Z˝ƒ
X 00

enr;Z/ŠQenr.X
0; ƒX 0

enr;Z/˝Z QHenr.X
00; ƒX 00

enr;Z/

as additive groups. By the quantum Kunneth formula (see McDuff and Salamon [9,
Section 11.1]), this is actually a ring isomorphism. Therefore,

Qenr.X
0
�X 00; ƒX 0

enr;Z˝ƒ
X 00

enr;Z/ŠQenr.X
0; ƒX 0

enr;Z/˝Z Qenr.X
00; ƒX 00

enr;Z/:

We assumed that both of these subrings were integral group rings over ordered groups.
Therefore, we have that Qenr.X

0 �X 00; ƒX 0

enr;Z ˝ƒ
X 00

enr;Z/ Š Z.G0/˝Z Z.G00/. But
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this is isomorphic to Z.G0 �G00/. Give G0 �G00 the lexicographic ordering. The
product of two ordered groups with the lexicographic ordering is still an ordered
group, and so .g0;g00/ < .h0; h00/ implies that .g0 � a0;g00 � a00/ < .h0 � a0; h00 � a00/ and
.a0 �g0; a00 �g00/ < .a0 � h0; a00 � h00/.

Note that this statement is NOT true with the universal coefficients ƒuniv . In that case,
the tensor product is over ZŒq� and the isomorphism does not respect the ordering.
Therefore, the enriched coefficients are necessary here to obtain the desired result.

Lemma 4.7 Qenr.CPn/ is a group ring over an ordered group.

Proof Recall that

Qenr.CPn/Š
ƒenr;ZŒx�

hxnC1 D e�Ai
;

where A is the class of the generator in H2.X;Z/. Let q D eA and then let G be the
group generated by x and q with relation xnC1D q�1 (note that .G;�/ is isomorphic
to .Z;C/, via the isomorphism �.xk/D k ). This group can be ordered by using the
mapping �W .G; �/! .Q;C/ where �.x/D 1

nC1
and �.q/D�1. Then G is ordered

by the pullback of the ordering on Q. Clearly, Qenr.CPn/ is just the Z group ring of
G .

Now we can combine Theorem 4.5 and an algebraic lemma to determine the units of
Qenr.X /.

Lemma 4.8 If G is an ordered group, then the units of Z.G/ are ˙G .

Lemma 4.8 is proved as in Sehgal [13, Lemma 45.3]. The proof in Sehgal is incomplete,
so we provide a corrected version here:

Proof Take a nonmonomial unit p D
Pt

iD1 ui �gi of the group ring and its inverse
(which must also then be nonmonomial) p�1D

P`
iD1 vi �hi , with g1< g2< : : : < gt

and h1 < h2 < : : : < h` . If we multiply these two elements, we get 1G D u1v1 �

g1h1C : : :C utv` � gth` . Then, for this equation to be true, the group element in
any term on the right hand side must be 1G or cancel with the group element from
another term. Since G is ordered, g1h1 < gihj , for i > 1 or j > 1 and gihj < gth`
for i < t or j < `, so these group elements cannot cancel with other terms. Thus,
we must have g1h1 D 1G D gth` and thus g�1

1
D h1 and g�1

t D h` . But we have
g1 < gt ) g�1

1
> g�1

t ) h1 > h` , which is a contradiction. Therefore, p must be
monomial.
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Corollary 4.9 Let X D CPm
� CPn with the monotone symplectic form. Then

the only units in Qenr.X / are the monomial units: those of the form ˙aibj ˝ eC ,
C 2H2.X;Z/.

Proof Theorem 4.5 shows that Qenr.X / is isomorphic to an integral group ring over
the group generated by a, b , and eA (where A is a generator of H2.X;Z/). Since
this group is ordered, all of its units are monomial by Lemma 4.8.

Theorem 4.10 For CPm
�CPn with the monotone symplectic form and for any loop

 2 �1.Ham.CPm
�CPn; !//, S. / has finite order.

Proof Let � be a section class in H2.P /. Corollary 4.9 shows that S.; �/ must be of
the form ˙af bg˝e�C . Let kD .mC1/.nC1/. Then S.k; k�/Dakf bkg˝e�C D

1˝e.kh�.nC1/f /Ae�C . By Lemma 2.1, the same k also works for S.k/D1˝�.

Proof of Theorem 1.1 The first condition of Theorem 1.4 is satisfied because all
classes in H�.CPn1 � : : :�CPnk / are generated by divisors. Therefore, QH�.X; ƒ/
satisfies property D . Theorem 4.10 shows that the second condition is satisfied for a
product of two projective spaces, and thus Theorem 1.4 shows that I D 0. By using
Lemma 4.6 .k � 1/ times, one can show Theorem 4.10 for the product of k projective
spaces. The result follows.

4.2 G.2 ; 4/

The complex grassmannians are another class of monotone symplectic manifolds with
well-understood quantum homology. Let .X; !/ be the Grassmannian of 2–planes in
C4 (which we will also denote by G.2; 4/) with ! D c1.X /. Theorem 1.2 states that
the action–Maslov homomorphism vanishes for .X; !/, the simplest grassmannian
which is not a projective space. We need to show two things to prove this statement:
that S.k / D 1˝ � and that X satisfies property D . First, we will show that the
Seidel element must have finite order. Unlike the products of projective spaces, here
we do not even need to use enriched coefficients. Instead of Qenr.X /, we will look at
the analogous subring Q.X / of finite sums with integral coefficients in QH�.X; ƒ/.
Let x1 and x2 be the Poincaré duals of the first and second Chern classes, respectively.
Then Siebert and Tian [16] show that the ring Q.X / is

ƒŒx1;x2�

hx3
1
� 2x1x2;x

2
1
x2�x2

2
� t4i

:

Because dim.X /D 8 and the minimal Chern number is 4, the terms which can appear
in the Seidel element are sharply limited. Assume that a section � contributes to the
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Seidel element. Then any other contributing sections are of the form � 0 D � C kL,
where k 2 Z and LD x1x2 is the class of a line in X . Since contributing sections
must have �8� cvert

1
.� 0/� 0, clearly another section can only exist if � 0D �˙L and

cvert
1
.�/D 0 or �8. H�.X / has generators organized by degree as follows:

0 2 4 6 8
x2

2
x1x2 x2

1
;x2 x1 1

The Seidel elements form a subgroup of the units: the product of two Seidel elements
is a Seidel element, and so is the inverse. All of these elements have degree equal to
the dimension of X , which is 8. Thus, the Seidel element can only be of the form:

a1t�C bx2
2q4t4C�(4-1)

ax1q1t�(4-2)
ax2

1q2t�C bx2q2t�(4-3)
ax1x2q3t�(4-4)

Since these elements are of degree 8 in QH�.X; ƒuniv/, we will work with coefficients
in ƒ instead. Similarly, the exponent of t is determined up to a constant multiple
� D t� so we will also suppress t . These elements must be units in the quantum
homology (with inverses of the same form), and since the symplectic form is monotone,
a and b must be integers.

Lemma 4.11 The Seidel element, up to appropriate powers of q and t , is either
˙1;˙x2;˙.x

2
1
�x2/, or ˙x2

2
.

Proof We will proceed by checking each possible Seidel element, starting with (4-2).
In this case, S.�1/ is of the form given in (4-4). Therefore, with appropriate powers
of q , we have

1D .ax1q�1/� .bx1x2q�3/D abx2
1x2q�4

D ab.1Cx2
2q�4/:

This implies that ab D 0 and ab D 1, which is impossible. Thus, no such elements
can be Seidel elements. Now we look at (4-1). First, note that

x4
2 D .x

2
2/

2

D .q4
�x2

1x2/
2

D q8
� 2x2

1x2q4
Cx4

1x2
2

D q8
� 2x2

1x2.x
2
1x2�x2

2/Cx4
1x2

2

D q8
�x4

1x2
2 C 2x2

1x3
2

D q8
Cx1x2

2.2x1x2�x3
1/

D q8
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Therefore, we have

1D .a1C bx2
2q�2/� .c1C dx2

2q�2/

D .acC bd/1C .ad C bc/x2
2 :

Hence, .ad C bc/ D 0 and .ac C bd/ D 1. Then, either d D 0 or a D �bc
d

. First,
we will address the case where d ¤ 0. By substituting �bc

d
for a, one obtains that

b D d
d2�c2 and aD �c

d2�c2 . Since a and b are both integers, this means that d2� c2

divides both c and d . Since d ¤ 0, this is only true when fa; b; c; dgD f0;˙1; 0;˙1g.
If d D 0, the equations immediately show that we must have f˙1; 0;˙1; 0g. Therefore,
the Seidel element must be either 1 or x2

2
multiplied by some �.

Finally, we look at (4-3). Here, we will have

1D .ax2
1q�2

C bx2q�2/� .cx2
1q�2

C dx2q�2/

D acx4
1q�4

C .bcC ad/x2
1x2q�4

C bdx2
2q�4

D .acC bcC ad/� .2x2
1x2q�4/C bdx2

2q�4

D .acC bcC ad/� .2x2
2q�4

C 2�1/C bdx2
2q�4

D .2acC bcC ad C bd/x2
2q�4

C .2acC bcC ad/1:

This will be true if and only if .2acCbcCad/D�bdD1. Thus we have bD�dD˙1.
If bD�d D 1, then c D 1Ca

1C2a
, which is only integral if fa; b; c; dg D f0; 1; 1;�1g or

f�1; 1; 0;�1g. Similarly, if b D �d D �1, then c D 1�a
�1C2a

, which is only integral
if fa; b; c; dg D f0;�1;�1; 1g or f1;�1; 0; 1g. Therefore, we have either ˙.x2

1
�x2/

or ˙x2 . This completes the proof.

Lemma 4.12 Let S. / be the Seidel element of  2�1.Ham.X; !//. Then S.4 /D

1˝�.

Proof S. / must be of a form listed in Lemma 4.11. Clearly, since ƒ is a field, the
coefficient � does not affect invertibility, and we only need to concern ourselves with
the homology terms. Since 1

4 D 1 and x4
2
D q8 , this is obvious for the first two

cases. This leaves only the case where S. /D x2
1
�x2 . But .x2

1
�x2/

2 D x2
2

(by the
calculations for line (4-3)), so the statement also holds in this case.

In order to show that the action–Maslov homomorphism vanishes on G.2; 4/, we also
need to show that it satisfies Property D . This is slightly weaker than requiring that
the quantum homology be generated by divisors. QH�.G.2; 4/;ƒ/ is not generated by
divisors, but does satisfy property D .
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Lemma 4.13 The quantum homology of G.2; 4/ with coefficients in ƒ satisfies
property D .

Proof First, note that the homology is generated (over Q) by x1 in every degree
except 4 (x1x2 D

1
2
x3

1
and x2

2
D x2

1
x2 D

1
2
x4

1
). Therefore, V must be generated by

some class ax2
1
C bx2 . But by the dimension formula for genus 0 Gromov–Witten

invariants, if
hd; viA ¤ 0;

then the codegrees of d and v must add up to 8C 2c1.A/� 2. If A ¤ 0, we have
c1.A/� 4, so the sum of the codegrees must be at least 14. But if v is ax2

1
C bx2 , it

has codegree 4 and d must have codegree 10. But G.2; 4/ is 8 dimensional, so this
cannot happen. Therefore, hd; ax2

1
C bx2iA D 0 for all d 2 D and G.2; 4/ satisfies

property D .

Lemmata 4.12 and 4.13 are sufficient to show that the action–Maslov homomorphism
vanishes on G.2; 4/. This completes the proof of Theorem 1.2.

4.3 Other grassmannians

The immediate question posed by Theorem 1.2 is whether these results can be extended
to other grassmannians. The answer to this question is unfortunately no. We can
show, using the quantum Schubert calculus developed by Bertram [1], that G.2; 4/ and
CPn are the only grassmannians with property D . Additionally, we can show that
for G.2; 2nC 1/, there exist units in quantum homology with infinite order. Both of
these results require an extensive treatment of the quantum Schubert calculus (see the
author’s thesis [2] for more details). Because of these results, Proposition 1.3 will not
suffice to show that I D 0 for these grassmannians.

However, it is possible to replace property D with a weaker statement about the
quantum homology in Proposition 1.3, as property D requires the vanishing of far more
Gromov–Witten invariants than is actually necessary. It is possible that doing so could
provide progress on the question of whether I vanishes on the higher dimensional
grassmannians.
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