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Homotopy algebra structures on twisted tensor products
and string topology operations

MICAH MILLER

Given a C1 coalgebra C� , a strict dg Hopf algebra H� and a twisting cochain
� W C�! H� such that Im.�/ � Prim.H�/ , we describe a procedure for obtaining
an A1 coalgebra on C�˝H� . This is an extension of Brown’s work on twisted
tensor products. We apply this procedure to obtain an A1 coalgebra model of the
chains on the free loop space LM based on the C1 coalgebra structure of H�.M /

induced by the diagonal map M ! M �M and the Hopf algebra model of the
based loop space given by T .H�.M /Œ�1�/ . When C� has cyclic C1 coalgebra
structure, we describe an A1 algebra on C�˝H� . This is used to give an explicit
(nonminimal) A1 algebra model of the string topology loop product. Finally, we
discuss a representation of the loop product in principal G –bundles.

55P35, 55R99, 57N65, 57R22, 57M99; 55Q33, 55Q32

1 Introduction

Brown’s theory of twisting cochains, outlined in [2], provides a way to model the
total space of a bundle in terms of the base and fiber. Given a principal bundle
G ! P ! M and a twisting cochain � W C�.M / ! C�.G/, Brown constructs a
complex .C�.M /˝C�.G/; @� / whose homology is isomorphic to H�.P /. If Y is a
G space and Y ! P �G Y !M is the associated bundle, then there is a complex
.C�.M /˝C�.Y /; @� / whose homology is isomorphic to H�.P �G Y /. Quillen [21]
shows that when Im.�/� Prim.H�/, the isomorphism is one of coalgebras. There is
an extensive literature on twisting cochains due to their wide ranging applications. We
have focused on these two results immediately related to this discussion.

In Section 3, we push Brown’s theory to homotopy algebras. That is, given a C1
coalgebra C� , a dg bialgebra H� and a twisting cochain � W C�!H� where Im.�/�
Prim.H�/, we define a twisted A1 coalgebra on C�˝H� . The twisted coalgebra
structure is denoted fc�nW C�˝H�! .C�˝H�/

˝ng. The twisted term in Brown’s
differential is described by applying the coproduct on C� , then applying � to one of
the factors, and finally using the multiplication in H� . The same idea is used for c�

1
,

except we use the higher homotopies fcnW C�! C˝n
� g of the C1 coalgebra structure
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1164 Micah Miller

as well as the coproduct. We use the same process to obtain c�
2

, except we use the
maps cn>2 . And the process continues for all c�n . If C� is a strict differential graded
coalgebra with cn D 0 for n> 2, then the complex reduces to Brown’s complex. For
this reason, we denote c�

1
by @� . The following theorem is proved in Section 3.

Theorem 3.9 Let C� be a C1 coalgebra, H� a dg bialgebra and � W C� ! H� a
twisting cochain such that Im.�/ � Prim.H�/. The maps f@� ; c�2 ; c

�
3
; : : :g define an

A1 coalgebra on C�˝H� .

We then define the conjugation action of H� on itself. The action of a primitive
element on H� is both a derivation and a coderivation. If we go through the process of
defining fc�ng as above, except instead of using the multiplication in H� , we use the
conjugation action, the resulting maps also define an A1 coalgebra structure. Because
the conjugation action involves the antipode map, we require H� to be a dg Hopf
algebra, as opposed to a dg bialgebra found in the Theorem 3.9.

Theorem 3.17 Let C� be a C1 coalgebra, H� a dg Hopf algebra and � W C�!H�
a twisting cochain such that Im.�/� Prim.H�/. The maps f@� ; c�2 ; c

�
3
; : : :g obtained

using the conjugation action define an A1 coalgebra on C�˝H� .

Since the conjugation action is a derivation, if C� also has a multiplication, it is
reasonable to ask for an A1 algebra on C�˝H� . When C� is a cyclic C1 coalgebra,
there is a twisted A1 algebra on C�˝H� .

Theorem 3.18 Let C� be a cyclic C1 coalgebra, H� be a Hopf algebra and � W C�!
H� be a twisting cochain with Im.�/�Prim.H�/. The maps f@� ;m2;m3; : : :g defined
using the conjugation action in H� give C�˝� H� the structure of an A1 algebra.

The A1 algebra and A1 coalgebra share the same differential @� , so they compute
the same linear homology. We still do not know what the further compatibilities are.

Section 4 applies this work to the path space fibration �b.M /!Pb.M /!M . Since
�b.M / is homotopy equivalent to a topological group, we consider Pb.M /!M

to be a principal bundle. The first step is to construct a twisting cochain H�.M /!

T .H�.M /Œ�1�/, whose image is in L.H�.M /Œ�1�/. We obtain such a map by con-
sidering the construction of a power series connection. Then we apply Theorem 3.9 to
get an A1 coalgebra model of the based path space.

We also get a description of string topology operations from the path space fibration.
Any group acts on itself by conjugation. The conjugate bundle is defined to be the
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Homotopy algebra structures on twisted tensor products and string topology operations 1165

associated bundle of a principal G bundle with respect to the conjugation action. The
conjugate bundle obtained from the path space fibration is a model of the free loop space.
Applying Theorem 3.17 gives an A1 coalgebra structure modeling the coalgebra on
H�.LM / induced by the diagonal map. Applying Theorem 3.18 gives an A1 algebra
structure modeling the algebra on H�.LM / given by the loop product.

The final section applies the work in Section 3 to the case of a principal G bundle G!

P!M , where G is a connected Lie group. The A1 coalgebra on H�.M /˝H�.G/

given by applying Theorem 3.9 can be expressed in terms of the characteristic classes of
the bundle. We can also consider the conjugate bundle, denoted Conj.P /!M . Then
Theorem 3.17 gives an A1 coalgebra model for H�.Conj.P // and Theorem 3.18
gives an A1 algebra model.

Given a connection on P!M , there is a map of bundles Pb.M /!P , which induces
a map on associated bundles with respect to the conjugation action Conj.Pb.M //!

Conj.P /. Then the algebraic structures we get modeling the total space Conj.P /
are representations of algebraic structures on Conj.Pb.M //. In this way, we get
representations of string topology.

Acknowledgements This paper would not have been possible without the help and
direction of Mahmoud Zeinalian. The author has also benefited from many helpful
conversations with Joseph Hirsh, Jim Stasheff, David Stone, Dennis Sullivan and
Thomas Tradler. The referee provided many necessary and constructive comments,
which helped improve the paper.

2 Background material

Algebras and coalgebras are taken over Q. Homology and cohomology are taken with
coefficients in Q.

2.1 Twisting cochains

We first describe Brown’s theory of twisting cochains in a purely algebraic setting.
Let C� be a differential graded coalgebra and A� a differential graded algebra. Then
.Hom.C�;A�/; @C˝1C1˝@A/ is a differential graded algebra, and a twisting cochain
is an element � 2 Hom.C�;A�/ satisfying the Maurer–Cartan equation

@A ı � C � ı @C C � � � D 0:

The Maurer–Cartan equation makes sense for any differential graded algebra, and a
twisting cochain is a Maurer–Cartan element in a differential graded algebra of the
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form Hom.C�;A�/. The tensor differential @C ˝ 1C 1˝ @A on C�˝A� is twisted
by adding a term

C�˝A�
�˝1
���! C�˝C�˝A�

1˝�˝1
�����! C�˝A�˝A�

1˝m
���! C�˝A�:

We refer to this term as the twisted term, and @� is the sum of the tensor differential
and twisted term. The coproduct on C� defines a comodule on the tensor C�˝A�!

C�˝C�˝A� . The coalgebra C� is a comodule over itself.

Theorem 2.1 [2] Let C� be a coalgebra, A� an algebra and � a twisting cochain.
Then .C�˝A�; @� / is a chain complex. If C1 D 0 and �W A�! k is an augmentation,
then Id˝�W C�˝A�! C� is a map of comodules.

Proof In [2, page 229], @� is shown to square to zero. We give a diagrammatic proof
of that @2 D 0 in Remark 3.8.

The map 1˝ � obviously commutes with the comodule map, since the comodule map
on C�˝A� is given by the coproduct on C� and the coproduct on C� is the comodule
structure for C� . To show that 1˝ � commutes with the differential, it suffices to
show that 1˝ � vanishes on the twisted term. To see this, note that � is zero on any
element of positive degree in A� . Let c˝ h 2 C�˝A� . If h is in positive degree,
then the twisted term will have positive degree in the A� factor and will map to zero
under 1˝ � . Consider C�˝ 1 in C�˝A� and �.c/D

P
c.1i/˝ c.2i/ . Since � is a

degree �1 map, �.c.2i// will have positive dimension for jc.2i/j> 1 and be zero for
jc.2i/j D 0. Since C1 D 0, 1˝ � will vanish on the twisted term.

We write C�˝� A� for the twisted complex .C�˝A�; @� /.

This theory can be applied to principal bundles G ! P !M . The chain complex
C�.M / is a differential graded coalgebra, where the coproduct is induced by the
diagonal map M !M �M . The group multiplication of G provides an algebra
structure on C�.G/. A twisting cochain is then a map � W C�.M /! C�.G/ satisfying
the Maurer–Cartan equation.

The complex .C�.M /˝C�.G/; @M ˝ IdC Id˝@G/ will not, in general, compute the
homology of P . However, when we twist the differential by a suitable twisting cochain
� W C�.M /! C�.G/, the complex .C�.M /˝C�.G/; @� / will compute H�.P /.

Theorem 2.2 [2, Theorem (4.2)] The chain complex .C�.M /˝C�.G/; @� / is chain
equivalent to C�.P /.
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The equivalence of the above theorem is of chain complexes and not of dg coalgebras,
despite the fact that both complexes have coproducts. A further assumption is needed
on � to obtain an equivalence of dg coalgebras.

We return to the general setting. Let C� be a dg coalgebra and H� a dg bialgebra. The
primitive elements Prim.H�/ D fh 2 H� j �.h/ D h˝ 1C 1˝ hg is a Lie algebra
whose universal enveloping algebra is H� . The following lemma is a reformulation of
Quillen [21, Appendix B].

Lemma 2.3 Let � W C�!H� be a twisting cochain from a cocommutative coalgebra
to a dg bialgebra. Then .C�˝H�; @� / is a differential graded coalgebra if and only if
Im.�/� Prim.H�/.

Proof To show that @� is a coderivation we need to show that

.�C˝H /@� D .@� ˝ 1C 1˝ @� /�C˝H :

The key is that multiplication by a primitive element is a coderivation. We give
a diagrammatic proof in Remark 3.8. The reader can find the computation in [21,
page 289]

3 Algebraic setting for twisted tensor products

In this section, we extend the discussion of Brown’s theory of twisting cochains to
the homotopy algebra setting. Let .C�; fcng/ be a C1 coalgebra and H� a strict dg
bialgebra. Given a twisting cochain � W C�!H� , we define a twisted A1 coalgebra
structure on C�˝H� .

There are three properties that are used in Brown’s setting. For C� a strict dg coalgebra
and A� a strict dg algebra, the following properties are used.

(1) Hom.C�;A�/ is a differential graded algebra.

(2) twisting cochains � W C� ! A� are in one-to-one correspondence with chain
maps F.C�/!A� , where F is the cobar functor.

(3) a twisting cochain � 2 Hom.C�;A�/ defines a twisted differential on C�˝A� .

We address the analogs of these properties in the following subsections.
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3.1 Maurer–Cartan equation in the homotopy algebra Setting

We review some definitions. An A1 algebra consists of a vector space V and maps
fmnW V Œ�1�˝n! V Œ�1�g satisfying

nX
kD1

n�1X
jD0

mn�kC1 ı .Id
˝j
˝mk ˝ Idn�j�k/D 0:

The maps fmng define a coderivation of square zero on T .V Œ�1�/. The shuffle product
is a map T .V Œ�1�/˝ T .V Œ�1�/! T .V Œ�1�/. If mn vanishes on the image of the
shuffle product for every n, then .V; fmng/ is a C1 algebra.

An A1 coalgebra and C1 coalgebra are the dual notions of A1 and C1 alge-
bras. So V is an A1 coalgebra if there are maps fcnW V Œ�1�! V Œ�1�˝ng defining
a derivation of square zero on T .V Œ�1�/. If the unshuffle product T .V Œ�1�/ !

T .V Œ�1�/˝ T .V Œ�1�/ vanishes on the image of each cn , then .V; fcng/ is a C1
coalgebra.

To deal with issues of convergence, we will make use of the completed tensor product.
For a vector space V , let

yT .V /D

1Y
iD0

V ˝i :

In our applications, V will be a finite dimensional vector space. So V has a unique
topology making it a topological vector space. There is an induced topology on yT .V /,
known the inverse limit topology.

In order to say � is a twisting cochain, the vector space Hom.C�;H�/ must have
at least an A1 algebra structure. Moreover, we need the Lie algebra version of the
Maurer–Cartan equation, so we need an L1 algebra on Hom.C�;Prim.H�//.

Lemma 3.1 Let .C�; fcng/ be a C1 coalgebra and A� a differential graded algebra.
The vector space Hom.C�;A�/ is an A1 algebra.

Since Hom.C�;A�/Š C �˝A� , the lemma is just the statement the tensor product of
an A1 algebra with an associative algebra is an A1 algebra. We omit the proof, but
define the maps mn . Let

mHom
1 .f /D @A ıf Cf ı @C ;

where @C D c1 of the C1 coalgebra structure. For n> 1, let

mHom
n .f1; : : : ; fn/W C�!A�

c 7!mA.f1˝ � � �˝fn//cn.c/;
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where by mA we mean multiply all the terms using multiplication of A� . Since the
multiplication in A� is associative, mHom

n is well-defined.

The Maurer–Cartan equation is then

@ ı � C � ı @CmHom
2 .�; �/CmHom

3 .�; �; �/CmHom
4 .�; �; �; �/C � � � D 0:

Since we have an infinite sum, a note on convergence is in order. In our application,
A� D yT .H�.M /Œ�1�/. The twisting cochain we construct will have the property that

Im.mn.�; : : : ; �//� .H�.M /Œ�1�/˝n:

So the infinite sum can be expressed as a finite sum in different tensors. This is well
defined in the completed tensor product.

For the Lie version of the Maurer–Cartan equation, we will need the following fact
about L1 algebras.

The Koszul sign convention says that when two elements x and y of degree p and q

are commuted, a sign of .�1/pq is obtained. For x1; : : : ;xn and a permutation
� 2 Sn , let �.� Ix1; : : :xn/ be the sign so that in the free graded commutative algebraV
.x1; : : : ;xn/,

x1 ^ � � � ^xn D �.� Ix1; : : : ;xn/x�.1/ ^ � � � ^x�.n/:

Let �.�/D sgn.�/ � �.� Ix1; : : : ;xn/.

Theorem 3.2 (Lada–Markl [17, Theorem 3.1]) Let .V; fmng/ be an A1 algebra.
Then there is an L1 algebra on V given by symmetrizing mn . That is, if

ln.v1; : : : ; vn/D
X
�2Sn

�.�/mn.v�.1/˝ � � �˝ v�.n//

then .V; flng/ is an L1 algebra.

We denote the L1 algebra by ŒV � to distinguish it from the A1 algebra V .

Lemma 3.3 Let .C�; fcng/ be a C1 coalgebra and L� be a differential graded Lie
algebra. Then Hom.C�;L�/ is an L1 algebra.

Proof Our proof proceeds as follows. Let U.L�/ be the universal enveloping algebra
of L� . The previous lemma shows that the space Hom.C�;U.L�// is an A1 algebra,
with structure maps fmng. Symmetrizing each mn defines an L1 algebra, with
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structure maps denoted flng. Let cn.x/D xn;1˝ � � �˝xn;n . Then the L1 algebra is
given by

ln.f1 � � � fn/.x/D
X
�2Sn

�.�/f1.xn;�.1// � � � fn.xn;�.n//:

To prove the lemma, it suffices to show that the maps flng restricts to Hom.C�;L�/�
Hom.C�;U.L�//.

Suppose fi 2 Hom.C�;L�/. This implies �.fi.x//D fi.x/˝ 1C 1˝fi.x/; where
the coproduct is in U.L�/. Since � is an algebra map, we see that

� ı ln.f1; : : : ; fn/.x/

D

X
�2Sn

�.f1.xn;�.1/// � � ��.fn.xn;�.n///

D

X
�2Sn

.f1.xn;�.1/˝ 1C 1˝f1.xn;�.1//// � � � .fn.xn;�.n//˝ 1C 1˝fn.xn;�.n///

D

X
�2Sn

f1.xn;�.1// � � � fn.xn;�.n//˝ 1C 1˝f1.xn;�.1// � � � fn.xn;�.n//

C

X
�2Sn

X
j

f1.xn;�.1// � � � f .xn;�.j//˝f .xn;�.jC1// � � � fn.x.n;�.n///:

We need to show that the cross terms cancel. The composition

C�
cn
�! C˝n

� ,! T .C�/
unshuffle
�����! T .C /˝T .C /

is zero by definition of a C1 coalgebra. Each permutation � is an .i; j / unshuffle of
some linear order of the fxn;ig. For example, for S3 , the collection of all the .2; 1/
unshufflings of x3;1˝x3;2˝x3;3 and x0

3;1
˝x0

3;2
˝x0

3;3
Dx3;2˝x3;1˝x3;3 exhausts

all combinations of x3;�.1/˝x3;�.2/˝x3;�.3/ .

The L1 algebra on Hom.C�;L�/ is then given by

ln.f1; : : : fn/.x/D
X
�2Sn

�.�/f .x1;�.1// � � � f .xn;�.n//;

where the multiplications are in U.L�/.

Let A� and B� be two A1 algebras and ffnW A
˝n
� !B�g an A1 algebra morphism.

Suppose the Maurer–Cartan equation is well defined for A� and B� (so either there are
only finitely many maps defining the A1 algebra or a suitable notion of convergence
of the infinite sum holds). Let � 2A� be a Maurer–Cartan element. That is,

@A� CmA
2 .� ˝ �/CmA

3 .� ˝ � ˝ �/C � � � D 0:
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The following well-known lemma shows how to obtain a Maurer–Cartan element in B�
from � and ffng.

Lemma 3.4 Let A�;B� be two A1 algebras and ffnW A
˝n
� ! B�g be an A1

algebra morphism between them. If � is a Maurer–Cartan element in A� then

� 0 D f .�/Cf2.� ˝ �/C � � �Cfn.�
˝n/C � � �

is a Maurer–Cartan element in B� .

3.2 Maurer–Cartan equation and differential graded algebra maps

The following lemmas will be used to construct twisting cochains.

Lemma 3.5 Let C� be an A1 coalgebra and A� an associative algebra. There is a
one-to-one correspondence between twisting cochains � W C�! A� and differential
graded algebra maps �T W T .C�Œ�1�/!A� .

Proof Let @T .C /W T .C�Œ�1�/! T .C�Œ�1�/ be the derivation of square zero given by
the A1 coalgebra on C� . Given a twisting cochain � W C�!A� , let �T .c1˝� � �˝cn/D

�.c1/ � � � �.cn/. Then by construction, �T is an algebra map. It is a chain map, because

@H .�.c//D �@C .c/CmA
2 ı .� ˝ �/ ı c2.c/CmA

3 ı �
˝3
ı c3.c/

D �@T .C /.c/;

where the first equality is due to the Maurer–Cartan equation for � and the second
equality is the definition of @T .C / in terms of the maps cnW C�Œ�1� ! C�Œ�1�˝n .
Conversely, given a map of differential graded algebras �T W T .C�/!A� restricting �
to C� defines a twisting cochain.

Lemma 3.6 Let C� be a C1 coalgebra and H� a Hopf algebra. There is a one-to-one
correspondence between twisting cochains � W C�! Prim.H�/ and differential graded
Lie algebra maps L.C�Œ�1�/! Prim.H�/.

Proof This lemma is proved in the same way as that of the previous. Note that a C1
coalgebra defines a derivation of square zero on the free Lie algebra L.C�Œ�1�/.

3.3 C1 coalg ˝� bialg as an A1 coalgebra using left multiplication

Given a twisting cochain � W C� ! H� , we want to define a twisted A1 coalgebra
structure on C�˝H� . First, we define the untwisted A1 coalgebra.
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Lemma 3.7 Let .C�; fcng/ be an A1 coalgebra and H� be an algebra with a strictly
coassociative comultiplication. Then C�˝H� is an A1 coalgebra with structure maps

c˝n D cn˝
�
.�˝ Id˝n�1/ ı � � � ı�

�
W C�˝H�! .C�˝H�/

˝n:

Proof The proof is straightforward, using the A1 coalgebra relations for C� terms
and that H� is a strict coassociative coalgebra.

Remark 3.8 Before we define an A1 coalgebra structure on C�˝H� , we return to
the classical setting of Brown’s twisting cochains. We introduce a graphical picture
of @� and a graphical proof that @2

� D 0. This technique will be used to define the
twisted A1 coalgebra later on. Let C� be a differential graded coalgebra and H�
a differential graded bialgebra. Let � be a twisting cochain and @� be the twisted
differential.

To represent @� W C�˝H�!C�˝H� , we draw two vertical lines, one to represent C�
the other to represent H� . We draw a horizontal dash to denote the differential. The
twisting term applies the coproduct on C� and � to one of the factors. We represent the
twisting cochain � W C�!H� by connecting the lines representing C� and H� with a
line. The resulting vertex on C� of valence three can be thought of as the coproduct
and the vertex of valence three on H� can be thought of as the product. We refer the
reader to Figure 1 for a picture of @� .

C H C H C H

C C

Figure 1: A graphical representation of the differential @� D @C ˝ 1 C

1˝ @H C .1˝mA˝ � ˝ 1/�C ˝ 1 . A vertical line with a dash represents
the differential. The diagonal line with a vertex represents the map � W C!H .

We can prove that @2
� D 0 by analyzing the diagrams. The top row in Figure 2 are the

terms that remain after canceling the terms in @2
� that correspond to the tensor differen-

tial, which is well known to square to zero. Note that because @C is a coderivation, the
first and third terms in this row are equal to the first term in the second row of the figure.
Similarly, since @H is a derivation, the second and fourth terms on the first row equal
the second term in the second row. The coassociativity of �C and the associativity of
mH imply the last term of the first row is equal to the last term of the second row. The
bottom row then is equal to zero, because the middle lines describe the Maurer–Cartan
equation @H � C �@C C � � � , which is zero by assumption.
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C C C C

D C C

Figure 2: A graphical representation of @2
� D 0 . The top row represents the

five terms that remain in @2
� when we cancel the terms corresponding to the

tensor differential. The bottom row is zero because the middle lines represent
the Maurer–Cartan equation @H � C �@C C � � � .

There is a similar argument showing that if Im.�/ � Prim.H�/, then .C�˝H�; @� /

is a differential graded coalgebra. The argument requires C� to be a cocommutative
coalgebra. We refer the reader to Figure 3.

D C

D C

Figure 3: A graphical representation that @� is a coderivation of the coproduct
of C�˝H� . The first equality is a result of the fact that multiplication by
a primitive element is a coderivation. The second equality is a result of the
coproduct in C� being coassociative and cocommutative.

We can now describe how to twist the A1 coalgebra. Let � W C�! Prim.H�/ satisfy
the Lie Maurer–Cartan equation. First consider cHom

1
W C�˝H�! C�˝H� . As in

the strict setting, there is a twisting term of the form

C�˝H�
c2
�! C˝2

� ˝H�
1˝�˝1
�����! C�˝H˝2

�

1˝mH
�����! C�˝H�:

But this twisting only takes c2 into account and ignores all of the higher cn maps in
the C1 coalgebra structure on C� . To account for these maps, first apply cn to C�
and apply �˝n�1 to the last n� 1 factors in C˝n

� . Since Im.�/� Prim.H�/, we can
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bracket these n� 1 terms in all possible ways to get another primitive element. Then
we multiply Prim.H�/ and H� terms. To sum up, c�

1
consists of terms

C�˝H�
c3˝1
���!C˝3

� ˝H�
1˝�˝2˝1
������!C�˝H˝2

� ˝H
1˝Œ ; �˝1
�����!C�˝H�˝H�

1˝m
��!C�˝H�

C�˝H�
c4˝1
���!C˝4

� ˝H�
1˝�˝3˝1
������!C�˝H˝3

� ˝H
1˝Œ ; �˝1
�����!C�˝H�˝H�

1˝m
��!C�˝H�

C�˝H�
c5˝1
���!C˝5

� ˝H�
1˝�˝4˝1
������!C�˝H˝4

� ˝H
1˝Œ ; �˝1
�����!C�˝H�˝H�

1˝m
��!C�˝H�

and continue for all n in this way. By Œ; � for three or more terms, we mean

Œx1; : : : ;xn�D
X
�2Sn

h
x�.1/;

�
x�.2/; : : : Œx�.n�1/;x�.n/�

�i
:

Note the similarity of the twisted terms with the L1 algebra on Hom.C�;Prim.H�//.
Since c�

1
is an infinite sum, we need to address the issue of convergence in C�˝H� . In

our application, H�D yT .H�.M /Œ�1�/, with the multiplication given by concatenation
of tensors. Let x 2 C�˝H�.M /Œ�1�. When cn is used to twist the differential, the
corresponding term in c�

1
.x/ will be an element in C�˝ .H�.M /Œ�1�/˝n . Then c�

1

consists of finite sums in different tensor products. So in the completed tensor product,
c�

1
.x/ is well defined.

When C� is a strict dg coalgebra, then c�
1

is the same as the twisted differential @� in
Brown’s construction. So we write c�

1
by @� .

The higher maps cn can be twisted in the same manner as c1 . To twist c2W C�˝H�!

C˝2
� ˝H˝2

� , we apply cn for n > 2, then �n�1 to the last n� 2 factors of C˝n
� ,

and bracketing these n� 2 terms in all possible ways, multiplying the result with the
element in H� , and finally applying the coproduct in H� . For nD 3, the process is
the composition of

C�˝H�
c3˝1
���! C˝3

� ˝H�
1˝2˝�˝1
�������! C˝2

� ˝H�˝H�

1˝m
���! C˝2

� ˝H�
1˝2˝�
�����! C˝2

� ˝H˝2
� :

The resulting map is denoted c�
2
W C�˝H�! .C�˝H�/

˝2 .

For n> 3, we must use the Lie bracket, and the composition of maps is

C�˝H�
cn˝1
���! C˝n

� ˝H�
1˝2˝�˝n�2˝1
�����������! C˝2

� ˝H˝n�2
˝H�

1˝2˝ Œ ; �n�2˝1
�����������! 1˝H�˝H�

1˝m
���! C˝2

� ˝H�
1˝2˝�
�����! C˝2

� ˝H˝2
� :
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To show that fc�ng defines an A1 coalgebra on C�˝H� , we use the diagrams as in
Remark 3.8. For a picture of @� we refer the reader to Figure 4. For a picture of c�

2
, we

refer the reader to Figure 5. Since multiplying by a primitive element is a coderivation,
we have some identities for the terms in c�

2
. These identities are described in Figure 6.

C C C C

Figure 4: A graphical representation of @� . The terms are @C ˝ 1C 1˝

@H C .1˝m/.1˝ � ˝ 1/c2˝ 1C .1˝ 1˝ �/c3

C C C C � � �

Figure 5: A graphical representation of c�2

D

D

C

C

Figure 6: The above identities hold because Im.�/� Prim.H�/ and multi-
plying by a primitive element is a coderivation. The same holds true for the
other terms of c�

2
and also for c�n .

We can now show that f@� ; c�2 ; c
�
3
; : : :g define an A1 coalgebra. The proof of the

theorem uses a graphical approach.

Theorem 3.9 Let C� be a C1 coalgebra, H� a dg bialgebra and � W C� ! H� a
twisting cochain such that Im.�/ � Prim.H�/. The maps f@� ; c�2 ; c

�
3
; : : :g define an

A1 coalgebra on C�˝H� .
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(1) C C C C � � �

(2) C C C C � � �

(3) C C C C � � �

(4) C C C C � � �

(5) C C C C � � �

Figure 7: Some of the terms of @2
� . We have left out the terms in the tensor

part, as these are known to square to zero.

Proof We first show that @� is a differential. To show that @2
� D 0 we will show that

expanding the terms yield many occurrences of the Maurer–Cartan equation.

We list some of the terms of @2
� in Figure 7. The fact that @H is a derivation is expressed

diagrammatically as in Figure 8. This relation can be used to add diagrams in the
second and fourth rows of Figure 7. In place of the coderivation relations, we must
use the C1 coalgebra relations for .C�; fcng/. The relation for nD 3 is expressed in
Figure 9. We use these relations to add figures in the first and third rows of Figure 7.
Some of the resulting diagrams will either cancel with diagrams in rows five or higher.
The rest of the diagrams are shown in Figure 10. The Maurer–Cartan equation is
present in each row. Since � is a twisting cochain, the sum to zero.

Next, we show that c�
2

is a coderivation of @� . In Figure 11, the graphs representing
c�

2
ı@� are drawn and in Figure 12 the graphs representing .@�˝1/ıc�

2
are drawn. The
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C D

Figure 8: The equality here comes from the fact that H� is a differential
graded algebra.

C D C C C

Figure 9: The equality here comes from the fact that .C�; fcng/ is a C1 coalgebra.

C C C C � � �

C C C C � � �

C C C C � � �

Figure 10: These remaining terms in .@� /2 sum to zero because @H � C

�@H CmHom
2 .�; �/CmHom

3 .�; �; �/C � � � D 0 .

graphs representing .1˝@� /ı c�
2

are the same as the graphs representing .@� ˝1/ı c�
2

except the graphs are connected by the right output edge of each tree as opposed to the
left output edge.

Multiplication by a primitive element is a coderivation, which gives us identities
expressed in Figure 6. This allows us to compare the graphs from c�

2
ı @� with the

graphs from .@� ˝ 1C 1˝ @� / ı c�
2

. Note that on the left hand side of each pairing,
we have many compositions of the form .1˝ � � � ˝ cj ˝ � � � ˝ 1/ ı ci ; where ci ; cj
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C C C C � � �

C C C C � � �

C C C C � � �

Figure 11: The graphs representing c�2 ı @�

C C C C � � �

C C C C � � �

C C C C � � �

Figure 12: The graphs representing @� ˝ 1 ı c�
2

are maps of the C1 coalgebra on C� . The relations in the C1 coalgebra state thatP
iCjC1Dn.1˝ � � �˝ cj ˝ � � �˝ 1/ ı ci D 0. Noting which maps in our graphs appear

in the sum and which graphs do not appear, we can apply the C1 coalgebra relation
to obtain many identities. When this is done, we obtain graphs which involve the
Maurer–Cartan equation for � , just as we did in showing @2

� D 0. Since � is a twisting
cochain, this sum is zero and c�

2
is a coderivation of @� . In Figure 13 we organize the

graphs in c�
2
ı @� C .@� ˝1C1˝ @� /ı c�

2
. The relations for the coalgebra structure on

C� state that the sum of these graphs are equal to the graphs in Figure 14. The sum of
these graphs is zero, because of the Maurer–Cartan equation.

Algebraic & Geometric Topology, Volume 11 (2011)



Homotopy algebra structures on twisted tensor products and string topology operations 1179

C C

C C

C C

C

n n n

n n n

i

i ij

j j

Figure 13: The graphs of c�
2
ı @� C .@� ˝ 1C 1˝ @� /c

�
2

organized to show
how the C1 coalgebra on C� is used

n n nC C

Figure 14: These graphs are equal to the graphs in Figure 13 using the C1
coalgebra on C� . Note that these terms involve @H � C �@C C � � � C � � � �

� C � � � D 0 .

The reader can see that this situation generalizes for n > 2. In each of these cases,
we have many compositions involved in the C1 coalgebra relation for C� . When
we replace these graphs, using the coalgebra structure, we obtain graphs involving
Maurer–Cartan equation. We summarize the relation in Figure 15.

3.4 C1 coalg˝� bialgebra as an A1 coalgebra using bracket action

In the previous section, we used the twisting cochain and left multiplication in H� to
twist the A1 coalgebra structure on C�˝H� . In this section, we consider another
action. For a2H� , the bracket action of a on H� is defined by Œa;x�D ax�xa. Note
that Œa;�� is a derivation. If a is a primitive element, then Œa;�� is also a coderivation.

Algebraic & Geometric Topology, Volume 11 (2011)



1180 Micah Miller

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .. . . . . .

. . . .

. .

. . . .

. . . .  . .

. . . . . .. . .. . .

. . . . . .. . . . . .

C C

C C

D C C

Ci Ci

Ci Ci

Ci Ci

Cj

Ck

Ck ıCj

Figure 15: To show that c�n form a coalgebra structure, use the relation above
to get a sequence of graphs involving the Maurer–Cartan equation. The
equality is due to the fact that C� is a C1 coalgebra.

Given a twisting cochain � W C� ! H� such that Im.�/ � Prim.H�/, we define a
twisted A1 coalgebra structure on C� ˝H� . The process is the same as the one
defining the previous twisted A1 coalgebra, except we replace the multiplication
in H� with the bracket action. We use the same notation f@� ; c�2 ; c

�
3
; : : :g and so we

will be explicit when to use left multiplication and when to use the bracket action.

Theorem 3.10 Let C� be a C1 coalgebra, H� a dg bialgebra and � W C� ! H� a
twisting cochain such that Im.�/ � Prim.H�/. The maps f@� ; c�2 ; c

�
3
; : : :g, obtained

from the bracket action, define an A1 coalgebra on C�˝H� .

Proof The only property of left multiplication used in the proof of Theorem 3.9 is
that left multiplication by a primitive element is a coderivation. Since conjugation by a
primitive element is a coderivation, the proof applies to this theorem as well.

3.5 Cyclic C1 coalg˝� bialg as an A1 algebra using bracket action

Sometimes a C1 coalgebra has extra structure on it, allowing one to define an algebra
structure on C�˝H� . We consider the case when the coalgebra has a nondegenerate
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bilinear form that is compatible with the coalgebra structure, ie, a cyclic C1 coalgebra.
We review the relevant definitions.

A cyclic A1 algebra consists of a finite dimensional A1 algebra .A�; fmng/ and a
nondegenerate bilinear form h ; iW A�˝A�! k such that

hmn.x1; : : : ;xn/;x0i D .�1/N hmn.x0; : : : ;xn�1/;xni;

where N D�1Cjx0j.jx1jC � � � C jxnj/. The bilinear form defines an isomorphism
between A and its dual. The maps mn can then be viewed as elements in AŒ�1��˝n˝

AŒ�1�ŠAŒ�1�˝nC1 .

Lemma 3.11 Let .A�;fmng;h ; i/ define a cyclic A1 algebra. Then mn2AŒ�1�˝nC1

is cyclically invariant.

Proof Let mnD
P

x1˝� � �˝xnC12AŒ�1�˝nC1 . It suffices to show x1˝� � �˝xnC1D

x2˝ � � �˝xnC1˝x1 . This is seen to be the case by expressing h ; i as an element in
A�˝A� and writing the conditions for a cyclic A1 algebra in terms of elements in
the tensor algebra.

Viewing the maps fmng as elements in the tensor and using the Koszul sign rule, one
can determine the sign .�1/N found in the definition of a cyclic A1 algebra. We
define a cyclic A1 coalgebra viewing cn as cyclically invariant elements in the tensor
product.

Definition 3.12 .C�; fcng; h ; i/ is a cyclic A1 coalgebra if

(1) C� is finite dimensional,

(2) .C�; fcng/ is an A1 coalgebra,

(3) h ; i is a nondegenerate bilinear form,

(4) the maps cn when identified as elements C˝nC1
� using the bilinear form, are

cyclically invariant.

The condition that C� is finite dimensional implies that h; i defines an isomorphism
between C� and its dual C � . A cyclic C1 coalgebra is defined in the obvious way.
Given a cyclic C1 coalgebra C� , the bilinear form and maps fcng can be used to define
a C1 algebra fmnW C�Œ�1�˝n! C�Œ�1�g. So C�˝H� has an A1 algebra structure
given by combining the C1 algebra on C� with the strict algebra structure on H� .
Does the twisting cochain � W C�!H� define a twisted A1 algebra on C�˝H�?
We show that it does and unlike in the previous cases, we do not need to twist the
higher maps. In Theorem 3.22, we prove the case when C� is a strict cyclic coalgebra.
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Also, note that since bracketing is always a derivation, whether by a primitive element
or not, we do not require Im.�/ � Prim.H�/. If Im.�/ � Prim.H�/ and H� is a dg
Hopf algebra, and not just a dg bialgebra, then the bracket action agrees with another
action, which we call the conjugation action. We use this action in Theorem 3.18.

Theorem 3.13 Let C� be a cyclic C1 coalgebra, H� be a dg bialgebra and � W C�!
H� be a twisting cochain. The maps f@� ;m2;m3; : : :g defined using the bracket action
in H� give C�˝� H� the structure of an A1 algebra.

Proof Since f@;m2;m3; : : :g defines an (untwisted) A1 algebra, it suffices to show
that the twisted terms in @� all cancel. We first show that @� is a derivation of m2 ,

@� ım2 Dm2 ı .@� ˝ 1C 1˝ @� /:(3-1)

We refer the reader to Figures 16 and 17 for graphs representing the left-hand side
and RHS of Equation (3-1). Since the bracket action is a derivation, the diagrams in
Figure 16 are equal to the diagrams in Figure 18. We need to show that Figure 17 is
equal to Figure 18.

Œ ; � Œ ; � Œ ; �C C C � � �

Figure 16: A graphical representation of @� ım2 . The label Œ ; � is to remind
the reader that the bracket action is applied on T .H�.M /Œ�1�/ , and not the
product in T .H�.M /Œ�1�/ .

C C C � � �

C C C � � �

Figure 17: A graphical representation of m2 ı .@� ˝ 1C 1˝ @� /

The left-hand side of Equation (3-1) has compositions cnım2W C�Œ�1�˝2!C�Œ�1�˝n .
The right-hand side maps have compositions .1˝i˝m2˝1˝j /ı.cn˝1/W C�Œ�1�˝2!

C�Œ�1�˝n . We show these two maps are equal by writing the compositions as elements
in C�Œ�1�˝nC2 and using Lemma 3.11.
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C C C � � �

C C C � � �

Figure 18: Because the bracket action is a derivation, these diagrams are
equal to the one found in Figure 16.

The map cn can be written as
P

x1 ˝ � � � ˝ xnC1 2 C�Œ�1�˝nC1 and m2 as anP
y1˝y2˝y3 2 C�Œ�1�˝3 . Their composition cn ım2 is expressed asX

hx1;y3ix2˝ � � �xn˝y1˝y2 2 C�Œ�1�˝4:

The composition on the right-hand side of the equation, .1˝i ˝m2˝ 1˝j / ı .c2˝ 1/

is described in the same way except for a different pairing hxi ;yj i. However, since cn

and m2 are cyclically invariant, the compositions are equal.

The higher compatibilities for the A1 algebra proceed in exactly the same way, with
m2 replaced by ml .

Given the A1 algebra C� ˝H� , we can symmetrize the maps to obtain an L1
algebra .ŒC� ˝H��; f@� ; l2; l3; : : :g/. This restricts to an L1 algebra structure on
C�˝Prim.H�/.

Theorem 3.14 Let .C� ˝H�; f@� ;m2;m3; : : :g/ be the A1 algebra described in
Theorem 3.13. Then .C�˝Prim.H�/; f@� ; l2; l3; : : :g/, obtained by symmetrizing fmng,
is an L1 algebra.

Proof Since C� is finite dimensional, we can identify C�˝H� Š Hom.C �;H�/,
where C � is a C1 coalgebra. Then the statement follows from Lemma 3.3.

This gives an A1 algebra structure on C� ˝H� and an L1 algebra structure on
C�˝ Prim.H�/. More can be said when C� is a strict unital commutative algebra. In
this situation, C�˝Prim.H�/ can be viewed as a Lie algebra over C� . Its universal
enveloping algebra over C� , denoted UC�.C�˝ Prim.H�// is C�˝H� . Note if we
take the universal enveloping algebra of C�˝Prim.H�/ (viewed as a Lie algebra over
the ground field), we obtain U.C�˝H�/ which is not equal to UC�.C�˝Prim.H�//.
We are not aware of the corresponding notion for C1 algebras to make the analogous
statement. This seems to be a useful notion. We discuss the strict case in more detail
in Theorem 3.23.
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3.6 C1 coalg˝� Hopf alg as an A1 coalgebra using conjugation action

In our applications of the previous results, we would like to relate the twisted algebraic
structures to the total space of some bundle. Let G!P!M be a principal G bundle
and G!Conj.P /!M be the associated bundle with respect to the conjugation action.
Note that H�.M / is a cyclic C1 coalgebra and H�.G/ a bialgebra, and moreover, a
Hopf algebra. Then given a suitable twisting cochain � W H�.M /!H�.G/, we can
form the twisted algebraic structures using the methods described above. The homology
of the total space, H�.Conj.P // can be identified with linear homology of the twisted
algebraic structures, that is homology the homology H�.M /˝H�.G/ with respect
to @� . However, the argument uses Brown’s theory of twisting cochains, which requires
using the conjugation action. Because the conjugation action uses the inverse operation
in G , the algebraic setup in this situation requires H� to be a dg Hopf algebra. We
will see that when Im.�/� Prim.H�/, the conjugation action agrees with the bracket
action.

Let H� be a Hopf algebra. Denote the antipode map of H� by sW H�!H� . Given
an element a 2H� , we define the conjugation action of a on H� by

conjaW H�!H�

x 7!
X

a.1i/xs.a.2i//:

The homology of a topological group H�.G/ is a Hopf algebra. The group acts on
itself by conjugation, and so induces an action on H�.G/. The following lemma shows
that this action is the same as the conjugation action of the Hopf algebra.

Lemma 3.15 Let G be a topological group. The conjugation action in G induces a
map

H�.G/˝H�.G/!H�.G/

a˝x 7!
X

a.1i/xs.a.2i//:

Proof Conjugation is described by the composition

G �G
Diag�1
�����! G �G �G

1�inv�1
�����! G �G �G ! G �G �G ! G

.x;y/ 7! .x;x;y/ 7! .x;x�1;y/ 7! .x;y;x�1/ 7! xyx�1:

The diagonal map in G induces the coproduct � on H�.G/ and the inverse map in G

induces the antipode s . This proves the lemma.

The following lemma shows that conjugation by a primitive element is a coderivation
and a derivation.
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Lemma 3.16 Let H� be a Hopf algebra.

(1) Conjugation by a primitive element in a Hopf algebra is a coderivation.

(2) Conjugation by a primitive element in a Hopf algebra is a derivation.

Proof (1) Let a be a primitive element of H� . The antipode has to satisfy mı.1˝s/ı

�.a/D 0, which means s.a/D �a. Then conja.x/D
P

a.1i/xs.a.2i//D ax � xa.
This is a coderivation because multiplying by a primitive element is a coderivation.

(2) Let a be a primitive element. Then

conja.x/ �yCx � conja.y/D axy �xayCxay �xya

D axy �xya

D conja.xy/:

Theorem 3.17 Let C� be a C1 coalgebra, H� a dg Hopf algebra and � W C�!H�
a twisting cochain such that Im.�/� Prim.H�/. The maps f@� ; c�2 ; c

�
3
; : : :g, obtained

from the conjugation action, define an A1 coalgebra on C�˝H� .

Proof For a2 Prim.H�/, the conjugation action, conja , and bracket action Œa; � agree.
Since Im.�/ � Prim.H�/, the maps f@� ; c�2 ; c

�
3
; : : :g defined using the conjugation

action are equal to the maps defined using the bracket action. The statement then
follows from Theorem 3.10

Theorem 3.18 Let C� be a cyclic C1 coalgebra, H� be a dg Hopf algebra and
� W C�!H� be a twisting cochain with Im.�/�Prim.H�/. The maps f@� ;m2;m3; : : :g

defined using the conjugation action in H� give C�˝� H� the structure of an A1
algebra.

Proof Since Im.�/� Prim.H�/, the twisted A1 algebra structure defined using the
conjugation action agrees with the twisted A1 algebra structure defined using the
bracket action.. The proof then follows from Theorem 3.13.

3.7 Addendum

The graphical approach taken above can obscure some sign issues. In this section, we
show that @� is a differential without appealing to graphs. We also look at the strict
(noninfinity) versions of the proofs, with the idea that this will also shed some light on
the constructions.
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We first show that the twisted differential @� is indeed a differential, by referencing
the work of Chuang and Lazarev [7]. They also define a twisted A1 algebra given a
Maurer–Cartan element. While their construction is different on the higher maps, it
agrees with the twisted differential described in this paper.

Let C � be an A1 algebra and A� a strict dg associative algebra. Then C � ˝A�
is an A1 algebra, and a twisting cochain is an element � 2 C �˝A� satisfying the
Maurer–Cartan equation

@C � C @H � Cm2.�; �/Cm3.�; �; �/C � � � D 0:

The twisted differential is then

@� .x/D @C .x/C @H .x/Cm2.�;x/Cm3.�; �;x/C � � � :

This is related to our construction as follows. Let C� be an A1 coalgebra, A� a strict
dga and � W C�!A� . We are only looking to define a differential, which is why we
do not require a C� coalgebra and a dg Hopf algebra. Then the A1 algebra C � used
above is the linear dual of the A1 coalgebra. The twisting cochain � W C�!A� can
be viewed as an element in C � ˝A� satisfying the Maurer–Cartan equation. The
complex C�˝A� is the A�–dual of C �˝A� . The two definitions of the twisted
differentials can then be related in this way.

Lemma 3.19 Let C � be an A1 algebra, A� a differential graded algebra and � 2
C �˝A� a twisting cochain. Then @2

� D 0.

Proof This is a special case of Theorem 2:6 .2/a in [7].

We write out some terms in @2
� .x/. The elements �;x 2 C�˝A� can be written as

� D
P
�C ˝ �A and x D

P
xC ˝xA . Then

@� .x/D .@C xC /˝xAC .�1/jxC jxC ˝ .@AxA/Cm2.�C ;xC /˝ �A �xA

Cm3.�C ; �C ;xC /˝ �A � �A �xAC � � � ;

where we dropped the summation for ease of notation. Applying @� a second time
yields compositions of the A1 algebra maps fmng. Using the relations for an A1
algebra and strict dg algebra, we obtain terms involving the Maurer–Cartan equation
for � . The argument is similar to the one used to prove Theorem 3.9.

Theorem 3.18 asserted the existence of a twisted A1 algebra on the tensor product.
We review some definitions and then discuss the strict case of the theorem.
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Definition 3.20 A Frobenius algebra structure on V consists of a commutative multi-
plication and a nondegenerate inner product such that

ha; bci D hab; ci:

Note that a Frobenius algebra is a cyclic C1 algebra with mn D 0 for n> 2.

Using the nondegenerate inner product of a Frobenius algebra, one can turn the mul-
tiplication into a comultiplication. The multiplication and comultiplication satisfy a
certain compatibility, which brings us to the notion of what some authors refer to as an
open Frobenius algebra; see Chen, Eshmatov and Gan [5].

Definition 3.21 An open Frobenius algebra structure on V consists of a commutative
multiplication and a cocommutative comultiplication such that the comultiplication is
a map of bimodules. That is,

�.ab/D
X

a.1i/˝ a.2i/b D
X

ab.1i/˝ b.2i/:

Abrams [1] proved that unital Frobenius algebras and unital, counital open Frobenius
algebras are equivalent.

Theorem 3.22 Let C� be a dg Frobenius algebra and H� a dg bialgebra. Let � W C�!
H� be a twisting cochain such that Im.�/ � Prim.H�/. Then .C� ˝H�; @� / is a
differential graded algebra.

Proof To prove the theorem, we need to show that the twisted term is a derivation.
Let a˝ b; c˝ d 2 C�˝H� , and let conjbW H�!H� be the conjugation action by
b 2H� . Then we need to show that

.ac/.1i/˝ conj�.ac/.2i/
bd D a.1i/c˝ .conj�.a.2i//

b/d C ac.1i/˝ b.conj�.c.2i//
d/:

Since Im.�/� Prim.H�/ and conjugating by a primitive element is a derivation, the
left-hand side of the equation is

.ac/.1i/˝conj�.ac/.2i/
bd D .ac/.1i/˝ .conj�.ac/.2i/

b/dCac.1i/˝b.conj�.ac/.2i/
d/:

We need to show that .ac/.1i/˝ .ac/2i D a.1i/˝ a.2i/c D ac.1i/˝ c.2i/:

Note that this is the condition that the coproduct is a map of bimodules, ie, an open
Frobenius algebra. If we use the result that Frobenius algebras and open Frobenius
algebras are equivalent, we are done.

We use another argument which follows the proof of Theorem 3.18. Using the nonde-
generate inner product, we express the coproduct � as an element in C˝3

� . The multi-
plication m2W C�˝C�! C� is obtained by dualizing the coproduct C �˝C �! C �

Algebraic & Geometric Topology, Volume 11 (2011)



1188 Micah Miller

and using the isomorphism between C � and C� . So m2 is represented by the same
element in C˝3

� . Write this element as m2 D�D
P

x.1i/˝x.2i/˝x.3i/ 2 C˝3
� .

We need to show that certain compositions of � and m2 are equal. In writing the
compositions of � and m2 , we use the subscript i to represent m2 (x.1i/˝x.2i/˝x.3i/ )
and the subscript j to represent �. Then compositions are then given by

� ım2 D

X
i;j

hx.3i/;x.1j/ix.1i/˝x.2i/˝x.2j/˝x.3j/

.m2˝ 1/ ı .�˝ 1/D
X
i;j

hx.2j/;x.1i/ix.1j/˝x.3j/˝x.2i/˝x.3i/

.m2˝ 1/ ı .1˝�/D
X
i;j

hx.3j/;x.2i/ix.1j/˝x.2j/˝x.1i/˝x.3i/:

Since m2 D� are cyclically invariant, we get the necessary equalities.

In our construction of a twisted A1 algebra structure on C�˝H� , we used a cyclic
C1 coalgebra. A cyclic C1 algebra is the homotopy version of a Frobenius algebra.
It should be possible to define a twisted A1 algebra using the homotopy version of an
open Frobenius algebra. The Koszul Duality theory for dioperads described by Gan [9]
and for properads described by Vallette [22] provide a definition for such an object.
The dioperad describing Lie bialgebras, denoted BiLie, and the dioperad describing
open Frobenius algebras, denoted BiLie! , are Koszul dual [9, Corollary 5.10]. So a
resolution for BiLie! is obtained by taking the cobar dual of BiLie, denoted D.BiLie/,
and an open Frob1 algebra structure on V is a map of differential graded dioperads
D.BiLie/! End.V /, where End.V / is the endomorphism dioperad.

The cohomology of a Poincaré Duality space is a cyclic C1 algebra. An open manifold
is not a Poincaré Duality space, but its cohomology is an open Frobenius algebra. The
constructions using cyclic C1 algebra would define string topology operations for
Poincaré Duality spaces, and the constructions using open Frob1 algebras would
define string topology operations for open manifolds.

Theorem 3.14 said that the L1 algebra structure on C�˝H� restricts to C�˝Prim.H�/.
In the strict case, more can be said about the relation between the associative algebra
C�˝H� and the Lie algebra C�˝Prim.H�/. Let UC�.C�˝Prim.H�// be the universal
enveloping algebra of C�˝Prim.H�/ viewed as a Lie algebra over C� . Recall, if A�
is an associative algebra, then ŒA�� is the Lie algebra obtained by symmetrizing the
multiplication.

Theorem 3.23 The Lie bracket on ŒC�˝H�� restricts to C�˝ Prim.H�/. Moreover,
if C� is unital, UC�.C�˝Prim.H�//D C�˝H� .
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Proof We first show that the Lie bracket on ŒC�˝H�� fixes C�˝Prim.H�/. This is
a simple computation

Œa1˝ b1; a2˝ b2�D a1a2˝ b1b2� a2a1˝ b2b1

D a1a2˝ .b1b2� b2b1/

D a1a2˝ Œb1; b2�;

where the bracket is in ŒH��. Since Prim.H�/ is a Lie subalgebra of ŒH��, this proves
the claim.

For the second part, suppose C� is unital. Then an element in UC�.C�˝Prim.H�//
can be rewritten

.c1˝h1/˝C� � � �˝C� .cn˝hn/D .c1 � � � cn˝h1/˝C� .1˝h2/˝C� � � �˝C� .1˝hn/:

The claim then follows from the construction of the universal enveloping algebra as a
quotient of the tensor algebra.

4 Application to spaces

To describe string topology operations, we start with the path space fibration �b.M /!

Pb.M /!M . The based loop space �b.M / is homotopy equivalent to a topological
group, so we view �b.X / as a topological group and the path space fibration as a
principal �b.M / bundle. The group acts on itself by conjugation and the associated
bundle with respect to this bundle, which we refer to as the conjugate bundle, is a
model for the free loop space.

Lemma 4.1 The conjugate bundle �b.M /! Conj.Pb.M //!M is equivalent to
the free loop space bundle �b.M /!LM !M .

Proof The total space Conj.Pb.M // is Pb.M /��b.M /�b.M /. We define a bundle
map from Conj.Pb.M //!LM . Let Œp; a� be an element in Pb.M /��b.M /�b.M /

and choose a representative .p; a/, where pW Œ0; 1�! M and aW S1 ! M . Then
consider the map f W Œp; a� 7! pap�1 . This map is well defined since a different
representative will be of the form .pg;g�1ag/, which gets sent to

.pg/.g�1ag/.pg/�1
D pap�1:

If f maps fibers isomorphically onto fibers, then f will be a homeomorphism (see
for example Milnor and Stasheff [20, Lemma 2.3]). Let Fx.Conj/ be the fiber of
Conj.Pb.M // above the point x 2M . An element in the fiber is of the form Œp; a�

Algebraic & Geometric Topology, Volume 11 (2011)



1190 Micah Miller

where p is a path from b to x and a is a loop at b . Let ˛ 2 Fx.LM / be an element
in the fiber of the free loop space bundle. Then letting p be any path from b to x and
aD p�1˛p , then f Œp;p�1˛p�D ˛ .

4.1 Power series connection

To apply the theorems proved in Section 3, we need to construct a twisting cochain.
There are several different constructions available for this purpose. The commutative
algebra structure on ��.M / defines a C1 algebra on H�.M /, (see Cheng and Get-
zler [6] for a description of how to transfer structure). The C1 algebra defines a deriva-
tion of square zero on L.H�.M /Œ�1�/ and the inclusion H�.M / ,! L.H�.M /Œ�1�/

defines a twisting cochain. Note that the C1 algebra on H�.M / is a minimal model
for ��.M /. Kadeishvili’s Minimal Model Theorem [15] provides another construction
of a twisting cochain.

We choose to review the work of Chen [4] and Hain [12] on power series connections,
which gives an equivalent construction of the minimal model for ��.M / as the
one described above. A power series connection will be a twisting cochain from
H�.M / ! L.H�.M /Œ�1�/ in slightly different terminology. The equivalence of
Kadeishvili’s construction and Hain’s construction is described in Huebschmann [14].
The construction is explicit and self contained, which is why we have chosen to
include it.

Let M be a simply connected manifold. We introduce some notation. If L is a Lie
algebra, let I2LD ŒL;L�, and for s > 2, I sLD ŒL; I s�1L�. Also, for w 2��.M /,
let J.w/D .�1/jwjw:

Hain [12] defines a power series connection to be a pair consisting of an element
! 2��.M /˝L.H�.M IR/Œ�1�/ and derivation @ on L.M�.X IR/Œ�1�/ , such that

(1) @2 D 0,

(2) if ! �
P

WiXi.mod��.M /˝ I2L.H�.M /Œ�1�//, then Wi are closed forms
whose cohomology classes form a basis for H�.M IR/,

(3) @!C d! � 1
2
ŒJ!;!�D 0.

The last condition for ! is referred to as the twisting cochain condition.

We go through Hain’s construction of a power series connection, which requires the
next lemma. The statement can be found in [11], where a dual statement is proved.
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Lemma 4.2 [11, Lemma 3.8] Let L be a graded Lie algebra and @ be a derivation
of L such that @.L/� ŒL;L�. Suppose ! is an element of ��.M /˝L such that

(1) ! �
P

WiXi.mod��.M /˝ I2L/, where Wi are closed forms whose coho-
mology classes form a linear basis for H�.M /,

(2) @!C d! � 1
2
ŒJ!;!�� 0.mod��.M /˝ InL/,

Then

(1) @2 � 0.modInC1L/,

(2) d.@!C d! � 1
2
ŒJ!;!�/� 0.mod��.M /˝ InC1L/:

Theorem 4.3 [12, Theorem 2.6] There exists a pair .!; @/ such that

(1) ! 2��.M /˝L.H�.M /Œ�1�/,

(2) @ is a derivation of L.H�.M /Œ�1�/ of square zero,

(3) @!C d! � 1
2
ŒJ!;!�D 0.

Proof The proof can be found in [12]. But we go over it, because this construction
will be referred to later on. Let .Xi/ be a basis of H�.M /. Suppose .Wi/ are
closed forms in ��.M / whose cohomology classes form a basis of H�.M / dual to
.Xi/. We construct @ and ! inductively and simultaneously. For ease of notation, let
LD L.H�.M /Œ�1�/.

The first step is to let

!1 D

X
i

WiXi

@1Xi D 0 for all i:

Then the Maurer–Cartan equation is partially satisfied:

@1!1C d!1�
1

2
ŒJ!1; !1�� 0 .mod��.M /˝ I2L/:

Now, suppose that @r and !r for r < s are defined so that

(1) @r is a derivation of L,

(2) @s�1Xi � @r Xi .modI rC1L/,

(3) !s�1 � !r .mod��.M /˝ I rC1L/,

(4) @r!r C d!r �
1
2
ŒJ!r ; !r �� 0 .mod��.M /˝ I rC1L/:
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We need to define @s and !s to continue the induction step. By Lemma 4.2,

d

�
@s�1!s�1C d!s�1�

1

2
ŒJ!s�1; !s�1�

�
D 0:

But since the cohomology classes of .Wi/ form a basis, we have the identity

@s�1!s�1C d!s�1�
1

2
ŒJ!s�1; !s�1�

D

X
i1���is

�X
i

a
i1���is

i Wi C dWi1���is

�
ŒXi1

; ŒXi2
; : : : ŒXis�1

;Xis
���:

Then let !s D !s�1C

X
i1���is

Wi1���is
ŒXi1

; ŒXi2
; : : : ; ŒXis�1

;Xis
���

@sXi D @s�1Xi C

X
i1���is

a
i1���is

i ŒXi1
; ŒXi2

; : : : ŒXis�1
;Xis

���:

Looking at the Maurer–Cartan equation modulo ��.M /˝ I sC1L,

@s!sC d!s �
1

2
ŒJ!s; !s �

� @s�1!s�1C d!s�1�
1

2
ŒJ!s�1; !s�1�

C

X
i

�X
i1���is

a
i1���is

i Wi C dWi1���is

�
ŒXi1

; ŒXi2
; : : : ŒXis�1

;Xis
���

� 0:

This allows us to continue our induction. Define ! and @ by the equations

@Xi � @s .mod I sC1L/

! � !s .mod��.M /˝ I sC1L/:

It is a result of rational homotopy theory that the homology of .L.H�.M /Œ�1�/; @/ is
isomorphic to ��.M /˝Q and the homology of .U.L.H�.M /Œ�1�//; @/ is isomorphic
to H�.�b.M // as a Hopf algebra.

The twisting cochain will be the inclusion H�.M / ,! L.H�.M /Œ�1�/. The power
series connection defines the differential on L.H�.M /Œ�1�/ to be used in the Maurer–
Cartan equation and the twisting cochain condition implies that the inclusion is indeed
a twisting cochain. The power series connection also has the following consequence.

Theorem 4.4 [10] The power series connection ! defines a dg coalgebra map
T .H�.M /Œ1�/! T .��.M /Œ1�/. There is map T .��.M /Œ1�/! T .H�.M /Œ1�/ such
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that the composition of the two maps is homotopic to the identity on T .��.M /Œ1�/

and equal to the identity on T .H�.M /Œ1�/.

Proof The element ! defines a map T .H�.M /Œ1�/!��.M /, using the adjunction
between tensor and Hom. The twisting cochain condition on ! implies that the map
satisfies the Maurer–Cartan equation. The relations between power series connections
and twisting cochains is described in [10, Section 1.3]. Using the correspondence
between twisting cochains and coalgebra maps then implies that extending the map as
a coalgebra respects the differentials.

The second claim about the map T .��.M /Œ1�/! T .H�.M /Œ1�/ is a consequence of
the map being a deformation retraction. This result can be found in [19].

4.2 A1 coalgebra modeling the homology of the principal path space

With a twisting cochain H�.M /! L.H�.M /Œ�1�/ at our disposal, we can apply the
theorems of Section 3 to the path space fibration and its conjugate bundle. This gives us
three structures, a twisted A1 coalgebra on H�.M /˝T .H�.M /Œ�1�/ modeling the
coproduct on H�.Pb.M //, a twisted A1 coalgebra on H�.M /˝ T .H�.M /Œ�1�/

with the conjugation action modeling H�.LM / modeling the coproduct on H�.LM /,
and a twisted A1 algebra on H�.M /˝T .H�.M /Œ�1�/ modeling the loop product.

Theorem 4.5 Let M be a simply connected manifold, �b.M /! Pb.M /!M be
the path space fibration, and H�.M / ,! L.H�.M /Œ�1�/ be the twisting cochain given
by the inclusion. Then .H�.M /˝ T .H�.M /Œ�1�/; fc�ng/ defines an A1 coalgebra
model H�.P /.

Proof The diagonal map M !M �M defines a C1 coalgebra on H�.M / and
T .H�.M /Œ�1�/ is a Hopf algebra model for H�.�b.M //. The theorem is then a
consequence of Theorem 3.9.

4.3 A1 coalgebra modeling the homology of the free loop space

This brings us to defining operations in string topology. The tensor product H�.M /˝

T .H�.M /Œ�1�/ is an A1 coalgebra given by combining the C1 coalgebra on H�.M /

and the strict associative algebra on T .H�.M /Œ�1�/. Using our twisting cochain, we
twist the A1 coalgebra as described in Section 3.6.
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Theorem 4.6 Let H�.M / be a simply connected manifold. Consider the C1 coalge-
bra on H�.M /, the Hopf algebra on T .H�.M /Œ�1�/, and the conjugation action on
T .H�.M /Œ�1�/. The maps

@� W H�.M /˝T .H�.M /Œ�1�/!H�.M /˝T .H�.M /Œ�1�/

c�nW H�.M /˝T .H�.M /Œ�1�/! .H�.M /˝T .H�.M /Œ�1�/˝n

define an A1 coalgebra. The linear homology, .H�.M /˝ T .H�.M /Œ�1�/; @� /, is
the homology of the free loop space of the manifold H�.LM /.

Proof The proof follows from the application of Theorem 3.9.

4.4 A1 algebra modeling the homology of the free loop space

The loop product in H�.LM /, first described by Chas and Sullivan [3], is intuitively
defined as combining the intersection product of H�.M / with loop concatenation in
H�.�b.M //. The set-up of twisted tensor products accommodates such a description.
The tensor product H�.M /˝T .H�.M /Œ�1�/ is an A1 algebra. The map

m2W .H�.M /˝T .H�.M /Œ�1�//˝2
!H�.M /˝T .H�.M /Œ�1�/

is a combination of the intersection product and loop concatenation. However, its linear
homology is not H�.LM / so it does not define an operation in H�.LM /. For this
we need to take the twisted differential @� . Unlike the coalgebra case, we do not need
to twist the higher multiplication maps.

Theorem 4.7 Let M be a simply connected manifold. Consider the cyclic C1
coalgebra on H�.M /, the Hopf algebra on T .H�.M /Œ�1�/, and the conjugation
action on T .H�.M /Œ�1�/. The maps

@� W H�.M /˝T .H�.M /Œ�1�/!H�.M /˝T .H�.M /Œ�1�/

mnW .H�.M /˝T .H�.M /Œ�1�//˝n
!H�.M /˝T .H�.M /Œ�1�/

define an A1 algebra on H�.M /˝T .H�.M /Œ�1�/.

Proof The proof is an application of Theorem 3.18.

Example 4.8 Let M DG be a connected Lie group and consider the path space fibra-
tion, �b.G/!Pb.G/!G . We claim that the conjugation action of �b.G/ is trivial,
and so there is no twisting given by the twisting cochain H�.G/ ,! L.H�.G/Œ�1�/.
Consequently, the string topology operations are given by the untwisted tensor H�.G/˝

T .H�.G/Œ�1�/.
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To see that the conjugation action is trivial, recall that a Hopf algebra H� is commutative
if the Lie bracket on Prim.H�/ is zero. In this case, the Hopf algebra is H�.�b.G//.
There is a homotopy equivalence, �b.G/ Š �

2
b
.BG/. The Lie bracket is the same

as the Samelson bracket on ��.�2
b
.BG// which is equal to the Whitehead bracket

on ��.�b.BG//. This bracket is zero because the Whitehead bracket is trivial on
H –spaces. Since the multiplication is commutative, the conjugation action is trivial
and there is no twisting coming from a twisting cochain. This computation agrees
with that in [13]. In that paper, Hepworth uses the isomorphism between LG and
G��b.G/ to determine the Batalin-Vilkovisky algebra on H�.�b.G//. Menichi [18]
investigates the BV structure on H�.�

2
b
.BG//˝H�.M /, and also considers the case

when M D G . In that paper, he constructs a BV algebra morphism H�.�b.G//!

H�.�b.G/˝H�.M /!H�.LM /.

The argument that the conjugation action is trivial can be applied to any manifold M

that is an H –space.

5 Application to principal G bundles

We are interested in applying the results in Section 3 to the case of a principal G bundle
G ! P ! M . This will turn out to be representations of the algebraic structures
on H�.M /˝� T .H�.M /Œ�1�/ given in the previous section. Given a connection
on a bundle G ! P !M , we get a map of bundles Pb.M /!M to P !M in
the following way. Choose a basepoint above the fiber in P !M , and denote it by
e 2 Fb.M /. Then the fiber can be identified with G , and e is identified with the
identity element. Using the lifting property for connections gives us maps

�b.M /!G

Pb.M /! P:

The map �b.M /!G is often referred to as the holonomy map.

Lemma 5.1 Let G! P !M be a principal bundle with connection and �b.M /!

Pb.M /!M be the path space fibration. The diagram

Pb.M / ����! P??y ??y
M

Id
����! M

commutes. Furthermore, the map Pb.M /! P commutes with the �b.M / action on
Pb.M / and the G action on P .
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Proof This first part is the definition of lifting paths. See Kobayashi and Nomizu [16,
Proposition 3.2] for the second statement.

This bundle map induces a map on the conjugate bundles

Conj.Pb.M // ����! Conj.P /??y ??y
M ����! M:

An element in Conj.Pb.M // is represented by an element .pt ; ˛/2Pb.M /��b.M /.
The induced map is defined by taking a representative .pt ; ˛/ and sending it by the
map

.pt ; ˛/ 7! Œept .1/; z̨� 2 Conj.P /D P �G G:

A loop ˛ 2 �b.M / lifts to a path z̨ starting at e 2 Fb.M / and ending in Fb.M /.
This path corresponds to an element in G . A path pt 2Pb.M / lifts to a path zpt in P

starting at e . Then pt 7! zpt .1/ 2 P .

Proposition 5.2 Let G ! P ! M be a principal G bundle with connection and
�b.M /! Pb.M /!M be the path space fibration. The map

Conj.Pb.M //! Conj.P /

.pt ; ˛/ 7! . zpt .1/; z̨/

is well defined and independent of choice of basepoint e 2 Fb.M /.

Proof Let ˇ 2�b.M /. For the map to be well defined, .eptˇ; Aˇ˛ˇ�1/ and . zp1; ę/
must be in the same equivalence class in P �G G . We see that conjugating . zp1; z̨/ by
ž 2G is .eptˇ; Aˇ˛ˇ�1/. So the map is well defined.

Choosing a different point e0 2Pb.M / changes the map Pb.M /!P by the G action
and changes the map �b.M /! G by a conjugation. In the conjugate bundle, the
images belong to the same equivalence class.

Given a bundle G! P !M , with G a connected Lie group, we look to construct
a twisting cochain � W H�.M /! H�.G/. Then using the methods in Section 3, we
obtain various structures on H�.M /˝H�.G/ modeling H�.P /. The twisting cochain
will be in terms of the characteristic classes of the bundle.

Proposition 5.3 [8, page 249] Let G be a Lie group and R a ring. The cohomology,
H�.BGIR/ is a polynomial R–algebra of finite type on generators of even degree.
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For H�.BG/, we need a separate argument.

Lemma 5.4 Let G be a connected Lie group. Then H�.BG/ is a free commutative
algebra.

Proof The classifying space BG is rationally equivalent to a product of Eilenberg–
Mac Lane spaces. Furthermore, since G is connected, the long exact sequence in
homotopy groups of G!EG!BG , implies �1.BG/D 0. The Eilenberg–Mac Lane
spaces here are then infinite loop spaces, and so BG is rationally an infinite loop space.
This means H�.BG/ is a Hopf algebra, which is commutative if the Lie bracket in
Prim.H�.BG// is zero. This bracket is equivalent to the Whitehead bracket on ��.Y /
where �2

b
.Y /D BG . But Y is a loop space, since BG is, rationally, an infinite loop

space. And the Whitehead bracket on H –spaces is zero.

Hopf algebras are self dual, so H�.BG/ is a Hopf algebra and H�.BG/ is the dual
Hopf algebra. We see that H�.BG/ is also a polynomial algebra.

5.1 Constructing the twisting cochain H�.M /!H�.G /

The power series connection ! 2��.M /˝L.H�.M /Œ�1�/, constructed in Section 4.1
will be used once more. Theorem 4.4 defines a dg coalgebra map T .H�.M /Œ1�/!

T .��.M /Œ1�/, which has an inverse T .��.M /Œ1�/! T .H�.M /Œ1�/.

Since G is a connected Lie group, H�.BG/ is a polynomial algebra. This allows us to
define maps from H�.BG/ in terms of its polynomial generators. Let fpi 2H�.M g/

be the characteristic classes of a bundle G ! P ! M . Then there is an algebra
map H�.BG/!��.M / defined as follows. Let fPi 2H�.BG/g be the polynomial
generators which pullback to the characteristic classes fpig. Then define an algebra
map by Pi 7! ypi , where ypi 2�

�.M / is a representative for pi . Extend the map as
an algebra map to all of H�.BG/. The algebra map H�.BG/!��.M / defines a
coalgebra map T .H�.BG/Œ1�/! T .��.M /Œ1�/.

Therefore we have a coalgebra map T .H�.BG/Œ1�/! T .��.M /! T .H�.M /Œ1�/,
which defines an algebra map T .H�.M /Œ�1�/! T .H�.BG/Œ�1�/. To this algebra
map, there is a corresponding twisting cochain H�.M /! T .H�.BG/Œ�1�/. Since
T .H�.BG/Œ�1�/ is a model for �b.BG/, which is homotopy equivalent to G , we
could do our work with twisting cochains now.

To replace T .H�.BG/Œ1�/ with H�.G/ we need to find a coalgebra map H�.G/!

T .H�.BG/Œ1�/. Recall that H�.G/ is generated by odd dimensional generators Ui .
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To each Ui there is a generator of H�.BG/ one degree higher, which we denote by Pi .
We define

f W H�.G/! T .H�.BG/Œ1�/

Ui 7! Pi

Ui1
Ui2
7! Pi1

˝Pi2
CPi2

˝Pi1

and extending the map as an algebra map. So f .Ui1
� � �Uij /D Pi1

d � � �d Pij , where
d is the shuffle product.

Lemma 5.5 The map f W H�.G/! T .H�.BG/Œ1�/ is a map of differential graded
coalgebras. Therefore, f is a map of differential graded Hopf algebras.

Proof The coproduct on H�.G/ is given by

�G.Ui1
Ui2

/D Ui1
Ui2
˝ 1CUi1

˝Ui2
CUi2

˝Ui1
C 1˝Ui1

Ui2
;

and extended so that �G is an algebra map. The coproduct on T .H�.BG/Œ1�/ is given
by deconcatenation,

�.Pi1
˝ � � �˝Pik

/D
X

j

Pi1
˝ � � �Pij

O
PijC1

˝ � � �˝Pik
:

The following computation shows that f is a coalgebra map,

.f ˝f / ı�.UiUj /D .f ˝f /.UiUj ˝ 1CUi ˝Uj CUj ˝Ui C 1˝UiUj /

D .Pi ˝Pj /˝ 1C .Pj ˝Pi/˝ 1CPi ˝Pj

CPj ˝Pi C 1˝ .Pi ˝Pj /C 1˝ .Pj ˝Pi/

D�.Pi ˝Pj CPj ˝Pi/

D�f .UiUj /:

The differential on H�.G/ is zero, so for f to be a chain map, f must map to cocycles
in T .H�.BG/Œ1�/. We see that ı is zero on Pi . Then since f maps to shuffle products
of Pi and ı is a derivation with respect to the shuffle product, f maps to cocycles.

To replace T .H�.BG/Œ�1�/ with H�.G/, we take the dual of the above map to get
a differential graded algebra map T .H�.BG/Œ�1�/! H�.G/. So given a twisting
cochain � W H�.M /! T .H�.BG/Œ�1�/, composing maps defines a twisting cochain
H�.M /! T .H�.BG/Œ�1�/!H�.G/. Similarly, H�.G/!H�.M / is a twisting
cochain obtained by composing the twisting cochain T .H�.BG/Œ1�/!H�.M / and
the coalgebra map H�.G/! T .H�.BG/Œ1�/.
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We summarize the construction of the twisting cochain and give a formula for it. Let
G! P !M be a principal G bundle, where G is a connected Lie group and M is
a simply connected manifold. Let fPig be the multiplicative basis for H�.BG/ where
pi 2H�.M / is the pullback of Pi 2H�.BG/. The elements Pi are even dimensional
and correspond to an element Ui 2H�.G/ such that fUig form a basis for H�.G/.
The following coalgebra maps are composed

(1) T .��M /Œ1�/! T .H�.M /Œ1�/

(2) T .H�.BG/Œ1�/! T .��.M /Œ1�/

(3) H�.G/! T .H�.BG/Œ1�/

to define a coalgebra map H�.G/! T .H�.M /Œ1�/ which corresponds to a twisting
cochain H�.G/!H�.M /. When this process is carried out, � W H�.G/!H�.M /

is defined on generators by

H�.G/!H�.M /

Ui 7! pi ;

and zero on products of generators.

Proposition 5.6 Consider the coalgebra structure on H�.G/ given by group multi-
plication and the C1 algebra structure on H�.M / given by the cup product. Then
the map � W H�.G/!H�.M / which on generators is Ui 7! pi and zero on products
of generators is the twisting cochain coming from the twisting cochain H�.M / ,!

L.H�.M /Œ�1�/ given by the inclusion.

Proof There are no differentials on H�.G/ and H�.M /, and so it suffices to show
that mHom

n .�˝n/D 0 for each n. For mHom
n .�˝n/ to be possibly nonzero, we need to

consider the product of n generators Ui1
� � �Uin

. We look at terms in �n.Ui1
� � �Uin

/

of the form X
Ui�.1/ ˝ � � �˝Ui�.n/ :

Then we apply � to each factor and apply mnW H
�.M /˝n ! H�.M / of the C1

algebra. But each mn vanishes on shuffle products, so it is zero on products of these
terms.

5.2 A1 coalgebra of H�.M /˝� H�.G / for a principal G –bundle

We can now define the twisted A1 coalgebra structure on H�.M /˝H�.G/. We use
the dual of � W H�.G/!H�.M /, to get a twisting cochain. The map is also denoted �
and is defined as

� W H�.M /!H�.G/

p�i 7! U �i ;

Algebraic & Geometric Topology, Volume 11 (2011)



1200 Micah Miller

is zero on products p�i1
� � �p�in

. Note that U �i 2 Prim.G/, and ŒU �i1
;U �i2

� is defined. The
tensor differential on H�.M /˝H�.G/ is zero, so @� consists only of twisted terms.
These terms are obtained by applying fcnW H�.M /!H�.M /˝ng, applying � to the
last n� 1 terms, bracketing the results, and then multiplying the resulting bracket with
the element in H�.G/. The higher coproducts c�

2
; c�

3
: � � � are defined in the same way.

Theorem 5.7 Let fpg be the characteristic classes of a G bundle G ! P ! M ,
where G is a connected Lie group and M a simply connected manifold. The maps
f@� ; c

�
2
; c�

3
; : : :g define an A1 coalgebra on H�.M /˝H�.G/ whose linear homology

is isomorphic to H�.P /.

Proof This is an application of Theorem 3.9.

The twisting cochain is more easily defined as � W H�.G/!H�.M /, so the dual A1
algebra can be made more explicit. Note that if C� is a C1 coalgebra, H� a Hopf
algebra, and a twisting cochain C�!H� has its image in the primitives, then its dual
map � W H�! C � has the property that ker.�/[Prim.H�/DH� . This property of �
implies the derivation property dual to the statement that multiplying by a primitive
element is a coderivation. It is described in Figure 19.

C

C

D

D

m4 m4
m4

m3 m3 m3

Figure 19: This identity is a consequence of the fact that ker.�/[Prim.H�/D
H� . The figure is dual to Figure 6.

We define an A1 algebra on H�.G/˝H�.M /, where we view H�.G/ as a Hopf
algebra and H�.M / as a C1 algebra. The map @� W H�.G/˝H�.M /!H�.G/˝

H�.M / is given by:

@� .Ui1
� � �Uin

˝ a/D
X
�2Sn

Ui�.1/ � � �Ui�.n�1/
˝m2.pi�.n/ ˝ a/

C

X
�2Sn

Ui�.1/ � � �Ui�.n�2/
˝m3.pi�.n�1/

˝pi�.n/ ˝ a/

:::
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The map m�
2
W .H�.G/˝H�.M //˝2!H�.G/˝H�.M / is given by:

m�
2.Ui1

� � �Uik
˝ a;UikC1

� � �Uin
˝ b/

D Ui1
� � �Uin

˝m2.a˝ b/

C

X
�2Sn

Ui�.1/ � � �Ui�.n�1/
˝m3.pi�.n/ ˝ a˝ b/

C

X
�2Sn

Ui�.1/ � � �Ui�.n�2/
˝m4.pi�.n�1/

˝pi�.n/ ˝ a˝ b/

:::

Proposition 5.8 Let fpig be the characteristic classes of a principal G bundle P!M ,
with M simply connected and G a connected Lie group. The maps f@� ;m�

2
; : : :g

define an A1 algebra on H�.G/˝H�.M / whose linear cohomology is isomorphic
to H�.P /.

Proof This is the algebraic dual of Theorem 3.9. One can see that @2
� D 0 directly, as

well:

@2
� .Ui1

� � �Uin
˝ a/

D

X
� 0

X
�

Ui�0�.1/ � � �Ui�0�.n�2/
˝m2.pi�0 ˝m2.pi�.n/ ˝ a//

C

X
� 0

X
�

Ui�0�.1/ � � �Ui�0�.n�3/
˝m3.pi�0�.n�2/

˝pi�0�.n�1/
˝m2.pi�.n/ ˝ a//

:::

C

X
� 0

X
�

Ui�0�.1/ � � �Ui�0�.n�3/
˝m2.pi�0.n�2/

˝m3.pi�.n�1/
˝pi�.n/ ˝ a//

C

X
� 0

X
�

Ui�0�.1/ � � �Ui�0�.n�4/

˝m3.pi�0�.n�3/
˝pi�0�.n�2/

˝m3.pi�.n�1/
˝pi�.n/ ˝ a//

:::

Note that on the H�.M / side of the tensor, there are compositions of mi and mj .
The C1 algebra relation on H�.M / states that such sums will be zero.

For the higher identities, we use the identity in Figure 19 and follow the same argument
that was made in Theorem 3.9.

5.3 A1 coalgebra on H�.M /˝� H�.G / using conjugation action

The conjugation action of H�.G/ on itself is trivial when G is a connected Lie group.
This shows that there is no twisting needed for the A1 coalgebra on H�.M /˝H�.G/.
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That is, the coalgebra is given by fcn˝�
ng, where fcng is the C1 coalgebra given

by the diagonal map and �n is the n–fold composition of the coproduct on H�.G/.

5.4 A1 algebra on H�.M /˝� H�.G / using conjugation action

Since the conjugation action is trivial, the A1 algebra on H�.M /˝H�.G/ is given
by fmn˝mGg, with no twisting terms. Here, fmng is the C1 algebra on H�.M /

given by the intersection product and mG is the associative multiplication in H�.G/.
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