Volume 11, issue 2 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 14
Issue 5, 2511–3139
Issue 4, 1881–2509
Issue 3, 1249–1879
Issue 2, 627–1247
Issue 1, 1–625

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Author Index
Editorial procedure
Submission Guidelines
Submission Page
Author copyright form
Subscriptions
Contacts
G&T Publications
GTP Author Index
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Iterated bar complexes of $E$–infinity algebras and homology theories

Benoit Fresse

Algebraic & Geometric Topology 11 (2011) 747–838
Abstract

We proved in a previous article that the bar complex of an E–algebra inherits a natural E–algebra structure. As a consequence, a well-defined iterated bar construction Bn(A) can be associated to any algebra over an E–operad. In the case of a commutative algebra A, our iterated bar construction reduces to the standard iterated bar complex of A.

The first purpose of this paper is to give a direct effective definition of the iterated bar complexes of E–algebras. We use this effective definition to prove that the n–fold bar construction admits an extension to categories of algebras over En–operads.

Then we prove that the n–fold bar complex determines the homology theory associated to the category of algebras over an En–operad. In the case n = , we obtain an isomorphism between the homology of an infinite bar construction and the usual Γ–homology with trivial coefficients.

Keywords
iterated bar complex, $E_n$–operad, module over operad, homology theory
Mathematical Subject Classification 2010
Primary: 57T30
Secondary: 55P48, 18G55, 55P35
References
Publication
Received: 6 December 2010
Accepted: 17 December 2010
Published: 12 March 2011
Authors
Benoit Fresse
UMR CNRS 8524
UFR de Mathématiques
Université Lille 1 - Sciences et Technologies
Cité Scientifique - Bâtiment M2
59655 Villeneuve d’Ascq Cedex
France
http://math.univ-lille1.fr/~fresse/