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Complexes and exactness of certain Artin groups

ERIK GUENTNER

GRAHAM A NIBLO

In his work on the Novikov conjecture, Yu introduced Property A as a readily verified
criterion implying coarse embeddability. Studied subsequently as a property in its
own right, Property A for a discrete group is known to be equivalent to exactness of
the reduced group C �–algebra and to the amenability of the action of the group on
its Stone–Čech compactification. In this paper we study exactness for groups acting
on a finite dimensional CAT.0/ cube complex. We apply our methods to show that
Artin groups of type FC are exact. While many discrete groups are known to be exact
the question of whether every Artin group is exact remains open.

20F36, 20F65, 43A99; 51F15

1 Introduction

A discrete metric space X has Property A if there exists a sequence of families
of finitely supported probability measures fn;x 2 `

1.X /, indexed by x 2 X , and a
sequence of constants Sn > 0, such that:

(1) For every n and x the function fn;x is supported in BSn
.x/.

(2) For every R> 0, we have

kfn;x �fn;x0k! 0

uniformly on the set f.x;x0/ W d.x;x0/�Rg as n!1.

A discrete group has Property A if its underlying proper metric space does (this is
independent of the choice of proper metric). In this case the definition is recognised as
a nonequivariant form of the Reiter condition for amenability.

For groups it transpires that Property A is equivalent to a wide variety of other con-
ditions. Equivalence of Property A with exactness of the reduced group C �–algebra
follows from the main result of Ozawa [15] and the characterisation of Property A for
bounded geometry spaces in Tu [18]; see also Willett’s survey [19, Theorem 4.3.9].
Equivalence with C �–exactness of the group itself (defined in terms of crossed prod-
ucts) follows, in turn, from Kirchberg and Wassermann [12, Theorem 5.2]. Finally,
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equivalence of Property A with amenability of the action of the group on its Stone–Čech
compactification was established for finitely generated groups in Higson and Roe [11];
the proof also works for countable discrete groups and is given in this generality
in [19, Theorem 6.2.7]. The class of groups possessing Property A is large and
diverse – for example, it contains every amenable group, every linear group and every
hyperbolic group, and is closed under many natural operations; see Guentner, Higson
and Weinberger [10], Kirchberg and Wassermann [13] and Dadarlat and Guentner [8].

In this article we shall for groups use the terms Property A and exactness interchange-
ably. We point out, however, that none of our arguments depends on the equivalences
outlined above; indeed, if one is willing to take the characterization of Property A

given in Section 4 as a definition, our treatment is completely self-contained.

In previous work in collaboration with J Brodzki, S Campbell and N Wright, we
showed that a finite dimensional CAT.0/ cube complex has Property A [3]. For the
proof we constructed an explicit family of weight functions which, when suitably
normalised, become the functions fn;x in the definition above. As a consequence a
group acting (metrically) properly on a finite dimensional CAT.0/ cube complex is
exact. In particular all finitely generated right-angled Artin groups are exact. Since
an infinitely generated Artin group is the ascending union of its finitely generated
parabolic subgroups any countable right angled Artin group is exact.

In this paper we carry out an extended study of the weight functions, as defined on
a suitable compact space combinatorially defined in terms of the hyperplanes and
half spaces of the complex. Our analysis of their topological and measure theoretic
properties leads to a new inheritance property for exact groups. Indeed, while true
that a group acting on a locally finite Property A space with exact stabilisers is exact,
the analogous statement for general non–locally finite spaces is false. In order to
guarantee inheritance in the more general context one needs to assert control over
coarse stabilisers – point stabilisers are not sufficient. In our setting, following an
idea of Ozawa [16], extension of the weight functions to a compact space affords the
required additional control. We obtain the following result:

Theorem 4.1 Let � be a countable discrete group acting on a finite dimensional
CAT.0/ cubical complex. Then � has Property A if and only if every vertex stabiliser
of the action has Property A.

As an application, we offer the following result in which we do not assume the Artin
group is finitely generated.

Theorem 5.1 An Artin group of type FC is exact.

Algebraic & Geometric Topology, Volume 11 (2011)



Complexes and exactness of certain Artin groups 1473

We note that Altobelli characterised the Artin groups of type FC as the smallest
class of Artin groups containing the Artin groups of finite type which is closed under
amalgamations along parabolic subgroups [1]. Thus, this theorem could alternately
be obtained by appealing to the stability theorem for graph products of exact groups
first established by the first author [9]. (See also [8] for a more modern discussion.)
However the class of groups acting on CAT.0/ cube complexes is considerably richer
than the class of groups acting on trees and we expect Theorem 4.1 to have many other
applications.

The paper is organised as follows. In Section 2 we recall the definition and basic
properties of a CAT.0/ cube complex, with an emphasis on the combinatorics of
vertices, hyperplanes and half spaces. We describe a compact space in which the vertex
set of the complex embeds and give an explicit description of the points of this space.
In Section 3 we recall the definition of the weight functions from [3] and analyse their
topological and measure theoretic properties. In Section 4, adapting slightly the method
of Ozawa [16], we establish Theorem 4.1. Section 5 contains relevant background on
Artin groups and a discussion of Theorem 5.1.

Acknowledgements The first author was partially supported by NSF grant DMS-
0349367. The second author was partially supported by EPSRC grant EP/H04874X/1.

2 Cubical complexes

A CAT.0/ cube complex is a cell complex in which each cell is a Euclidean cube of
side length 1 and the attaching maps are isometries; the complex is equipped in the
usual way with a geodesic metric which is required to satisfy the CAT.0/ condition
of nonpositive curvature. It follows that a CAT.0/ cube complex is simply connected,
even contractible, as a topological space.

The midpoint of each edge of a CAT.0/ cube complex defines a hyperplane – the union
of all geodesics passing through the midpoint at right angles to the underlying edge, the
angle being measured in the local Euclidean metric on each cube. Each hyperplane is a
totally geodesic codimension one subspace which is locally separating, and therefore
globally separating since the complex is simply connected.

In this paper we shall be concerned exclusively with the combinatorics of the vertices,
hyperplanes and half spaces of a CAT.0/ cube complex. We shall now outline the facts
we require – we refer to Chatterji and Niblo [6], and the standard references Bridson
and Haefliger [2] and Roller [17] for additional details.
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Let X be a CAT.0/ cube complex. Slightly abusing notation, we shall denote the
set of vertices of the complex by X as well. Each hyperplane decomposes the vertex
set into two subsets, the two half spaces determined by the hyperplane. There is a
priori no reason to prefer one of these half spaces over the other and we shall adopt the
following convention: fix a base vertex, and for each hyperplane H denote by HC the
half space containing the base vertex; the complementary half space is denoted H� . A
hyperplane H separates two vertices if one belongs to HC and the other to H� .

Let x and y be vertices in X . The interval between x and y is the intersection of the
half spaces containing both x and y ; it is a finite set which we shall denote Œx;y�. It
follows directly from the definition that a vertex belongs to Œx;y� exactly when there
are no hyperplanes which separate it from both x and y . A useful alternate description
of the interval is the following: Œx;y� consists of those vertices in X which lie on
an edge geodesic joining x and y . Observe that Œx;x�D fx g. Given three vertices
x;y; z the intersection Œx;y�\ Œy; z�\ Œz;x� is comprised of a single vertex; we denote
this vertex by m.x;y; z/ and refer to it as the median of x , y , z .

Let now H denote the set of hyperplanes in X . Each vertex x determines a function
H! f˙1 g according to the rule

x.H /D

(
C1 x 2HC;

�1 x 2H�:

Observe that x.H / D �1 precisely when H separates x and the fixed base vertex.
While the notation appears clumsy, it is chosen for convenience in the following
statement: for every vertex x and hyperplane H we see that x belongs to the half
space H x.H / . (Here, we are implicitly writing HC1 for HC , and similarly for H� .)
We denote by f˙1 gH the Hamming cube on H , that is, the set of functions H!f˙1 g

equipped with the infinite product topology. We obtain by the above a map

X ! f˙1 gH :

Any two (distinct) vertices are separated by at least one hyperplane and if H separates
x and y then x.H / ¤ y.H /. Thus, this map is injective. We identify X with its
image, the subset of original vertices.

An element z of the Hamming cube is an admissible vertex if for every two hyper-
planes H and K there exists an original vertex x for which both x.H / D z.H /

and x.K/ D z.K/. Equivalently, z is admissible if for every H and K the half
spaces H z.H / and Kz.K / have nonempty intersection. Clearly, an original vertex is
admissible. Admissible vertices that are not original vertices are ideal vertices.

We pause briefly to consider an example.

Algebraic & Geometric Topology, Volume 11 (2011)



Complexes and exactness of certain Artin groups 1475

Example The Euclidean plane equipped with its usual integer lattice squaring is a
CAT.0/ cube complex of dimension two. The vertices are the integer lattice points.
The hyperplanes are the horizontal and vertical lines intersecting the axes at half-integer
points:

Hn W y D nC 1
2

Kn W x D nC 1
2
;

for an integer n. Fix .0; 0/ as the base vertex.

.1;1/

.15; 1/

.15; 0/
.1; 1/
.1; 0/.0; 0/

Figure 1: The Euclidean plane with admissible vertices attached

The lattice point .p; q/ in the first quadrant defines an original vertex by

.p; q/.Hn/D

(
�1 when 0� n< q;

C1 else;
.p; q/.Kn/D

(
�1 when 0� n< p;

C1 else:

There are also ideal vertices. For example, we may orient all horizontal lines to
point upwards and all vertical lines to point to the right defining an admissible vertex
.C1;C1/ by

.C1;C1/.Hn/D

(
C1 when n< 0;

�1 else;
.C1;C1/.Kn/D

(
C1 when n< 0;

�1 else:

We shall think of this vertex as “the top right corner” of the plane. The full set of ideal
vertices comprises four corner points, and four lines – one each at the East, West, North
and South of the plane – as illustrated in Figure 1 above.
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Lemma 2.1 An element z of the Hamming cube is an admissible vertex if and only
if for every n � 2 and every collection of n hyperplanes H1; : : : ;Hn there exists an
original vertex x satisfying x.Hi/D z.Hi/, for each i D 1; : : : ; n.

Proof We are concerned with the forward implication, which we prove by induction
on n. The case nD 2 is covered by the definition of an admissible vertex. Let n> 2

and let H1; : : : ;Hn be n hyperplanes. By the induction hypothesis we have an original
vertex x1 agreeing with z on H1; : : : ;Hn�1 , another original vertex x2 agreeing
with z on H2; : : : ;Hn , and a third original vertex x3 agreeing with z on H1 and Hn .
The median m.x1;x2;x3/ has the desired property.

Proposition 2.2 The closure xX of the set of original vertices is the set of admissible
vertices.

Proof Lemma 2.1 shows that every basic open neighbourhood of an admissible vertex
contains an original vertex. Thus, every admissible vertex is in the closure of the
original vertices.

Conversely, suppose z belongs to the closure of the original vertices, and let H

and K be hyperplanes. The requirements x.H /D z.H / and x.K/D z.K/ define an
open neighbourhood of z in the infinite product, so must contain an original vertex.
Hence z is admissible.

We extend the above terminology regarding hyperplanes and half spaces to xX in the
obvious way. For example, an admissible vertex z belongs to the half space HC if
z.H / D C1; it belongs to H� if z.H / D �1. Thus, we extend the half spaces to
include ideal vertices. Having extended the notion of half space to the set of admissible
vertices we define intervals exactly as before, as intersections of half spaces. In later
sections we shall work only with intervals Œx; z� in which x is an original vertex,
whereas z may be either an original or an ideal vertex.

A pair of admissible vertices z and w are separated by the hyperplane H when
z.H /¤ w.H /. While only finitely many hyperplanes may separate a pair of original
vertices, a pair of vertices at least one of which is ideal may be separated by infinitely
many hyperplanes. For example, in Figure 1 the ideal vertices .1; 0/ and .1; 1/ are
separated by a single hyperplane, whereas the ideal vertices .1; 0/ and .1;1/ are
separated by infinitely many horizontal hyperplanes.

A pair of admissible vertices z and w are adjacent across the hyperplane H if they
differ only on H . An admissible vertex z is adjacent to the hyperplane H if there is
an admissible vertex w such that z is adjacent to w across H .
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Proposition 2.3 Let x , y and z be admissible vertices. The element of the Hamming
cube defined by

m.H /D

(
C1 at least two of x.H /, y.H /, z.H /D 1;

�1 at least two of x.H /, y.H /, z.H /D�1

is an admissible vertex. It is the unique admissible vertex belonging to all three of the
intervals Œx;y�, Œy; z� and Œx; z�.

Proof We first check that m is admissible. Suppose hyperplanes H and K are given.
At least two of the vertices x , y , z must agree with m on H and at least two must
agree with m on K , so at least one agrees with m on both H and K . Since that vertex
is itself admissible there is an original vertex which agrees with m on both H and K .

We next check that m belongs to the interval Œx;y�. Indeed, if H separates m from
both x and y then x.H /D y.H /¤m.H /, contradicting the definition of m. The
other intervals are treated similarly.

Finally, we verify uniqueness. Suppose m0 is an admissible vertex belonging to each of
the intervals Œx;y�, Œy; z� and Œx; z�. Given a hyperplane H at least two of the vertices
x , y and z belong to a common half space of H . Thus, m0 agrees with at least two
of the vertices x , y and z on H so that m0 agrees with m on H as well. As the
hyperplane H was arbitrary, we conclude that m0 Dm.

The proposition extends the notion of median to admissible vertices: the admissible
vertex m described in the statement is the median of the three admissible vertices x ,
y and z ; as with medians of original vertices we write mDm.x;y; z/.

We close this section with some elementary remarks concerning the topological space xX .
Each half space is a clopen set. The collection of finite intersections of half spaces
comprises a basis for the topology on xX . For an admissible vertex z , the singleton f z g
is closed; if z is an ideal vertex f z g is not open. For original vertices the situation is
more complicated.

Proposition 2.4 Let x be an original vertex. The following are equivalent:

(1) fx g is open in xX .

(2) fx g is open in X with respect to the subspace topology.

(3) x is a finite vertex.
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Here, an original vertex is said to be finite if there are only finitely many hyperplanes
adjacent to it. It follows that, in the case of a non–locally finite complex, X itself has
nontrivial topology as a subspace of xX – that is, the subspace topology on X is not
discrete.

Proof Elementary topology shows that (1) implies (2), and (2) implies (3). If x is a
finite vertex, and H1; : : : ;Hn are the (finitely many) hyperplanes adjacent to x then
we claim that

(2-1) fx g DH
x.H1/
1

\ � � � \H x.Hn/
n ;

which is a basic open set for the topology on xX . To verify (2-1) we must, according
to our conventions, show that no admissible vertex other than x can belong to the
displayed intersection of half spaces. It is an elementary fact that the intersection can
contain no original vertex other than x . Thus, we must show that the intersection can
contain no ideal vertex. Suppose that z is an ideal vertex which agrees with x on
the given hyperplanes. Necessarily, z differs from x on some other hyperplane K .
By Lemma 2.1 there is an original vertex y which agrees with z on the hyperplanes
H1; : : : ;Hn , and also on K . Thus, y is an original vertex that agrees with x on
H1; : : : ;Hn but differs from it on K , a contradiction.

While xX is a compact space containing X as a dense subspace, it is not in general
a compactification of X in the classical sense – when X is not locally finite it need
not be an open subset of xX . We shall not require this fact below, and its verification
is left to the reader. (But, compare to the discussion surrounding Proposition 3.4 and
Proposition 3.6.)

Proposition 2.5 The compact space xX contains X as a dense subspace. An action
of a discrete group on X by cellular automorphisms extends to an action on xX by
homeomorphisms.

Proof Open sets in xX are unions of finite intersections of half spaces all of which con-
tain original vertices by Lemma 2.1, so X is dense in xX as required. An automorphism
of X preserves the half space structure and therefore extends to a homeomorphism
of xX .

3 Weight functions

Let X be the vertex set of a finite dimensional CAT.0/ cube complex. In previous work
we constructed weight functions on X – we used these to show that X has Property A,
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when viewed as a metric space with either of its natural metrics [3]. We shall use the
previously constructed weight functions in the present context as well, and now recall
their definition.

Fix an ambient dimension N greater than or equal to the dimension of the complex.
For every z 2 xX and every vertex a 2 Œx; z�\X the deficiency of a (relative to the
interval Œx; z�) is

(3-1) ıŒx;z�.a/DN � k;

where k is the number of hyperplanes cutting edges adjacent to a and which separate a

(and hence also x ) from z . By hypothesis 0 � ıŒx;z�.a/ �N . Now for every vertex
x 2X and every z 2 xX we define the weight function �n

x;z according to the formula

(3-2) �n
x;z.a/D

8̂<̂
:
�

n� d.x; a/C ıŒx;z�.a/

ıŒx;z�.a/

�
a 2 Œx; z�;

0 a … Œx; z�:

Intuitively �n
x;z measures the flow of a mass placed at the vertex x as it flows towards z

with n playing the role of the time parameter. The basic properties of the weight
functions are summarised in the following theorem [3]. In the statement, Bn.x/

denotes the ball of radius n and centre x , comprised of those (original) vertices
separated from x by at most n hyperplanes; the norms are `1 –norms.

Theorem 3.1 Let X be the vertex set of a finite dimensional CAT.0/ cube complex,
and let xX be the compact space of admissible vertices, defined previously. Fix an
ambient dimension N not less than the dimension of X . The weight functions

�n
W X � xX ! `1.X /; .x; z/ 7! �n

x;z

defined by formula (3-2) satisfy the following:

(1) �n
x;z is N [f0g–valued.

(2) �n
x;z is supported in Bn.x/\ Œx; z�.

(3) k�n
x;zk D

�
nCN

N

�
.

(4) If x and x0 2X are adjacent then k�n
x;z ��

n
x0;zk D 2

�
nCN�1

N�1

�
.

Further, if a discrete group � acts cellularly on X , hence also by homeomorphisms
on xX , we have

(5) s ��n
x;z D �

n
sx;sz ,

for every s 2 � .
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Proof Properties, (1) and (2) are immediate from the defining formula (3-2). Prop-
erty (5) is also apparent from the defining formula – indeed, it is equivalent to the
assertion that

�n
x;z.a/D �

n
sx;sz.sa/;

for all x , a 2X , z 2 xX and s 2 � , which holds since � acts cellularly and the weight
functions are determined by the combinatorics of hyperplanes. Finally, properties (3)
and (4) are established in Propositions 2.3 and 2.4 of [3].

The remainder of the section is devoted to an analysis of the continuity properties of the
weight functions defined in (3-2). In particular, we shall view �n

x;z.a/, as a function of
z 2 xX , for a fixed natural number n, and for fixed x and a 2X . Our first result in this
direction is the following proposition.

Proposition 3.2 Fix a natural number n, and original vertices x and a 2 X . The
function

ˆW xX !N; ˆ.z/D �n
x;z.a/;

satisfies the following:

(1) If n� d.x; a/ then ˆ is continuous.

(2) If n> d.x; a/ and
(a) a is finite then ˆ is continuous;
(b) a is not finite then ˆ is Borel.

Before turning to the proof of the proposition, we require a lemma.

Lemma 3.3 For any choice of original vertices x and a the set f z W a 2 Œx; z� g is
clopen in xX .

Proof The complement of the set in question is

f z W 9 H 2H such that H separates a from both x and z g D
S

H x.H /;

where the union is over the finite set of hyperplanes separating a from x . (When aD x

this set is empty.) This set is clopen, hence so is its complement.

Proof of Proposition 3.2 We divide (1) into two cases. First, if n< d.x; a/ then ˆ
is identically zero. Second, if nD d.x; a/ then ˆ is given by the formula

ˆ.z/D

(
1 a 2 Œx; z�;

0 else:

Algebraic & Geometric Topology, Volume 11 (2011)



Complexes and exactness of certain Artin groups 1481

In other words, ˆ is the characteristic function of the clopen set appearing in the
previous lemma, and so it is continuous.

We consider (2a) and (2b) simultaneously, and proceed by analysing the level sets of ˆ.
Write AD n� d.x; a/ > 0. Inspecting (3-2) we see that ˆ is given by the formula

ˆ.z/D

(�AC.N�k/
.N�k/

�
a 2 Œx; z�;

0 a … Œx; z�;

where k D k.z/ appears in the formula (3-1) for the deficiency. Thus, the values of ˆ
are among the (distinct) natural numbers

0 and
�

AC .N � k/

.N � k/

�
; 0� k � dim.X /�N:

Further, the level sets corresponding to these values are ˆ�1.0/D f z W a … Œx; z� g and

(3-3) ˆ�1

��
AC .N � k/

.N � k/

��
D f z W a 2 Œx; z� and ıŒx;z�.a/DN � k g;

respectively. The first of these is clopen, by the lemma. We analyse the second (3-3).

Let K1; : : : ;Kn be the (finitely many) hyperplanes separating x and a. Let H1;H2; : : :

be the hyperplanes adjacent to a and not separating x and a. Observe the collection
of Hi ’s is finite exactly when a is a finite vertex. The conditions defining the level set
(3-3) are that x and z are separated by every Ki and exactly k of the Hj . Similarly,

(3-4) ˆ.z/ >

�
AC .N � k/

.N � k/

�
precisely when x and z are separated by every Ki and fewer than k of the Hj . Thus,
the set of admissible z satisfying (3-4) is precisely

(3-5) K
a.K1/
1

\ � � � \Ka.Kn/
n \

T�
H x.Hj1

/
j1

[ � � � [H x.Hjk
/

jk

�
;

with the large intersection being over the k element subsets j1; : : : ; jk of j ’s. The
set appearing in (3-5) is closed so that, as the difference of two closed sets, the level
set (3-3) is Borel, as is ˆ. Further, if a is finite, the set appearing in (3-5) is clopen –
the intersection is finite because there are only finitely many k element subsets of j ’s.
In this case, as the difference of clopen sets, the level set (3-3) is clopen and ˆ is
continuous.

Remark In the course of the proof we have established the following fact: for all
choices of the parameters n, x and a, if ˆ.z/D 0 then ˆ is continuous at z .
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Remark The proposition leaves open the question of whether ˆ is continuous when
a is an infinite point. Indeed, it is not difficult to see that if a is infinite then ˆ is not
continuous.

In the notation of the proposition, suppose that a is an infinite point (and also that
n> d.x; a/). We show that ˆ is not continuous at a. Indeed, let H1;H2; : : : be an
infinite sequence of hyperplanes adjacent to a, none of which separate a from x . Let
zj be the vertex immediately across Hj from a, and note that a 2 Œx; zj �. Inspecting
the definition (3-2) we see that

ˆ.a/D

�
n� d.x; a/C .N � 0/

.N � 0/

�
¤

�
n� d.x; a/C .N � 1/

.N � 1/

�
Dˆ.zj /:

The value ˆ.zj / is independent of j , different from ˆ.a/ and zj ! a.

While this remark is quite simple, it leads to a complete analysis of the continuity of
the ˆ, which we develop in the two subsequent propositions. Note that when z D a

the first of these is essentially the previous remark.

Proposition 3.4 Continue in the notation of Proposition 3.2, and assume n> d.x; a/.
Let z be an original vertex for which ˆ.z/ ¤ 0. The function ˆ is continuous at z

exactly when only finitely many hyperplanes are adjacent to both a and z .

Proof The forward implication proceeds exactly as the remark. Indeed, with z as
in the statement, let H1;H2; : : : be an infinite sequence of hyperplanes adjacent to
both a and z , none of which separate a from z , and none of which separate a from x .
The vertices zj immediately across Hj from z witness the noncontinuity of ˆ at z .

For the reverse implication, let H1; : : : ;Hn be the hyperplanes adjacent to both a

and z , and let K1; : : : ;Km be the hyperplanes that separate x and z . The intersection

H
z.H1/
1

\ � � � \H z.Hn/
n \K

z.K1/
1

\ � � � \Kz.Km/
m

is a clopen neighbourhood of z . Let w belong to this neighbourhood. We claim that
ˆ.w/Dˆ.z/. Now, since w 2K

z.Ki /
i for all i we have a 2 Œx; w�. Thus, the values

ˆ.w/ and ˆ.z/ are given by the first case in (3-2) and we must show

ıŒx;z�.a/D ıŒx;w�.a/:

We introduce the notation Nz.a/ for the deficiency set of a with respect to z , that is,
the set of hyperplanes that are adjacent to a and that separate a from z . The deficiency
ıŒx;z�.a/ is the difference of N and the cardinality of Nz.a/. Thus, it suffices to show
that Nz.a/DNw.a/.
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Because a 2 Œx; z� (by hypothesis), a hyperplane separating a and z is one of the Ki ,
which therefore also separates a from w . It follows that Nz.a/ � Nw.a/. For the
reverse inclusion, suppose H 2Nw.a/. We must show that H separates a from z .
If not, then the subsequent lemma shows that H is adjacent to z – indeed, z 2 Œa; w�

since any hyperplane separating a from z also separates x from z , thus is among
the Ki . Thus, H is one of the Hj , so that z and w are on the same side of H , the
side opposite a. This is a contradiction.

Lemma 3.5 Suppose that H is adjacent to a, that H separates z and w , and that
z 2 Œa; w�. Then z is adjacent to H .

Proof Observe that H separates a from w , and hence not from z ; indeed, otherwise
H separates both a and w from z contradicting z 2 Œa; w�. Let b be the vertex
immediately across H from a. Let m be the median of b , z and w . We claim that
H is the unique hyperplane separating z from m so that, in particular, z is adjacent
to H . Indeed,

w.H /D b.H /¤ a.H /D z.H /

shows that m.H /¤ z.H /, that is, H separates m and z . Further, if K is such that
z.K/¤m.K/ then

b.K/D w.K/Dm.K/¤ z.K/D a.K/;

where the last equality holds since a 2 Œa; w�. Thus, K separates a from b , and
K DH .

Continuity of ˆ at ideal vertices is slightly more subtle, and is treated in the next
proposition. Observe that when z is an original vertex, the stated condition reduces to
the one in the previous proposition – indeed, when z is an original vertex elements of
the interval Œa; z� can only be separated from z by those (finitely many) hyperplanes
that separate a from z ; thus, any sequence of such points converging to z is eventually
constant.

Proposition 3.6 Continue in the notation of Proposition 3.2, and assume n> d.x; a/.
Let z be an admissible vertex for which ˆ.z/¤ 0. The function ˆ is not continuous at
z precisely when there is a sequence m1;m2; : : : of admissible vertices in the interval
Œa; z� converging to z and a sequence H1;H2; : : : of distinct hyperplanes adjacent to a

for which Hj is adjacent to mj .

Proof We provide Figure 2 to aid the reader in following the proof.

Suppose first that ˆ is not continuous at z , and that ˆ.z/¤0. We claim that there exists
a sequence of admissible vertices zj ! z such that every zj satisfies the following:
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(1) a 2 Œx; zj �.

(2) ıŒx;zj �.a/¤ ıŒx;z�.a/.

Indeed, begin with a sequence zj ! z for which ˆ.zj / does not converge to ˆ.z/.
Now, every sequence of admissible vertices converging to z must satisfy (1) on a tail –
ˆ.z/¤ 0 implies that z belongs to the clopen set described in Lemma 3.3. Thus, we
may assume our sequence satisfies (1), so that the values ˆ.zj / are given by the first
case in (3-2). Thus, ıŒx;zj �.a/ does not converge to ıŒx;z�.a/ and, we arrange for (2)
by passing to a subsequence.1

a m1 m2 m3 m4 z

H1

m01 z2
z3

z4

z1

Figure 2: A point z at which the weight function ˆ is not continuous

Consider now the median

(3-6) mj Dm.a; zj ; z/;

which by construction lies in the interval Œa; z�. As shown in [3] the sequence mj

converges to z . The mj (rather, a subsequence) will be the sequence we seek – it
remains to locate the required adjacent hyperplanes. To do this, we claim that for
sufficiently large j , we have Nmj

.a/ ¤ Nzj
.a/ – here, we employ the notation

regarding deficiency sets introduced in the proof of Proposition 3.4. Again as shown
in [3], since the mj converge to z and lie in the interval Œa; z�, the subsets Nmj

.a/

eventually stabilise at Nz.a/. Thus, combined with (2) we see that for sufficiently
large j ,

ıŒx; mj �.a/D ıŒx; z�.a/¤ ıŒx; zj �.a/;

from which the claim follows. Thus, for each sufficiently large j there is a hyper-
plane Hj adjacent to a that separates mj and zj . It follows from Lemma 3.5 that Hj

is adjacent to mj – by (3-6) we have mj 2 Œa; zj � so that the lemma applies.

1As the deficiency can assume only finitely many values, we could also arrange that the ıŒx;zj �.a/ is
constant (independent of j ) and different from ıŒx;z�.a/ .
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It remains only to see that the sequence Hj contains infinitely many distinct hyperplanes.
Indeed, we shall show slightly more – that every hyperplane H can appear as an Hj

only finitely many times. Assume to the contrary, that the hyperplane H appears
infinitely many times. Then, since both zj and mj converge to z , they are eventually
on a common side of H , which contradicts the fact that H separates mj and zj .

Suppose now that ˆ.z/¤ 0 and that the conditions in the statement are satisfied. We
are to show that ˆ is not continuous at z . As remarked above, since the mj converge
to z and all belong to the interval Œa; z�, the deficiency sets Nmj

.a/ eventually stabilise
at Nz.a/ [3]; without loss of generality we may assume that they all coincide. Let
m0j denote the vertex immediately across Hj from mj . We claim that m0j converges
to z . To see this, let K be an arbitrary hyperplane. If K is not one of the Hj then m0j
and mj agree on K for every j ; if K is one of the Hj then m0j and mj agree on K

for sufficiently large j . Either way, m0j and z will agree on K for sufficiently large j

as this is the case for mj .

It remains to show that ˆ.m0j / does not converge to ˆ.z/. Comparing to the beginning
of the proof, the value ˆ.m0j / is given by the first case in (3-2). Thus, we must show
that deficiencies ıŒx;m0

j
�.a/ do not converge to ıŒx;z�.a/. To see this we note that for

each j , the deficiency sets Nmj
.a/ and Nm0

j
.a/ differ in at exactly one place, either

including or deleting Hj from the set. It follows that ıŒx;m0
j

�.a/D ıŒx;mj �.a/˙ 1D

ıŒx;z�.a/˙ 1 6D ıŒx;z�.a/ and the proof is complete.

Remark Let X be a (simplicial) tree. Taken together, the previous propositions show
that for fixed vertices x and a 2 X , the function ˆ.z/ is continuous on all of xX ,
except possibly at a itself. Further, it is continuous at a exactly when a is finite.

In summary, when the cube complex is locally finite (that is, every original vertex
is finite) the weight functions are continuous; in general, however, they are merely
Borel. In either case we shall need to renormalise to produce probability measures
indexed by xX while in the latter case we shall also need to replace the Borel weight
functions by a continuous family of probability measures. Renormalisation is easy
since the weight functions are all nonnegative and have `1 norm equal to

�
nCN

N

�
by

Theorem 3.1. Further, the normalised weight functions
�
nCN

N

�
�1�n

x;z share the same
continuity and Borel properties as the original �n

x;z . Obtaining a continuous family of
weight functions is more difficult, but understood. The following result is contained in
Brown and Ozawa [4, Proposition 5.2.1]. See also Ozawa [16].

Lemma 3.7 Let � be a group acting by cellular isometries on a finite dimensional
CAT.0/ cube complex X . Given a finite subset E � � and " > 0, there is a finite
subset F �X and a function �W xX ! Prob.X / such that
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(1) �z.a/ is continuous in z , for each a 2X ;

(2) supp �z � F , for every z 2 xX ;

(3) ks � �z � �szk< ", for every s 2E and every z 2 xX .

Sketch of proof We sketch the argument of Ozawa, referring to Brown and Ozawa [4,
Section 5.2] for details.

When X is locally finite there is nothing to prove. Fixing a basepoint x 2X define �
using the normalised weight functions:

�z.a/D

�
nCN

N

��1

�n
z;x.a/:

When X is not locally finite the normalised weight functions are neither continuous
in z , nor do they satisfy the conclusion (2) on uniform supports. They are, however,
Borel and the proof proceeds by applying Lusin’s theorem to approximate them by
appropriate continuous functions �z , taking care to ensure that we truncate to a common
finite subset F throughout. The approximation is carried out so that 0 2 C. xX / is in
the weak closure of the s � �z � �sz . Applying the Hahn–Banach theorem, after taking
convex combinations we obtain (3).

Remark In fact, we shall not require the full statement of the lemma. We require only
the existence, for every finite subset E and " > 0, of a finite subset F and functions
�W X ! Prob.X / satisfying (2) and (3) where in (3) we consider only those z 2X .

4 Permanence

We shall adopt the following characterisation of Property A as our definition. A
countable discrete group � has Property A if for every finite subset E � � and every
" > 0 there exists a finite subset F � � and a function �W �! Prob.�/ such that

(1) supp �x � F , for every x 2 � ;

(2) ks � �x � �sxk< ", for every s 2E and every x 2 � .

Here, Prob.�/ is the space of probability measures on � and the norm is the `1 –norm.
We refer to Higson and Roe [11, Lemma 3.5] for the equivalence with the original
formulation of Property A found in Yu [20]. For the present purposes our definition
has two advantages; first it makes no reference to a particular compact space on which
the group acts, and second the probability measure associated to a particular x 2 � is
supported near the identity of � and not near x itself.
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Theorem 4.1 Let � be a countable discrete group acting on a finite dimensional
cubical complex X . Then � has Property A if and only if every vertex stabiliser of the
action has Property A.

Since every subgroup of a Property A group has Property A we only need to prove that
if every vertex stabiliser has Property A then so does � . As noted in the introduction,
the argument is due to Ozawa [16]. Our perspective is slightly different than that taken
in [16], however – for more see the remarks at the end of this section – and we therefore
include detailed arguments for convenience of the reader. To begin we will have to
inflate the Property A functions for the vertex stabilisers to functions defined on the
whole group. After first establishing relevant notation, we shall accomplish this in the
next lemma.

Let � be a subgroup of a group � . Choose a set Z of coset representatives for the
right cosets of � in � . Thus, every g 2 � has a unique representation

g D zgag; zg 2Z , ag 2�:

These satisfy the following properties:

zgk.agka�1
k /D gzk ; for g, k 2 �

agh D agh; for g 2 � , h 2�(4-1)

zgh D zg; for g 2 � , h 2�:

Indeed, the first follows from zgkagk D gk D gzkak and the others from zghagh D

ghD zgagh together with agh 2�.

Lemma 4.2 Suppose � is a subgroup of a group � and that � has Property A. For
every finite subset E � � and every " > 0 there exists a finite subset F � � and a
function �W �! Prob.�/ such that

(1) supp.�g/� F , for every g 2 � ;

(2) kh � �g � �hgk< ", for every h 2E and every g 2 � .

Proof We shall lift functions obtained from the assumption that � has Property A

from � to � using a �–equivariant splitting of the inclusion �� � ; we consider �
acting on the left of both � and � . Precisely, define

� W �!�; �.g/D a�1
g�1

and observe that if h 2� we have

�.hg/D a�1
g�1h�1 D .ag�1h�1/�1

D ha�1
g�1 D h�.g/;
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where the second equality follows from (4-1). If now E and " are given, we obtain
a function �! Prob.�/ as in the definition of Property A and define � to be the
composition

�!�! Prob.�/� Prob.�/;

in which the first map is our splitting � and we simply view Prob.�/ as the probability
measures on � which are supported on �. The required properties are easily verified,
with left �–equivariance of � used to verify the norm inequality.

Now suppose that � acts on a CAT(0) cube complex by cellular isometries. As above
we obtain an induced continuous action on the space xX of admissible vertices. Fix a
transversal T for the action of � on X ; thus, T �X contains exactly one point from
each � –orbit. We do not assume that T is finite. Denote the stabiliser of t 2 T by � t .
We apply the previous notational conventions to � t . In particular, fixing a set of coset
representatives Zt for � t in � we have decompositions

g D zgag

as above, and the previous lemma applies. As these decompositions depend on t 2 T ,
we should more properly include t in the notation and write, for example g D zt

gat
g .

Observe
g � t D zgag � t D zg � t:

Thus, the orbit map g 7! g � t restricts to a map Zt !X , which is a bijection of Zt

onto the orbit � � t of t .

Proof of Theorem 4.1 We are given a finite subset E � � and " > 0. Without loss
of generality we assume that E is closed under inversion and contains the identity
of � . We must produce a finite subset F � � and a function �W �! Prob.�/ as in
the definition of Property A.

Applying Lemma 3.7 (or, more properly, the subsequent remark) there is a finite subset
F �X and a function �W X ! Prob.X / such that

(1) supp �x � F , for every x 2X ;

(2) ks � �x � �sxk< ", for every s 2E and every x 2X .

Let TF � T be the (finite) set of representatives of those orbits passing through F ;
in other words, t 2 TF precisely when � � t \F is nonempty. For each t 2 TF let
Zt

F
�Zt be the (finite) subset of representatives of those � t cosets mapping t into F ;

in other words, z 2 Zt
F

precisely when z � t 2 F . Recall here that the action on t
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restricted to coset representatives provides a bijection of Zt with the orbit � � t . Let
Et � � t be the (finite) subset

Et
D f z�1

sg szg W s 2E , g 2Zt
F g:

For each t 2 TF , using the hypothesis on � t apply Lemma 4.2 with � D � t and
E DEt to obtain a finite subset Ft � �

t and a function �t W �! Prob.�/ such that

(1) supp �t
g � Ft , for every g 2 � ;

(2) kh � �t
g � �

t
hg
k< ", for every h 2Et and g 2 � .

Define the required function �W �! Prob.�/ by choosing a vertex O as a basepoint
and setting, for each x and g 2 � ,

(4-2) �x.g/D
X
t2T

�x�O.g � t/ �
t

z�1
g x

.ag/:

Observe that the sum is actually finite as only finitely many orbits can cross the (finite)
common support F of the �x�O ; indeed, the sum is over t 2 TF .

Let us first address the finiteness of support. For �x.g/ to be nonzero, there must be
t 2 TF for which both factors of the corresponding summand in (4-2) are nonzero.
Fixing such a t and decomposing g D zgag accordingly we obtain: zg � t D g � t 2 F

so that zg 2Zt
F

, and also ag 2 Ft . It follows that

supp�x �

[
t2TF

Zt
F Ft ;

which is a finite subset of � , not depending on x .

Let us next check that each �x is a probability measure. For these and other norm
estimates below, we shall reindex sums using the bijection � Š Zt� t , possible for
each fixed t 2 T . In other words, having fixed t 2 T , we shall replace a sum over
g 2 � by a double sum over z 2Zt and g 2 z� t and may identify the latter as a sum
over � t . We proceed, recalling that �x�O and the �t

. � /
are probability measures, hence

Œ0; 1�–valued:

k�xk`1.�/ D

X
g2�

�x.g/D
X
g2�

X
t2T

�x�O.g � t/ �
t

z�1
g x

.ag/

D

X
t2T

X
z2Z t

�x�O.z � t/
X

g2z�t

�t
z�1x

.ag/

D

X
t2T

X
z2Z t

�x�O.z � t/D
X
t2T

X
y2� �t

�x�O.y/D 1;
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where in the second line we use that g � t D z � t for g 2 z� t and that for g 2 � the
condition g 2 z� t is equivalent to zgD z ; in the third line, observing that the condition
g 2 z� t is equivalent to g D zh with hD ag ranging over the stabiliser � t , the sum
becomes

P
h2�t �t

z�1x
.h/D 1 since �t

z�1x
is a probability measure; also as z ranges

over the coset representatives Zt the value of z � t ranges over the orbit � � t .

Finally, we check the almost invariance condition. We are to estimate

ks ��x ��sxk`1.�/

D

X
g2�

j�x.s
�1g/��sx.g/j

�

X
g2�

X
t2T

ˇ̌
�x�O.zs�1g � t/ �

t

z�1

s�1g
x
.as�1g/� �sx�O.zg � t/ �

t

z�1
g sx

.ag/
ˇ̌
;

independent of x 2� and s2E . We estimate the summand using the triangle inequality

(4-3) �x�O.zs�1g � t/
ˇ̌
�t

z�1

s�1g
x
.as�1g/� �

t

z�1
g sx

.ag/
ˇ̌

C
ˇ̌
�x�O.zs�1g � t/� �sx�O.zg � t/

ˇ̌
�t

z�1
g sx

.ag/

and shall proceed to estimate each term in this expression (or, more accurately, their
sums over g 2 � and t 2 T ). To estimate the term on the right, observe that for g and
h 2 � we have that zgh � t D gh � t D gzh � t (where all decompositions are with respect
to � t ). Hence, fixing t 2 T and arguing as above we haveX

g2�

ˇ̌
�x�O.zs�1g � t/� �sx�O.zg � t/

ˇ̌
�t

z�1
g sx

.ag/

D

X
g2�

ˇ̌
�x�O.s

�1zg � t/� �sx�O.zg � t/
ˇ̌
�t

z�1
g sx

.ag/

D

X
z2Z t

ˇ̌
�x�O.s

�1z � t/� �sx�O.z � t/
ˇ̌ X

g2z�t

�t
z�1sx

.ag/

D

X
z2Z t

ˇ̌
s � �x�O.z � t/� �sx�O.z � t/

ˇ̌
:

Taking now the sum over t 2T and using the assumption that s 2E we have estimated
the right hand term in (4-3) by

ks � �x�O � �sx�Ok`1.X / < ":
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It remains only to estimate the left hand term in (4-3). Again, fix t 2 T and reindex
the sum over g 2 � :

(4-4)
X
g2�

�x�O.zs�1g � t/
ˇ̌
�t

z�1

s�1g
x
.as�1g/� �

t

z�1
g sx

.ag/
ˇ̌

D

X
z2Z t

X
g2z�t

�x�O.s
�1z � t/

ˇ̌
�t

z�1

s�1z
x
.as�1g/� �

t
z�1sx

.ag/
ˇ̌
;

where we use the fact that for g 2 z� t we have g � t D z � t , so that also zs�1g � t D

s�1g � t D s�1z � t . It follows, in particular, that for g 2 z� t we have zs�1g D zs�1z .
Hence, setting

aD z�1
s�1g

x D z�1
s�1z

x; b D z�1
g sx D z�1sx; c D ba�1

D z�1szs�1z;

we see that a and b depend only on s , z and x , whereas c depends only on s and z .
The calculation

c � t D z�1szs�1g � t D z�1ss�1g � t D z�1g � t D t

shows that c 2 � t . Further, we claim that if the summand in (4-4) corresponding to a
particular g 2 z� t is nonzero then c 2Et . Indeed, if the summand is nonzero then
necessarily s�1z � t 2 F or, in other words, hD zs�1z 2Zt

F
. Now, by evaluating on t

we see that zsh D z :

zsh � t D sh � t D szs�1z � t D ss�1z � t D z � t:

c D z�1szs�1z D z�1
sh sh 2Et :Hence,

Putting everything together, using the final small calculation agD cas�1g , and summing
over the nonzero terms in (4-4) we obtainX

z2Z t

�x�O.s
�1z � t/

X
g2z�t

ˇ̌
�t

a.c
�1ag/� �

t
ca.ag/

ˇ̌
D

X
z2Z t

�x�O.s
�1z � t/kc � �t

a� �
t
cak`1.�t /

� "
X

z2Z t

�x�O.s
�1z � t/

where the estimate comes from the assumptions on �t . Summing further over t 2 T ,
and recalling that �x�O is a probability measure, we have estimated the left hand term
in (4-3).

Remark The formula used to define � in the proof reduces to the formula used in the
previous paper [3] in the case when the stabilisers � t are finite, and the functions �t
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are taken to be constant at the uniform probability measure on � t ; in other words,

�t
g.h/D

(
j� t j�1 h 2 � t ;

0 h … � t :

Such �t satisfies the conclusions of the previous lemma, so is allowed.

Remark Ozawa’s original treatment [16] constructs a space on which � will act
amenably. We have chosen to avoid the formulation in terms of amenable actions
because the method seldom produces a reasonable space. It is worth noting, however,
that if all stabilisers are finite, or even amenable, � will act amenably on xX . If,
in addition the complex X is locally finite, � will act amenably on the boundary
comprised of ideal vertices.

Remark In the locally finite case the result follows from standard permanence results,
found for example in [13].

5 Artin groups

A Coxeter matrix is a symmetric matrix M , with rows and columns indexed by a not
necessarily finite set I , and with matrix elements Mij 2N [f1g satisfying Mii D 1

for all i 2 I . Let S D fsi j i 2 Ig be a set in bijective correspondence with I . The
Coxeter group corresponding to the Coxeter matrix M is defined by the presentation

hS j .sisj /
Mij D 1 8i; j 2 I i:

The Artin group corresponding to the Coxeter matrix M is defined by the presentation

hS j .sisj /Mij
D .sj si/Mij

8i; j 2 I i;

where .sisj /Mij
denotes the alternating word sisj sisj : : : si with Mij letters if Mij

is odd and the alternating word sisj sisj : : : sisj with Mij letters if Mij is even.
Considering the equivalent presentation

hS j s2
i D 1; .sisj /Mij

D .sj si/Mij
8i; j 2 I i

for the Coxeter group we see that the obvious identification of the generating sets
extends to a surjective homomorphism of the Artin group onto the Coxeter group with
kernel the normal subgroup generated by the squares of the generators.

For each subset J � I denote SJ D fsi j i 2 J g. The subgroup of the Coxeter group
generated by SJ is a parabolic subgroup. A parabolic subgroup is a Coxeter group
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in its own right – while not obvious, its presentation is obtained by deleting from
the Coxeter group presentation all generators not in SJ and all relators involving the
deleted generators. A Coxeter group, or one of its parabolic subgroups, is spherical if
it is a finite group.

By van der Lek’s theorem [14] similar statements hold for Artin groups. The subgroup
generated by SJ is a parabolic subgroup, which is itself an Artin group, with pre-
sentation obtained from the Artin group presentation by deleting all generators not
in SJ and all relators involving the deleted generators. An Artin group, or one of its
parabolic subgroups, is of finite type if the corresponding parabolic subgroup of the
Coxeter group is spherical.

A finite type parabolic subgroup of an Artin group is not necessarily finite. For example
if we take the Klein 4–group, with presentation

h s1; s2 j s
2
1 ; s

2
2 ; .s1s2/

2
i;

as our Coxeter group then the associated Artin group has presentation

h s1; s2 j s1s2 D s2s1 i:

It is free abelian of rank 2. Since the Klein 4–group is finite the entire Artin group is
of finite type but clearly not finite.

An Artin group is of type FC if the following condition holds: whenever J � I has
the property that the parabolic subgroups h si ; sj i are of finite type for every pair i ,
j 2 J then the parabolic subgroup generated by SJ is itself of finite type. Equivalently,
given a Coxeter matrix M , let G be the graph with vertex set I and an edge joining i

to j whenever the generators si and sj generate a spherical Coxeter group. The Artin
group corresponding to M is of type FC if for every clique (complete subgraph) in G

the corresponding parabolic subgroup is of finite type.

Charney and Davis have shown that an Artin group can be exhibited as a complex of
groups in which the underlying complex admits a natural cubical structure [5]. Further,
they showed that the cube complex is developable, and is locally CAT.0/ if and only if
the Artin group is of type FC . It follows that when the Artin group is of type FC the
developed cover is a CAT.0/ cube complex on which the Artin group acts. The vertex
stabilisers of this action are, by construction, the parabolic subgroups of finite type.
Hence an Artin group of type FC will act on a finite dimensional CAT.0/ cubical
complex with finite type vertex stabilisers.

Now according to a result of Cohen and Wales (and, independently, of Digne), Artin
groups of finite type are linear [7] so that, appealing to the theorem of Guentner, Higson
and Weinberger, they are exact [10]. Observing that an Artin group is the direct union

Algebraic & Geometric Topology, Volume 11 (2011)



1494 Erik Guentner and Graham A Niblo

of its finitely generated parabolic subgroups, which are themselves Artin groups, we
obtain as a consequence of Theorem 4.1:

Theorem 5.1 An Artin group of type FC is exact.
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