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Pinwheels and nullhomologous surgery
on 4–manifolds with bC D 1

RONALD FINTUSHEL

RONALD J STERN

We present a method for finding embedded nullhomologous tori in standard 4–
manifolds which can be utilized to change their smooth structure. As an application,
we show how to obtain infinite families of simply connected smooth 4–manifolds
with bC D 1 and b� D 2; : : : ; 7 , via surgery on nullhomologous tori embedded in
the standard manifolds CP 2#k CP 2 , k D 2; : : : ; 7 .

57R55; 57R57, 14J26, 53D05

1 Introduction

A primary goal of smooth 4–manifold theory is to understand the classification up
to diffeomorphism of 4–manifolds in a fixed homeomorphism type. Unfortunately,
there is not yet a single smooth 4–manifold for which this has been accomplished. A
more modest, but still unachieved, goal is to understand whether or not the following
conjecture is true:

Conjecture Let X be a simply connected smooth 4–manifold with bC � 1. Then
there are infinitely many mutually nondiffeomorphic 4–manifolds homeomorphic to X .

Given a specific X , there are several approaches to finding such an infinite family. It is
the authors’ contention that the most useful and straightforward approach is to produce
“exotic” manifolds by surgery on X itself. In this paper we promote this point of view
by producing infinite families of mutually nondiffeomorphic manifolds homeomorphic
to CP2 # k CP2 for k D 2; : : : ; 7 by means of surgeries on nullhomologous tori
embedded in CP2 # k CP2 . (See Section 8.6 and the theorems that lead to it.)

In a previous paper [10], we showed that there are manifolds Rk homeomorphic to
CP2 #k CP2 , for k D 5; : : : ; 8, such that (like CP2 #k CP2 ), the manifolds Rk have
trivial Seiberg–Witten invariants, and we saw that there are nullhomologous tori in Rk

such that surgery on them gives rise to infinite families of distinct smooth 4–manifolds
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homeomorphic to CP2 # k CP2 . However, we were never able to show that the Rk

are actually diffeomorphic to the standard manifolds CP2 # k CP2 .

The main new input of this paper is our technique for finding useful nullhomologous
tori in standard 4–manifolds in terms of “pinwheel structures”. Roughly speaking, our
goal is to cover the given 4–manifold by 4–balls Ci meeting along solid tori S1�D2

in their boundary, then ambiently push out pairs of 2–handles from one 4–ball Ci

into an adjacent ball Cj (ie adding 1–handles to Cj ) so as to decompose the manifold
into components C 0j that meet along S1�(punctured torus). We then aim to identify
nullhomologous tori in these C 0j upon which there are surgeries altering the smooth
structure on X .

More specifically, a pinwheel structure is a generalization of the idea of a k –fold
symplectic sum which was introduced by Symington [14]. The basic idea is this: One
has a sequence f.Xi ISi ;Ti/g of 4–manifolds Xi with embedded surfaces Si , Ti ,
which intersect transversely at a single point and with the genus g.Ti/ D g.SiC1/.
Let Ci denote the complement in Xi of a regular neighborhood of the configuration
Si [ Ti . We wish to glue the Ci ’s together so that the normal circle bundle of Ti

is identified with the normal circle bundle of SiC1 . This can’t be done unless the
sum of the Euler numbers of the two bundles is 0. However, we can remove a 4–ball
around the intersection point Si \Ti leaving the normal bundles over Si XD2 and
Ti XD2 which can be trivialized. It is then possible to glue each .Ti XD2/�S1 to
.SiC1 XD2/� S1 to obtain a manifold whose boundary is a torus bundle over the
circle. (Each @B4\Ci Š S3X (Hopf link) Š T 2 � I .) If this boundary is T 3 , then
one can glue in T 2�D2 to obtain a closed 4–manifold X with a “pinwheel structure”.
We use this terminology because the components Ci fan out around a central torus
Tc D T 2 � f0g � T 2 �D2 like a pinwheel.

Our approach is then to find a pinwheel structure on the standard manifolds Xk D

CP2 # k CP2 where the surfaces in question are spheres. Then by ambiently pushing
out a pair of 2–handles from each Ci into CiC1 , we aim to obtain a new pinwheel
structure on Xk where the interface surfaces are now tori and the new components C 0i
contain nullhomologous tori upon which surgery changes smooth structures on Xk .

Here is the idea for identifying these tori in the C 0i : Suppose a 4–manifold X contains
an embedding of T 2 �D2 D S1 � .S1 �D2/, with the central torus T D T 2 � f0g

representing a nontrivial homology class in X . Define the Bing double BT of the
central torus T D T 2 � f0g to be BT D S1� {Bing double of the core of S1 �D2 }.
(Of course this depends on the splitting T 2D S1�S1 and a choice of framing.) Then
these Bing tori are a pair of nullhomologous tori in T 2 �D2 , and hence in X . In
earlier work, we showed that there are surgeries on these tori which alter the smooth
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structure of X provided that the Seiberg–Witten invariant of X is nontrivial. The
utility of pinwheel structures on a manifold X arises from the realization that there is a
manifold A properly embedded T 2�D2 that contains the Bing tori BT , that embeds in
many of the pinwheel components C 0i (that do not contain any homologically essential
tori), and such that there are surgeries on these tori altering the smooth structure of X .

The key to this surgery construction is to find surgeries on these Bing tori Ti in copies
of BT which give us a symplectic 4–manifold Q in which the images of the Ti

become Lagrangian tori ƒi and for which b1.Q/ is the number of surgeries. We call
these surgeries “standard”. The manifold Q is a “model” in the sense of our paper
with Park [6]. This puts us in a situation where we can employ our reverse engineering
process [6] to surger the ƒi and obtain a family of distinct smooth manifolds Xn

homeomorphic to the given manifold X . Since the composition of the standard surgery
on Ti with the surgery on ƒi is again a surgery performed on Ti , the manifolds Xn

can all be constructed by surgeries directly on the Bing tori in X .

We wish to emphasize that the families of manifolds constructed in this paper are
presumably not new (see, for example, Akhmedov and Park [2; 3], Akhmedov, Baykur
and Park [1], Baldridge and Kirk [5], Fintushel and Stern [9], and Fintushel, Park and
Stern [6] and the references therein), although this is currently unproved. The fact that
they can all be obtained via surgery on fixed standard manifolds is new.

Surprisingly, it is the construction of exotic manifolds by surgering CP2 # k CP2 with
larger k via pinwheel structures that is the most challenging. As our abstract implies,
we have not yet been able to accomplish this for CP2 # 8 CP2 (but of course we have
for E.1/ D CP2 # 9 CP2 ). We explain the cause of the difficulties near the end of
Section 8.

2 Reverse engineering

In this section we review the notion of reverse engineering families of 4–manifolds
as in [6]. The idea here is for any given smooth simply connected 4–manifold X to
find a model Y for X ; ie Y has the same Euler characteristic and signature as X ,
and Y has nontrivial Seiberg–Witten invariants, positive b1 , and essential tori that
can be surgered to reduce b1 . (When bC

X
D 1, these Seiberg–Witten invariants are

the “small-perturbation invariants” – those corresponding to the same chamber as the
solutions of the unperturbed equations. They are defined unambiguously when b� � 9.
See eg [9].) We begin by introducing the relevant notation. Suppose that T is a torus
of self-intersection 0 with tubular neighborhood NT . Let ˛ and ˇ be generators of
�1.T

2/ and let S1
˛ and S1

ˇ
be loops in T 3 D @NT homologous in NT to ˛ and ˇ
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respectively. Let �T denote a meridional circle to T in X . By p=q–surgery on T

with respect to ˇ we mean

XT;ˇ.p=q/D .X XNT /[' .S
1
�S1

�D2/;

'W S1
�S1

� @D2
! @.X XNT /

where the gluing map satisfies '�.Œ@D2�/D qŒS1
ˇ
�CpŒ�T � in H1.@.X XNT /IZ/. We

denote the “core torus” S1 �S1 � f0g �XT;ˇ.p=q/ by Tp=q . This notation depends
on the given trivialization fS1

˛ ;S
1
ˇ
; �T g for T 3 D @NT . When the curve S1

ˇ
is

nullhomologous in X XNT , then H1.XT;ˇ.1=q/IZ/DH1.X IZ/. In addition, when
T itself is nullhomologous, then H1.XT;ˇ.p=q/IZ/DH1.X IZ/˚Z=pZ.

If the homology class of T is primitive in H2.X IZ/ then the meridian �T is null-
homologous in X XNT . If also S1

ˇ
represents a nontrivial class in H1.X IR/, then

for any integer p , in XT;ˇ.p/ the meridian to Tp D Tp=1 is S1
ˇ
C p�T which is

homologous to S1
ˇ

in X XNT . But S1
ˇ

is not trivial in H1.X XNT IR/. This means
that Tp is a nullhomologous torus in XT;ˇ.p/. The meridian �T to T becomes
a loop on @NTp

and it is nullhomologous in XT;ˇ.p/ XNTp
D X XNT and has a

preferred pushoff S1
�T

on @NTp
. Notice that 0–surgery on �T in XT;ˇ.p/ gives

.XT;ˇ.p//Tp;�T
.0/DX .

If X is a symplectic manifold and ƒ is any Lagrangian torus, there is a canonical
framing, called the Lagrangian framing, of Nƒ . This framing is uniquely determined
by the property that pushoffs of ƒ in this framing remain Lagrangian. If one performs
1=n surgeries (n 2 Z) with respect to the pushoff in this framing of any curve �
on ƒ, then Xƒ;�.1=n/ is also a symplectic manifold, and the core torus ƒ1=n is a
Lagrangian torus in the resultant manifold. We refer the reader to Auroux, Donaldson
and Katzarkov [4] for a full discussion of this phenomenon, which is referred to there
as Luttinger surgery.

Theorem 1 Let X be a symplectic 4–manifold which contains b D b1.X / disjoint
Lagrangian tori ƒi which are primitive in H2.X IZ/. Suppose that each ƒi contains
a simple loop �i such that the collection f�ig generates H1.X IR/. Let X 0 be the
symplectic manifold which is the result of �i D˙1 surgery on each ƒi with respect
to �i and the Lagrangian framing for Nƒi

, and let ƒ0D .ƒb/�b
, which is a Lagrangian

torus in X 0 . Let Xn DX 0ƒ0;�ƒ0
.1=n/ be the result of 1=n–surgery on ƒ0 with respect

to the loop S1
�ƒ0

on @Nƒ0 . Then among the manifolds fXng, infinitely many are
pairwise nondiffeomorphic.

Note that b1.X
0/D 0 and since S1

�T
is nullhomologous in X 0XNƒ0 , b1.Xn/D 0 for

all n. We need also to point out that the preferred pushoff S1
�L0

on @Nƒ0 is not the
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Lagrangian pushoff, and indeed, we shall see that the manifolds Xn , n� 2 admit no
symplectic structure.

Proof (Compare [6].) Let X 00 denote the symplectic manifold obtained from X

via Lagrangian surgeries on .ƒi ; �i/ with Lagrangian surgery coefficient �i for i D

1; : : : ; b � 1. Then X 0 D X 00ƒb;�b
.�b/ and X 00 D X 0ƒ0;�ƒ0

.0/. Let k 0 and k 00 denote
the canonical classes of X 0 and X 00 ; so the Seiberg–Witten invariants are SWX 0.k

0/D

˙1 and SWX 00.k
00/ D ˙1. Since ƒb is Lagrangian, it follows from a theorem of

Taubes [15] that there is no other basic class whose restriction to H2.X
00 XNƒb

; @/

agrees with that of k 00 , and the same is true for X 0 and k 0 . Furthermore, X 0 XNƒ0 D

X 00 XNƒb
, and the restriction of k 00 to H2.X

00 XNƒb
; @/ agrees with that of k 0 . In

H2.Xn/, there is just one class which restricts to a fixed class in H2.XnXNƒ0
1=n
; @/ be-

cause ƒ0
1=n

is nullhomologous. It now follows from Morgan, Mrowka, and Szabó [12]
that there is a basic class kn 2H2.Xn/ satisfying SWXn

.kn/D˙1˙ n. Hence the
integer invariants maxfjSWXn

.k/j; k basic for Xng will distinguish an infinite family
of pairwise nondiffeomorphic manifolds among the Xn .

3 Bing doubling tori in 4–manifolds

Our goal in this section is to see how to find interesting nullhomologous tori in many
common 4–manifolds. As a first step, consider a smooth 4–manifold X which contains
an embedded smooth torus T of self-intersection 0. Choose local coordinates in which
a tubular neighborhood T �D2 of T is S1 � .S1 �D2/. The Bing double BT of T

consists of the pair of tori S1� (Bing double of the core circle S1 � f0g). The solid
torus S1 �D2 is shown in Figure 1(a). This description (including the splitting of T 2

(a) Bing double (b) Whitehead double

Figure 1

into the product S1 �S1 and a fixed framing, ie a fixed trivialization of the normal
bundle of T ) determines this pair of tori up to isotopy. The component tori in BT are
nullhomologous in T �D2 and therefore also in X .
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In order to illustrate the efficacy of surgery on these Bing doubles in changing the
smooth structure of X , we present a simple example. Consider the case where X

is E.1/, the rational elliptic surface, and T is a fiber of a given elliptic fibration
on X . After splitting off an S1 , we choose a framing of the normal bundle of T

so that T �D2 D S1 � .S1 �D2/, and each S1 �S1 � fptg is an elliptic fiber. We
wish to perform �1 surgery on one component of BT and 1=n–surgery on the other
component to obtain a manifold Xn . It is not difficult to see that this manifold is
homeomorphic to X . The result of the �1–surgery on the first component of BT is to
turn the other component into the Whitehead double ƒW of the core torus, namely,
S1 times the Whitehead double of the core circle shown in Figure 1(b). Thus Xn is
obtained from surgery on ƒW in X DE.1/.

We may reinterpret this construction as follows: Xn is obtained by removing a neigh-
borhood N Š S1 � .S1 �D2/ of a fiber torus from E.1/, performing 1=n–surgery
on the Whitehead double torus ƒW , and gluing back in. This is the same as forming
the fiber sum of E.1/ and the result of 1=n–surgery on ƒW in S1 � .S1 � S2/ D

S1�.S1�D2[S1�D2/. The particular gluing used for the fiber sum will not matter
because the complement of a fiber in E.1/ has the property that each diffeomorphism
of its boundary extends to a diffeomorphism of its interior. The result of 1=n–surgery
on ƒW in S1 � .S1 � S2/ is obtained from S1 times a pair of surgeries on the
components of the Whitehead link in S3 with framings 0 and 1=n. Performing 1=n–
surgery on one component of the Whitehead link turns the other component into the
n–twist knot in S3 . The upshot of this analysis is that Xn is the fiber sum of E.1/

with S1 times 0–surgery on the n–twist knot in S3 – ie Xn is the result of knot
surgery on E.1/ using the n–twist knot. (This shows that Xn is indeed homeomorphic
to X .) In [8] we calculated the (small perturbation) Seiberg–Witten invariant to be
SWXn

D n .t�1� t/. Thus surgeries on the Bing double BT give us an infinite family
of distinct smooth 4–manifolds all homeomorphic to E.1/. For a different approach
to these same examples, see our paper [10].

It is the case, however, that there are many 4–manifolds which do not have any
self-intersection 0 minimal genus tori which one can Bing double; in particular,
CP2 # n CP2 , n � 8, and S2 � S2 . Here, by minimal genus we mean that there
are no spheres that represent the nontrivial homology class of the torus. We are thus
led to ask whether “Bing doubles” can appear without being embedded in T 2 �D2 .
Let T0 D T 2 X Int.D2/, a punctured torus. (Here, and throughout this paper, Int.S/
denotes the interior of S .) View BT � S1 � .S1 �D2/, and write the first S1 as
I1[ I2 (I1\ I2 Š S0 ), and similarly write the second S1 as J1[J2 , and consider
T0 D S1�S1X .I2�J2/. (See Figure 2.) Then BT \ .T0�D2/ consists of a pair of
punctured tori, and @.BT \ .T0 �D2// is a link in @.T0 �D2/Š S1�S2 # S1�S2 .
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Figure 2

The intersection of BT with .I2�J2/�D2 is a pair of disks I2� (intersection of the
Bing double link with J2 �D2 ). Its boundary is the double of the intersection of the
Bing double link with J2�D2 ; ie the (1–dimensional) Bing double of @.I2�J2�f0g/.
In @.T0�D2/ŠS1�S2 #S1�S2 this boundary is shown in Figure 3(a) or equivalently,
Figure 3(b).

(a) (b)
Figure 3

Performing 0–framed surgeries on these boundary circles (with respect to the framing
in Figure 3, we obtain a manifold, shown in Figure 4(a) which contains a pair of self-
intersection 0 tori. Call this manifold A. It is given equivalently by Figure 4(b). (One
can see that 4(a) and 4(b) are equivalent by twice sliding the bigger Borromean 0 over
the large 0 in 4(b) and then cancelling a 1–2 handle pair to obtain 4(a).) Figure 4(b)
points out that A is obtained from the 4–ball by attaching a pair of 2–handles and
then carving out a pair of 2–handles. The Euler characteristic of A is e D 1 and its
betti numbers are b1.A/D 2D b2.A/.

Our above discussion shows that A embeds in T 2 �D2 and contains the Bing dou-
ble BT of the core torus. We continue to refer to the pair of tori in A as BT , even
though, in general, they do not constitute a Bing double of some other torus.
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(a) (b)

Figure 4: The manifold A

Lemma 1 The manifold A embeds in T 2 � S2 as the complement of a pair of
transversely intersecting tori of self-intersection 0.

Proof Write T 2 �S2 as .S1 � .S1 �D2//[ .S1 � .S1 �D2//. We know that A

embeds in, say, the second T 2 �D2 . In Figure 4(a), if we remove the two 2–handles,
we obtain T0�D2 . The two 2–handles are attached along the Bing double of the circle
ˇD @T0�f0g. If instead, we attach a 0–framed 2–handle along ˇ we obtain T 2�D2 .
This implies that .T 2�D2/XA is the complement in the 2–handle, D2�D2 , of the
core disks of the 2–handles attached to obtain A. This complement is thus the result
of attaching two 1–handles to the 4–ball. This is precisely the boundary connected
sum of two copies of S1 �B3 , ie T0 �D2 . Using the notation in Figure 2 and above,
.T 2 �D2/X .T0 �D2/D I2 �J2 �D2 . The complement of the two 2–handles dug
out of this is a neighborhood of fptg� the shaded punctured torus in Figure 5(b).

Thus the two tori referred to in the lemma are illustrated in Figure 5. One of these
tori, T , is S1 times the core circle in Figure 5(a), and the second torus, ST DDT [T 0

0
,

where DT is fptg times the shaded meridional disk in Figure 5(a), and T 0
0

is fptg
times the shaded punctured torus in Figure 5(b). Note that ST represents the homology
class of fptg �S2 .

From a Kirby calculus point of view, a depiction of a neighborhood N of these two
tori is shown in Figure 13(a) below. Take its union with A as seen in Figure 4(b). The
Borromean triple on the left side of Figure 4(b) cancels with the corresponding triple
in Figure 13(a). We are left with the double of T 2 �D2 , ie T 2 �S2 .

Note that we see BT � S1� (the solid torus in Figure 5(b)) D T 2 �D2 � T 2 �S2 .
View S1 � S2 as 0–framed surgery on an unknot in S3 . The Bing double of the
core circle in Figure 5(b) is the Bing double of the meridian to the 0–framed unknot.
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(a) (b)

Figure 5

Performing 0–framed surgery on the two components of this Bing double gives us
f0; 0; 0g–surgery on the Borromean rings, viz T 3 . Thus performing S1 times these
surgeries gives:

Proposition 1 One can perform surgery on the tori BT �A� T 2 �S2 to obtain the
4–torus T 4 .

Later we will be interested in other surgeries on BT . We call the surgeries of
Proposition 1 the standard surgeries on BT . Conversely, standard surgeries on the
corresponding pair of tori zBT � T 4 yields T 2 �S2 . Furthermore, zBT is a pair of
disjoint Lagrangian tori in T 4 , S1 times two of the generating circles of T 3 . The pair
of tori of Lemma 1 can also be identified in T 4 after the surgeries. The first torus, S1

times the core circle in Figure 5(a) becomes S1 times the third generating circle of T 3 .
Call this torus TT . The other torus intersects TT once and is disjoint from BT . We
call it TS . It is the dual generating torus of T 4 . The complement of these tori in T 4

is T0 �T0 . We thus have:

Proposition 2 The standard surgeries on the pair of Lagrangian tori zBT in T0 �T0

give rise to A, and conversely, the standard surgeries on BT �A yield T0 �T0 .

We wish to emphasize a important point which follows from our discussion.

The standard surgeries on the Bing tori BT transform T 2 �D2 into T 2 �T0 .

Thus the result of the standard surgeries on T 2 � S2 is to transform A into the
complement of a transverse pair of generating tori TT DT 2�fptg and TS Dfptg�T 2

in T 4 . The reason for this notation is that TS is the torus in T 4 which is sent to ST

in T 2 �S2 after standard surgeries on zBT , and TT is the torus that is sent to T .

These surgeries also transform the Bing tori in BT into the Lagrangian tori ƒ1 D

S1
1
�S1

3
and ƒ2DS1

1
�S1

4
in T 4DT 2�T 2D .S1

1
�S1

2
/�.S1

3
�S1

4
/. The surgeries
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on ƒ1 and ƒ2 are not Lagrangian surgeries in the sense of [4], and so one does not
get an induced symplectic structure. Indeed, T0�T0 is the complement of transversely
intersecting symplectic tori in T 4 , but after surgery, in T 2�S2 , the complement of A

is the regular neighborhood of a pair of tori, one of which is not minimal genus and so
cannot be symplectically embedded.

4 Pinwheels

In her thesis (cf [14]), Symington discussed the operation of symplectic summing
4–manifolds along surfaces embedded with normal crossings – the k –fold sum. We
study this operation now from a topological point of view. Suppose that we are given
smooth 4–manifolds Xi , i D 1; : : : ; k , and that each Xi contains a pair of smoothly
embedded surfaces, Si , Ti , with genus g.Si/, g.Ti/, and self-intersection mi , ni ,
and suppose that Si \ Ti D fxig is a single transverse intersection. Let N.Si/ and
N.Ti/ be tubular neighborhoods and Ni a 4–ball neighborhood of xi large enough so
that it is not contained in N.Si/[N.Ti/ and such that Si and Ti intersect it in disks.
Then we have

Si D S 0i [S 0i
0; Ti D T 0i [T 0i

0

where S 0i
0 is a disk, S 0i

0DNi\Si , and S 0iDSiXS 0i
0 is a punctured surface, and similarly

for Ti . The rough idea of the k –fold sum is to remove all the tubular neighborhoods
N.Si/ and N.Ti/ and glue @N.S 0i/ to @N.T 0

iC1
/, i D 1; : : : ; k (the subscripts thought

of mod k ), to obtain a manifold whose boundary is a torus bundle over S1 . Thus we
assume that g.Si/D g.TiC1/ for all i , and our goal is to point out conditions on the
self-intersections mi , ni under which the boundary of the resulting 4–manifold is the
3-torus T 3 . We then fill in with T 2 �D2 to obtain a closed 4–manifold.

To determine the conditions on the self-intersections mi , ni , first note that the normal
bundle of Si in Xi restricted over the punctured surface S 0i can be trivialized. Let � 0i
denote the homology class of the normal circle fptg�S1 in H1.S

0
i �S1IZ/. Similarly

let � 0i denote the homology class of the normal circle in H1.T
0
i �S1IZ/. We begin

the process of forming the k –fold sum by first gluing each T 0i � S1 to S 0
iC1
� S1

via a diffeomorphism sending T 0i to S 0
iC1

and � 0i to � 0
iC1

. Since the boundary of T 0i
represents � 0i and the boundary of SiC1 represents � 0

iC1
, in terms of the bases f� 0i ; �

0
ig

and f� 0
iC1

; � 0
iC1
g, the gluing map restricted to @T 0i �S1! @S 0

iC1
�S1 is given by

the matrix

(1) 'i D

�
0 1

�1 0

�
:
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The tubular neighborhood N.Si/ D S 00i �D2 [˛i
S 0i �D2 , where ˛i W @S

00
i �S1!

@S 0i �S1 is then given by the matrix

(2) ˛i D

�
1 mi

0 �1

�
using bases f� 00i ; �

00
i g and f� 0i ; �

0
ig where � 00i and � 00i are defined in the obvious way.

Also N.Ti/D T 00i �D2[ˇi
T 0i �D2 with

(3) ˇi D

�
�1 0

ni 1

�
again using bases f� 00i ; �

00
i g and f� 0i ; �

0
ig.

There is a self-diffeomorphism r of the punctured surface S 0i given by reflection
through a plane which restricts to reflection in the boundary circle of S 0i . If, instead
of gluing T 0i �S1 to S 0

iC1
�S1 via the diffeomorphism inducing 'i we precompose

with r and identify � 0i to �� 0
iC1

, we instead get

'0i D

�
0 �1

1 0

�
:

Set Vi D @Ni X .@Ni\ .Int.N.Si/[N.Ti///. (See Figure 6 for a schematic.) Each Vi

is diffeomorphic to the complement of a neighborhood of a Hopf link in S3 ; ie
Vi Š T 2 � I . The homology of the factor T 2 is generated by � 00i and � 00i . After
gluing together the manifolds Xi X .Ni [Si [Ti/, i D 1; : : : ; k , along T 0i D S 0

iC1
as

above, we obtain a manifold whose boundary is the union of the Vi . This manifold
is the torus bundle over the circle whose monodromy is the map #k ı � � � ı#1 where
#i D ˛

�1
iC1
ı'i ıˇi . Thus

#i D

�
ni CmiC1 1

�1 0

�
(compare [14]). If #k ı � � � ı#1 is the identity, then the boundary

Sk
iD1 Vi Š T 2�S1 ,

where T 2 is the torus fiber generated by the � 00i and � 00i . This trivial T 2 bundle over S1

can then be extended over the trivial T 2 bundle over the disk, T 2�D2 . The manifold
thus constructed is called the k –fold sum of the fXi ISi ;Tig. More precisely, the
k –fold sum X is

X D
[
'i

.Xi X .N [N.Si/[N.Ti///[ .T
2
�D2/

whenever #k ı � � � ı #1 is the identity with respect to the given trivializations. If we
replace, say, #k , with # 0

k
D ˛�1

1
ı'0

k
ıˇk D �#k , then we see that X can also be

constructed when #k ı � � � ı#1 is minus the identity (after changing one of the gluings).
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In Figure 6, xSi denotes the annulus @S 0i � Œ0; 1� which we think of as the disk S 00i with
a smaller disk about the origin removed. The xTi are defined similarly. We further
discuss these annuli below. It is slightly misleading to think of S 0i , xSi , etc. as actually
in X . Since the normal bundles of these manifolds can be trivialized, they do embed,
but in Figure 6, for example, the text S 0i is only meant to illustrate the boundary of its
normal circle bundle, S 0i �S1 , and similarly for other variants of “S” and “T”.

Figure 6: A 3-fold sum

Note that the tori T 2 � fptg � T 2 �D2 are nullhomologous in X , since T 2 � fptg is
isotopic to @.S 0i �S1/ and @.T 0i �S1/.

Proposition 3 (Symington [14]) If ni CmiC1 D�1 for i D 1; 2; 3 then the 3–fold
sum exists.

Proof In this case

#3 ı#2 ı#1 D

�
�1 1

�1 0

�3

D

�
1 0

0 1

�
:

In [14], Symington shows that if all manifolds are symplectic and the surfaces are
symplectically embedded then one can arrange for the 3–fold sum to be symplectic,
and similarly in the case of the next proposition.

Proposition 4 (McDuff and Symington [11]) If miC1 D�ni for i D 1; : : : ; 4 then
the 4–fold sum exists.

Proof In this case,

#4 ı � � � ı#1 D

�
0 1

�1 0

�4

D

�
1 0

0 1

�
:
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For the next proposition we use the following notation for continued fractions:

Œc1; c2; : : : ; cp �D c1� 1=.c2� 1=.� � � � 1=cp/ : : : /

In case cp D 0, Œc1; c2; : : : ; cp � is defined to be Œc1; c2; : : : ; cp�2�. For a sequence
of integers fa1; : : : ; akg, we call the set of k continued fractions Œa1; : : : ; ak�1�,
Œa2; : : : ; ak �, Œa3; : : : ; ak ; a1�, : : : ; Œak ; ; a1 : : : ; ak�2�, the cyclic continued fractions
of the sequence.

Proposition 5 Let ai D ni C miC1 (indices mod k ), and consider the sequence
fa1; : : : ; akg. If each of its cyclic continued fractions is 0, then the corresponding
k –fold sum exists.

Proof We prove this proposition in the case k D 4, which is the only case that we
shall use, and we leave the general case as an exercise for the reader.

#4 ı � � � ı#1 D

�
1� a2a3 a1C a3� a1a2a3

�a2� a4C a2a3a4 1� a1a2� a1a4� a3a4C a1a2a3a4

�
The cyclic continued fractions are:

.�a1� a3C a1a2a3/=.�1C a2a3/ .�a2� a4C a2a3a4/=.�1C a3a4/

.�a1� a3C a1a3a4/=.�1C a1a4/ .�a2� a4C a1a2a4/=.�1C a1a2/

The hypothesis immediately implies that the off-diagonal entries of #4 ı � � � ı#1 are 0.
Furthermore, the determinant is 1�a1a2�a2a3Ca1a2

2
a3�a1a4�a3a4C2a1a2a3a4C

a2a2
3
a4�a1a2

2
a2

3
a4 and it is not difficult to see that the hypothesis shows this D 1; so

#4 ı � � � ı#1 D˙Id.

As mentioned above and shown [14; 11], if the .Xi ;Si ;Ti/ are all symplectic, then
the conditions in Propositions 3 and 4 guarantee that the resulting k –fold sum is
symplectic. However, the manifolds obtained as k –fold sums using the general criterion
of Proposition 5 need not be symplectic. We give an example below.

The conditions given in Proposition 5 are sufficient for the existence of pinwheel
structures with given components, but they are not necessary. A necessary and sufficient
condition is, of course, that the boundary of the manifold that is formed by gluing the
components by identifying the trivial bundles over punctured surfaces in their boundary
should be T 3 . The way to identify these trivial bundles over punctured surfaces in a
Kirby calculus diagram is to take the Kirby calculus diagrams of the two components
and add a simple loop with framing 0 around the two meridians that are to be identified.
See Figure 7(a). After all the identifications are made in this way, we introduce a
1–handle as in Figure 7(b). This last figure can be seen to have boundary diffeomorphic
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to T 3 . It gives an additional check that the pinwheel structure on CP2 described in
Figure 9 exists.

(a) Connecting components (b) CP 2 XT 2 �D2

Figure 7

Each k –fold sum has a central 2–torus Tc D T 2 � f0g � T 2 �D2 , and the various
component pieces, Xi X .Int.N.Si/ [N.Ti/// fan out around Tc like a pinwheel.
In order to emphasize this structure, we henceforth refer to a k –fold sum as a k –
component pinwheel and say that X has a pinwheel structure. Note that one can have
a pinwheel structure without specifying the actual manifolds Xi of a k –fold sum. One
only needs the complements of neighborhoods of the transversely intersecting surfaces
.Si ;Ti/ in Xi . Of course, given a manifold with the correct boundary, one can form
an Xi by gluing in the correct neighborhood of transverse surfaces. We sometimes call
Si and Ti interface surfaces.

Consider the projection �i W Vi Š T 2 � I ! I D Ii . The central T 2 �D2 extends
the trivial T 2 bundle over the circle @D2 D

S
Ii . Let Bi D T 2 � cone.Ii/ and

Ci D Bi [ .Xi X .Int.N.Si/[N.Ti////. This gives the “pinwheel structure”

X D

k[
iD1

Ci ;

k\
iD1

Ci D Tc :

We refer to Ci as a component of the pinwheel. Note that Ci is diffeomorphic to
Xi X .Int.N.Si/[N.Ti///. We have @S 0i �S1 � Vi , and in fact, if ui and vi are the
beginning and endpoints of Ii , then ��1

i .vi/D @S
0
i �S1 and ��1

i .ui/D @T
0
i �S1 .

The annuli xSi and xTi discussed above are the products xSi D Œc; vi �� @Si � fptg and
xTi D Œc;ui �� @Ti �fptg, where Œc; vi � and Œc;ui � are the intervals from the cone point
to vi and ui in cone.Ii/. Note that ��1

i Œc; vi �D @Si �S1 � Œc; vi �D xSi �S1 .

Many examples of pinwheels can be obtained from torus actions. Torus actions on
simply connected 4–manifolds are completely classified by Orlik and Raymond [13] in
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terms of their orbit data. Briefly, the orbit space must be a disk whose boundary circle
is the union of arcs of constant isotropy type separated by (isolated) fixed point images.
The isotropy groups which are not trivial or all of T 2 are circle subgroups described
in polar coordinates by G.p; q/D f.'; #/ j p'C q# D 0;gcd.p; q/D 1g. The orbit
space data is a cyclic sequence of pairs .pi ; qi/ of relatively prime integers describing
the orbit types over boundary segments. The preimage of each of these closed segments
is a 2–sphere, Ai . Orlik and Raymond’s theorem is that each such cyclic sequence
gives rise to a simply connected 4–manifold with a T 2 –action provided that each
determinant ˇ̌̌̌

pi�1 pi

qi�1 qi

ˇ̌̌̌
D˙1:

This condition ensures that the link of each fixed point will be S3 . The 2–sphere Ai

which sits over the boundary component of the orbit space which is labelled .mi ; ni/

has self-intersection

A2
i D

ˇ̌̌̌
pi�1 pi

qi�1 qi

ˇ̌̌̌
�

ˇ̌̌̌
pi piC1

qi qiC1

ˇ̌̌̌
�

ˇ̌̌̌
pi�1 piC1

qi�1 qiC1

ˇ̌̌̌
D˙

ˇ̌̌̌
pi�1 piC1

qi�1 qiC1

ˇ̌̌̌
and the intersection number of adjacent spheres is

Ai�1 �Ai D

ˇ̌̌̌
pi�1 pi

qi�1 qi

ˇ̌̌̌
:

The second betti number of the 4–manifold is b2 D k � 2 where k is the number
of fixed points (equivalently the number of distinct segments in the boundary of the
orbit space). Using this technology, Orlik and Raymond show that a simply connected
4–manifold which admits a T 2 –action must be a connected sum of copies of S4 ,
CP2 , CP2 , and S2 �S2 . So given the orbit data, we may determine the intersection
form which tells us which manifold we have.

Example Consider the T 2 –manifold X with orbit data

f.1;�1/; .0; 1/; .1;�1/; .2;�1/g:

The spheres A2 and A4 both have self-intersection 0 and A2
1
D�2, A2

3
DC2. Thus

X is the ruled surface F2 Š S2 �S2 with A3 the positive section, A1 the negative
section, and A2 and A4 fibers. Here Fn is the ruled surface with positive section
having self-intersection n.

For our next set of examples, note that complement Bn of the negative section and
a fiber in the ruled surface Fn is a 4–ball. This complement in Fn has a handle
decomposition with a single cancelling 1– and 2–handle pair as shown in Figure 8.
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The framing on the 2–handle is inherited from the positive section of Fn ; hence it
is n (� 0).

Figure 8: Bn

The next example exhibits CP2 as a 3–component pinwheel made up of three 4–balls
(the standard coordinate neighborhoods in CP2 ). Our description is essentially that
of Symington [14], using the language of Orlik and Raymond [13] rather than that of
toric varieties.

(a) CP 2 (b) CP 2 with pinwheel structure (c) CP 2 # CP 2

Figure 9

Example This example is described by Figure 9. Figure 9(a) shows a torus action
on CP2 , and Figure 9(b) shows how it has the structure of a pinwheel with three B1

components. (See Figure 9(c) where the two removed spheres are indicated by bold
lines. This gives the upper right-hand component of Figure 9(b).) The dotted lines in
this figure indicate that tubular neighborhoods of the corresponding invariant 2–spheres
have been removed and boundaries glued together. (The point in Figure 9(c) where the
two dotted lines meet is the image in the orbit space of the central torus Tc .) The single
digits in the figures are self-intersection numbers. Each dotted line represents a solid
torus, and the role of the self-intersection numbers assigned to them is to indicate how
they get glued together. For example, the boundary of each component in Figure 9(b)
(ie the union of two solid tori) is S3 . This example illustrates Proposition 3.
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Example This example is described by Figure 10(a). It gives CP2 # CP2 with a
T 2 –action. We use the same notation as in the previous example. This pinwheel
structure illustrates Proposition 5. For two of the components we use B2 and for the
other two, B1 .

(a) CP 2 # CP 2 (b) S2 �S2

Figure 10

Example This final example is simpler. It gives S2 �S2 as the union of four copies
of B0 , each the complement of a section and a fiber in F0Š S2�S2 , and it illustrates
Proposition 4. The pinwheel structure is given in Figure 10(b).

One can deduce a general technique for constructing pinwheel structures on smooth
simply connected manifolds which carry T 2 –actions: As explained above, the orbit
space is a disk which may be viewed as a polygon P whose open edges have a
fixed isotropy subgroup G.pi ; qi/ and whose vertices are the images of fixed points.
The pinwheel structure will be built from n ruled surfaces Fjri j

where ri is the self-
intersection number

ri D

ˇ̌̌̌
pi�1 piC1

qi�1 qiC1

ˇ̌̌̌
of the sphere Ai which is the preimage of the i –th edge under the orbit map.

Barycentrically divide P to obtain a union of 4–gons. Each of the edges will be divided
in half and we label the first half-edge with ri and the second half with 0. These
will be self-intersections of sections or fibers in the ruled surfaces Fjri j

. Each (half)
edge labelled 0 must be flanked by two edges with equal isotropy subgroups. (This
follows from the rule for computing self-intersections.) Thus in each 4–gon, two of the
isotropy types are given and one is determined by this rule. This determines the isotropy
subgroup associated to each edge of the barycentric subdivision. See Figure 11 where
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(a) (b)

Figure 11

we are given a T 2 –action, part of whose polygon is shown in 11(a), and we deduce
the extra data on the barycentric subdivision in 11(b). The pinwheel component Ci

in 11(b) is obtained from Fjri j
by removing neighborhoods of a fiber and a section of

self-intersection �ri .

5 Pinwheel surgery

As we have seen in Section 3, when we can find an embedding of the manifold A

inside a manifold X , we get a pair of tori BT which can be useful to surger. In this
section, we show how to accomplish this in some basic 4–manifolds with pinwheel
structures. The general technique we present can be applied in many situations that go
beyond the examples given in this paper.

Given a pinwheel structure, the first step is to cyclically push out a pair of 2–handles
from each component into an adjacent component. This has the effect of subtracting
a pair of 2–handles from the adjacent component. The result is that the genus of the
interface increases by one, eg a solid torus interface becomes S1�T0 , T0 a punctured
torus. In other words, we trade handles at the interface of each component. This gives
the manifold a new pinwheel structure. The second step is to identify a copy of A

inside the new components. The final steps are to compute the effect of the surgeries
in A on the Seiberg–Witten invariants and to calculate the fundamental group of the
ambient manifold. To compute the effect on Seiberg–Witten invariants, we shall show
that in many cases there are (standard) surgeries on the Bing tori in each of the copies
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of A that result in a symplectic manifold, but with positive first betti number b1 . We
then employ the techniques of Section 2 to find Lagrangian tori to surger to make
b1 D 0. It will follow that there are surgeries on all of the Bing tori in the pinwheel
structure that result in distinct smooth manifolds. In order to show that the fundamental
group is trivial (so that the resulting manifolds are homeomorphic), we are able to
concentrate on the specific pinwheel components in the examples in Sections 6 and 7.

The first example to demonstrate this strategy is S2 �S2 with the pinwheel structure
exhibited in Figure 10(b). Each component is the complement B0 of a section and a
fiber in the ruled surface F0 ; it is a 4–ball with a handle decomposition as given in
Figure 8 with nD 0. The dotted half-lines in Figure 10(b) each correspond to a solid
torus, and the union of orthogonal half-lines corresponds to the link of a fixed point
of the T 2 –action, a 3–sphere. This pinwheel structure is represented by the left hand
part of Figure 12. We now want to push out 2–handles from each component into an
adjacent component to obtain a new pinwheel structure represented by the right hand
part of Figure 12. To do this, consider the first, say upper right hand, component in
the left hand part of Figure 12, a 4–ball denoted C1 . We can view C1 as constructed
from a copy of B4 by attaching a 2–handle with framing 0 to one component of the
Hopf link in Figure 8 and scooping out a tubular neighborhood of a disk in the 4–ball
bounded by the other component of the Hopf link. (This “scooping out” is equivalent
to attaching a 1–handle.) We thus identify the boundary of C1 as the union of two
solid tori joined together by a T 2 � I ; the first solid torus, U1 , is the normal circle
bundle of the core of the attached 2–handle, the other solid torus, V1 , is the normal
circle bundle neighborhood of the scooped out D2 , and the T 2� I is the complement
of the Hopf link in S3 . We similarly have @Ci D Ui [Vi for all the components of
the pinwheel. We will also use the notation @Bn D U.n/ [ V.n/ , recalling from the
previous section that Bn is the complement of the negative section and a fiber in the
ruled surface Fn . The framing on the 2–handle is inherited from the positive section
of Fn ; hence it is n (� 0). The solid torus U.0/ has a preferred framing coming from
the fact that its core circle is the meridian of the 2–handle in Figure 8, and so it bounds
a disk in @B0 . The Bing double of the core circle of U.0/ with respect to this framing
bounds disjoint 2–disks in B0 .

The components of the pinwheel structure are glued together so that each Ui is identified
with a Vj in an adjoining component. We may assume that the components are ordered
so that Vi is identified with UiC1 . This induces a preferred framing on Vi with respect
to which the Bing double of the core circle of Vi is identified with the Bing double
of the core circle of UiC1 and so bounds disjoint 2–disks in CiC1 . Add tubular
neighborhoods of these disks to Ci and subtract them from CiC1 . This process has
the effect of attaching a pair of 0–framed 2–handles to the components of the Bing
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double link in Vi � @Ci and adding a pair of 1–handles to the components of the Bing
double link in UiC1 � @CiC1 . Once we have applied this process to each pinwheel
component Ci , we have traded handles so that S2 �S2 D

S4
iD1

�Ci where �Ci is Ci

with a pair of 1–handles and a pair of 2–handles attached exactly as in Figure 4(b). In
other words, we have a new pinwheel representation for S2�S2 and each component
is a copy of A. Figure 12 illustrates this process.

Figure 12

Proposition 6 By performing the standard surgeries on the Bing tori BT in each of
the four copies of A in the above pinwheel structure for S2�S2 , one obtains †2�†2 ,
the product of two surfaces of genus 2.

Proof It follows from Proposition 2 that after the standard surgeries on the four pairs
of Bing tori, each copy of A is replaced by T0�T0 . This pinwheel gives †2�†2 .

If we fix one of the copies of B4 in Figure 12 then the union of the other three is
a regular neighborhood of a section and a fiber in F0 Š S2 � S2 . After the handle
trading process, this neighborhood becomes the manifold M of Figure 13(b). It is the
complement of one copy of A in Figure 12.

(a) N (b) M

Figure 13

Thus S2 �S2 DA[M . The manifold N of Figure 13(a) is the neighborhood of a
pair of transversely intersecting tori of self-intersection 0. Lemma 1 points out that
T 2�S2DA[N , a fact which can also be discerned from the Kirby calculus pictures.
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Corollary 1 One can pass from S2 �S2 to T 2 �S2 by trading a Borromean pair of
2–handles in M for a Borromean pair of 1–handles.

Note also that the standard surgery on A gives T0 �T0 , and T 4 D .T0 �T0/[N .

We next formalize the process that we used to obtain the new pinwheel structure for
S2 �S2 . We first need a lemma.

Lemma 2 Consider the framed solid torus V D D2 � S1 and let B.k/ be the k –
twisted Bing double of the core circle f0g � S1 . There are unique surgeries on the
components of B.k/ so that the resulting manifold has b1 D 3, and the result W of
these surgeries is W D T0 �S1 . Let h 2H1.@.T0 �S1// be the class of fptg �S1 .
Then under the identification @.T0 �S1/D @V , hD kŒ@D2�C ŒS1�.

Proof That there are unique surgeries on B.k/ giving a manifold with b1D 3 is clear.
The union of V � Œ0; 1� with a 2–handle attached to f0g � S1 � f1g with respect to
the k –twisted framing is a 4–ball D2 �D where D is the core disk of the 2–handle.
The correspondingly framed Bing double of f0g �S1 � f0g bounds a pair of disjoint
properly embedded 2–disks in D2�D , and their complement is T0�D2 . The surgeries
on B.k/ are achieved by this process, ie @.T0�D2/D .V �0/[W ; so W D T0�S1 .
Because we are using the k –framing to attach the 2–handle to fptg �S1 , it follows
that hD kŒ@D2�C ŒS1�.

Now suppose that we have a manifold X with a pinwheel structure with components Ci ,
i D 1; : : : ; n, and suppose also that each Si (and therefore each Ti ) is a 2–sphere. We
have @CiD .T

0
i �S1/[.T 2�Œ�1; 1�/[.S 0i�S1/ as in Section 4, where S 0i ŠT 0i ŠD2 .

We suppose that the components are ordered so that T 0i �S1 is identified with S 0
iC1
�S1

(via 'i – see Equation (1)).

Consider fpointg � S1 which is a fiber of the normal circle bundle @N.Ti/. The
preferred framing of this circle is the one it receives from N.Ti/. That is, the preferred
framing of fpointg �S1 � T 0i �S1 is the one which extends across the normal disk
in N.Ti/jT 0

i
ŠD2 �D2 . Of course, the interior of N.Ti/ is not contained in Ci . We

similarly define the preferred framing for S 0
iC1
�S1 . The condition that we shall need is:

Handle Trading Condition Suppose that for each i , the circle fptg �S1 � T 0i �S1

with its preferred framing bounds a proper framed disk D in Ci .

If this condition holds, then the disk D has a neighborhood D2 �D in Ci extending
the preferred framing on D2 � @D D T 0i �S1 . (For example, consider the case where
Ci is obtained from the ruled surface Fn by removing tubular neighborhoods of the
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negative section, Ti , and the fiber Si . Then the framed disk D is obtained from that
part of another fiber which lies outside of N.Ti/.) As in the proof of Lemma 2, the
Bing doubles of fptg � S1 with respect to this framing bound disjoint disks in Ci .
We may then use these 2–disks to attach 2–handles to CiC1 and at the same time a
cancelling pair of 1–handles to Ci . We shall refer to this process as handle trading.

Lemma 3 If a manifold X admits a pinwheel structure with all interface surfaces Si ,
Ti of genus 0, and if this pinwheel structure satisfies the Handle Trading Condition at
each interface, then handle trading produces another pinwheel structure on X where all
of the interface surfaces are tori.

Proof We need to see that the new interface surfaces are tori. Lemma 2 implies that
the handle trading process turns T 0i �S1 and S 0

iC1
�S1 into copies of T0 �S1 such

that the fiber fptg �S1 is identified with fptg �S1 in both T 0i �S1 and S 0
iC1
�S1 .

(Note that 'i preserves the preferred framing.) Hence the new interface surfaces have
neighborhoods

S 00i �D2
[˛i

T0 �D2 and T 00i �D2
[ˇi

T0 �D2

so we indeed get a pinwheel structure with tori as interface surfaces.

For our next example, consider the pinwheel structure on CP2 which is illustrated
in Figure 9. Each pinwheel component is given by a pair of cancelling handles as
in Figure 8 with nD 1. The Handle Trading Condition is satisfied at each interface
because the meridian of the “dot” in Figure 8 is identified with the meridian of a “C1”
in the next component, and this clearly bounds a disk and the framing extends. We
may again trade handles to obtain the manifold A.1/ of Figure 14(a). If we blow up
and slide the C1–framed handle in Figure 14(a) over the exceptional curve, we obtain
the manifold yA of Figure 14(b) (which is diffeomorphic to A.1/ # CP2 ), and we see
A� yA. From Figure 14(c) it is clear that at least one of the Bing tori in A� yA must
intersect the exceptional curve.

This means that after blowing up in each component of the pinwheel structure of CP2 ,
we obtain a 3–fold pinwheel structure for CP2 # 3 CP2 on which we can perform our
handle trading, and so that each component of the new pinwheel structure is a copy
of yA. Note that the Euler characteristic of yA is eD 2; its betti numbers are b1. yA/D 2,
b2. yA/D 3.

For g � 1, let Fn.g/ denote the irrational ruled surface whose base has genus g and
with c1D n. Then A.1/ is the complement in F1.1/ of the negative section and another
torus representing the homology class of the fiber, but (nonminimal) genus one, similar
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(a) A.1/ (b) yA (c) yA

Figure 14

to Figure 5, except now rather than two copies of T 2�D2 we replace (a) by a tubular
neighborhood of the negative section, a D2 –bundle over T 2 with c1 D�1, and (b)
with the bundle with c1 DC1, a tubular neighborhood of a (positive) section.

The blowup F1.1/#CP2 is diffeomorphic to F0.1/#CP2Š .T 2�S2/#CP2 . One way
to see this is to blow up, separating the fiber F and the negative section S� , and then
blow down the new exceptional curve E0 D F �E to get F0.1/. This correspondence
takes S� to S 0 �E0 where S 0 is a section of F0.1/, and it takes fiber to fiber. We
have

.T 2
�S2/ # CP2

D ..T 2
�D2/ # CP2/ [ .T 2

�D2/

and to get yA, we remove the proper transform torus .T 2 � f0g/�E0 and the disk
fptg �D2 from the first summand together with the punctured torus of Figure 5(b).
We can also see this by an argument similar to that of Corollary 1: Start with F1 Š

CP2 # CP2 decomposed as the union of a 4–ball and a regular neighborhood of the
union of S� and F . We can also express CP2 # CP2 as A.1/[M1 where M1 is the
manifold of Figure 15(a).

(a) M1 (b) N1

Figure 15
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We pass to A.1/ [ N1 Š F1.1/ and .T 2 � S2/ # CP2 Š F1.1/ # CP2 D yA [ N1 .
The manifold N1 of Figure 15(b) is a regular neighborhood of a pair of transversely
intersecting tori of self-intersections �1 and 0 as described above. The standard
surgeries on BT �A� yA replace A with T0�T0 and so .T 2�S2/#CP2 is replaced
with T 4 # CP2 , and these surgeries replace yA with the complement of transversely
intersecting tori yTT and TS where yTT represents the homology class ŒTT �� ŒE� in
T 4 # CP2 , where E is the exceptional curve.

Proposition 7 The standard surgeries on the three Bing double links BT in the three
copies of A� yA in CP2 # 3 CP2 result in a symplectic 4–manifold Q3 , and the core
tori of the surgeries are Lagrangian in Q3 .

Proof It follows from our discussion that the under the standard surgeries, the Bing tori
in BT �A� yA become Lagrangian tori in T 4 #CP2X. yTT [TS /. This process carries
the pinwheel structure on CP2 # 3 CP2 to a pinwheel structure on a manifold Q3

whose components are copies of the complements of the symplectic tori yTT and TS in
T 4 #CP2 . It now follows from [14] that Q3 is a symplectic manifold with a symplectic
structure extending those of the pinwheel components.

Presumably Q3 D Sym2.†3/; however this has not yet been shown.

We next consider CP2 # 2 CP2 . As above, we write T 4 as the union .T0 �T0/[N ,
where N is a regular neighborhood of the plumbing of two disk bundles with c1 D 0

over tori. In this case, the tori are the standard symplectic tori TT and TS where
T 4 D TT �TS . Let T0;T and T0;S be the copies of T0 in TT and TS where we are
removing disks containing the intersection point of TT and TS . Now suppose that,
instead of N , we wish to remove from T 4 the complement of TT and two parallel
copies of TS . This can be achieved by adjoining to @.T0;T �T0;S /D @N the manifold
P �T0;S , where P is a pair of pants (Figure 16). See also Figure 27 below. We have
T 4X .TT [ .TS qTS //D .T0;T �T0;S /[ .P �T0;S /, and the intersection identifies
@T0;T �T0;S with ��T0;S , where � is a boundary circle of P as shown in Figure 16.

Figure 16: P

Instead of two parallel copies of TS , we actually wish to remove a torus 2TS repre-
senting the homology class 2 ŒTS �. Then, instead of P �T0;S we obtain a nontrivial
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P –bundle, �, over T0;S . This bundle is the restriction over T0;S of the P –bundle
over TS D S1 �S1 whose monodromy over the first S1 is the identity, and whose
monodromy over the second S1 is a diffeomorphism P!P which keeps � pointwise
fixed and which interchanges the other two boundary circles, � and �. In other words,
� restricted over the second S1 –factor is S1 times the complement in a solid torus of
a loop going twice around the core. Then

T 4
D .T0;T �T0;S /[N D ..T0;T �T0;S /[@T0;T�T0;SD��T0;S

�/[W

where W is obtained by plumbing two trivial disk bundles over T 2 twice, with both
intersection points positive.

In T0;T � T0;S perform the standard surgeries on the tori in zBT whose result is A.
We obtain A[ .�[W /DA[N Š T 2 �S2 , and if we replace N by M we obtain
A[M D S2 �S2 .

Back in T 4 , the surfaces TT and 2TS intersect at two points. Blow up to separate
the surfaces at one of these intersection points. In N # CP2 we have a regular neigh-
borhood L of the union of tori TI;T representing the homology class ŒTT �� ŒE� and
TI;S representing 2ŒTS �� ŒE� where E is the exceptional curve. The neighborhood L

is the plumbing of two disk bundles over T 2 with c1D�1. Write N # CP2DR[L,
where RŠN # CP2 XL. Then the standard surgeries on the tori in zBT � T 4 # CP2

give
T 2
�S2 # CP2

DA[ .N # CP2/DA[ .R[L/D I0[L

where I0 DA[R is the complement of a copy of L in T 2 �S2 # CP2 . Thus I0 is
the complement in T 2 �S2 # CP2 of tori T 0

I;T
and T 0

I;S
representing the homology

classes ŒT �� ŒE� and 2ŒST �� ŒE�.

Since zBT �T0;T �T0;S is disjoint from N , the tori T 0
I;T

and T 0
I;S

in T 2�S2 #CP2

are constructed analogously to TI;T and TI;S : The regular neighborhood of T [ST

in T 2 �S2 may be identified with N . We have T 2 �S2 DA[N DA[ .�[W /,
where � is now viewed as a P –bundle over ST;0 D ST XD2 .

We next wish to see that this situation arises by attaching and subtracting 2–handles
starting with the complement of a pair of surfaces in S2�S2 #CP2 . To see this, recall
the Kirby calculus depiction of T 2 �S2 DN [A as shown in Figure 17. Similarly,
we have the decomposition of T 2 �S2 into W [ .A[�/ in Figure 18. Next blow
up W . This is shown in Figure 19. Then Figure 20 shows T 2�S2 #CP2 as the union
of L and I0 . To accomplish this, we move the exceptional curve and the 1–handle
over to the other side of the picture. We need to make two points here. First, only
part of the exceptional curve is seen in Figure 20(b) because E intersects both T 0

I;T
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(a) N (b) A

Figure 17: T 2 �S2 DN [A

(a) W (b) A[�

Figure 18: T 2 �S2 DW [ .A[�/

and T 0
I;S

. Second, when the 1–handle from Figure 19 is moved to the other side, it
becomes a 3–handle.

Figure 19: W blown up

By removing 1– and 2–handle pairs from Figure 18 and Figure 20, we obtain Figure 21.
The union of 21(a) and 21(b) is S2 � S2 , and the union of 21(c) and 21(d) is
S2 �S2 # CP2 .

The complement of F �E and 2S �E in S2 �S2 # CP2 is given in Figure 21(d).
In that figure, slide the left-hand 0 over the �1. This is shown in Figure 22. (After
this handle slide, the 0–framed 2–handle cancels with the 3–handle.) Figure 22 also
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(a) L (b) I0

Figure 20: T 2 �S2 # CP 2 DL[ I0

(a) (b)

(c) (d)

Figure 21: .a/[ .b/D S2 �S2 and .c/[ .d/D S2 �S2 # CP 2

illustrates meridians � and � to the 1– and 2–handle. As indicated in the figure, we
call this manifold I 0

0
.

Lemma 4 The 3–fold pinwheel described by Figure 23(a) is a pinwheel structure for
S2 �S2 # CP2 ŠCP2 # 2 CP2 .

Proof This is an exercise in Kirby calculus. The union of the three manifolds I 0
0

,
B1 # CP2 , and B0 glued in a cyclical fashion as indicated in Figure 23(a) is shown in
Figure 24. What must be seen is that the union of this with T 2 �D2 is CP2 # 2 CP2 .
Handle slides, cancellations, and two blowdowns plus one anti-blowdown applied
to Figure 24 reduce it to the Borromean link with two “0”s and a “dot”. A handle
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Figure 22: I 00

picture for T 2 �D2 is the Borromean link with two “dots” and a “0”. In the union,
all these handles cancel and we obtain S4 . Taking into account the blowdowns and
anti-blowdown, we see that we get CP2 # 2 CP2 .

(a) (b)

Figure 23: Pinwheel structures for CP 2 # 2 CP 2

Figure 24

As is indicated by the new 0–framed 2–handles in Figure 24, the Handle Trading
Condition is satisfied for the pinwheel structure of Lemma 4(a), and so Lemma 3 gives
us the pinwheel structure of Figure 23(b) on CP2 # 2 CP2 .
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Proposition 8 The standard surgeries on the three Bing double links BT � A �

CP2 # 2 CP2 in the pinwheel structure given by Figure 23(b) result in a symplectic
4–manifold Q2 and the core tori of the surgeries are Lagrangian in Q2 .

Proof As in Proposition 7, this follows from [14]. The manifold Q2 has a symplectic
pinwheel structure as the 3–fold sum of .�Xi I

�Si ; �Ti/ where

. �X0I
�S0; �T0/D .T

4 # CP2
ITI;T ;TI;S /

. �X1I
�S1; �T1/D .T

4 # CP2
I yTT ;TS /

. �X2I
�S2; �T2/D .T

4
ITT ;TS /:

6 Component pieces and their fundamental groups

In this section we shall examine the fundamental groups of the complements of our
pair BT of Bing tori in the pinwheel components A, yA, and I0 of Section 5. One
important goal is to see that when we choose our basepoint to lie on the central torus Tc ,
appropriate elements of these fundamental groups are represented by loops lying on
the boundaries of these components. This will assist in the computations in Section 7
where we piece together the fundamental group of a manifold from the components of
a pinwheel structure on it.

We are helped greatly by the analysis of Baldridge and Kirk in [5], where they study
the fundamental group of the complement of the Lagrangian tori in T0 � T0 which
are exactly the core tori ƒ1 and ƒ2 of the result of surgeries on BT �A. Following
the notation in that paper (with only minor changes) and referring to Figure 25, the
disjoint Lagrangian tori are ƒ1D a0�x0 and ƒ2D a00�y0 . The relevant classes in �1

are x D fpg �x , y D fpg �y , aD a� fqg, and b D b � fqg. Since ƒ1 and ƒ2 are
Lagrangian, we refer to pushoffs of loops in ƒi to parallel loops in ƒi as “Lagrangian
pushoffs”.

Figure 25: T0;T �T0;S
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Lemma 5 [5] There are basepaths in T0;T �T0;S X .ƒ1[ƒ2/D T0;T �T0;S X
zBT

to the boundaries of tubular neighborhoods of ƒ1 and ƒ2 so that the generators of the
fundamental group �1.T0;T �T0;S X

zBT ; .p; q// that are represented by Lagrangian
pushoffs of x0 and a0 on ƒ1 are x and a and the meridian to ƒ1 represents the
commutator Œb�1;y�1�. Similarly, Lagrangian pushoffs of the loops y0 and a00 on ƒ2

represent the elements y and bab�1 , and the meridian to ƒ2 represents Œx�1; b�.
Furthermore, �1.T0;T � T0;S X

zBT ; .p; q// is generated by the elements x , y , a

and b , and the relations Œx; a�D Œy; a�D Œy; bab�1�D 1 (among others) hold.

It may help in visualizing this lemma to consider (as done in [6]) Figure 26 where
the punctured torus T0 is viewed as a punctured disk with identifications. The loop
fpg � x0 is based at .p; q/ via a path that travels backwards along y from q to q0

(ie fpg times this) and after traversing x0 travels back to q along the same path. We
base the other paths similarly. Then the lemma holds as stated. We wish to move the
basepoint to the point zc D .pc ; qc/ which lies on the torus @T0;T � @T0;S . This is
done by using the path  �ı to join .pc ; qc/ to .p; q/. Changing the base point in this
way does not affect Lemma 5. Since the loop  � �1 is nullhomotopic, we may view
the loop representing x based at zc as fpcg � � where � D ı �x � ı�1 , and similarly
for y , a, and b . Thus the generators of �1.T0;T �T0;S X

zBT ; zc/ are all represented
by loops in @.T0;T �T0;S /.

Figure 26: T0;T �T0;S

One obtains A from T0 �T0 by surgeries on ƒ1 (killing x ) and ƒ2 (killing y ); so
the lemma implies that �1.A; zc/ is generated by a and b . In fact, it quickly follows
from Figure 4(a) that �1.A; zc/ is the free group on two generators (a and b ) which
are represented by the meridians to the 1–handles. (By “meridian” of a 1–handle, we
mean a loop parallel to its core. Thinking of a 1–handle as a “scooped out” 2–handle
gives more intuitive meaning to this terminology.) Notice that the classes of a and b

generate H1.T0;T / and those of x;y generate H1.T0;S /.

Algebraic & Geometric Topology, Volume 11 (2011)



Pinwheels and nullhomologous surgery on 4–manifolds with bC D 1 1679

Lemma 6 The fundamental group �1.A; zc/ is the free group generated by a and b .
Furthermore, �1.AXBT ; zc/D �1.T0;T �T0;S X

zBT ; zc/, and its generators x , y , a,
and b are represented by loops on @AD @.T0;T �T0;S /.

Recalling the terminology of Section 4 (and thinking of A or T0;T �T0;S as the i –th
component of an appropriate pinwheel)

@AD @.T0;T �T0;S /

D .T0;T � @T0;S /[ .@T0;T �T0;S /

D ..Ti XD2/�S1/[T 2
� I [ ..Si XD2/�S1/

D .T 0i �S1/[ .T 2
� I/[ .S 0i �S1/:

In order to make the following discussion a bit easier, consider in Figure 26 the annuli
J D @T0;T � Œu; c� and K D @T0;S � Œv; c�. These are collars on the boundaries of the
two copies of T0 . Let Jc and Kc be the boundary circles of J and K containing
the points pc and qc , and let Ju and Kv be the boundary circles containing pu

and qv . Then S 0i �S1 , the normal circle bundle over S 0i , is represented in this figure
by Ju � .T0;S XK/ and T 0i � S1 is represented by .T0;T X J /�Kv . In the above
formula for @A, the T 2 � I summand is .@T 0i � S1 � Œvi ; c�/[ .@S

0
i � S1 � Œc;ui �/.

In the figure, this is .Jc�K/ [ .J�Kc/. In �1.T0;T � T0;S X
zBT ; zc/, the loop

Jc � fqcg D @T
0
i � fqcg (in the given trivialization) represents the commutator Œa; b�,

and similarly fpcg �Kc D fpcg � @S
0
i represents Œx;y�.

We see from Figures 14(b) and 14(c) that yA is obtained from A by attaching a 2–handle
with framing �1, and Figure 14(b) shows that the attaching circle for this 2–handle
is the boundary of a normal disk to the torus T in T 2 � S2 . This is the boundary
of the punctured torus ST;0 . Equivalently, after the standard surgeries on BT , the
attaching circle of the 2–handle is the boundary of T0;S ; so in terms of our generators
for �1.AXBT ; zc/D �1.T0;S �T0;T X

zBT ; zc/, attaching the 2–handle given by the
exceptional curve adds the relation Œx;y�D 1.

Lemma 7 The fundamental group �1. yA; zc/ D �1.A; zc/ and �1. yA X BT ; zc/ D

�1..T0;T � T0;S / # CP2 X zBT ; zc/ is obtained from �1.AXBT ; zc/ by adding the
relation Œx;y� D 1. Furthermore, the generators x , y , a, and b of the fundamental
group �1. yAXBT ; zc/D �1..T0;T �T0;S / # CP2 X zBT ; zc/ are represented by loops
on @ yAD @..T0;T �T0;S / # CP2/.

We next discuss the fundamental group of I0XBT . Recall that one can construct I0 by
doing surgery on zBT in T0;T �T0;S � T 4 # CP2X .TI;T [TI;S /. Using the notation
of the last section, T 4 # CP2 XL D .T0;T � T0;S /[R where R D N # CP2 XL
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(and the neighborhood L of TI;T [TI;S is the plumbing of two disk bundles over T 2

with c1 D �1). So �1.I0 XBT / D �1..T0;T � T0;S X
zBT /[R/. We will discuss

basepoints momentarily; we first need to describe R. To construct R, we begin with the
manifold �, the nontrivial P (pair of pants)-bundle over T0;S which was constructed
in the last section. Referring to Figure 16 and below,

T 4
D ..T0;T �T0;S /[@T0;T�T0;SD��T0;S

�/[W:

(Recall that W is a regular neighborhood of TT [ 2TS .)

A schematic is shown in Figure 27, where we see T 4DN [ .T0;T �T0;S /. In N , the
manifold � is the complement of a neighborhood of TT [ 2TS . The indicated points
on @.T0;T � T0;S / designate @T0;T � @T0;S D � � @T0;S , the torus corresponding
to the intersection point of TT and TS . There are also tori T� D � � @T0;S and
T� D �� @T0;S corresponding to the two intersections of the tori TT and 2TS .

Figure 27

The basepoint zc D .pc ; qc/ for T0;T �T0;S lies on � � @T0;S . (See Figure 26.) Use
an arc from pc to p� inside P � TT to move this basepoint to the point z� D .p� ; qc/

on T� for the purpose of calculating �1.T
4 XW / and �1.T

4 X .W [ zBT //. See
Figure 28(a).

Let x be the generator of �1.TS ; qc/ over which the monodromy of � is trivial and
y the generator over which the monodromy exchanges � and �. Then since we have
T 4 XW D .T0;T � T0;S /[� and zc 2 � � T0;S D .T0;T � T0;S /\�, the groups
�1.T

4 XW; zc/ and �1.T
4 X .W [ zBT /; zc/ are obtained from �1.T0;T �T0;S ; zc/

and �1..T0;T � T0;S / X zBT ; zc/ by adding generators � and �, and they satisfy
relations Œx; ��D Œx; ��D 1, y�y�1 D �, y�y�1 D � , and Œa; b�D ��1��1 . This last
relation holds because ��1��1D � D @.T0;T �fptg/. Now we can move the basepoint
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from zc to z� using the basepath shown in Figure 28(a); so these relations also hold in
�1.T

4 XW; z�/ and �1.T
4 X .W [ zBT /; z�/

(a)

,

(b)

Figure 28

Let . xp; xq/ denote the intersection point TT \TS . Then T0;S is obtained from TS by
removing a disk DS containing xq and similarly for T0;T and a disk DT containing xp .
We may assume that TT \ 2TS D f. xp� ; xq/; . xp�; xq/g and that P is DT minus disk
neighborhoods D� of xp� and D� of xp� .

We next need to blow up to remove the intersection point . xp�; xq/ of TT and 2TS . For
any transverse intersection of surfaces in a 4–manifold, the result of blowing up at
the intersection point is to replace a neighborhood of the intersection point, a 4–ball
containing a pair of transverse 2–disks, with the disk bundle over S2 with c1 D�1

containing a pair of disk fibers. In terms of the complements of the surfaces, this adds
a copy of S1� I �D2 (the disk bundle minus two fibers) to the previous complement.

In our situation, we have N #CP2DR[L where L is a neighborhood of the tori TI;T

(representing the homology class ŒTT � � ŒE�) and TI;S (representing Œ2TS � � ŒE�).
The discussion in the above paragraph shows that RD�[ .S1 � I �D2/. Let �� I

denote a collar in P of the boundary component �. The gluing of S1 � I �D2 to �
is given by

S1
� I � @D2

! �� I � @T0;S ; .t; r; s/ 7! .ts�1; r; s/;

that is, @D2 is identified with a fiber of the Hopf S1 –bundle, and S1 is sent to ��fqcg.

We need to apply Van Kampen’s Theorem to T 4#CP2XLD .T 4XW /[.S1�I�D2/.
Formally, the basepoint that we use needs to lie on the intersection �� I � @T0;S ; so
for the purposes of this calculation we move the basepoint to .p�; qc/ by means of a
path in P �fqcg. When we are done, we move the basepoint back to z� along the same
path. So, in effect, we are calculating �1.T

4 # CP2XL; z�/. Thus the gluing formula
above implies that in �1.T

4 #CP2XL; z�/ and �1.T
4 #CP2X.L[ zBT /; z�/ we have
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Œx;y� ��1 D 1 and ŒS1�D �. Thus � lies in the image of �1.T0;T �T0;S X
zBT ; z�/,

and since � D y�y�1 , � also lies in the image of �1.T0;T �T0;S X
zBT ; z�/. (Here we

use the homotopy equivalence of T0;T �T0;S with T0;T �T0;S [ .� � fqcg/ where �
is the arc from pc to p� shown in Figure 28.)

Lemma 8 The inclusion-induced map

�1.T0;T �T0;S X
zBT ; z�/! �1.T

4 # CP2
X .L[ zBT /; z�/

(equivalently, �1.AXBT ; z�/! �1.I0 XBT ; z�/) is surjective.

Our analysis of the blowup also shows that it changes @.T 4XW / to @.T 4 #CP2XL/

by removing �� I � @T0;S and adding .D� � @T0;S /[ .S
1 �DS /. In fact,

@I0 D @.T
4 # CP2

XL/D .TI;T;0 �S1/[ .T�;c � I/[ .S1
�TI;S;0/

where we can identify the punctured torus TI;T;0 with T0;T [P [D� and S1�TI;S;0

with @�;�� [ .S1 �DS /. Here, @�;�� D @� X .� � T0;S / is the inside boundary
of �. The torus T�;c lies on @I0 and contains the basepoint z� . Thus the interface
regions of I0 are S 0Š S1�TI;S;0 and T 0Š TI;T;0�S1 . The punctured torus TI;T;0

has fundamental group generated by a and b , and the punctured torus TI;S;0 has
fundamental group generated by x and y2 , and the S1 factor in S1 � TI;S;0 is
generated by � .

Lemma 9 The relation Œ�; a�D 1 holds in the group

�1.I0 XBT ; z�/D �1.T
4 # CP2

X .L[ zBT /; z�/:

Proof Since AXBT � I0 XBT , Lemma 5 implies that Œa;x�D Œa;y�D 1. We have
just seen that the blowup introduces the relation �D Œx;y�; so �Dy�y�1DyŒx;y�y�1 .
Thus a also commutes with � .

We still need to check our claim above that appropriate elements of

�1.T
4 # CP2

X .L[ zBT /; z�/D �1.I0 XBT ; z�/

have representatives on @.T 4 # CP2XL/D @I0 . These elements are the generators a,
b , x , and also y2�k for k 2 Z. Before blowing up, the boundary in question is

@.T 4
XW /D ..T0;T [P /� @T0;S /[ @�;��:

Consider first a and b . They are represented by loops in T0;T � fqcg, and they
become based at z� D .p� ; qc/ by means of a path in P � fqcg as shown in Figure 28.
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{ }

Figure 29: � restricted over y

Thus a and b (based at z� ) have representative loops lying in .T0;T [P /� fqcg �

.T0;T [P /� @T0;S . These loops are unaffected by the blowup at the point . xp�; xq/.

Next consider x . It was originally represented by a loop with basepoint zc D .pc ; qc/

on � � T0;S , and we used the basepath  � fqcg to move its basepoint to z� . The
bundle � is trivial over x ; so one can construct an annulus whose intersection with
each fiber P�(point in x ) is the path �(point in x ). This gives an isotopy starting
at x and ending at a representative �x of x based at .p� ; qc/ which lies on @�;��.
Also, because the monodromy of the bundle � over y has order two, there is a loop
� � @�;��, depicted in Figure 29, which represents y2 . Other loops on @�;�� which
are lifts of y2 are of the form y2�k and are represented by � �k . These loops lie on
@.T 4 XW /, and our description of how blowing up changes the boundary shows that
zx and � �k lie on the boundary of T 4 # CP2 XL after blowing up. They lie on the
branch of the blown up surfaces corresponding to @�;��; ie on @�;��[ .S1 �DS /.

Lemma 10 The elements a, b , x and y2�k , k2Z, of �1.T
4#CP2X.L[ zBT /; z�/D

�1.I0XBT ; z�/ are represented by loops on @.T 4 # CP2XL/D @I0 . The representa-
tives of a and b are contained in TI;T;0 �S1 , and the representatives of x and y2�k

are contained in S1 �TI;S;0 .

7 Exotic 4–manifolds with bC D 1

We now begin to exhibit examples which illustrate how pinwheel surgeries can be
utilized to produce families of exotic 4–manifolds. There are two advantages that
this technique holds over previous methods. The first is that one is able to identify
the nullhomologous tori upon which surgery is done. These are copies of BT � A

embedded in standard manifolds. The second is that there is a torus common to all
the components of a pinwheel structure. Taking a basepoint in this torus can greatly
simplify calculations of fundamental groups.
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7.1 CP 2 # 3 CP 2

As a first example, we show how the construction of exotic smooth manifolds home-
omorphic to CP2 # 3 CP2 (cf [2; 5; 6]) fits into our framework. We have seen in
Proposition 7 that CP2 #3 CP2 has a 3–fold pinwheel structure where each component
is a copy of yA, and that after performing the standard surgeries on the tori in the three
copies of BT , we obtain a symplectic manifold Q3 . Since each of these surgeries
increases b1 by one and adds a hyperbolic pair to H2 , we see that Q3 has b1 D 6,
bC D 7, and b� D 9. We have also identified three pairs of Lagrangian tori zBT in
three copies of T0 � T0 � .T

4 # CP2/X . yTT [ TS /. Each pair consists of tori ƒ1

and ƒ2 . Recall that we obtain CP2 # 3 CP2 by surgery killing the class “x” in each
copy of ƒ1 and “y ” in each copy of ƒ2 . We have used the quotes here, because we
really need to index the copies of yA, ƒi , etc.

We now proceed by labelling the components of the pinwheel. The components
of the pinwheel structure, which are copies of yA, will be denoted yAi , the index i

viewed as an integer mod 3. The boundary of yA is the plumbing of two S1 –bundles
with torus base and Euler numbers 0 and 1. Hence @ yA D T0 � S1 [' S1 � T0

for an appropriate gluing map ' W T 2 ! T 2 . Using our previous notation (see
above the Handle Trading Condition) we get for the pinwheel components that @ yAi D

.S 0i �S1/[ .T 2 � Œ�1; 1�/[ .T 0i �S1/.

Before proceeding further, we establish notation for our use of basepoints: The represen-
tative loops in yAi for xi , yi , ai , and bi are based at zci

D .pci
; qci

/2Tci
DT 2�0�

T 2� Œ�1; 1�. The pinwheel components are glued together so that T 0i �S1 is identified
with S 0

iC1
�S1 ; so we slide the basepoint for ai and bi down to .pTi

; qTi
/2 @T 0i �S1

by isotoping the loops off T 2 � .�1; 1/ using the Œ�1; 1�–factor. Similarly we push
the basepoint for xi , yi up to .pSi

; qSi
/ 2 @S 0i �S1 .

Each component yAi is glued to yAiC1 identifying T 0i � S1 with S 0
iC1
� S1 so that

ai is identified with xiC1 , bi is identified with yiC1 , .pTi
; qTi

/ is identified with
.pSiC1

; qSiC1
/, and the corresponding basepaths are identified. This identifies the

loops in �1 that represent ai and bi with those representing xiC1 and yiC1 .

The union of the three copies of T 2� Œ�1; 1� is T 3 and gets filled in with the manifold
T 2�D2 . We may suppose that all three of the points .pTi

; qTi
/D .pSiC1

; qSiC1
/ lie

in fptg�@D2 � T 2�D2 , and we finally choose for our basepoint z0 D fptg� f0g via
straight lines to the center z0 of fptg �D2 .

In each yAi , perform surgery on the Lagrangian tori ƒ1;i and ƒ2;i as follows. On
ƒ1;i perform C1 surgery on xi with respect to the Lagrangian framing, and on ƒ2;i

perform C1 surgery on yi with respect to the Lagrangian framing. It follows from [4]
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that the resultant manifold will admit a symplectic structure extending the one on the
complement of the tori. Furthermore, according to Lemma 5, these surgeries add the
relations xi Œb

�1
i ;y�1

i �D 1 and yi Œx
�1
i ; bi �D 1.

Theorem 2 By surgeries on all six Lagrangian tori in zBT;i , i D 0; 1; 2 in Q3 ,
one can obtain an infinite family of mutually nondiffeomorphic smooth minimal 4–
manifolds all homeomorphic to CP2 # 3 CP2 . Furthermore, all these manifolds can
be obtained by surgeries on six nullhomologous tori which comprise three copies of
BT �CP2 # 3 CP2 .

Presumably, these are the manifolds of [2; 5; 6]. What is new here is the construction
technique and the fact that all these manifolds are obtained by surgeries on the standard
manifold CP2 # 3 CP2 .

Proof Let X1 be the symplectic manifold which is the result of these six surgeries
on Q3 . The fundamental group �1.X1; z0/ is generated by ai ; bi ;xi ;yi , i D 0; 1; 2,
and the relations Œxi ;yi �D 1 (by Lemma 7), and Œxi ; ai �D Œyi ; ai �D 1 (by Lemma 5)
hold. Furthermore, ai D xiC1 and bi D yiC1 for i D 0; 1; 2. Since �1. yAi XBT;i/

is generated by ai , bi , xi , and yi , we see that �1.X1; z0/ has generators ai , bi for
i D 0; 1; 2, and Œai ; bi � D 1. There is no further generator coming from gluing the
components of the pinwheel because the circle I0[I1[I2 bounds a disk in the central
T 2 �D2 . (Each Ii Š Œ�1; 1�.)

The relations arising from the surgeries are xi Œb
�1
i ;y�1

i � D 1 and yi Œx
�1
i ; bi � D 1.

Translating these and the other relations, we see that �1.X1; z0/ is generated by the ai

and bi which satisfy

Œai ; bi �D 1; Œai�1; ai �D Œbi�1; ai �D 1; ai�1 D Œb
�1
i�1; b

�1
i �; bi�1 D Œbi ; a

�1
i�1�:

So b1D Œb2; a
�1
1
�D ŒŒb0; a

�1
2
�; a�1

1
�D 1, using the commutativity relations Œa1; a2�D 1

and Œb0; a1�D 1. Now it follows from the other relations that �1.X1; z0/ is trivial.

The infinite family of manifolds referred to in the statement of the theorem is constructed
by changing the surgery on the last torus ƒ2;2 so that it now kills y2 times the n–th
power of the meridian Œx�1

2
; b2� to ƒ2;2 . Call this manifold Xn . This notation agrees

with that of Theorem 1. Changing the surgery in this way has the effect of replacing the
relation b1D Œb2; a

�1
1
� with b1D Œb2; a

�1
1
�n in the calculation, which goes through just

as before to show that �1.Xn/ is trivial. Theorem 1 now implies that the Xn satisfy
the conclusion of the theorem.

We have seen that there are surgeries on the three copies of zBT in Q3 that give
CP2 # 3 CP2 and the core tori are the three copies of BT . The composition of the
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inverse of these surgeries together with the surgeries on Q3 that give Xn , give a
description of surgeries on the six tori in the copies of BT in CP2 # 3 CP2 that give
rise to Xn . In other words, all of the exotic manifolds Xn can be obtained by surgeries
on these explicitly given nullhomologous tori in CP2 # 3 CP2 .

We still need to see that the manifolds Xn are minimal, ie that they contain no sphere
of self-intersection �1. We first show that they have just two basic classes, ˙k .
Since Xn is homeomorphic to CP2 # 3 CP2 , it makes sense to talk about homology
generators h and ei , i D 1; 2; 3, where h2 D 1 and e2

i D �1. We can see from the
pinwheel construction that h� ei is represented by a genus 2 surface in Xn . This
surface is obtained as follows: The attaching circle i of the 0–framed 2–handle in
the i –th pinwheel component for CP2 # 3 CP2 is the meridian to the dotted circle
giving the 1–handle. Thus i is identified with the meridian to iC1 in an adjacent
component. Thus i bounds a disk in that component, and the union of this disk with
the core of the 2–handle attached to i is a sphere representing the homology class
h� ei . After the surgeries on the three copies of BT , neither of these two 2–disks
remains. Instead, i bounds a punctured torus in the surgered (and handle-traded)
pinwheel component Ci . Similarly, the meridian to iC1 bounds a punctured torus in
the surgered CiC1 . Thus h�ei is represented by a surface of genus 2 in Xn . Similarly,
each class ei is represented by a torus in Xn . It follows that h D .h� ei/C ei is
represented by a surface of genus 3.

If k is a basic class for (the small perturbation Seiberg–Witten invariant) on Xn ,
write k D ah�

P2
0 biei . The adjunction inequality holds for the small perturbation

invariant, and using the surfaces described in the paragraph above and the fact that
k2 must equal .3 signC2 e/.Xn/D 6, we see that the only basic classes of Xn are
˙.3h� e0 � e1 � e2/. The difference of these two classes has square 24, but if one
of these manifolds failed to be minimal, it would have to have a pair of basic classes,
�˙ e , whose difference has square �4. Thus the Xn are minimal.

7.2 CP 2 # 2 CP 2

We shall next consider the construction of exotic manifolds which are homeomorphic to
CP2 #2 CP2 . As in Section 5, we can start with a pinwheel structure on CP2 #2 CP2

whose components are I 0
0

, B1 # CP2 and B0 as in Figure 23(a) and after handle
trading obtain the pinwheel structure shown in Figure 23(b). The pinwheel components
are glued together as follows: C0 D I0 is glued to C1 D

yA, identifying the loop
representing a0 with that representing x1 , and b0 with y1 . Also C1 D

yA is glued
to C2 D A identifying the loop representing a1 with that representing x2 and b1

with y2 , and A is glued to I0 , identifying a2 with x0 and b2 with y2
0
�k for some k .
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This k is determined by our construction in Section 5, but its precise value will not
be important to us. The basepoints in the copies of Tc (recall that for I0 this means
the point .p� ; qc/ 2 T�;c ) are all identified in the central T 2 �D2 of CP2 # 2 CP2 in
a fashion completely analogous to the CP2 # 3 CP2 case, and the basepoint for our
calculation again becomes z0 D fptg � f0g 2 T 2 �D2 .

We follow the pattern established above to construct examples. After performing the
standard surgeries on the tori in the three copies of BT in our pinwheel structure, we
obtain the symplectic manifold Q2 of Proposition 8 which has b1 D 6 and the same
Euler number and signature as CP2 # 2 CP2 . Each of the pinwheel components has
fundamental group generated by the elements ai , bi , xi and yi .

On each ƒ1;i perform C1 surgery on xi with respect to the Lagrangian framing,
and on ƒ2;i perform C1 surgery on yi with respect to the Lagrangian framing.
Again it follows from [4] that the resultant manifold will admit a symplectic structure
extending the one on the complement of the tori, and these surgeries add the relations
xi Œb

�1
i ;y�1

i �D 1 and yi Œx
�1
i ; bi �D 1. We obtain a theorem analogous to Theorem 2.

Theorem 3 By surgeries on all six of the Lagrangian tori in zBT;i , i D 0; 1; 2 in Q2 ,
one can obtain an infinite family of mutually nondiffeomorphic smooth minimal 4–
manifolds all homeomorphic to CP2 # 2 CP2 . Furthermore, all these manifolds can
be obtained by surgeries on six nullhomologous tori which comprise three copies of
BT �CP2 # 2 CP2 .

The proof is also the same as that of Theorem 2 with some minor modifications.

Proof Let X1 be the symplectic manifold which is the result of these six surgeries
on Q2 . The fundamental group �1.X1; z0/ is generated by ai ; bi ;xi ;yi , i D 0; 1; 2.
After applying the identifications coming from the pinwheel structure, we see that
�1.X1; z0/ is generated by ai ; bi , i D 0; 1; 2, and y0 , and it satisfies the relations
coming from those of A, yA and I0 with their surgeries:

A: a1Œb
�1
2
; b�1

1
�D 1; b1Œa

�1
1
; b2�D 1; Œa1; a2�D 1; Œb1; a2�D 1.

yA: a0Œb
�1
1
; b�1

0
� D 1; b0Œa

�1
0
; b1� D 1; Œa0; a1� D 1; Œb0; a1� D 1; Œa0; b0� D 1.

(The last equality comes from the blowup relation Œx1;y1�D 1.)

I0 : a2Œb
�1
0
;y�1

0
� D 1; y0Œa

�1
2
; b0� D 1; Œa2; a0� D 1; Œy0; a0� D 1; Œb2; a0� D 1.

(The last equality holds because of Lemma 9 and b2 D y2
0
�k .)

Thus b0 D Œb1; a
�1
0
�D ŒŒb2; a

�1
1
�; a�1

0
�D 1, using the fact that a0 commutes with b2

and a1 . It then follows from the other relations that �1.X1; z0/ D 1. (Recall that
� D y0Œx0;y0�y

�1
0

.)
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The infinite family of manifolds referred to in the statement of the theorem is constructed
by changing the surgery on the torus ƒ2;2 so that it now kills y2 times the n–th power
of the meridian Œx�1

2
; b2� to ƒ2;2 . Call this manifold Xn . This notation agrees with

that of Theorem 1. Changing the surgery in this way has the effect of replacing the
relation b1 D Œb2; a

�1
1
� with b1 D Œb2; a

�1
1
�n in the calculation, which goes through

just as before to show that �1.Xn/D 1. Theorem 1 now implies that the Xn satisfy
the conclusion of the theorem.

The proof that the Xn are minimal follows an argument similar to that in the proof
of Theorem 2. Once again we see from the pinwheel structure that Xn contains
genus 2 surfaces representing the classes h� e1 and h� e2 and a genus one surface
representing e1 , say; so there is again a genus 3 surface representing hD .h�e1/Ce1 .
We see that the only possible basic classes are ˙.3h�e1�e2/, and the proof proceeds
as before.

8 More exotic rational surfaces

In the last section we showed how to use pinwheel surgery to obtain infinite families of
manifolds homeomorphic but not diffeomorphic to CP2 # k CP2 for k D 2; 3. In this
section, we outline how to use similar techniques to construct families for k D 4; : : : ; 7

and k D 9, and we explain why we are having difficulty seeing a similar construction
for k D 8. We begin by generalizing the construction of the manifold yA. Recall
the notation Bn from Figure 8. For n > 0, Bn is naturally the complement of the
negative section and a fiber in the ruled surface Fn . In accordance we also consider
the manifolds A.n/ and yA.n/ of Figure 30. In terms of this notation, our manifold
yAD yA.1/ . Notice that A� yA.n/ .

(a) A.n/ (b) yA.n/

Figure 30

We introduce next another family of manifolds which we shall need. Let Kn denote
the complement in Fn of S� , the negative section, and SCCF , a positive section plus
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a fiber. These are embedded complex curves in Fn which meet transversely in a single
point and have self-intersections �n and nC 2. It follows that Kn is the rational ball
of [7] whose boundary is the lens space L..nC 1/2;�n/, and the fundamental group
�1.Kn/D ZnC1 . (The manifold K0 Š B4 . See Figure 31(b).)

(a) Neighborhood of S�[.SCCF / (b) Kn

Figure 31: Fn

Figure 31 displays Fn as the union of a neighborhood of the intersecting spheres S�
and SCCFn and Kn . (The “nC1” indicates nC1 full right hand twists.) The loops
� and � are the boundaries of normal disks to the two surfaces, and they are shown
in Figure 31(b) lying in @Kn . It is important to note that � and � are isotopic in Kn .
We can see this in Figure 31(b) since there is an isotopy of � across a belt disk of the
2–handle. Alternatively, a fiber of Fn intersects both S� and SCCF transversely in
single points, and the complementary annulus in the fiber gives the isotopy.

We next describe an operation that will lead to a mild generalization of handle trading.
Consider Kn and abstractly attach a pair of 2–handles to the Bing double of � with
both framings equal to 0. Call this new manifold KCn . Since � is isotopic to � in Kn ,
the Bing double of � is isotopic to the Bing double of � in Kn , and using this isotopy
and the cores of the new 2–handles in KCn , we get disks in KCn with boundary the
Bing double of � , and we can remove neighborhoods of these disks from KCn to obtain
the manifold K0

n .

This procedure will be used as follows: Visualize Kn as a pinwheel component,
and consider the adjacent pinwheel component Ci with interface surface Ti whose
meridian mTi

is identified with the meridian � of SCCF . Suppose that the meridian
mTi

satisfies the Handle Trading Condition; so in the pinwheel, we can add the pair of
2–handles to Kn (removing them from Ci ) in order to construct KCn . Next consider
the pinwheel component Cj on the other side of Kn with interface surface Sj whose
meridian mSj

is identified with the meridian � of S� . We can view the construction
of K0

n from KCn as handle trading. In other words, the Handle Trading Condition
is not satisfied at the S� interface of Kn , but after trading handles at the SC C F
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interface, it becomes possible to trade handles in KCn . See Figure 32. Note that the
interface surfaces of the new pinwheel component K0

n are tori (as usual after handle
trading). We call this operation pushing through.

Figure 32: Pushing through

Lemma 11 The manifold K0
n is the complement in the irrational ruled surface Fn.1/

of symplectic tori representing the negative section, S 0� , and a positive section plus a
fiber, S 0CCF 0 .

Proof To change Fn into Fn.1/, we need to remove a neighborhood of a fiber,
F �D2 Š S2 �D2 , and replace it with F � T0 . We are working with the smaller
manifold, Kn ; so the change we would need to make is to replace S1 � Œ0; 1��D2

with S1 � Œ0; 1��T0 . Thus our discussion is local to this S1 � Œ0; 1��D2 in Kn .

The isotopy in Kn used for pushing through sits inside of a fiber of Fn . Its trace is the
annulus S1 � Œ0; 1�. The pushing through procedure adds a pair of 2–handles to the
link L� DL� 1 where L is the Bing double of S1 � 0 in S1 �D2 . Let D1 , D2 be
the core disks of these 2–handles.

We then bore out a neighborhood of .L � Œ0; 1�/[D1 [D2 . The claim is that the
resultant manifold is S1� Œ0; 1��T0 . Notice that each S1�ftg�D2 has been replaced
by the 3–manifold obtained by adding a pair of 2–handles to L�ftg, ie by performing
0–surgery on both components of this link. This is S1 �T0 as required.

As we have mentioned above, the fundamental group of Kn is ZnC1 , and it is generated
by either of the meridians �, � . To construct K0

n we attach a pair of 2–handles and
then subtract a pair of 2–handles. The handle additions add no generators to �1

and the handle subtractions add a pair of generators a, b , which are identified with
corresponding generators of the form xi , yi in the adjacent pinwheel component Ci .

Algebraic & Geometric Topology, Volume 11 (2011)



Pinwheels and nullhomologous surgery on 4–manifolds with bC D 1 1691

8.1 CP 2 # 4 CP 2

The pinwheel structure we shall use to construct families for CP2 # 4 CP2 is given in
Figure 33.

(a) (b)

Figure 33: Pinwheel structures for CP 2 # 4 CP 2

The interface surface between the pinwheel components I 0
0

and B3#3 CP2 satisfies the
Handle Trading Condition because the corresponding interface surface of B3 # 3 CP2

is a fiber of F3 (the other interface surface of this component is a negative section),
and the disk used for handle trading is provided by the positive section blown up three
times. It is the core of the handle labelled n (D 3) in Figure 8 after the blowups. The
interface surface between the components K0 and I 0

0
also satisfies the Handle Trading

Condition using the normal disk to the 2–handle with framing C1 in I 0
0

. To see that
this pinwheel structure actually gives CP2 # 4 CP2 , one argues as in Lemma 4. The
starting Kirby calculus diagram is shown in Figure 34.

Figure 34

The model symplectic manifold Q4 is built by performing standard surgeries on the
copies of BT in I0 and yA.3/ . No surgeries are performed in K0

0
. Thus (employing
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Lemma 11) Q4 has the symplectic pinwheel structure given by

. �X0I
�S0; �T0/D .T

4 # CP2
ITI;T ;TI;S /

. �X1I
�S1; �T1/D .T

2
�S2
ITSCCF ;TS�/

. �X2I
�S2; �T2/D .T

4 # 3 CP2
ITT;3;TS /

where TT;3 is a symplectic torus representing TT �E1�E2�E3 and in T 2�S2 D

F0.1/, TSCCF and TS� are tori representing the obvious classes.

To construct the infinite family of mutually nondiffeomorphic manifolds all homeo-
morphic to CP2 # 4 CP2 , we follow the proof of Theorem 3, except that here we only
surger the tori ƒ0;i and ƒ2;i coming from the pinwheel components I0 and yA.3/ . The
component K0

0
is diffeomorphic to T 2�S2X.TSCCF [TS�/ where �1.T

2�S2; zc/

is generated by a1 and b1 (where we identify K0
0

with the component C1 ). So
�1.K

0
0
; zc/ is normally generated by a1 , b1 , and a meridian � to TSCCF .

Theorem 4 By surgeries on the four Lagrangian tori comprising the copies of zBT;i ,
i D 0; 2 in Q4 which live in �X0 and �X2 in Q4 , one can obtain an infinite family
of mutually nondiffeomorphic minimal smooth 4–manifolds all homeomorphic to
CP2 # 4 CP2 . Furthermore, all these manifolds can be obtained by surgeries on four
nullhomologous tori which comprise two copies of BT � I0[

yA.3/ �CP2 # 4 CP2 .

Proof We first show that the manifold X obtained by performing C1 surgeries on
the Lagrangian tori ƒ1;i and ƒ2;i in �Xi , i D 0; 2, is simply connected. Our pinwheel
components are C0 D I0 , C1 D K0

0
, and C2 D

yA.3/ . The fundamental group of
yA.3/ XBT is the same as that of yAXBT since the extra blowups do not change �1 .

The pinwheel construction identifies a2 with x0 and b2 with y2
0
�k . Furthermore, the

pushing through process identifies a0 and b0 with the belt circles of the 2–handles
first attached to K0 to construct KC

0
, and these are in turn identified with a1 D x2

and b1 D y2 after pushing through. Thus a0 D a1 and b0 D b1 .

Analogous to the proof of Theorem 3, we see that �1.X; z0/ is generated by ai ; bi ,
i D 0; 2, y0 , and the meridian � from K0

0
, and it satisfies the relations coming from

those of yA.3/ , and I0 with their surgeries:

yA.3/ : a0Œb
�1
2
; b�1

0
�D 1; b0Œa

�1
0
; b2�D 1; Œa0; a2�D 1; Œb0; a2�D 1; Œa0; b0�D 1.

I0 : a2Œb
�1
0
;y�1

0
� D 1; y0Œa

�1
2
; b0� D 1; Œa2; a0� D 1; Œy0; a0� D 1; Œb2; a0� D 1.

(Recall that this last equality holds because of Lemma 9 and b2 D y2
0
�k .)

Thus b0 D Œb2; a
�1
0
�D 1, and then it follows that a0 , a2 , and y0 vanish, and so we

also have � D y0Œx0;y0�y
�1
0
D y0Œa2;y0�y

�1
0
D 1; hence b2 D 1. Finally, �D � is
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identified with the boundary of the meridian to the 1–handle of yA.3/ (see Figure 30(b)).
Thus �D Œa2; b2�D 1; so �1.X; z0/D 1.

It follows as usual that the manifolds Xn , obtained by performing 1=n–surgery rather
than C1–surgery on the last torus ƒ2;2 , are also simply connected. To see that these
manifolds are minimal, we again use an argument based on the adjunction inequality is
in the proof of Theorem 2. This is easy once we see that these manifolds have embedded
genus 2 surfaces representing the classes h� ei , i D 1; : : : ; 4 and an embedded genus
3 surface representing h.

We shall describe these surfaces referring to Figures 33 and 34. The class e4 is
represented as follows. The 2–handle of I 0

0
which is labelled “�1” (on the upper

left in Figure 34) gives a punctured sphere, punctured by the 1–handle of I 0
0

. The
meridian of that 1–handle is isotopic to (identified with) the meridian of the 1–handle
in B3 # 3 CP2 . This meridian is, in turn, isotopic to the attaching circle of the 2–
handle labelled “0” in B3 # 3 CP2 . Thus we see a sphere of self-intersection �1 in
CP2 # 4 CP2 . After the surgeries on the tori of the copy of BT in yA.3/ this sphere is
no longer extant, but a torus representing e4 is, since normal disks to the 1–handle
become punctured tori.

Instead of starting with the 2–handle of I 0
0

which is labelled “�1”, we could be-
gin with the handle labelled “C1”. Then this construction produces a 2–sphere in
CP2 #4 CP2 representing h. Notice that both classes h and e4 intersect the spheres of
self-intersection �1 which come from the three 2–handles labelled “�1” in B3#3 CP2 .
It follows easily that these three spheres represent the classes h� ei � e4 , i D 1; 2; 3.
Since the surgeries on BT �

yA.3/ turn normal disks to the “0” into punctured tori, the
classes h� ei � e4 , i D 1; 2; 3 are represented by tori in the surgered manifolds Xn .
It follows that h� ei D .h� ei � e4/C e4 , i D 1; 2; 3, are represented by genus 2

surfaces in Xn .

Returning to CP2 # 4 CP2 , there is a sphere representing a class of self-intersection 0

arising from the 2–handle labelled 0 at the bottom of Figure 34. (Alternatively, this
sphere is formed from the cocores of the 2–handle labelled 0 in B3 #3 CP2 and the 2–
handle labelled �2 in K0 , since the pinwheel construction identifies their boundaries.)
Since this sphere intersects both h and e4 once and is orthogonal to h � ei � e4 ,
i D 1; 2; 3, it represents h� e4 . Surgery plus the pushing through operation make this
surface genus 2. Finally, hD .h� e4/C e4 is now seen to be represented by a genus
3 surface in Xn , and we may carry out the adjunction inequality argument as planned
to see that Xn is minimal.

Algebraic & Geometric Topology, Volume 11 (2011)



1694 Ronald Fintushel and Ronald J Stern

8.2 CP 2 # 5 CP 2

The construction of families for CP2 # 5 CP2 follows our established pattern, using
the pinwheel structure of Figure 35. One sees that these pinwheels give CP2 # 5 CP2

via our usual Kirby calculus argument.

(a) (b)

Figure 35: Pinwheel structures for CP 2 # 5 CP 2

We get our infinite family of manifolds as before. The argument is parallel to, but
easier than, that of Theorem 4.

8.3 CP 2 # 6 CP 2

This construction is similar to that for CP2 # 4 CP2 . In that construction (Figure 33),
replace the pinwheel component B3 # 3 CP2 with the manifold L.0;�3/ which is
obtained by removing the spheres SCCF �E1�E2�E3 and S��E4�E5 from
F1 #5 CP2 . These spheres have self-intersections 0 and �3 as required. See Figure 36.
Note that, as for the manifolds Kn , the meridians to the spheres SCCF�E1�E2�E3

and S��E4�E5 are isotopic in L.0;�3/ . (This isotopy is given by the fiber of F1 .)

,

(a)

,

(b)

Figure 36: Pinwheel structures for CP 2 # 6 CP 2

In this case we need to push through two pinwheel components. Surgery is then
performed on the single pair of Bing tori in I0 . The notation L0

.0;�3/
is meant to be
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analogous to K0
n above. The proof of Lemma 11 shows that L0

.0;�3/
is the complement

in the blown up irrational ruled surface Fn.1/ # 5 CP2 of symplectic tori representing
S 0CCF�E1�E2�E3 and S 0��E4�E5 . Standard surgeries on the tori in BT � I0

give rise to the symplectic manifold Q6 which has the symplectic pinwheel structure
given by

. �X0I
�S0; �T0/D .T

4 # CP2
ITI;T ;TI;S /

. �X1I
�S1; �T1/D .T

2
�S2
ITSCCF ;TS�/

. �X2I
�S2; �T2/D .F1.1/ # 5 CP2

ITSCCF�E1�E2�E3
;TS��E4�E5

/

with notation as above. See the CP2 # 7 CP2 case below for comments on a similar
fundamental group calculation. Notice that our construction leaves none of the excep-
tional curves from the blowups, and our usual adjunction inequality argument shows
that we get a family of minimal 4–manifolds.

8.4 CP 2 # 7 CP 2

Use the pinwheel structure given in Figure 37. Again we need to push through two
pinwheel components. Surgery is performed on a single pair of Bing tori.

(a) (b)

Figure 37: Pinwheel structures for CP 2 # 7 CP 2

Standard surgeries on the tori in BT �
yA.7/ give rise to the symplectic manifold Q7

which has the symplectic pinwheel structure given by

. �X0I
�S0; �T0/D .F1.1/ITSCCF ;TS�/

. �X1I
�S1; �T1/D .F4.1/ITSCCF ;TS�/

. �X2I
�S2; �T2/D .T

4 # 7 CP2
ITT;7;TS /

where TT;7 is a symplectic torus representing TT �
P7

iD1 Ei , and the other notation
is as above.
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Theorem 5 By surgeries on the two Lagrangian tori comprising the copy of zBT �
�X2 ,

in Q7 , one can obtain an infinite family of mutually nondiffeomorphic minimal smooth
4–manifolds all homeomorphic to CP2 # 7 CP2 . Furthermore, all these manifolds can
be obtained by surgeries on two nullhomologous tori which comprise two copies of
BT �

yA.7/ �CP2 # 7 CP2 .

Proof We first show that the manifold X obtained by performing C1 surgeries on
the Lagrangian tori ƒ1;2 and ƒ2;2 in �X2 is simply connected. The pushing through
process identifies a2 and b2 with the belt circles of the 2–handles first attached to K1

to construct KC
1

, and these are in turn identified with a0 and b0 . The second pushing
through operation identifies these classes with a1 and b1 . Thus a0 D a1 D a2 and
b0 D b1 D b2 . Therefore, �1.X I z0/ is generated by aD ai , b D bi , and meridians
�0 D �0 of SCCF and S� in F1 and �1 D �1 of SCCF and S� in F4 .

The usual relations coming from yA.7/ in this case reduce quickly to aD 1, b D 1. As
in the proof of Theorem 4 we have �i D Œa; b�D 1, i D 0; 1; so �1.X; z0/D 1, and
the rest of the proof follows analogously to the examples above.

8.5 CP 2 # 8 CP 2 and CP 2 # 9 CP 2

These constructions are slightly different from those above. We begin by explaining
why the type of pinwheel surgeries that we have already described will not work for
these manifolds. In each of our pinwheel surgery constructions, the manifold X1

obtained by performing only C1 surgeries is symplectic and not diffeomorphic to
CP2 # k CP2 . The adjunction formula shows that its canonical class is represented by
a symplectic surface of genus 10� k . The canonical class of the standard manifold
CP2 # k CP2 has genus 1, and each surgery on a Bing torus pair BT in a copy of A

increases the genus of the disks which span meridians to the “0” and the “dot” by
one. For example, letting k D 3, the canonical class of CP2 # 3 CP2 is given by
�3hC e1C e2C e3 , and in each pinwheel component B1 # CP2 , it is represented by
a pair of transverse disks normal to the “0” and the “dot”. Gluing these together along
the interfaces, they add up to three 2–spheres representing the classes �hC ei , and
arranged in a cyclical fashion; so that smoothing their intersection points gives a torus
representing �3hC e1C e2C e3 . The surgeries increase the genus of each of these
surfaces to 2, and the result after smoothing double points is the canonical class of X1

of genus 7D 10� k . The other examples can be analyzed in a like fashion.

We notice that each pinwheel component that is surgered must increase the genus
of a symplectic representative of the canonical class by at least 2; so the minimal
genus which can be achieved by this technique is 3. However, the canonical class
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of a symplectic manifold homeomorphic but not diffeomorphic to CP2 # 8 CP2 has
genus 2; so it cannot be obtained by this particular type of pinwheel surgery.

However, one does have different pinwheel constructions for CP2 #8 CP2 and E.1/D

CP2 # 9 CP2 as in Figures 38(a) and 38(b). The manifolds L.j ;k/ are obtained by
modifying the constructions of the Kn above. For example, L.�1;�3/ is the complement
of S� and SCCF�E1�� � ��E6 in F1#6 CP2 . The component W is the complement
of S and 2S CF � 2E in F0 # CP2 .

,,

(a) CP 2 # 8 CP 2

,,

(b) CP 2 # 9 CP 2

Figure 38: Pinwheel structures for CP 2 # 8 CP 2 and CP 2 # 9 CP 2

We leave it as a simple exercise for the reader to see representatives for the canonical
classes in these pinwheel structures, tori of self-intersections 1 and 0, respectively.
Surgery on the Bing double of this last torus was the subject of the example in Section 3.
By replacing K0 with K0

0
and each L.j ;k/ with L0

.j ;k/
; ie by replacing the pinwheel

components of E.1/DCP2 # 9 CP2 with components obtained in like fashion from
ruled surfaces over T 2 rather than over S2 , we obtain the model manifold Q9 , and it
is easy to see that Q9 is the elliptic surface over T 2 obtained by fiber summing E.1/

with the product elliptic surface T 2�T 2 . Thus Q9 is obtained from E.1/ by removing
a neighborhood of a fiber, T 2�D2 and replacing it with T 2�T0 . In other words, we
have performed standard surgeries on the standard copy of BT in the neighborhood of
a fiber in E.1/ in order to obtain Q9 . The surgeries on the corresponding Lagrangian
tori in E.1/ will give exactly the examples of Section 3.

We have not as yet been able to effect a construction of exotic manifolds homeomorphic
to CP2 # 8 CP2 utilizing pinwheels. However in [10] we constructed a manifold R8

homeomorphic to CP2 # 8 CP2 and with trivial Seiberg–Witten invariant (as for
CP2 # 8 CP2 ) such that R8 contains nullhomologous tori upon which surgery yields
an infinite family of exotic manifolds homeomorphic to CP2 # 8 CP2 .

8.6 The main theorem

The upshot of this section and the last is the following theorem:
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Theorem 6 For k D 2; : : : ; 7 and k D 9, there are nullhomologous tori embedded
in CP2 # k CP2 upon which surgery gives rise to an infinite family of mutually
nondiffeomorphic minimal 4–manifolds homeomorphic to CP2 # k CP2 .

9 Final remarks

The fact that surgery on a well-chosen collection of (nullhomologous) tori in a fixed
smooth manifold can alter smooth structures gives rise to a target (and optimistic)
classification scheme for simply connected smooth 4–manifolds.

Question Is it possible that every simply connected smooth 4–manifold is obtained
by surgery on tori in a connected sum of copies of S4 , CP2 , CP2 and S2 �S2 ?
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