Multiple genus 2 Heegaard splittings: a missed case

John Berge Martin Scharlemann

A gap in a paper by Rubinstein and the second author [5] is explored: new examples are found of closed orientable 3–manifolds with possibly multiple genus 2 Heegaard splittings. Properties common to all the examples in that paper are not universally shared by the new examples: some of the new examples have Hempel distance 3, and it is not clear that a single stabilization always makes the multiple splittings isotopic.

57M15, 57N10

1 Introduction

In 1998, Rubinstein and the second author [5] studied the question of when there could be more than one distinct genus 2 Heegaard splitting of the same closed orientable 3-manifold. The goal of the project was modest: to provide a complete list of ways in which such multiple splittings could be constructed, but with no claim that each example on the list did in fact have multiple non-isotopic splittings (there could be isotopies from one splitting to another that are not apparent). Nor was there a claim that the list had no redundancies; a 3-manifold and its multiple splittings might appear more than once on the list. Such a list would still be useful, for if every example on the list could be shown to have a certain property, then that property would be true for any closed orientable 3-manifold M that has multiple genus 2 splittings. Two examples were given in [5]:

- If *M* is atoroidal then the hyperelliptic involutions determined by the two genus 2 Heegaard splittings commute.
- Any two genus 2 Heegaard splittings of M become isotopic after a single stabilization.

Despite this modest goal, the argument in [5] contains a gap¹. In 2008, the first author discovered a class of examples that do not appear on the list and which, moreover, have

¹The error is on page 533: The last sentence of the first paragraph of Case 2 should have read, "The *same curves* cannot then be twisted in X since M is hyperbolike." This leaves open an additional possibility for P_X , P_Y , see the paper by the second author [7].

mathematical properties that distinguish them in important ways from the examples that do appear in [5]. It is true that, even for the new examples, the hyperelliptic involutions commute. But we know of no argument showing that the new examples all share the second property above; that is, we cannot show that the newly discovered multiple splittings necessarily become isotopic after a single stabilization (though they do after two stabilizations).

A third property, shared by all examples in [5] but not by some of the new examples, is not listed above because the notion of Hempel distance of Heegaard splittings (see Hempel [3]) did not exist at the time [5] was written. But a retrospective look (see Section 6 below) will verify that all the splittings described in [5] have Hempel distance no greater than 2, whereas results of the first author [2] illustrate that at least some of the new examples have Hempel distance 3. (This also verifies that the gap in the argument in [5] actually led to missed examples.)

Here is an outline: In Section 2 we describe a general method for constructing closed orientable 3-manifolds that appear to have multiple genus 2 Heegaard splittings; these examples (called *Dehn-derived*) are based around Dehn surgery on a pair of strategically placed curves. It is shown in [7] that these examples do fill the gap in [5]. It follows from the construction that the hyperelliptic involutions of the alternate splittings always coincide.

It is not immediately obvious that curves supporting Dehn-derived examples can be found, but in Sections 3 and 4 we give three specific classes of examples. The classes are denoted M_H (Section 3), $M_{\times I}$ and M_{hybrid} (Section 4). (M_H can be viewed as a third variation of [5, Example 4.2].) For the examples M_H and M_{hybrid} a single stabilization suffices to make the alternate splittings equivalent, but this property is at least not apparent in most cases of $M_{\times I}$.

In Section 5 it is shown, using new results of the first author [1], that *any* Dehn-derived example is in fact of type M_H , $M_{\times I}$ or M_{hybrid} . Finally, in Section 6 we verify that all of the old examples that are listed in [5] are of Hempel distance 2, whereas at least some Dehn-derived examples are of distance 3. (It is easy to see that all Dehn-derived examples are of distance no more than 3.)

Acknowledgement The second author was partially supported by an NSF grant.

2 Dehn derived multiple splittings

A *primitive* k-*tuple* of curves in the boundary of a genus g handlebody H is a collection $\lambda_1, \ldots, \lambda_k \subset \partial H$ of $k \leq g$ disjoint simple closed curves so that, for some

properly embedded collection D_1, \ldots, D_k of disks in H, $|\lambda_i \cap D_j| = \delta_{ij}, 1 \le i, j \le k$. It is easy to see that the closed complement in H of such a collection of meridian disks is a genus g - k handlebody. In particular, if k = g then $\lambda_1, \ldots, \lambda_g$ is called a *complete set of primitive curves* and the corresponding collection of disks D_1, \ldots, D_g is called a *complete set of meridian disks*. The closed complement of a complete set of meridian disks in H is a 3-ball.

Suppose $\Lambda = \lambda_1, \ldots, \lambda_k \subset \partial H$ is a primitive *k*-tuple of curves in *H* and let $\alpha_1, \ldots, \alpha_k$ be the properly embedded collection of curves in *H* obtained by pushing Λ slightly into the interior of *H*. We can view *H* as the boundary connect sum of a genus g - k handlebody H' and k solid tori W_1, \ldots, W_k , with λ_i a longitude of W_i and so α_i a core curve of W_i . Then Dehn surgery on $\alpha_i \subset W_i$ still gives a solid torus. Hence any Dehn surgery on the family of curves $\alpha_1, \ldots, \alpha_k$ leaves *H* still a handlebody.

Definition 2.1 Suppose $M_0 = H_a \cup_S H_b$ is a Heegaard splitting of a closed 3-manifold M_0 . A simple closed curve $\lambda \subset S$ is doubly primitive if λ is a primitive curve in both handlebodies H_a and H_b .

Suppose M_0 is a closed orientable 3-manifold and that $M_0 = H_a \cup_S H_b$ is a genus 2 Heegaard splitting of M_0 . Suppose further that $\lambda_1, \lambda_2 \subset S$ are two disjoint doubly primitive curves in S.

Proposition 2.2 Suppose *M* is a manifold obtained by some specified Dehn surgeries on λ_1 and λ_2 . For i = 1, 2, let A_i (resp. B_i) be the manifold obtained from the handlebody H_a (resp. H_b) by pushing the curve λ_i into int(H_a) (resp. int(H_b)) and performing the specified Dehn surgery on the curve.

Then $A_1 \cup_S B_2$ and $A_2 \cup_S B_1$ are two (possibly different) genus 2 Heegaard splittings of M.

Proof A_i (resp. B_i) is obtained from H_a (resp. H_b) by Dehn surgery on a pushed in copy α_i of a single primitive curve in S. It was just observed that this makes each A_i (resp. B_i) a handlebody.

Definition 2.3 Two genus 2 Heegaard splittings $X \cup_Q Y$ and $A \cup_P B$ of a closed 3-manifold M are called Dehn derived (from the splitting $M_0 = H_a \cup_S H_b$ via $\lambda_1 \cup \lambda_2 \subset S$) if the two splittings are created as in Proposition 2.2.

Corollary 2.4 Suppose $M = A \cup_P B = X \cup_Q Y$ are a Dehn-derived pair of Heegaard splittings. Then the two hyperelliptic involutions of M, one determined by the Heegaard splitting $A \cup_P B$ and the other by the Heegaard splitting $X \cup_Q Y$, coincide.

Algebraic & Geometric Topology, Volume 11 (2011)

Proof Let $M_0 = H_a \cup_S H_b$ be the Heegaard split 3-manifold from which the two splittings of M are Dehn derived, via $\lambda_1 \cup \lambda_2 \subset S$. The hyperelliptic involution preserves the isotopy class (though perhaps reversing the orientation) of any simple closed curve in S. We may then position λ_i so that the curves are preserved (perhaps reversing orientation) by the hyperelliptic involution on $M_0 = H_a \cup_S H_b$. Then the hyperelliptic involution on M_0 naturally induces a single hyperelliptic involution on M.

3 A simple set of examples

It is not immediately obvious how to create examples of a Dehn-derived pair of splittings or, very naively, whether examples even exist. In this section we present and briefly discuss an important concrete class of examples.

Consider a genus 2 handlebody H, constructed from two 0-handles by connecting them with three 1-handles. With this structure H has a natural \mathbb{Z}_3 symmetry, shown as $\frac{2\pi}{3}$ rotation about the green axis in Figure 1. Let $\lambda_1 \subset \partial H$ be the red curve shown in the figure and λ_2, λ_3 be the other two simple closed curves to which λ_1 is carried by the \mathbb{Z}_3 symmetry. Then each λ_i is a primitive curve on ∂H and, indeed, any two of the curves, say λ_1, λ_2 constitute a complete set of primitive curves (that is, a primitive pair). In this case the corresponding pair of meridian disks are the meridian disks of the two 1-handles through which λ_3 passes.

Let \overline{H} be the genus 3 handlebody obtained by removing from H a neighborhood of the arc in which the axis of symmetry intersects one of the 0-handles. It is easy to see that in \overline{H} the collection $\lambda_1, \lambda_2, \lambda_3 \subset \partial \overline{H}$ is a complete set of primitive curves, that is a primitive 3-tuple.

To construct some Dehn-derived pairs of Heegaard splittings, begin with two genus 2 handlebodies A and B, on each of whose boundaries lie three disjoint simple closed curves corresponding to $\lambda_1, \lambda_2, \lambda_3 \subset \partial H$. Let $\lambda_{ia} \subset \partial A$ (resp. $\lambda_{ib} \subset \partial B$) be the curve corresponding to λ_i in A (resp. B), for each $1 \leq i \leq 3$. Adopting (for comparison purposes) notation from [5, Section 4.2], let $\alpha_{na}, \alpha_{sa}, \rho_a \subset A$ be the triple of curves obtained by pushing $\lambda_{1a}, \lambda_{2a}, \lambda_{3a}$ into the interior of A and let $\alpha_{nb}, \alpha_{sb}, \rho_b \subset B$ be the triple of curves obtained by pushing $\lambda_{1b}, \lambda_{2b}, \lambda_{3b}$ into the interior of B. Let N be a manifold constructed by identifying an annular neighborhood of λ_{1a} in ∂A with an annular neighborhood of λ_{2b} in ∂B . (After the identification, call the annuli \mathcal{A}_n and \mathcal{A}_s with core curves λ_1, λ_2 respectively.) Then identify the two 4-punctured spheres $\partial A - (\mathcal{A}_n \cup \mathcal{A}_s)$ and $\partial B - (\mathcal{A}_n \cup \mathcal{A}_s)$ by any homeomorphism.

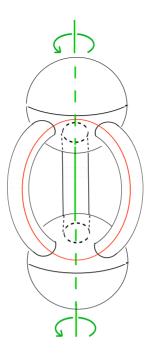


Figure 1

This construction defines a genus 2 Heegaard structure on N, of course, but it also defines a genus 2 Heegaard splitting on M_0 , the manifold obtained from N by arbitrary Dehn surgery on just the two curves $\rho_a \subset A$ and $\rho_b \subset B$, for surgery on these pushedin primitive curves leaves A and B still handlebodies, handlebodies which we denote respectively H_a and H_b . What's more, the curves λ_1, λ_2 are each primitive in both H_a and H_b (though they are not necessarily a primitive pair in either). Thus the Heegaard splitting $M_0 = H_a \cup H_b$ gives rise to two potentially different genus 2 Heegaard structures on any manifold M_H that is obtained by simultaneously doing further Dehn surgery on the two curves λ_1, λ_2 . That is, a manifold M_H obtained by arbitrary Dehn surgery on all four curves $\lambda_1, \lambda_2, \rho_a, \rho_b \subset N$ has two possibly distinct genus 2 Heegaard splittings, Dehn derived from the Heegaard splitting $M_0 = H_a \cup H_b$. One Heegaard structure $M_H = A_1 \cup B_2$ is obtained by pushing λ_1 to $\alpha_{na} \subset \operatorname{int} A$ and λ_2 to $\alpha_{sb} \subset \operatorname{int} B$ before doing Dehn surgeries on the four curves; the other $M_H = A_2 \cup B_1$ is obtained by pushing λ_1 to $\alpha_{nb} \subset \operatorname{int} B$ and λ_2 to $\alpha_{sa} \subset \operatorname{int} A$ before doing the Dehn surgeries. In each case, exactly two of the four Dehn surgered curves lie in each handlebody A and B before the Dehn surgery, and in that handlebody are a pushed-in primitive pair.

Proposition 3.1 The two Heegaard splittings $A_1 \cup B_2$ and $A_2 \cup B_1$ of M_H become isotopic after at most a single stabilization.

Proof Let \overline{A} and \overline{B} be the genus 3 handlebodies derived from A and B respectively, just as \overline{H} was derived from H. Here is a natural genus 3 Heegaard splitting of M_H : in contrast to the construction above, push *both* λ_1 to α_{na} and λ_2 to α_{sa} , so both curves (as well as ρ_a) lie in A before doing the Dehn surgeries. Although A may no longer be a handlebody after the Dehn surgeries, it follows from the discussion above that the result on \overline{A} of the surgery on the three curves $\alpha_{na}, \alpha_{sa}, \rho_a \subset \overline{A} \subset A$ is still a genus three handlebody $\overline{A'}$. The complement of $\overline{A'}$ in M_H is also a handlebody B': a single 1-handle is added to B and surgery is done on the single curve $\rho_b \subset B$. Thus $M_H = \overline{A'} \cup B'$ is a genus 3 Heegaard splitting of M_H .

It's fairly easy to see that this Heegaard splitting is a stabilization of $A_1 \cup B_2$ (and so, symmetrically, $A_2 \cup B_1$). Indeed, an alternate way to construct $\overline{A'} \cup B'$ is to begin with $A_1 \cup B_2$ and add to A_1 (and so subtract from B_2) a regular neighborhood of the curve $\alpha_{sb} \subset int(B)$ and a straight arc from ∂B to α_{sb} . From this point of view, the inclusion $B' \subset B_2$ defines a genus 3 Heegaard splitting of the genus 2 handlebody B_2 , and any such Heegaard splitting is necessarily stabilized (see the paper by the second author and Thompson [8, Lemma 2.7]). The pair of stabilizing disks are also a pair of stabilizing disks for $\overline{A'} \cup B'$

4 A second construction, and a hybrid

Here is another natural, but less naive, way to find disjoint pairs of primitive curves on the boundary of a genus 2 handlebody and so to create a Dehn-derived pair of Heegaard splittings. Let F denote a torus with the interior of a disk removed. Then $F \times I$ is a genus 2 handlebody. For γ any properly embedded essential simple closed curve in F, $\gamma \times \{0\}$ (or symmetrically $\gamma \times \{1\}$) is a primitive curve in the handlebody $F \times I$. Indeed, for δ a properly embedded arc in F intersecting γ once, $\delta \times I$ is a meridian disk in $F \times I$ that intersects $\gamma \times \{0\}$ exactly once.

Following this observation, and the example of the previous section, here is a recipe for constructing candidate 3-manifolds. Begin with two copies *A* and *B* of the surface *F* and choose two essential (not necessarily disjoint) simple closed curves $\alpha_0, \alpha_1 \subset A$ and two essential (not necessarily disjoint) simple closed curves $\beta_0, \beta_1 \subset B$. Let $\lambda_{0a} = \alpha_0 \times \{0\} \subset \partial(A \times I), \lambda_{1a} = \alpha_1 \times \{1\} \subset \partial(A \times I), \lambda_{0b} = \beta_0 \times \{0\} \subset \partial(B \times I), \lambda_{1b} = \beta_1 \times \{1\} \subset \partial(B \times I)$. Identify an annular neighborhood of λ_{0a} in $A \times \{0\}$ with an annular neighborhood of λ_{0b} in $B \times \{0\}$ and call the core curve of the resulting

annulus λ_0 . Similarly identify an annular neighborhood of λ_{1a} in $A \times \{1\}$ with an annular neighborhood of λ_{1b} in $B \times \{1\}$ and call the core curve of the resulting annulus λ_1 . Complete the identification of $\partial(A \times I)$ with $\partial(B \times I)$ along the remaining 4–punctured sphere arbitrarily. Call the resulting closed 3–manifold M_0 , with Heegaard splitting $M_0 = (A \times I) \cup (B \times I)$.

The 3-manifold $M_{\times I}$ obtained from M_0 by doing arbitrary Dehn surgeries to the simple closed curves λ_0 and λ_1 has a Dehn-derived pair of Heegaard splittings: one comes from first pushing λ_0 into $A \times I$ and λ_1 into $B \times I$ before the Dehn surgery, the other comes from first pushing λ_1 into $A \times I$ and λ_0 into $B \times I$ before the Dehn surgery.

Remarks on stabilization It is not apparent to us that a single stabilization will make the two Dehn-derived splittings of $M_{\times I}$ equivalent. The argument of Proposition 3.1 does not immediately carry over: if both curves λ_{0a} and λ_{1a} are pushed into $A \times I$ there is no apparent arc so that the complement $\overline{A \times I}$ of a neighborhood of the arc in $A \times I$ is a genus 3 handlebody after an arbitrary Dehn surgery on the pushed in λ_{0a} and λ_{1a} . If there is a proper arc γ in A that intersects both curves $\alpha_0 \subset A$ and $\alpha_1 \subset A$ in a single point, then the complement $\overline{A \times I}$ after pushing the interior of γ into $A \times I$ is a genus 3 handlebody, and so a single stabilization suffices, but having such an arc γ is not the general situation. (What is required for such an arc γ to exist is that the slopes of $\alpha_0 \alpha_1$ in A are a distance at most two apart in the Farey graph (see Minsky [4, Figure 1]). In that case γ has the slope that is incident to the slopes of both α_0 and α_1 in the Farey graph.)

On the other hand, it is relatively easy to show that two stabilizations suffice to make the two splittings equivalent. To see this, push both λ_0 and λ_1 into $A \times I$ and connect them to respectively $A \times \{0\}$ and $A \times \{1\}$ by straight arcs. Then add a regular neighborhood of the arcs and of the pushed in curves λ_0 and λ_1 to $B \times I$ to create a genus 4 handlebody $\overline{B \times I}$ and simultaneously subtract the regular neighborhood from $A \times I$ to get the genus 4 handlebody $\overline{A \times I}$. The resulting genus 4 Heegaard splitting $M_0 = \overline{A \times I} \cup \overline{B \times I}$ becomes a Heegaard splitting $H_a^+ \cup H_b^+$ of $M_{\times I}$ after the prescribed Dehn surgery on λ_0 and λ_1 . Using the argument of Proposition 3.1 it is easy to see that the Heegaard splitting $H_a^+ \cup H_b^+$ destablizes to the genus 3 splitting obtained by instead pushing λ_0 into $B \times I$ and then adding to $B \times I$ a regular neighborhood of $\lambda_1 \subset (A \times I)$ and a straight arc attaching it to $A \times \{1\}$. The argument of Proposition 3.1 applied again shows that this Heegaard splitting destabilizes to the genus 2 splitting in which λ_0 is pushed into $B \times I$ and λ_1 into $A \times I$, one of the Dehn-derived splittings. But this destabilization process is clearly symmetric: we could equally well have destabilized to the other genus 2 splitting, in which λ_0 is pushed into $A \times I$ and λ_1 into $B \times I$, and this is the other Dehn-derived splitting.

A further, call it a *hybrid* example of a Dehn-derived pair of splittings comes by combining the two constructions above: Identify annular neighborhoods of $\lambda_1, \lambda_2 \subset \partial H$ from Section 3 with annular neighborhoods of $\lambda_{0b}, \lambda_{1b} \subset \partial (B \times I)$ and identify the rest of ∂H with the rest of $\partial (B \times I)$ in any way. This gives a closed 3-manifold Nwith a Heegaard splitting $H \cup (B \times I)$. Let M_0 be a 3-manifold obtained by doing an arbitrary Dehn surgery on $\lambda_3 \subset \partial H$, after pushing it into int(H). Then M_0 has the genus 2 Heegaard splitting (exploiting the notation used above) $M_0 = H_a \cup (B \times I)$. Let M_{hybrid} be a closed 3-manifold obtained from M_0 by arbitrary Dehn surgeries on the two remaining curves $\lambda_1, \lambda_2 \subset \partial H_a \subset M_0$. The Dehn-derived pair of Heegaard splittings for M_{hybrid} is obtained by alternatively pushing λ_1 into H_a and λ_2 into $B \times I$ or vice versa. A single stabilization suffices to make the two splittings equivalent, essentially by the same argument as for M_H , in Proposition 3.1.

5 A taxonomy of Dehn-derived splittings

Sections 3 and 4 give concrete examples of pairs of Dehn-derived fillings. In this section we show that these examples in fact constitute all pairs of Dehn-derived splittings. The argument exploits Berge's classification of pairs of primitive curves on genus 2 handlebodies [1], though the classification here is slightly different.

Let *H* be a genus 2 handlebody, with $\lambda_1, \lambda_2, \lambda_3 \subset \partial H$ the disjoint simple closed curves described in Section 3. Denote by ρ the curve in the interior of *H* obtained by pushing λ_3 into *H* and let H_{surg} denote the handlebody obtained from *H* by a specified Dehn surgery on $\rho \subset int(H)$. As in Section 4, let *F* denote a torus with the interior of a disk removed.

Proposition 5.1 (Berge) Suppose α and β are disjoint non-parallel primitive curves on the boundary of a genus 2 handlebody *H*. Then either

- (A) there is a Dehn surgery on $\rho \subset H$ and a homeomorphism $h: H \to H_{surg}$ so that $h(\alpha) = \lambda_1 \subset \partial H_{surg}$ and $h(\beta) = \lambda_2 \subset \partial H_{surg}$ or
- (B) there is a homeomorphism $h: H \to F \times I$ so that $h(\alpha) \subset F \times \{0\}$ and $h(\beta) \subset F \times \{1\}$.

Proof This classification is a variant of that described in [1]. The Type II pair there, as well as some pairs of Type I, are exactly as described in alternative (B). The interest is in the third example of a Type I pair, in [1, Lemma 3.8 (3) via Figure 3]. In that example, *H* is viewed as divided into two solid tori by a separating disk *D*; let λ_a and λ_b be longitudes of the two solid tori into which *D* divides *H*. Then β is parallel to

 λ_b , and α is the band sum, via a band that crosses D once, of λ_b with a torus knot on the solid torus containing λ_a . This picture is equivalent to letting α be the band sum $\lambda_a \# \lambda_b$ (through D) of λ_b with λ_a , and then performing a Dehn surgery on a disjoint copy of λ_a that has been pushed into H, to become a core of the solid torus on which λ_a lies. Now translate: relabel $\lambda_b \subset \partial H$ as λ_2 and $\lambda_a \subset \partial H$ as λ_3 . Then $\lambda_a \# \lambda_b$ corresponds to λ_1 . The construction just described is then to push λ_3 into the interior of H and perform some surgery to get H_{surg} . Afterwards α corresponds to $\lambda_1 \subset \partial H_{surg}$ and β corresponds to $\lambda_2 \subset \partial H_{surg}$. This is exactly alternative (A). \Box

Following Proposition 5.1 there is a fairly clear description of the cases of multiple Heegaard splittings that are missing from [5]. According to [7] the only missing cases are pairs of splittings that are Dehn-derived from an initial splitting $H_{AX} \cup H_{BY}$ of a manifold M_0 . First determine which of alternatives (A) and (B) apply to the pairs of surgery curves as they lie on the boundaries of the respective handlebodies: $\{a_1, c_2\} \subset H_{AX}$ or $\{a_2, c_1\} \subset H_{BY}$. If both are of type (A) then the pair of splittings is Dehn-derived as in the construction of M_H in Section 3. If both are of type (B) then the pair of splittings is Dehn-derived as in the construction of $M_{\times I}$ in Section 4. If one is of type (A) and one of type (B) then the pair of splittings is Dehn-derived as in the construction of M_{hybrid} in Section 4.

It is worth mentioning that there is another view of a pair of primitive curves lying on a handlebody as in (A) of Proposition 5.1, a view that more closely resembles that in (B): Let α , β , γ be simple closed curves in F so that each pair of curves intersects in exactly one point. (For example, choose curves in F of slopes $0, 1, \infty$.) Then it is fairly easy to see that the three curves $\alpha \times \{0\}, \beta \times \{1\}, \gamma \times \{\frac{1}{2}\}$ lie in the handlebody $F \times I$ just as $\lambda_1, \lambda_2, \rho$ lie in H in the description preceding Proposition 5.1. So the primitive curves in description (A) can be made to look like a special case of those in description (B), but with the cost that an extra Dehn surgery has to be performed on a specific curve in the interior of $F \times I$. This is the twisted product view of [1, 3.2].

6 Distance

It would seem possible that the Dehn-derived pairs of Heegaard splittings exhibited above could coincidentally all be contained among the examples already listed in [5], for there is no claim that the types of examples of multiple Heegaard splittings we have offered here and in [5] do not overlap. But in fact there is an invariant which does show that at least some Dehn-derived pairs of Heegaard splittings described above did not already occur in a different guise in [5]. This invariant had not yet been introduced when [5] was written and is called the *(Hempel) distance* of the Heegaard splitting (see Hempel [3]). We briefly review:

Definition 6.1 A Heegaard splitting $H_1 \cup_S H_2$ has Hempel distance at most *n* if there is a sequence c_0, \ldots, c_n of essential simple closed curves in the splitting surface *S* so that

- for each $i = 1, \ldots, n, c_i \cap c_{i-1} = \emptyset$
- c_0 bounds a disk in H_1
- c_n bounds a disk in H_2

If the splitting has distance $\leq n$ but not $\leq n - 1$, then the distance d(S) = n.

A Heegaard splitting of distance 0 is called *reducible*; one of distance ≤ 1 is called *weakly reducible*. Any Heegaard splitting of a reducible manifold is reducible. A Heegaard splitting of distance ≤ 2 is said to have the *disjoint curve property* (see Thompson [9]); any Heegaard splitting of a toroidal 3-manifold has the disjoint curve property [3; 9]. A weakly reducible genus 2 Heegaard splitting is also reducible, so an irreducible Heegaard splitting of genus 2 has distance at least 2 [9].

In the other direction we have:

Proposition 6.2 Suppose the manifold *M* has a Dehn-derived pair of Heegaard splittings. Then each of these Heegaard splittings has Hempel distance at most 3.

Proof Suppose the splittings are Dehn-derived from a splitting $M_0 = H_a \cup_S H_b$ via the disjoint pair of simple closed curves $\lambda_1, \lambda_2 \subset S$. With no loss of generality, consider the splitting $M = A \cup_S B$ obtained by pushing λ_1 into $\operatorname{int}(H_a)$ and λ_2 into $\operatorname{int}(H_b)$ before doing Dehn surgery on the λ_i . Since λ_1 is primitive in H_a there is a properly embedded essential disk $D_a \subset H_a$ that is disjoint from λ_1 . (For example D_a can be obtained from a meridian disk $D_1 \subset H_a$ that intersects λ_1 in a single point by band-summing together two copies of D_1 along a subarc of $\lambda_1 - D_1$.) D_a is then also disjoint from the curve $\alpha_1 \subset H_a$ obtained by pushing λ_1 into $\operatorname{int}(H_a)$, so D_a remains intact as a meridian of A after surgery on α_1 . Hence ∂D_a and λ_1 are disjoint curves in ∂A .

Symmetrically, there is a meridian $D_b \subset B$ so that ∂D_b and λ_2 are disjoint curves in ∂B . Then the sequence $\partial D_a, \lambda_1, \lambda_2, \partial D_b$ shows that the splitting $A \cup_S B$ has distance at most 3.

Proposition 6.3 All examples of multiple Heegaard splittings appearing in [5, Section 4] have Hempel distance ≤ 2 .

Algebraic & Geometric Topology, Volume 11 (2011)

Proof Following the comments above we can restrict attention to irreducible, atoroidal manifolds. We briefly run through the examples as they appear in [5, Section 4]. Typically the description of an example $H_1 \cup_S H_2$ in [5] consists of two parts: A collection of annuli $\mathcal{A} \subset S$ along which ∂H_1 and ∂H_2 are identified, followed by an arbitrary identification of $\partial H_1 - \mathcal{A}$ with $\partial H_2 - \mathcal{A}$. From this point of view the simple closed curves $\partial \mathcal{A} \subset S$ that separate one sort of region from the other will be called the *seams* of the Heegaard splitting. We will observe that in [5] some seam is always disjoint from an essential disk in H_1 and an essential disk in H_2 . This demonstrates that the splitting has the disjoint curve property and so has distance ≤ 2 .

To be specific: In [5, Subsection 4.1], [5, Subsection 4.2, Variation 1] and [5, Subsection 4.4, Variations 1 and 2], the meridians of the 1-handles e_a and e_b are disjoint from the seams. [5, Subsection 4.2, Variation 2] is slightly more complicated. It is a bit like the construction in Section 3 above: Handlebodies A and B are identified along neighborhoods of all three curves λ_i , i = 1, 2, 3, Dehn surgery is done to all three, with λ_1, λ_2 pushed into A and λ_3 into B (then vice versa). But there is a meridian of A disjoint from λ_1 and λ_2 and a meridian of B disjoint from λ_1 and λ_3 , so a seam parallel to λ_1 demonstrates that the splitting of [5, Subsection 4.2, Variation 2] has the disjoint curve property.

The manifolds in [5, Subsection 4.3] and [5, Subsection 4.4, Variations 3, 4, and 7] are all toroidal, so they are of distance ≤ 2 . What remains are [5, Subsection 4.4, Variations 5 and 6] and we adopt the terminology there. In Variation 5, with, say, $\rho_a \subset A_-$, the seams that are the boundary of the 4-punctured sphere $\partial A_- \cap \partial \Gamma$ are all disjoint from the meridian of the 1-handle $e_b \subset B$ and, in A_- , any one of these seams together with ρ_a lie in A_- as two of the λ_i 's of Section 3 above lie in H. In particular, there is a meridian of A_- disjoint from both the seam and from ρ_a . Thus that seam again illustrates that the splitting has the disjoint curve property.

The argument for Variation 6 is much the same. First note that if, in that Variation, Dehn surgeries are done on two curves parallel to σ , then the resulting manifold has a Seifert piece and so has distance ≤ 2 . So the only change we need to consider from Variation 5 is Dehn surgery on a single curve parallel to σ . If that curve lies in *B* the argument for Variation 5 suffices; if it is in A_{-} this merely forces us to pick a specific seam in the argument for Variation 5, a seam parallel to the new surgery curve. \Box

In contrast, some of the examples constructed in this paper can be shown to have distance 3, so they cannot have appeared in any case considered in [5]. See [2] (also [6]) for details.

References

- [1] **J Berge**, A classification of pairs of disjoint nonparallel primitives in the boundary of a genus two handlebody arXiv:0910.3038
- [2] **J Berge**, *A closed orientable 3–manifold with distinct distance three genus two Heegaard splittings*, to appear
- J Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001) 631–657 MR1838999
- [4] YN Minsky, *The classification of punctured-torus groups*, Ann. of Math. (2) 149 (1999) 559–626 MR1689341
- [5] H Rubinstein, M Scharlemann, Genus two Heegaard splittings of orientable threemanifolds, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)", Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 489–553 MR1734422
- [6] M Scharlemann, Berge's distance 3 pairs of genus 2 Heegaard splittings arXiv: 1002.4887
- [7] M Scharlemann, Genus two Heegaard splittings: an omission, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)", Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 577–581
- [8] M Scharlemann, A Thompson, *Heegaard splittings of* (surface) × *I are standard*, Math. Ann. 295 (1993) 549–564 MR1204837
- [9] A Thompson, *The disjoint curve property and genus 2 manifolds*, Topology Appl. 97 (1999) 273–279 MR1711418

Independent, Madison 53711 Wisconsin, USA

Department of Mathematics, University of California Santa Barbara CA 93106, USA

jberge@charter.net, mgscharl@math.ucsb.edu

Received: 10 May 2010 Revised: 11 April 2011

Algebraic & Geometric Topology, Volume 11 (2011)