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Toda brackets and congruences of modular forms

GERD LAURES

This paper investigates the relation between Toda brackets and congruences of modu-
lar forms. It determines the f –invariant of Toda brackets and thereby generalizes the
formulas of J F Adams for the classical e–invariant to the chromatic second filtration.

11F33, 55N34, 55T15; 55Q45

1 Introduction

In this work congruences between modular forms are used to compute Toda brackets
in the second Adams–Novikov filtration. The translation from stable homotopy classes
between spheres and modular forms is based on the tertiary invariant

f W �st
2n�2 �! .D=M0CMn/Q=Z

defined by the author in [19] with values in Katz’s ring of divided congruences. The
f –invariant generalizes the classical e invariant of Frank Adams. The purpose of this
work is an extension of Adams’ formulas [1, Section 11] for the e–invariant of Toda
brackets to the second filtration:

e h˛;p�; ˇi D �pe.˛/e.ˇ/

e hp�; ˛; ˇi D �pıe.˛/e.ˇ/

e h˛; ˇ;p�i D �pıe.˛/e.ˇ/

modulo the indeterminacy. Here, ı is a certain number which only depends on the
dimensions.

The e–invariant is not strong enough to detect elements in the second filtration. The
reason is the following: the e–invariant is based on K–theory and in the K–based
Adams–Novikov spectral sequence there aren’t any classes in the second line other than
classes in the image of J . In [19] K–theory was replaced by elliptic cohomology theory
of level N (see Brylinski [11] and Franke [14]). It was shown that the corresponding
tertiary invariant f is injective on the 2–line. So, it is natural to ask for a precise
relationship between the f –invariant and Toda brackets.
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1894 Gerd Laures

The 2–line of the classical Adams–Novikov spectral sequence was computed for odd
primes by Miller, Ravenel and Wilson in [24] with the help of the chromatic spectral
sequence and by Shimomura for p D 2 in [27]. In contrast to the 1–line it is not
cyclic. The number of generators is unbounded when considered as a function of
the dimension. Its complicated structure makes it hard to determine classes such as
Massey products. The f –invariant simplifies the 2–line in two steps: first the complex
orientation gives an injective map into the elliptic based E2 term and in the second
step the extension group is mapped to Katz’s ring of divided congruences. In this paper
it is reinterpreted as a coboundary of a resolution which can be viewed as an integral
version of a chromatic resolution.

The paper starts with a recollection on higher homotopy invariants in general. Here, the
edge homomorphisms are used to construct invariants for stable homotopy classes with
the help of any theory E . Under mild conditions the first few invariants take values
in the E–based Adams–Novikov E2 –term. Then the relation between Toda brackets
and Massey products is explained. Adams considered Massey products for extensions
of exact sequences. However, it turns out that the cobar complex is better suited to
keep the homological algebra small for higher filtrations. This holds especially when a
Q=Z– reduction is used to come down by one filtration. It follows a computational
section where the commutation between the coboundary operator and Toda brackets is
investigated. Proposition 5.2 gives a precise translation of the elliptic Adams–Novikov
E2 term by primitives in the ring of divided congruences. It comes from a resolution
which is closely related to the chromatic resolution. Finally, the desired formulas for
the f –invariants of Toda brackets are given. In the last section some examples are
calculated including the Kervaire class in dimension 30 as 4–fold Toda bracket.

2 Higher Homotopy invariants

Suppose E is a flat ring spectrum. Let xE be the fibre of the unit map S0 �!E . Then
there is spectral sequence .Er ; dr / with the associated filtration of �S

� given for s � 0

by
F s
D im.�� xEs

�! ��S
0/

The differential dr raises the filtration by r . Hence there are well defined ‘edge
homomorphisms’

esW F
s
�! F s=F sC1 � Es

1� Es
sC1:

For a stable class ˛ the value es.˛/ is defined if and only if er .˛/ vanishes for all
r < s . It associates to ˛ its representative in the Es

sC1
–term. The invariants are natural

with respect to maps between spectral sequences.
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Toda brackets and congruences of modular forms 1895

In case E is complex bordism M U this is the classical Adams–Novikov spectral
sequence. Its quotient group F0=F1 is concentrated in dimension 0 and the invariant

e0W �
S
0 D F0

�! �0.M U /D Z

takes values in the integers. It associates to a stable self map of S0 its degree d . In
fact we may replace E by any other spectrum with the property that the Hurewicz
homomorphism is injective in dimension 0. If E has torsion coefficients the map e0

can be non trivial in positive dimensions. For instance this happens for real K–theory
in dimensions 8kC 1 and 8kC 2.

The invariant e1 has been studied by Adams for real and complex K–theory in [1]. It
can be described in terms of exact sequences as follows: Suppose the e0 invariant of
˛ 2 �S

n vanishes and let C˛ be the cofibre of ˛ . Then the sequence

E�S
0 � E�C˛ � E�S

nC1

of E�E–comodules is short exact and hence determines an element in

E
1;nC1
2

Š Ext1;nC1
E�E

.E�;E�/:

Adams determines the extension group for K–theory with the help of a monomorphism

�W E
1;nC1
2

� Q=Z:

In particular, the extension term is cyclic. For K–theory its order in dimension
nD 4t � 1 is the denominator of the divided Bernoulli number Bt=2t . The composite
�e1 is called the classical e–invariant.

For variations of the topological modular forms spectrum TMF the invariant e2 has been
studied (in chronological order) by the author [19; 20], by Hornborstel–Naumann [15],
by Behrens–Laures in [7] and by von Bodecker [9; 8]. For its relation to characteristic
classes of manifolds with corners see Laures [20] and for an interpretation as a spectral
invariant see von Bodecker [10] and Bunke–Naumann [12].

Before describing the invariant we first take a look at the case of complex bordism. Here,
for positive even n the e1 –invariant vanishes. Moreover, there are no d2 –differentials
hitting the 2–line. Thus the E2

3
–term injects into the E2

2
term. This yields a well

defined homomorphism

e2W �
S
n �!E

2;nC2
2

D Ext2;nC2
E�E

.E�;E�/:

Let us describe this invariant in terms of exact sequences in more detail: observe that
any lift x̨ of a stable class ˛ is unique since E� and E�E are evenly graded. Moreover,
the sequence

E�† xE � E�†Cx̨ � E�S
nC2
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1896 Gerd Laures

is short exact and can be spliced together with

E�S
0 � E�E � E�† xE

to get an extension of degree 2.

Next suppose E is complex oriented with .p; v1/ regular and v2 invertible mod
.p; v1/. Then locally at p the 2–line of E coincides with the 2–line of v�1

2
M U.p/

(see Laures [20, 4.3.3]) and there is a well understood injection (see Ravenel [25])

E2
2.M U.p//� E2

2.v
�1
2 M U.p//ŠE2

2.E/:

In case of �1.N / topological modular forms E D TMF1.N / there is an injection

E
2;2t
2

� .D=M0CMt /Q=Z

where D is the ring of divided congruences and M the ring of modular forms. This
map will be reviewed in Section 5. Furthermore, Proposition 5.2 describes its precise
image.

The e3 –invariant is defined for odd dimensional homotopy classes in the cokernel of
the J –homomorphism. It takes values in the E2 –term since all elements in the 1–line
are permanent cycles. Hence the invariant

e3W cokerJ �!E3
2 D Ext3E�E.E�;E�/

is well defined. It will not be further investigated here.

3 Toda brackets and Massey products

In the sequel we assume that E is a complex oriented flat ring spectrum. The E1 –term
of the E–based Adams–Novikov spectral sequence is the cobar complex �� which
is a differential graded algebra. We use the notation � for the comodule E�E over
ADE� and x� for the augmentation ideal E�† xE . Then the differential

d1W
x�˝s
�! x�˝.sC1/

sends Œ˛1j � � � j˛s � to Œ1j˛1j � � � j˛s �� Œ˛
0
1
j˛00

1
j � � � j˛s �C� � �C .�1/sC1Œ˛1j � � � j˛sj1� and

the product is given by concatenation. In fact, each .Er ; dr / is a differential graded
algebra in which Massey products can be defined (see Ravenel [25, Appendix]). Massey
products in the cobar complex are related to Toda brackets in stable homotopy. This
relation has been studied by Adams, Moss, Lawrence, May, Kochman and others and
is well known.

Recall the following definition from Kochman [18].
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Toda brackets and congruences of modular forms 1897

Definition 3.1 Suppose u 2E
s;tCs
r and w 2E

s0;tCs0

r 0 with s0 < s . Then dr 0.w/ is a
crossing differential of dr .u/ if s0C r 0 > sC r .

The following result reformulates the result [18, 5.7.5] for the homotopy invariants of
the last section.

Proposition 3.2 Suppose that the Toda bracket h˛1; : : : ; ˛ni is strictly defined. Let ai

be a representative of es.i/.˛i/ in the M U –based E
s.i/
rC1

for some r . Suppose further
that the Massey product ha1; : : : ; ani is defined in ErC1 and that there are no crossing
differentials of dr aij for all defining systems .aij /.

Then for s D
P

i s.i/ there is a class ˛ 2 h˛1; : : : ; ˛ni of filtration s� nC 2 with

es�nC2.˛/ 2 ha1; : : : ; ani :

Proof Since ai converges to ˛i we can apply of [18, 5.7.5]. Hence ha1; : : : ; ani

consists of infinite cycles which converge to elements of h˛1; : : : ; ˛ni. Since all
elements have filtration s� nC 2 the claim follows.

Corollary 3.3 Under the assumptions of Proposition 3.2 we have

es�nC2.˛/ 2 ha1; : : : ; ani

for all spectral sequences based on a complex oriented theory E .

Proof This follows from the naturality of all constructions.

The proposition suggests that for the ek –invariant of n–fold Toda brackets one should
consider only sums of filtrations s D k C n� 2. The cases for n D 3 and k D 0; 1

were considered by Adams in [1, Theorem 5.3].

The case k D 2 is the object of the rest of the paper. In the next section triple Massey
products are considered. Note that in this case there aren’t any crossing differentials in
the defining system as long as there aren’t any r –boundaries in the 3–line for r � 2.
Moreover, if the Toda bracket h˛1; ˛2; ˛3i is defined then so is the Massey product
ha1; a2; a3i.

Corollary 3.4 (i) Suppose that the Toda bracket h˛1; ˛2; ˛3i is defined. Then

e2 h˛1; ˛2; ˛3i D
˝
es1
˛1; es2

˛2; es3
˛3

˛
with indeterminacy

es1
˛1H s2Cs3�1;j˛2jCs2Cj˛3jCs3.��/CH s1Cs1�1;j˛1jCs1Cj˛2jCs2.��/es3

˛3:
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(ii) Suppose that the Toda bracket h˛1; ˛2; ˛3; ˛4i is strictly defined and that there
are no crossing differentials. Then

e2h˛1; ˛2; ˛3; ˛4i D hes1
˛1; es2

˛2; es3
˛3; es4

˛4i

with indeterminacyX
a;b;c

ha; es3
˛3; es4

˛4iC hes1
˛1; b; es4

˛4iC hes1
˛1; es2

˛2; ci:

Proof Since the invariant e2 is multiplicative it maps the indeterminacy of the Toda
bracket

˛1�
S
j˛2jCj˛3jC1C�

S
j˛1jCj˛2jC1˛3

to the indeterminacy of the Massey product stated above. The same holds for the
4–fold products for which the indeterminacy can be found for the Toda bracket in
Kochman [17, Theorem 2.3.1] and for the Massey product in May [23, Proposition
2.4].

4 The Q=Z–reduction

Let .A; �/ be a Hopf algebroid. In this section we assume that .A; �/ has the following
properties:

(i) � is flat as an A–module.

(ii) A and � are torsion free.

(iii) The map �W AQ˝AQ! �Q which sends a˝b to a�R.b/ is an isomorphism.

Define the cosimplicial abelian group �n
Q DAnC1

Q with cofaces

@i.a0˝ � � �˝ an/D a0˝ � � �˝ ai�1˝ 1˝ aiC1˝ � � �˝ an:

The notation is justified to the fact that the map �˝n provides an isomorphism between
the complex �Q and the rationalized cobar complex. Its cohomology is concentrated
in dimension 0

H�.��Q/DH 0.��Q/DQ:

Its algebra structure is given by

.a0˝ � � �˝ an/˝ .b0˝ � � �˝ bm/ 7! a0˝ � � �˝ an�1˝ anb0˝ b1˝ � � �˝ bm:

The short exact sequence
�����Q ���Q=Z
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Toda brackets and congruences of modular forms 1899

yields a connecting isomorphism ıW H n�1.��Q=Z/!H n.��/ in positive dimensions.
Choose an augmentation � W �Q �! Q. Then the following observation is easily
verified.

Lemma 4.1 Let a 2�n be a cycle and suppose
P

a0˝� � �˝an 2�
n
Q is its rational-

ization. Then we have

ı�1Œa�D
hX

�.a0/a1˝ a2˝ � � �˝ an

i
:

Moreover, when writing b0 D
P
�.b0/b1˝ � � �˝ bn for b 2�n

Q we have

.db/0 D b� db0:

We are going to study the image of triple Massey products hx;y; zi under ı�1 . For
nD 2 there are three cases of interest:

.jyj D 0; jxjC jzj D 3/; .jyj D 1; jxjC jzj D 2/ and .jyj D 2; jxjC jzj D 1/:

We start with the first case.

Definition 4.2 Suppose ıŒa� 2H 2.��/ is represented by some a 2 AQ˝AQ . We
say that a is q–adapted for some q 2 Z if qa 2 � .

Lemma 4.3 q–torsion classes admit q–adapted representatives.

Proof Choose a representative a which is not yet q–adapted. Since ıŒa� is q-torsion
the element qa represents a boundary in �1

Q=Z D �Q=Z . Hence there is r 2AQ with

zaD qaC dr 2 �:

and za=q is a q–adapted representative.

Proposition 4.4 Suppose that for some q 2 Z the Massey product hıŒa�; q; ıŒc�i is
defined.

(i) For jŒa�j D 1; jŒc�j D 0 and a q–adapted we have

ıŒqac� 2 hıŒa�; q; ıŒc�i :

(ii) For jŒa�j D 0; jŒc�j D 1 and c q–adapted we have

ıŒ�qac� 2 hıŒa�; q; ıŒc�i :
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Proof For (i) observe that ıŒa� is represented by da 2 �˝2 . Hence q da is the
boundary of qa 2 � . Similarly, let dc 2 � then q dc is the boundary of qc 2A. Thus
we obtain the representative of the Massey product

Œda qc � qa dc� 2 hıŒa�; q; ıŒc�i :

The lemma tells us that the desired class is obtained by the applying � to the first factor
in its tensor product expression. Alternatively, one writes the representative as d.qac/

and obtains the result. The second formula follows from a similar calculation.

We turn to the other cases.

Lemma 4.5 For s; t � 1 the product of classes ıŒa� 2H s��; ıŒb� 2H t�� vanishes
if and only if there is an r 2A˝sCt�1

Q with

.a dbC dr/ 2 �sCt�1:

We write r D r.a; b/ for any such element.

Proof If ıŒa�ıŒb�D 0 there is x 2 �sCt�1 with

dx D da db:

Applying �1˝ � � �˝ 1 gives

x� dx0 D .a� da0/db

and we set r D x0� a0 db . Conversely, we have

d.a dbC dr/D da db:

Proposition 4.6 Suppose that the Massey product hıŒa�; ıŒb�; ıŒc�i is defined. Then
the following holds:

(i) For jaj D jbj D jcj D 0,

ıŒa.b dcC dr.b; c//C r.a; b/dc� 2 hıŒa�; ıŒb�; ıŒc�i :

(ii) For jaj D 1, jbj D 0 and c D q 2 Z,

ıŒq.abC r.a; b//� 2 hıŒa�; ıŒb�; qi :

(iii) For aD q 2 Z, jbj D 0 and jcj D 1,

ıŒ�qr.b; c//� 2 hq; ıŒb�; ıŒc�i :
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(iv) If hq; ıŒb�; ıŒc�i with jbj D 1, jcj D 0 is defined and b is q–adapted then

ıŒqr.b; c/� 2 hq; ıŒb�; ıŒc�i

(v) If hıŒa�; ıŒb�; qi with jbj D 1, jaj D 0 is defined and b is q–adapted then

ıŒ�q.abC r.a; b//� 2 hıŒa�; ıŒb�; qi :

Proof By the lemma a representative of the first Massey product is

da .b dcC dr.b; c//C .a dbC dr.a; b// dc:

Applying �1˝ 1 gives

a.b dcC dr.b; c//C r.a; b/ dc

as claimed. For (ii) a representative is

da qbC .a dbC dr.a; b//q:

In the last case it is
�q.b dcC dr.b; c//C qb dc:

Again applying �1˝ 1 gives the results up to boundary terms. The other Massey
products are obtained with the help of the lemma as before. In the case (iv) one gets

q.b dcC dr/C .�qb/dc D q dr

and in the last case

�da qbC .�a db� dr/q D�q.d.ab/C dr/:

We close this section with an example of a 4–fold Massey product. Note that in principle
other types and even higher Massey products can be calculated with the same method.

Proposition 4.7 Suppose a and b have degree 1 and are q–adapted. Then the follow-
ing conditions are equivalent:

(i) the Massey product hq; ıŒa�; q; ıŒb�i is defined

(ii) 0 2 hıŒa�; q; ıŒb�i

(iii) there are r 2AQ˝AQ and dv; dw 2 � with qabCa dwCdv bCdr 2 �˝2:

In this case the 4–fold product contains ı.�qr Cv dw/. Moreover, the same assertions
hold for hıŒa�; q; ıŒb�; qi.
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Proof A defining system can look like

q da q db

�qa�dv �qa�dv �qb�dw

0 x

In particular a defining system exists if there is a x 2 �˝2 with

dx D qd.ab/C dv dbC da dw:

Applying �1˝ 1˝ 1 gives x D qabC dv bC a dwC dr for some r . This shows
the equivalences. Finally, if x is as above the missing corner is �qr C v dw up to a
boundary.

5 Invariants in modular forms

For a ZŒ1=N �–algebra R let Mk.�1.N //R be the ring of �1.N / modular forms of
weight k over RŒ�N � which are meromorphic at the cusps. Let TMF1.N / denote the
corresponding spectrum of topological modular forms. Its coefficients ��TMF1.N /

are concentrated in even degrees, and we have

�2kTMF1.N /ŠMk.�1.N //ZŒ1=N �:

The spectrum TMF1.N / is complex orientable with formal group isomorphic to the
formal completion of the universal elliptic curve over the ring of �1.N / modular forms.
In fact, it is Landweber exact (see the author’s paper [19, Theorem 1.4, page 390f]).
Here and in some other places of the older literature as Brylinsky [11], Franke [14] and
Baker [2] it carried the names Ell�1.N / or E�1.N / . Nowadays one uses the notation
TMF1.N / since it is a complex oriented relative of the spectrum TMF of topological
modular forms. The theory TMF can be obtained as global sections of a sheaf of E1
spectra over some moduli space of elliptic curves. This interpretation will not be used
for the theory TMF1.N / in the article at hand. However, we mention the articles by
Behrens [6] and Lawson–Naumann [22] where this line of thought has been pursued.
Since the congruence subgroup �1.N / will be fixed once and for all we will remove it
from the notation and write TMF instead of TMF1.N / and Mk for Mk.�1.N //.

When localized at a prime the theory TMF has the same Adams Novikov E2 term as
the the Johnson–Wilson theories E.2/ by Laures [20, Lemma 4.3.3]. Moreover, it has
the advantage that it furnishes an interpretation of elements in the Adams–Novikov
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E2 –term in terms of congruences between modular forms. These have been extensively
studied in the literature.

Let D DD.�1.N // be the ring of divided congruences (see Katz [16]). An element
in D is a sum

P
fk of modular forms fk 2 .Mk/Q with an integral q–expansion,

that is, an expansion with coefficients in ZŒ1=N; �N �. The following key result is well
known (see Baker [3] for p 6D 2; 3 or Laures [20; 21] for the general case.)

Theorem 5.1 The K–homology of TMF vanishes in odd degrees and there is an
isomorphism

�0K ^TMF ŠD:

Set E D TMF . Consider the resolution of E� as E�E comodule

E�˝Q

�� ��

//_____ E�†K˝Q=Z //____

�� ��

E�† xK˝Q=Z

E�
??

??

E�˝Q=Z
??

??

E�† xK˝Q=Z

D

??

The middle sequence is exact since E� DM� is a pure subgroup of E�K DD . The
short exact sequences provide connecting homomorphisms ı for the extension groups.

Proposition 5.2 Let P .M /DHomE�E.E�;M / denote the primitives of a comodule
M . Then the sequence

��† xK˝Q=Z �! P .E�† xK˝Q=Z/
ı2

�! Ext2E�E.E�;E�/ �! 0

is exact. Moreover the f –invariant is the composite of e2 with the inclusion

Ext2;2n
E�E

.E�;E�/Š P .E2n�1
xK/=�2n�1

xK˝Q=Z � .D=M0CMn/Q=Z

Proof It is not hard to see that the cohomology of E�˝Q is concentrated in degree
and dimension 0. In fact, the map � gives a contracting homotopy. Hence, for positive
dimension we have the isomorphism

ıW Ext1.E�;E�˝Q=Z/ �! Ext2.E�;E�/:

Furthermore, the middle short exact sequence of the resolution gives the exact sequence

P .E�K˝Q=Z/ �! P .E�† xK˝Q=Z/
ı
�! Ext1.E�;E�˝Q=Z/:

Algebraic & Geometric Topology, Volume 11 (2011)
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We claim that ı is surjective in positive dimensions. For that it suffices to show that
the map into Ext1.E�;E�K˝Q=Z/ vanishes. This map admits a factorization

Ext1.E�;E�˝Q=Z/ �! Ext1.E�;E�E˝Q=Z/ �! Ext1.E�;E�K˝Q=Z/

induced by the ring map �0W E!K in E–homology. Since the middle term vanishes
we have shown that ı is surjective.

It remains to identify the first map. We claim that the map

��K˝Q=Z �! P .E�K˝Q=Z/

is an isomorphism. Let KT be the elliptic theory associated to the Tate curve. Its
coefficients are integral Laurent series in a variable q in all even degrees and they
vanish in odd degrees. There is the Miller character, that is, a ring map �W E!KT

which is the q–expansion map on coefficients. Consider the injective map

.�^ 1/�W E�K˝Q=Z �!KT �K˝Q=Z

which takes q–expansions. A primitive in its source gives a primitive in the target if
the target is viewed as a comodule over KT �KT . The primitives in the target all lie in
the primitive of the extended comodule KT �KT ˝Q=Z and hence in ��KT ˝Q=Z.
Since they also lie in KT �K ˝Q=Z they must lie in .��K/˝Q=Z. This group
coincides with ��.† xK/˝Q=Z in positive dimension and hence the claim follows.

The f –invariant is the composite of e2 with

H 2����2=d�1
�1˝1
�! �=d.Mn/˝Q=Z

1^�0
�! D=.M0CMn/Q=Z:

As we have seen before the second map gives an inverse of the connecting homomor-
phism. Hence the claim follows from the commutative diagram

H 1.�Q=Z/ P .E�† xK˝Q=Z/=� //ı

Š
oo D=.M0CMn/Q=Z

H 1.�Q=Z/

D

OO

P .x�˝Q=Z/=� //

1^�0

OO

ı

Š
oo �=d.Mn/Q=Z

1^�0

OO

in which a 1–cycle in the cobar complex of the left lower corner is send to itself under
the composite of the bottom row.

Remark 5.3 We will not study the primitives of

E�† xK D .D=Mn/Q=Z
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here since it is not needed for Toda brackets and the rest of this work. However, we
mention that the primitives are eigenforms under the action of the Hecke operations
and they are fixed under the action of the Adams operations (see Baker [4, 1.1]). This
suggests that the elements of the 2–line in the cokernel of J are related to newforms.
A precise relationship locally at primes p � 5 between the 2–line and certain p–adic
modular forms is described in the paper by Behrens [6].

The following result is due to Bunke and Naumann. It is very useful for explicit
calculations.

Lemma 5.4 (i) There exists a Z–basis f0 : : : fnk
of Mk such that qi.fj /D ıij

for all i; j .

(ii) For a basis as above, the map

.D=Mk/Q=Z �!
Y

i�nk

Q=Z; f 7!

 
q�.f �

nk�1X
iD0

qi.f /fi/

!
��nk

is injective.

Proof The first part is Bunke–Naumann [13, Lemma 9.2] and the second part is stated
there in terms of q–expansions.

Clearly, it suffices to check finitely many Fourier coefficients for a modular form in the
source. There are upper bounds for this number but we do not work them out here.

6 The f –invariant of Toda brackets

In this section we apply our formulas to the f –invariant of Toda brackets. We start
with the simplest case.

Theorem 6.1 Suppose that the Toda bracket h˛;p�; ˇi is defined for some ˛; ˇ in
positive dimensions m; n and some p 2 Z.

(i) Let the f –invariant of ˛ be defined. Choose a representative of f .˛/ whose
q–expansion is annihilated by p . Then we have

f h˛;p�; ˇi D pe.ˇ/f .˛/

with indeterminacy e.ˇ/H 0;mC2.��Q=Z/.
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(ii) Let the f –invariant of ˇ be defined. Choose a representative of f .˛/ whose
q–expansion is annihilated by p . Then we have

f h˛;p�; ˇi D �pe.˛/f .ˇ/

with indeterminacy e.˛/H 0;nC2.��Q=Z/.

Proof First note in view of Corollary 3.4 that the indeterminacy in the theorem
coincides with the image under the f –invariant of the Massey product indeterminacy.
For (i) we can choose a p–adapted representative a with ıŒa� D e2.˛/. Its image
under �0

� coincides with the normalized representative of f .˛/ up to a constant and a
modular form g of weight m=2C 1 for which pg is a Q=Z–cycle. Hence it follows
from Proposition 4.4 (i) with ıŒc�D e1ˇ

f h˛;p�; ˇi 3 �0
�Œpac�D pf .˛/e.ˇ/Cpge.ˇ/

which is the first claim. This shows (i) and (ii) is analogues.

Other Toda brackets are more complicated. We first need the

Definition 6.2 A divided congruence f in k variables has virtual weight n if there is
a modular form g of weight n with the same Q=Z Fourier coefficients ai1;i2;:::;ik

for
all i1; i2; : : : ; ik > 0. We write Œf �n for such a Q=Z–modular form g .

Lemma 6.3 Suppose f has virtual weight n.

(i) For k D 1 any two modular forms in the bracket Œf �n only differ by cycles in
�

0;2n
Q=Z .

(ii) For k D 2 any two modular forms in the bracket only differ by cycles in �1
Q=Z

and modular forms of the form g˝ 1 with g of weight n.

Proof For (i) two elements in Œf � differ by modular forms h of weight n with integral
expansion except the 0–coefficient. Any such h is a cycle in �0;2n

Q=Z . We remark for
n even and level 1 that the highest denominator in the constant coefficient appearing
among all such h is the divided Bernoulli number which happens if h is the divided
Eisenstein series xEn (see Serre [26]). For the case of two variables one observes that
for any difference modular form hD

P
h1˝ h2 it holdsX

h1˝ h2� h1h2˝ 1C h2˝ h1� 1˝ h1h2 D 0

(see Laures [19, Equation 3.2]). Hence, z D h�
P

h1h2˝ 1 is antisymmetric with
vanishing qi

L
q

j
R

–coefficients for i; j > 0. This implies that z is a cycle as one easily
verifies.
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In the following we write eM .˛/ for any representative of ı�1e1.˛/ in �0
Q=Z and

e.˛/D q0.eM .˛//:

Note that for j˛j D 4n� 1 and level 1 modular forms with 6 inverted we have

eM .˛/D e.˛/En

and e is the classical e–invariant.

Theorem 6.4 Suppose that the Toda bracket h˛; ˇ; 
 i is defined.

(i) Let j˛j D 2k � 1, jˇj D 2l � 1 and j
 j D 2m� 1. Then the modular forms
f .˛; ˇ/D ŒeM .˛/e.ˇ/�kCl and f .ˇ; 
 /D ŒeM .ˇ/e.
 /�lCm exist and we have

f h˛; ˇ; 
 i D eM .˛/.q0.f .ˇ; 
 //� e.ˇ/e.
 //C e.
 /f .˛; ˇ/

with indeterminacy eM .˛/q0H 0;2.lCm/.��Q=Z/C e.
 /H 0;2.kCl/.��Q=Z/.

(ii) Let j˛j D 2k � 2; jˇj D 2l � 1. Then Œf .˛/˝ eM .ˇ/�kCl exists and we have

f h˛; ˇ;p�i D pf .˛/e.ˇ/Cp�0
�Œf .˛/˝ eM .ˇ/�kCl

with indeterminacy pP ..D=MkCl/Q=Z/.

(iii) Let jˇj D 2l � 1; j
 j D 2m� 2. Then ŒeM .ˇ/˝f .
 /�lCm exists and we have

f hp�; ˇ; 
 i D �p�0
�ŒeM .ˇ/˝f .
 /�lCm

with indeterminacy pP ..D=MlCm/Q=Z/.

(iv) Let j˛j D 2k � 1 and jˇj D 2l � 2. Choose a representative of f .ˇ/ whose
q–expansion is annihilated by p . Then the modular form ŒeM .˛/˝ f .ˇ/�kCl

exists and we have

f h˛; ˇ;p�i D �peM .˛/f .ˇ/�p�0
�ŒeM .˛/˝f .ˇ/�kCl

with indeterminacy pP ..D=MkCl/Q=Z/.

(v) Let jˇj D 2l � 2 and j
 j D 2m� 1. Choose a representative of f .ˇ/ whose
q–expansion is annihilated by p . Then the modular form Œf .ˇ/˝ eM .
 /�lCm

exists and we have

f hp�; ˇ; 
 i D p�0
�Œf .ˇ/˝ eM .
 /�lCm

with indeterminacy pP ..D=MlCm/Q=Z/.
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Proof For (i) ˛ , ˇ , 
 is represented by aD eM .˛/, b D eM .ˇ/, c D eM .
 / in the
Q=Z–cobar complex. Since the product da db vanishes there is a modular form r of
degree kC l with a dbC dr 2 � DE�E . Applying �0

� gives

aq0.b/� abC q0.r/� r 2D:

Thus aq0.b/ is congruent to the modular form abC r of degree kC l up to a constant
and

f .˛; ˇ/D ŒeM .˛/e.ˇ/�kCl D abC r

modulo cycles of degree kCl . The analogues statement for b; c shows that the brackets
exist. The f –invariant of the Toda bracket is hence obtained from Proposition 4.6(i)
and the computation

f h˛; ˇ; 
 i D �0
�ı
�1
hıŒa�; ıŒb�; ıŒc�i

D �0
�Œa.b dcC dr.b; c//C r.a; b/dc�

D ab.q0.c/� c/C a.q0.r.b; c/� r.b; c//C r.a; b/.q0.c/� c/

D abq0.c/C aq0.r.b; c//C r.a; b/q0.c/

D aq0.f .ˇ; 
 /� bc/Cf .˛; ˇ/q0.c/

D eM .˛/.q0.f .ˇ; 
 //� e.ˇ/e.
 //C e.
 /f .˛; ˇ/

This is the result.

For (ii) we find with Lemma 4.5 a modular form r of weight kCl with a dbCdr 2�2 .
This is an expression with Fourier coefficients in variables qL ,qM and qR . For i; k > 0

we have

qi
Lq0

M qk
R.a dbC dr/D

X
qi.a1/q

0.a2/q
k.b/� qi.r1/q

k.r2/

D qi
Lqk

R

�X
a1q0.a2/˝ b� r1˝ r2

�
which hence is integral. This shows

r D Œf .˛/˝ eM .ˇ/�kCl :

We compute with Proposition 4.6(ii)

f h˛; ˇ;p�i D �0
�ı
�1
hıŒa�; ıŒb�;p�i

D �0
�.p.abC r//

D pf .˛/e.ˇ/Cp�0
�Œf .˛/˝ eM .ˇ/�kCl
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Similarly, for (iii) we have

f hp�; ˇ; 
 i D �0
�ı
�1
hp�; ıŒb�; ı
 i

D �0
�.�pr//

D�p�0
�ŒeM .ˇ/˝f .
 /�lCm

and for (iv)

f h˛; ˇ;p�i D �0
�ı
�1
hıŒa�; ıŒb�;p�i

D ��0
�.p.abC r//

D�peM .˛/f .ˇ/�p�0
�ŒeM .˛/˝f .ˇ/�kCl

Finally,

f hp�; ˇ; 
 i D �0
�ı
�1
hp�; ıŒb�; ı
 i

D �0
�.pr//

D p�0
�Œf .ˇ/˝ eM .
 /�lCm

The indeterminacy is readily verified with Corollary 3.4.

Theorem 6.5 Suppose that the Toda bracket hp�; ˛;p�; ˇi is strictly defined and let
j˛j D 2k�2; jˇj D 2l�2. Then there are representatives of f .˛/ and f .ˇ/ which are
annihilated by p and for which the bracket Œpf .˛/˝ f .ˇ/�kCl exists. For any such
modular form we have

f hp�; ˛;p�; ˇi D p�0
�Œpf .˛/˝f .ˇ/�kCl

with indeterminacy

�0
�

��
H 0;2k.��Q=Z/˝f .̌ /

�
kCl
C
�
f .̨ /˝H 0;2l.��Q=Z/

�
kCl

�
Cpq0

�
H 0;2k.��Q=Z/

�
f .̌ /

and the indeterminacies coming from the 3–fold brackets

p
�
P .D=MkCl/Q=Z

�
CH 0;2k

�
��Q=Z

�
q0
�
H 0;2l.��Q=Z/

�
:

The same holds for the bracket h˛;p�; ˇ;p�i.

Proof With Lemma 4.3 we find p–adapted a; b with e2.˛/D ıŒa� and e2.ˇ/D ıŒb�.
Without loss of generality we can assume pabCdr 2�˝2 (else replace a by aCdv=p

and b by bC dw=p ). In particular for i; j > 0 the numbers

qi
Lq0

M q
j
R

�
p
X

a1˝a2b1˝b2Cdr
�
D p

X
qi.a1/q

0.a2b1/q
j .b2/�qi.r1/q

j .r2/

D qi
Lq

j
R

�
p
X

a1q0.a2/˝q0.b1/b2�r
�
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are integral. Since f .˛/ D q0.a2/a1 and f .ˇ/ D �q0.b1/b2 we conclude that the
bracket Œpf .˛/˝ f .ˇ/�kCl exists. Its indeterminacy is as in Lemma 6.3(ii). Hence
we have with Proposition 4.7

f hp�; ˛;p�; ˇi D �0
�ı
�1
hp�; ıŒa�;p�; ıŒb�i

D ��0
�pr

D p�0
�Œpf .˛/˝f .ˇ/�kCl

The indeterminacy makes use of Corollary 3.4 and the calculations of the 3–fold
brackets above.

7 Examples

In dimension 8 there is the Toda bracket
˝
�2; 2; �

˛
where � is the Hopf map of dimension

3. We use the formula Theorem 6.1 for level 3 TMF to show that this class coincides
with ˇ2 : The f –invariant of the product �2 can be computed from the formula (see
von Bodecker [9])

f .�2/D e.�/eM .�/D
E2

1

122
:

which can be normalized to �1=2..E2
1
� 1/=12/2 . Hence we have

f
˝
�2; 2; �

˛
D�

1

2

�
E2

1
� 1

12

�2

which coincides with the f –invariant of ˇ2 (see von Bodecker [8]).

Similarly, we have for the dimension 7 Hopf map � instead of �

f .�2/D e.�/eM .�/D
E4

2402
D�

1

2

�
E4� 1

240

�2

and hence

f
D
�2; 2; �

E
D�

1

2

�
E4� 1

240

�2

:

The computation in [9, page 7] shows that this expression is congruent to

f .ˇ4=3/D
1

2

�
E2

1
� 1

4

�4

C
1

2

�
E2

1
� 1

4

�3

:

There is another way to compute this class using the Toda relation

h�2; 2; �i D h�; 2�; �i
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and formula Theorem 6.4(i): First we have

f .�; 2�/D

�
2

E4

2402

�
8

D
E2

4

2402
and f .2�; �/D

�
E4

240

�
5

D 0:

This gives

f h�; 2�; �i D �
E4

2402
C

1

2

E2
4

2402
D

1

2

�
E4� 1

240

�2

D f .ˇ4=3/

In dimension 18 there is the class h�; 2�; �i for which the formula reads

f h�; 2�; �i D
E4

240

�
q0

�
E4

1440

�
6

�
1

1440

�
C

1

12

E2
4

2402

To evaluate the bracket observe that

d3
D d5 mod 8

for all integers d and hence

E4� 1

240
D

X
n�1

X
d jn

d3qn
D

X
n�1

X
d jn

d5qn
D

1�E6

504
mod 8:

This gives

f h�; 2�; �i D
E4

240

�
�

1

3024
�

1

1440

�
C

1

12

E2
4

2402

D
1

6

1

2402

�
�

31

21
E4C

1

2
E2

4

�
which has order 4 modulo indeterminacy. In fact with Lemma 5.4 one can show that it
coincides with f .�ˇ4=2;2/.

The Toda bracket h�2; 2; �2; 2i in dimension 30 exists (see Barratt, Jones and Ma-
howald [5, 1.2 and 1.3]) Compute modulo indeterminacy�

1

2

�
E4� 1

240

�2

˝

�
E4� 1

240

�2�
16

D

�
1

2404

�
E2

4
˝E2

4

2
�E2

4 ˝E4�E4˝E2
4 C 2E4˝E4

��
16

D
1

2404

�
E2

4
˝E2

4

2
�

E3
4
˝E4

3
�

E4˝E3
4

3

�
D

1

12

�
E4˝ 1� 1˝E4

240

�4
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Here we used in the second step that

1

3

�
E4� 1

240

�3

˝
E4� 1

240

is integral. This gives with Theorem 6.5

f h�2; 2; �2; 2i D 2�0
�

�
1

2

�
E4� 1

240

�2

˝

�
E4� 1

240

�2�
16

D 2�0
�

�
1

12

�
E4˝ 1� 1˝E4

240

�4�
D

1

2

�
E4� 1

240

�4

which has order 2 and coincides with the f invariant of the Kervaire class f .ˇ8=8/

(compare von Bodecker [8]).
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