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The additivity of the �–invariant
and periodicity in topological surgery

DIARMUID CROWLEY

TIBOR MACKO

For a closed topological manifold M with dim.M / � 5 the topological structure
set S.M / admits an abelian group structure which may be identified with the al-
gebraic structure group of M as defined by Ranicki. If dim.M / D 2d � 1 , M is
oriented and M is equipped with a map to the classifying space of a finite group G ,
then the reduced �–invariant defines a function,

z�W S.M /!QR
.�1/d

yG ;

to a certain subquotient of the complex representation ring of G . We show that the
function z� is a homomorphism when 2d � 1� 5 .

Along the way we give a detailed proof that a geometrically defined map due to Cap-
pell and Weinberger realises the 8–fold Siebenmann periodicity map in topological
surgery.

57R65, 57S25

1 Introduction

Let M be a closed oriented .2d�1/–dimensional topological manifold and let
�.M /W M ! BG be a map to the classifying space of a finite group G . The �–
invariant of .M; �.M //,

�.M; �.M // 2QR
.�1/d

yG ;

lies in a certain subquotient of the rationalised complex representation ring of G (see
Section 2.1 for details). It is a powerful invariant of odd-dimensional manifolds with
torsion elements in their fundamental group. To mention just two examples: it was
used by Atiyah and Bott to show that two smooth lens spaces which are h–cobordant
are diffeomorphic [1]. It also plays a key role in Wall’s classification results for fake
lens spaces in the piecewise linear and topological categories [32, Chapter 14].

Assume now that 2d � 1� 5 and consider S.M /, the topological structure set of M .
The elements of S.M / are homotopy equivalences hW N !M of closed manifolds
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1916 Diarmuid Crowley and Tibor Macko

modulo the h–cobordism relation in the source.1 We define the reduced �–invariant by

(1-1) z�W S.M / �!QR
.�1/d

yG ; ŒhW N !M � 7�! �.N; � ı h/� �.M; �/:

A feature of topological surgery is that S.M / admits the structure of an abelian group
which is natural in some sense; see Siebenmann [31] and Ranicki [23]. Since this
group structure on S.M / is mysterious from the geometric point of view it is not clear
whether z� is a homomorphism of abelian groups.

It is clear, however, that z� is additive with respect to the action of the L–group
on S.M /. Let � D �1.M / and recall that the surgery group L2d .�/ acts on S.M /

via Wall-realisation and also that the induced homomorphism �.M /�W �!G together
with the G –signature define a homomorphism ��.M /W L2d .�/!QR.�1/d

yG . It is well
known that this action is additive with respect to z� (see Petrie [20]): if x 2L2d .�/

and Œh� 2 S.M / then

(1-2) z�.Œh�Cx/D z�.Œh�/C ��.x/:

Moreover, calculations of Wall [32, Chapter 14E] and the second author and Wegner [14]
show that z� is a homomorphism when M is a lens space. Wolfgang Lück asked whether
this is true in general and a positive answer to this question is our main theorem.

Theorem 1.1 Let M be a closed oriented topological manifold of dimension 2d�1�5

with a reference map �.M /W M ! BG where G is a finite group. Then the map

z�W S.M / �!QR
.�1/d

yG

is a homomorphism of abelian groups.

We see that Theorem 1.1 is a generalisation of the long standing identity (1-2). One
may also take the point of view that it sheds light on the group structure on S.M /.
Clearly it has the potential to aid in computations of S.M / and this is shown to be
the case in a forthcoming paper of Davis and Lück [7] about torus bundles over lens
spaces. Clearly we also have:

Corollary 1.2 The map z� factors through S.M /�!S.M /˝Q.

1Our results work equally well for the simple structure set; see Remark 1.7.
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1.1 The outline of the proof of Theorem 1.1

To describe the essential ideas of the proof, we first sketch the topological definition of
the �–invariant which we use throughout the paper. Let .M; �.M // be as above. If Z

is a compact oriented 2d –dimensional manifold with a map �.Z/W Z! BG , we call
it an r –coboundary for .M; �.M // if @.Z; �.Z// D

F
r .M; �.M // is the disjoint

union of r copies of .M; �.M // for some r �1. From bordism theory we know that r –
coboundaries always exist for some r . The G –signature of the induced G –covering zZ
is an element in the complex representation ring R.G/. By the Atiyah–Singer G –index
theorem [2] (see also Wall [32, Chapter 14B]), the expression

�.M; �.M // WD .1=r/ �G–sign. zZ/

becomes independent of the choice of Z and r �1 after passing to a certain subquotient
of the rationalisation of R.G/ (see Definition 2.2 for a precise statement).

Suppose now that we have structures h0W N0!M and h1W N1!M representing
two elements in S.M /. Unless Œh1� D Œid�C x for some x 2 L2d .�/, a geometric
description of the structure Œh0�C Œh1� in terms of Œh0� and Œh1� is not known at present.
Thus it is not a-priori clear how to relate r –coboundaries for N0 and N1 and one sees
that the additivity of the function z� from Equation (1-1) is not obvious.

On the other hand, the situation becomes much simpler if we replace the closed
manifold M by M �Dl for some l �1 as we now describe. The rel boundary structure
set of M �Dl , S@.M �Dl/, consists of equivalence classes of homotopy equivalences
of manifolds with boundary hW .N; @/! .M �Dl ; @/, such that the restriction to the
boundary is a homeomorphism @hW @N ŠM �S l�1 . The equivalence relation is given
by h–cobordism of pairs in the source where the h–cobordism over @N is trivial. For
l � 1 there is a geometrically defined group structure using “stacking” which is easy to
understand; see Definition 2.4. Suppose nCl D dim.M /Cl D 2d�1. Then following
Madsen and Rothenberg [16], we define the rel boundary reduced �–invariant

(1-3) z�@W S@.M �Dl/�!QR
.�1/d

yG ; ŒhW N !M �Dl � 7�! �.N [@h .M �Dl//:

The reference maps are left out of the notation. Notice that N [@h .M �Dl/ is a
closed oriented .2d�1/–dimensional manifold and so the formula makes sense. Using
a certain generalised connected sum operation we prove:

Proposition 1.3 Let M be a closed oriented topological manifold of dimension n

with a reference map �.M /W M !BG for a finite group G , and let nClD 2d�1� 5.
Then the map

z�@W S@.M �Dl/ �!QR
.�1/d

yG

is a homomorphism of abelian groups.
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For reasons that will become apparent later we choose l D 4j , and contemplate the
following diagram.

S.M /

z� $$

??? S@.M �D4j /

z�@xx

QR.�1/d

yG

If we can find a homomorphism S.M /! S@.M �D4j / making the above diagram
commute then z� is a homomorphism and we are done. This brings us to periodicity in
topological surgery which we discuss in more detail in Section 1.2 below. For now we
simply note that there is an injective near periodicity map P j W S.M /!S@.M �D4j /

defined by Siebenmann [31] and in a different way by Ranicki [23; 26]. However both
definitions are complicated and require one to travel a long journey away from the
geometry of a structure ŒhW N !M � 2 S.M /. The distance is large enough that we
lose sight of r –coboundaries and so of the �–invariant.

A geometric passage from S.M / to S@.M �D4j / remained unclear until [4] where
Cappell and Weinberger sketched maps CWj

W S.M /! S@.M �D4j / for j D 1; 2

or 4. However, their construction was given using piecewise linear techniques and
so strictly applies only when all manifolds involved are triangulable, although the
authors hinted at the generalisations needed for the topological case. They claimed that
CWj

D P j but their proof uses Sullivan’s Characteristic Variety Theorem which was
never published in sufficient generality. Later, Hutt tried to address these issues [11].
He gave a construction of the map CW1 for topological manifolds. However Hutt’s
proof of near 4–periodicity uses his own theory of Poincaré sheaves which was never
published.

Much of the work in this paper goes into giving a detailed proof that the Hutt construction
adapted to the map CW2 indeed realises the near periodicity map P2 . In particular we
replace Hutt’s use of Poincaré sheaves with algebraic surgery from [26] and thereby
prove:

Theorem 1.4 Let M be a closed topological manifold of dimension n� 5. The Hutt
description of the Cappell–Weinberger map gives an exact sequence of homomorphisms
of abelian groups:

0 �! S.M /
CW2

���! S@.M �D8/ �!H0.M IZ/:

The details of the Hutt construction of the map CWj allow us to do the following: given
.Z; �.Z//, an r –coboundary for N , the domain of a structure ŒhW N !M � 2 S.M /,
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we can construct an r –coboundary for the domain of CWj .Œh�/. This then allows us
to prove:

Theorem 1.5 Let M be a closed oriented topological manifold of dimension .2d�1/�5

with a reference map �W M ! BG for a finite group G . Then the following diagram
commutes.

S.M /
CW2

//

z� $$

S@.M �D8/

z�@xx

QR.�1/d

yG

Theorem 1.1 now follows immediately from Proposition 1.3 and Theorem 1.4 and
Theorem 1.5 since together they show that z�D z�@ ıCW2 is a composition of homo-
morphisms.

Remark 1.6 The idea of understanding the group structure on S.M / via the stacking
group structure on S@.M �D4j / and periodicity is very natural. For example in [12]
Jahren and Kwasik used this method to solve an extension problem for S.S1 �RPn/

related to the Browder–Livesay invariant, a close cousin of the �–invariant.

1.2 Periodicity in topological surgery

In this subsection we briefly recall the history of periodicity in topological surgery as
well as describing how this paper adds to the detailed proof of near periodicity. Let
M be a closed topological manifold of dimension n� 5. The source of periodicity in
topological surgery is the 4–fold periodicity of the homotopy groups �i.G=TOP/Š
�iC4.G=TOP/ for i � 1. However, it took Quinn’s theory of surgery spaces [21]
to see how this periodicity could be extended to the structure set. Once the surgery
exact sequence was identified as the long exact homotopy sequence of a fibration,
Siebenmann [31] could define injective maps P j W S.M /! S@.M �D4j /2. He used
these maps to define an abelian group structure on S.M /.

Ranicki [23; 26] produced algebraic versions of surgery theory which translate Quinn’s
theory into a category of chain complexes. In particular bijections

sW S@.M �Dl/! SnClC1.M /

2In fact Siebenmann mistakenly claimed that Pj is a bijection. In general Im.Pj / is a subgroup
with S.M �D4j /=Im.Pj / isomorphic to a subgroup of H0.M IZ/ . Therefore to be precise we speak
of near-periodicity. A correct statement of near periodicity appeared in Nicas [18].
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are defined where SnClC1.M / is an abelian group. Moreover, with respect to the
stacking group structure on S@.M �Dl/ this map is an isomorphism if l � 1. Since
the algebraic groups are nearly 4–periodic almost by definition, Ranicki was able to
give an algebraic proof of Siebenmann’s periodicity theorem. In particular the algebraic
theory of surgery so closely mirrors surgery spaces that the two group structures defined
on S.M / agree.

As we have seen, for certain purposes the abstract descriptions of the maps P j do not
suffice and the papers of Cappell and Weinberger [4] and Hutt [11] were written to
fill this gap. For reasons mentioned above, however, neither of these papers gives a
water tight proof that the maps CWj

W S.M /! S@.M �D4j / realise the periodicity
maps P j . In the end, to give a detailed proof that CW2

DP2 we have had to combine
important ideas from both papers and add some of our own.

For the outline of the proof of periodicity we were able to follow [11]. However to
Hutt’s arguments one must add foundational results of Hughes, Taylor and Williams [10]
and a folk theorem proved by Hughes [9] about mapping cylinder neighbourhoods,
MCNs, and manifold approximate fibrations, MAFs. We summarise these results in
Theorem 3.1 and Corollary 3.3 and use them to show that Hutt’s map is defined. Then
one has to take more care than Hutt to show that the map is well-defined. To show that
the now well-defined map CWj is indeed P j we use algebraic surgery which requires
an inductive dissection of a topological manifold similar to, but not in general the same
as, a simplicial decomposition. In particular algebraic surgery requires that we apply
Hutt’s construction inductively to each space in such a dissection. Then one discovers
that Theorem 3.1 concerning MCNs and MAFs has dimension restrictions which can
only be satisfied for 8–periodicity. Thus we show that CW2

DP2 and this is sufficient
to prove the additivity of the reduced �–invariant. We hope that the work in this paper
might serve as a foundation to at last give a detailed proof that CW1

D P1 .

Remark 1.7 All the results of the present paper work equally well for structure sets
and simple structure sets. Thus in the familiar notation, the reader may substitute
Ss.M / or Sh.M / for S.M / and its variants throughout the paper. To justify this we
note that the �–invariant is an h–cobordism invariant and hence defines a function of
both versions of the structure set. Moreover the forgetful map

Ss.M /! Sh.M /

is a homomorphism. In particular the results of Quinn [21], Siebenmann [31] and
Ranicki [23; 26] work equally well for each torsion decoration. With regard to the
periodicity maps CWj our treatment is also simultaneous for both decorations: we use
h–cobordisms throughout, but the arguments are verbally the same with s–cobordisms.
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In this direction our work generalises Cappell and Weinberger [4] and Hutt [11] who
only deal with the s–decoration.

The rest of the paper is organised as follows. In Section 2 we define the �–invariant
and its reduced variations. We also recall the group structure on S@.M �Dl/ for l � 1

and we prove Proposition 1.3. The proof of Theorem 1.4 occupies Sections 3–6. In the
preparatory Section 3 we recall and reformulate essential facts about MCNs and MAFs.
In Section 4 we review Hutt’s account of the construction of the Cappell–Weinberger
map. In Section 5 we review the framework of the algebraic theory of surgery from
[26] which is the key tool in the proof of Theorem 1.4 in Section 6. The proof of
Theorem 1.5 occupies the last two sections. Section 7 is again preparatory and the
proof is completed in Section 8.
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Wolfgang Lück for raising the motivating question of the paper as well as helpful
discussions. We would also like to thank the referee for helping to clarify a number of
our proofs.
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2 The �–invariant

Let M be a closed oriented topological manifold of dimension nD 2d � 1� 5 with a
reference map �.M /W M ! BG where G is a finite group. In this section we recall
the definition of the reduced �–invariant function, denoted z� , defined on the structure
set S.M / as well as a relative �–invariant, denoted z�@ , which is defined on the rel
boundary structure set S@.M �D2j /. The main outcome of the section is the proof of
Proposition 1.3 which states that z�@ is a homomorphism.

2.1 The �–invariant

The �–invariant is an invariant of odd-dimensional oriented manifolds associated to
the G –signature of cobounding even-dimensional oriented manifolds. We first briefly
recall the G –signature.
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G –Signature Let G be a finite group acting smoothly on a smooth oriented mani-
fold Z2d . The complex intersection form �Z on H WDHd .ZIC/ is a nondegenerate
.�1/d –symmetric bilinear form on which G also acts. Choosing an inner product on H

expresses �Z as a nonsingular .�1/d –symmetric matrix and hence H decomposes as
H DHC˚H� where H" is the sum of eigenspaces whose eigenvalues are positive
multiples of "D˙1 if d is even and "i if d is odd.

The subspaces HC and H� are G –invariant and the G –signature is defined to be the
following virtual representation in the complex representation ring of G :

G–sign.Z/ WD ŒHC�� ŒH�� 2RC.G/:

Complex conjugation induces an involution on RC.G/ with .˙1/–eigenspaces. In
terms of characters the .C1/–eigenspace corresponds to real characters and the .�1/–
eigenspace corresponds to purely imaginary characters. We will denote

R˙C.G/ WD f�˙�
�1
j � 2RC.G/g:

One can also show that G–sign.Z/ 2R.�1/d .G/ which in terms of characters means
that we obtain a real (purely imaginary) character, which will be denoted as the
assignment G–sign.�;Z/W g 2G 7!G–sign.g;Z/ 2C . The cohomological version
of the Atiyah–Singer G –index theorem [2, Theorem 6.12] tells us that if Z is closed
then for all g 2G

(2-1) G–sign.g;Z/DL.g;Z/ 2C;

where L.g;Z/ is an expression obtained by evaluating certain cohomological classes
on the fundamental classes of the g–fixed point submanifolds Zg of Z . In particular
if the action is free then G–sign.g;Z/ D 0 if g ¤ 1. This means that G–sign.Z/
is a multiple of the regular representation. This theorem was generalised by Wall to
topological semifree actions on topological manifolds, which is the case we will need
in this paper [32, Chapter 14B]. The assumption that Z is closed is essential here, and
motivates the definition of the �–invariant.

Bordism groups To define the �–invariant one also needs the following result which
starts with the work of Conner and Floyd [6] on smooth bordism, proceeds through
Williamson [33] for piecewise linear bordism and finishes with Madsen and Mil-
gram [15] for topological bordism.

Theorem 2.1 Let G be a finite group with classifying space BG and let �STOP
n .BG/

denote bordism group of n–dimensional closed oriented topological manifolds with a
reference map to BG . Then for 2d � 1� 1,

�STOP
2d�1.BG/˝QD 0:

Algebraic & Geometric Topology, Volume 11 (2011)



The additivity of the �–invariant and periodicity in topological surgery 1923

Let N be a closed oriented .2d�1/–dimensional manifold with a reference map
�.N /W N ! BG inducing a homomorphism �.N /�W �1.N /!G . The above result
means that there exists a 2d –dimensional oriented manifold with boundary Z with a
reference map �.Z/W Z!BG inducing a homomorphism �.Z/�W �1.Z/!G such
that @ZDr �N for some r�1 and such that the restriction �.Z/j@ZDr ��.N /. Then we
also have the induced G –covering zZ on which the group G acts freely via deck transfor-
mations. It is a manifold with boundary r � zY , r copies of the induced G –covering of Y .

The above considerations make it possible to make the following definition.

Definition 2.2 [2, Section 7] Let N be a closed oriented topological .2d�1/–
dimensional manifold with a reference map �.N /W N ! BG where G is a finite
group. Define

(2-2) �.N; �.N // WD
1

r
�G–sign. zZ/ 2QR.�1/d .G/=hregi DWQR

.�1/d

yG

for some r 2 N and .Z; @Z/ such that @Z D r �N and there is �.Z/W Z ! BG

restricting to r � �.N / on @Z . The symbol hregi denotes the ideal generated by the
regular representation, the symbol QR˙.G/ means Q˝R˙.G/.

The �–invariant is well defined by the Atiyah–Singer G –index theorem [2, Theorem
(6.12)] and its topological generalisation [32, Chapter 14B]. When the reference map is
clear we will often leave out the map �.N / from the notation and simply write �.N /.

2.2 Structure sets

The structure set of a compact topological manifold is the basic object of study in
surgery theory. When calculated it gives us understanding of the manifolds in the
homotopy type of that given manifold, as shown for example in [32, Part 3].

Definition 2.3 Let M be a compact n–dimensional manifold with boundary @M
(which may be empty). A (simple) manifold structure on M relative to @M consists of
a (simple) homotopy equivalence of n–dimensional compact manifold with boundary

.h; @h/W .N; @N /! .M; @M /

such that @h is a homeomorphism. Two such structures .h1; @h1/ and .h2; @h2/ are
equivalent if there exists a (simple) homotopy equivalence of .nC1/–dimensional
manifold 4–ads H W .W;N1;N2;W@/! .M � I;M � f0g;M � f1g; @M � I/, such
that H jN1

D h1 and H jN2
D h2 and H jW@

are homeomorphisms.

The (simple) structure set S@.M / is defined as the set of equivalence classes of
(simple) manifold structures on M relative to @M . In the case where @M is empty
we write S.M /.
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More generally, assume that .M; @1M; @2M / is a manifold 3–ad (see [32, Chapter 0],
note that one or both of @iM may be empty). A (simple) manifold structure on M

relative to @1M consists of a (simple) homotopy equivalence of n–dimensional compact
manifold 3–ads

.h; @1h; @2h/W .N; @1N; @2N /! .M; @1M; @2M /

such that @1h is a homeomorphism. So one allows more flexibility on the part of the
boundary @2M . There is a corresponding equivalence relation which allows to one
define the (simple) structure set in this setting, which is denoted S@1M .M /. Hence
@2M does not appear in the notation, which usually does not cause a confusion.

Also note that the s–cobordism theorem entails that, if dim.M / D n � 5, then two
simple manifold structures h1 and h2 are equivalent if and only if there exists a
homeomorphism f W N1!N2 such that h2 ıf ' h1 rel @.

All the results of the present paper work equally well for structure sets and simple
structure sets. Thus in the familiar notation, the reader may substitute Ss.M / or
Sh.M / for S.M / and its variants throughout the paper. To keep the language simple
we will work with structure sets and manifold structures.

The main tool for determining S@.M / for a specific manifold M , with dim.M /D

n� 5, is the surgery exact sequence (see Wall [32, Chapter 10] and Kirby and Sieben-
mann [13] for definitions and details)

(2-3) � � � !LnC1.ZŒ�1.M /�/! S@.M /! ŒM=@M IG=TOP�!Ln.ZŒ�1.M /�/:

We remark that the expression “exact sequence” makes sense, as explained in [32,
Chapter 10], despite the fact that the structure set, as defined, is only a pointed set
with the base point the identity idW .M; @M / ! .M; @M /. On the other hand, as
pointed out in the introduction, one can endow S@.M / with the structure of an abelian
group, which is natural in the sense that the above sequence indeed becomes an exact
sequence of abelian groups. This follows from the identification of the surgery exact
sequence (2-3) with the algebraic surgery exact sequence (5-6) which will be discussed
in detail in Section 5.

In this section we only want to discuss the case when the compact manifold in question
is of the form M �Dk , for M closed with k � 1. Then there is an easy geometric
way of defining the structure of a group on S@.M �Dk/ which is abelian if k � 2.
Abstractly, this follows from the observation that S@.M �Dk/ is the k –th homotopy
group of a certain space, as explained for example in [32, Chapter 17A]. But we also
need an explicit description of the addition. For this denote

Sk�1
˙ WD fx D .x1; : : : ;xk/ 2 Sk�1

j ˙x1 � 0g
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and note that each element in S@.M �Dk/ can be represented as a homotopy equiva-
lence of manifold triads

.h; @Ch; @�h/W .N; @CN; @�N /! .M �Dk ;M �Sk�1
C ;M �Sk�1

� /

where @˙h are homeomorphisms. Further denote

Dk
˙ WD fx D .x1; : : : ;xk/ 2Dk

j ˙x1 � 0g

and choose suitable homeomorphisms .Dk ;Sk�1
C ;Sk�1

� /Š .Dk
C;S

k�1
C ;Dk�1/ and

.Dk ;Sk�1
C ;Sk�1

� /Š .Dk
�;D

k�1;Sk�1
� /. Also note Dk DDk

C[Dk�1 Dk
� .

Definition 2.4 Let hi W Ni!M �Dk with i D 1; 2 be maps which represent elements
in S@.M �Dk/. Define h1C h2 D h by

(2-4) hD h1[ h2W N DN1[g N2!M �Dk
DM �Dk

C[M �Dk
�

where gW @CN1! @�N2 is given by g D .@�h2/
�1 ı @Ch1 .

2.3 Structure sets and the �–invariant

Next we define the reduced �–invariant functions.

Definition 2.5 Let M be a closed oriented manifold of dimension nD .2d � 1/� 5

with a reference map �.M /W M !BG where G is a finite group. Define the function

z�W S.M /!QR
.�1/d

yG by z�.Œh�/D �.N; �.M / ı h/� �.M; �.M //;

where the orientation on N is chosen so that the homotopy equivalence hW N !M is
a map of degree 1.

Since the �–invariant is an h–cobordism invariant [2, Corollary 7.5], the function z� is
well-defined.

The definition in the relative setting comes from [16, Section 3]. We need a little
preparation. Consider an element Œh� in S@.M �Dk/. Let M.h/ be a closed manifold
given by

(2-5) M.h/ WDN [@h .M �Dk/:

If h is the identity we obtain M.id/ Š M � Sk , in general the map h induces
M.h/'M �Sk , and if k � 2 then �1.M.h//Š �1.M /. When M is oriented we
equip N with an orientation so that h is a map of degree 1. The orientation on the closed
manifold M.h/ can then be chosen so that it agrees with the given orientation on N and
it reverses the orientation on M�Dk . If M possess a reference map �.M /W M!BG

then we obtain a reference map �.M.h//W M.h/'M �Sk !M ! BG .
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Definition 2.6 Let M be a closed oriented manifold of dimension n with a reference
map �.M /W M ! BG where G is a finite group and let k � 1 be such that nC k D

2d � 1� 5. Define the function

z�@W S@.M �Dk/!QR
.�1/d

yG by z�@.Œh�/ WD �.M.h/; �.M.h///:

Again this well-defined. Also notice that if k � 1 then z�@.Œid�/D 0.

Now we would like to understand the behaviour of z�@ with respect to C defined in
Equation (2-4). First a definition and then an observation.

Definition 2.7 Let hi W Ni!M �Dk with i D 1; 2 be maps which represent elements
in S@.M �Dk/. Consider xM .hi/ WDM.hi/X int.M �Dk�1 � Œ��; ��/, for small
� > 0, where Dk�1DDk

C\Dk
� . Identify @ SM .hi/ with M �Sk�1 . Define the closed

oriented manifold M.h1/ #M M.h2/ by

M.h1/ #M M.h2/ WD SM .h1/[id�r
SM .h2/

where r is an orientation reversing homeomorphism of Sk�1 .

Lemma 2.8 There is a homeomorphism of oriented manifolds

M.h1/ #M M.h2/ŠM.h1C h2/:

Proof Both sides can be identified with the union

N1[g1
M �Sk�1

� I [g2
N2

where g1 D @h1W @N1!M �Sk�1 and g2 D r ı @h2W @N2!M �Sk�1 .

From the definition z�@.Œh�/D �.M.h// we see that Proposition 1.3 is equivalent to the
following:

Proposition 2.9 There is an equality

�.M.h1C h2//D �.M.h1//C �.M.h2//:

Proof Let Z.h1/ be such that @Z.h1/ D k �M.h1/ and let Z.h2/ be such that
@Z.h2/D l �M.h2/. Then @l �Z.h1/D kl �M.h1/ and @kZ.h2/D kl �M.h2/, so
we can assume k D l . In fact we will assume k D l D 1, which makes the notation
simple, the easy generalisation is left for the reader. Using Lemma 2.8 we build a
coboundary for M.h1Ch2/ from the coboundaries Z.h1/ and Z.h2/ by the following
construction.
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Note that the manifold M.h1/, as a boundary component of Z.h1/, has a collar. Denote
by U.h1/ � Z.h1/ the portion of that collar along M �Dk�1 � Œ��; �� �M.h1/.
Construct the manifold xZ.h1/ by removing U.h1/ (the interior and a suitable part of
the boundary). Then the boundary of xZ.h1/ is decomposed as

SM .h1/[ @
0 xZ.h1/D SM .h1/[ .M �Sk�1/� I [ .M �Dk�1

� Œ��; ��/� f1g:

Similarly for h2 instead of h1 . Recall also the orientation reversing homeomorphism
r W Sk�1!Sk�1 which we can extend to r W Dk!Dk and identify Dk�1� Œ��; ��Š

Dk . We define
Z WD xZ.h1/[xr xZ.h2/

where xr W @0Z.h1/! @0Z.h2/ is the homeomorphism given by

xr D .id�r � id/[ .id�r � f1g/:

Figure 1 depicts the situation.

@h1 @h2

r

r

xr

Figure 1: The coboundary Z

By construction the boundary of Z is M.h1/#M M.h2/DM.h1Ch2/. Then Novikov
additivity gives

�.M.h1C h2//DG–sign.Z/DG–sign.Z.h1//CG–sign.Z.h2//

D �.M.h1//C �.M.h2//:

3 MAFs and MCNs

This section contains preparatory material about mapping cylinder neighbourhoods
which will be used in the construction of the map CWj in the following section.

Let X n � Y nCq , q � 1, be a locally flat submanifold. A mapping cylinder neighbour-
hood, MCN, of X is a codimension-0 submanifold with boundary of Y , .N; @N /,
such that X � int.N / and there is a deformation retraction pW N ! X such that
@p WDpj@N W @N !X satisfies .cyl.@p/; @N /Š .N; @N /, where cyl.@p// denotes the
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mapping cylinder of @p . See Quinn [22, Section 3] for more information about the
existence of MCNs.

Theorem 3.1 below, which is taken from Hughes [9], recalls a characterisation of MCNs
using manifold approximate fibrations (MAFs). An approximate fibration pW P !N

is a map which has an approximate homotopy lifting property. It is called a MAF if
both P and N are manifolds. For more information we refer the reader to Hughes,
Taylor and Williams [10, Section 1].

We will need the following two properties. Firstly, it follows easily from the definitions
that a composition of MAFs is a MAF. Secondly, being a MAF is a local property: this
means that in order to determine whether a map pW P !N between closed manifold
is a MAF it is enough to check this property in a neighbourhood of each point of N ;
see [10, Corollary 12.14; 5, Proposition 2.2].

Theorem 3.1 [9, Theorem 6.1] Let pW P !N be a map between closed manifolds
with dim.P / D m and dim.N / D n. If cyl.p/ is a manifold with N a locally flat
submanifold then p is a MAF with hofib.p/ ' Sm�n . The converse is also true if
m� 5.

Remark 3.2 The above theorem is stated in [9] with the dimension restriction for both
implications. However, it is clear from the proof that it is used only in one direction.

We need a generalisation of the above statement for compact manifolds with boundary.
Let .p; @p/W .P; @P /! .N; @N / be a map of compact manifolds with boundary. If
@N has more than one connected component, we index these by ˛ 2 I and denote by
@˛pW @˛P ! @˛N the corresponding restriction of @p . The mapping cylinder cyl.@p/
is a subspace of the mapping cylinder cyl.p/ and we have

@ cyl.p/D cyl.@p/[@P�f0g P � f0g:

The triple .cyl.p/I cyl.@p/;P � f0g/ defines a triad of spaces.

Corollary 3.3 Let .p; @p/W .P; @P /! .N; @N / be a map of compact manifolds with
boundary, dim.P / D m, dim.N / D n. Assume in addition that on a collar of @P
the map p is the product map of @p with the identity in the collar direction. If
the triad .cyl.p/I cyl.@p/;P � f0g/ is a manifold triad with .N; @N / a locally flat
submanifold (with boundary) of .cyl.p/; cyl.@p// then .p; @p/ is a pair of MAFs and
we have for each connected component ˛ 2 I ,

hofib.@˛p/' hofib.p/' Sm�n:

The converse is also true if m� 6.
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By a pair of MAFs we just mean that both @p and p are MAFs. For a manifold triad
see [32, Chapter 0].

Proof The following two observations are used. Firstly, the fact recalled above that
being a MAF is a local property. Secondly, for a map pW Pm!N n between closed
manifold, we have that hofib.p/ ' Sm�n if and only if .cyl.p/;P / is a Poincaré
pair. Also, for .p; @p/W .P; @P /! .N; @N /, a map between compact manifolds with
boundary, we have that hofib.@˛p/' hofib.p/' Sm�n for each ˛ 2 I if and only if
.cyl.p/IP; cyl.@p// is a Poincaré triad.

The general idea is to reduce the proof to considerations about the map

xp WD p[@p pW .P [@P P / �! .N [@N N /:

To prove the if part note that xp fulfils the assumptions of the if part of Theorem 3.1.
It is a MAF because being a MAF is a local property and both parts are MAFs. We
have hofib. xp/' Sm�n , since .cyl. xp/;P / is a Poincaré pair, because it is obtained by
gluing two Poincaré triads. Hence by Theorem 3.1, cyl. xp/ is a closed manifold with
N [N locally flatly embedded. But this implies that .cyl.p/; cyl.@p/� cyl. xp/ is a
codimension–0 submanifold with boundary with .N; @N / locally flatly embedded.

To prove the only if part observe immediately that cyl. xp/ fulfils the assumptions of
Theorem 3.1. Hence xp is a MAF with hofib. xp/' Sm�n . We obtain that .p; @p/ is a
MAF pair by the locality of the MAF condition. The statement about the homotopy
fibre follows immediately from the assumptions even without invoking xp .

Recall from surgery theory that the normal invariants of a manifold N , which means the
bordism set of degree one normal maps with target N , are in one-to-one correspondence
with ŒN;G=TOP�, homotopy classes of maps from N to the space G=TOP. If instead
of N we consider the manifold with boundary N �DrC1 and if r � 2, then we have
a .���/�situation and hence

S.N �DrC1; @/Š ŒN �DrC1
IG=TOP�Š ŒN IG=TOP�:

Therefore we can “realise” elements of ŒN IG=TOP� as homotopy equivalences of
manifolds with boundary f W .W; @W /! .N �DrC1; @/. As such .W; @W / is just
some manifold with boundary homotopy equivalent to N �DrC1 . The following
proposition says that there is more structure in this situation: the manifold M can be
identified as a MCN of N and the map f as the cylinder of the restriction of f to the
boundary.
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Proposition 3.4 Let r�2, let nCr�5 and let N be a closed manifold of dimension n.
For any element � 2 ŒN;G=TOP� there exists a commutative diagram

.W; @/

p

��

!
// .N �DrC1; @/

pr1

��

N
id

// N

where pW W !N is a MCN with N a locally flat submanifold and the map !W W !
N �DrC1 is induced from a fibre homotopy equivalence of r –dimensional spherical
fibrations associated to p and pr1 . In particular ! is a homotopy equivalence of pairs
such that Œ!�D � 2 S.N �DrC1; @/Š ŒN IG=TOP�.

Proof This is proved by Hutt in [11, Section 1]. He closely follows Pedersen in [19,
Proof of Lemma 9] with some additional ingredients from Quinn [22]. Pedersen’s
arguments are in turn based on Rourke and Sanderson [29].

In [29, Section 0] a simplicial group ToprC1 is defined with the following properties:
(1) the set of equivalence classes of germs of codimension .r C 1/ topological neigh-
bourhoods of a topological manifold N is in bijective correspondence with the set of ho-
motopy classes of maps ŒN;BToprC1�, (2) there is a map ToprC1!GrC1 , the group
of self-equivalences of Sr , such that the inclusions GrC1! G and ToprC1! TOP
give rise to a homotopy equivalence GrC1=ToprC1 ' G=TOP.

Let xrC1W N ! GrC1=ToprC1 be a map representing �rC1 2 ŒN;GrC1=ToprC1�

where �rC1 corresponds to � under the above equivalence. If i W GrC1=ToprC1!

BToprC1 is the canonical map then i ı xrC1W N ! BToprC1 defines the germ
of a codimension–.r C 1/ topological neighbourhood of N . Let V � N be such
a neighbourhood. By [22, Theorem 3.1.1] there is a MCN of N in V , W � N

and we let pW @W ! N be the MAF associated to W � N . The homotopy fibre
of p is Sr and we convert p into a spherical fibration S.p/W S.@W /! N . So far
we have only used i ı xrC1 : by definition the map xrC1 defines a fibre homotopy
trivialisation of S.p/ and so we obtain a homotopy equivalence � W @W ' N � Sr .
We set ! WD cyl.�/W .W; @W /' .N �DrC1; @/.

It remains to show that the normal invariant of ! is �. As discussed above, we have
a canonical identification of the normal invariant set of N �DrC1 with ŒN;G=TOP�.
The normal invariant of any degree one normal map f W .M; @M /! .N �DrC1; @/

can be computed from the normal invariant of the splitting obstruction along N �f0g �

N �DrC1 . But by definition, the splitting obstruction to ! along N � 0 has normal
invariant �; see [15, Theorem 2.23] for this identification which was stated there for
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the PL–category but remains true in the topological category given the later proof of
topological transversality [13; 8, Chapter 9].

We will also need a relative version of Proposition 3.4. In that case we are given a
manifold with boundary .N; @N / of dimension n. The product N �DrC1 becomes
a manifold triad and we define @0.N �DrC1/ WD N � Sr and @1.N �DrC1/ WD

@N �DrC1 . Then @@1D @@0D @N �Sr . If r � 2 we are again in a .���/�situation
and hence S.N �DrC1; @0; @1/Š ŒN �DrC1IG=TOP�Š ŒN IG=TOP�.

Proposition 3.5 Let r � 2, nC r � 5 and let .N; @N / be a compact manifold of
dimension n with boundary. Suppose given a MCN .@1W; @@1W /! @N , with @N a
locally flat submanifold, whose associated r –spherical fibration is fibre homotopically
trivialised by a map .@1W; @@1W /! .@N �DrC1; @N �Sr / which is represented by
a map �W @N ! G=TOP. For any element � 2 ŒN;G=TOP�, such that �j@N D � there
exists a diagram

.W; @/

p

��

!
// .N �DrC1; @/

pr1

��

N
id

// N

where pW W !N is a MCN with N a locally flat submanifold and the map !W W !
N �DrC1 is induced from a fibre homotopy equivalence of r –dimensional spherical
fibrations associated to p and pr1 . In particular ! is a homotopy equivalence of pairs,
and restrictions of everything to the appropriate parts of boundary agree with the given
structures, such that Œ!�D �.

Proof The theorems of [29; 22; 15] used in the proof of Proposition 3.4 have suit-
able relative versions. The proof is then a routine modification of the arguments in
Proposition 3.4.

Remark 3.6 In Proposition 3.5 we had another possibility: to start with a map N !

G=TOP without specifying the MCN over the boundary. We could then use the
absolute version to produce such a MCN and then use the relative version. In that case,
however, the dimension restrictions would have to be relaxed by 1 which would be
inconvenient later.

4 The Cappell–Weinberger map

In this section we recall Hutt’s description of the Cappell–Weinberger map and prove
some basic facts about this map. We present the map both for the usual 4–periodicity
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and also for 8–periodicity: a possibility pointed out in [4, p. 48]. Thus let F DC or H
and let k D 2 or 4 be the dimension of F over R.

Let hW N !M be a homotopy equivalence of closed topological manifolds of di-
mension n � 5 representing Œh� 2 S.M /. From h the Hutt construction produces a
homotopy equivalence h0W N 0!M �D2k of manifolds with boundary defined by
(4-4) and (4-5) below. The restriction of h0 to the boundary of N 0 is a homeomorphism
and so h0 represents an element Œh0� 2 S@.M �D2k/. The mapping of structures,
Œh� 7! Œh0�, is the CW–map of Definition 4.2. The rest of the first subsection is devoted
to proving that this map is well defined. In the second subsection we will review the
construction of a homotopy equivalence of closed manifolds yhW yN !M �FP2 given
by “extension by a homeomorphism” from h0 . In Lemma 4.9 we will show that this
structure is equivalent in S.M �FP2/ to another structure, xhW xN !M �FP2 which
has a certain factorisation, whereas h0 does not possess an analogous factorisation.

It is not immediately clear that the Hutt construction produces a periodicity map. We
prove this later in Section 6 for F DH . We note that an essential component of the
construction is the use of certain Sk�1 –branched coverings. This permits the extension
by a homeomorphism mentioned above, which is a key ingredient in the proof of the
fact that the CW–map is a periodicity map.

It is useful to observe that the constructions of h0 , yh and xh have two components. It is
one thing to construct the sources N 0 , yN and xN of the above maps and it is another
issue to construct the maps to M �D2k and M � FP2 . In particular it is easier to
construct the sources. We use this point in the last Section 8, where we apply a version
of the Hutt construction for manifolds with boundary to construct a coboundary for the
closed manifold xN .

4.1 Definition

Let hW N !M be a homotopy equivalence of closed topological manifolds of dimen-
sion n� 5 representing Œh� 2 S.M /. Our starting point is the following:

Lemma 4.1 [11, Section 1] There is a commutative diagram of maps of pairs

. SW ; @ SW / .N �DkC1;N �Sk/ .M �DkC1;M �Sk/

N N M

-!

?

-h�id

? ?
-id -h
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where SW is a mapping cylinder neighbourhood of N in which N is locally flatly
embedded and !W SW !N �DkC1 is a homotopy equivalence of pairs such that the
composite x WD .h� id/ ı! is h–cobordant, as a map of pairs, to a homeomorphism.

Proof The homotopy equivalence h� id defines an element of S.M �DkC1/ which,
by the .���/–theorem [32, Chapter 4], is isomorphic to the normal invariant set
N .M�DkC1/Š ŒM;G=TOP�. Hence h�id defines an element Œh�id�2 ŒM;G=TOP�.
We choose �2 ŒN;G=TOP� so that .h�1�id/�.�/D�Œh�id�: here we take the negative
with the Whitney sum group structure on G=TOP and note that since .h�1/� induces
an isomorphism of ŒN;G=TOP�Š ŒM;G=TOP�, such a � exists. By Proposition 3.4
the element � 2 ŒN;G=TOP� gives rise to a homotopy equivalence of pairs

!W . SW ; @ SW /! .N �DkC1;N �Sk/

with the claimed properties: SW is a mapping cylinder neighbourhood of N in which
N is locally flatly embedded and !.N /DN � f0g �N �DkC1 .

Finally, by the composition formula of [3, Proposition 2.2] and [17, Lemma 2.5]
.h� id/ ı! has trivial normal invariant and hence x WD .h� id/ ı! is h-cobordant to
a homeomorphism as required.

Lemma 4.1 states in particular that there is a homotopy equivalence

(4-1) H W .U I SW ;W;U@/! .M �DkC1
� Œ0; 1�I f0g; f1g;M �Sk

� Œ0; 1�/

where U is an h–cobordism of manifolds with boundary; we denote @U D SW [W [U@ ,
where U@ is an h–cobordism between @ SW and @W . Also H j SW D x and H jW is a
homeomorphism H jW DW  W .W; @W /Š .M �DkC1;M �Sk/. For later use, we
write H@W U@ !M � Sk � Œ0; 1� for the restriction of H to the boundary part U@ .
Note that this differs from Hutt who only uses H@ and calls it H . As Hutt observes,
x and  are maps with contrasting properties: x is a map over h which is not in
general a homeomorphism whereas  is a homeomorphism but not in general a map
over h.3 We shall need to exploit these two properties in the following construction
and therefore slide between them via the map H .

The key part of the construction is the following “Sk�1 –branched cover plus h–
cobordism construction” of [4, Section 1]. Let 
 denote the Hopf bundle S2k�1!Sk

and for a manifold X let 
X WD idX �
 W X�S2k�1!X�Sk . Further let @ D j@W ,

3In fact we do not even have a preferred map from W to N . We could use the h–cobordism U to
obtain some map, but still the map  would not be a map over h in general.
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@x D x j@ SW and @! D !j@ SW . Define

(4-2)
@ SW 0 WD .@x /�.
M /Š .@!/�.
N /; @W

0
WD .@ /�.
M /;

U 0@ WD .H@/
�.
M�Œ0;1�/

to be the pullbacks.4 Observe that the manifold U 0
@

is an h–cobordism between @ SW 0

and @W 0 , since U@ was an h–cobordism between @ SW and @W . Further denote

@x 
0
W @ SW 0!M�S2k�1; @ 0W @W 0!M�S2k�1; H 0@W U

0
@!M�S2k�1

�Œ0; 1�

the maps covering @x , @ , and H@ respectively. The Sk�1 –bundle projections are
denoted by

q SW W @ SW
0
! @ SW ; qW W @W

0
! @W and qU W U

0
@! U@:

By Theorem 3.1 the map pW @ SW ! N is a MAF over N with homotopy fibre Sk .
Obviously q SW is also a MAF. As the composition of MAFs is a MAF, the map

(4-3) p0W @ SW 0
qSW
��! @ SW

p
�!N

is a MAF with homotopy fibre S2k�1 . Again applying Theorem 3.1 it follows that
cyl.p0/, the mapping cylinder of p0 , is a MCN of N with N locally flatly embedded.
Denote

(4-4) N 0 WD cyl.p0/[U 0@:

The topological manifold N 0 , with boundary @W 0 , will be the domain of the structure
used to define the Cappell–Weinberger map. The Sk�1 –branched cover refers to the
projection map cyl.p0/! cyl.p/ which can be viewed as such, the branching subset
being N � cyl.p/.

Next we define a homotopy equivalence h0W N 0!M �D2k whose restriction to the
boundary h0j@W 0 W @W

0!M �S2k�1 is a homeomorphism. We regard M �D2k as
the union .M �D2k

1
/[M�S2k�1�f1g .M �S2k�1 � Œ1; 2�/ where D2k

1
has radius 1

and we reparametrise H 0
@
W U 0

@
!M �S2k�1 � Œ1; 2�. Now define

(4-5) h0 WD cyl.@x 0; h/[H 0@W N
0
!M �D2k :

We remark again that h0 is not a map over h, since the map @ , and hence the maps @ 0

and H 0
@

are not maps over h.

Definition 4.2 For k D 2 or 4 the Cappell–Weinberger map is the map

CWk=2
W S.M /! S@.M �D2k/; Œh� 7�! Œh0�:

4The notation should be understood as .@W /0 , not @.W 0/ , in fact there is no manifold W 0 .
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Remark 4.3 The above construction is in fact quite subtle. Note that the map x [H@

is h–cobordant rel @ to a homeomorphism, hence representing the trivial element in
S@.M �DkC1/. On the other hand, this argument cannot be used for h0 . The point is
that N 0 cannot be identified with the pull back of M �D2k !M �DkC1 along x .
If we wanted to have such an identification we would need x to be transverse to
M DM � f0g 2M �DkC1 . And x is in general not transverse to this submanifold
(despite the equality .x /�1.M / D N � SW ). If this were the case, then we would
immediately obtain that h is normally cobordant to a homeomorphism, which is not
the case in general.

The remainder of this subsection is devoted to proving that the structure invariant Œh0�
is independent of all the choices made during its construction from the structure
invariant Œh�. In turn these are:

(1) the choice of hW N !M to represent Œh� 2 S.M /,

(2) the choice of the homotopy equivalence !W . SW ; @ SW /! .N �DkC1;N �Sk/

representing an element in S.N �DkC1/,

(3) the choice of the h–cobordism U , between SW and some manifold W , with the
homotopy equivalence H W U !M �DkC1 � Œ0; 1� such that H j SW D x and
H jW D  which is some homeomorphism.

Let .h; !;H /0 be the structure on M �D2k produced from a choice of h, ! and H .

If two homotopy equivalences hi W Ni !M , i D 0; 1, represent the same element
in S.M /, then there is an h–cobordism .ZIN0;N1/ and a homotopy equivalence
hZ W Z!M � Œ0; 1� with restrictions hZ jNi

D hi . The constructions of Lemma 4.1
can be applied in the relative setting. This means that hZ can be precomposed with a
homotopy equivalence !Z W

xX !Z �DkC1 from some h–cobordism . xX I SW0; SW1/,
which is also a MCN of .ZIN0;N1/ and we obtain a homotopy equivalence

(4-6) x‰W xX !M �DkC1
� Œ0; 1�

which restricts to x‰j SWi
D x i for some homotopy equivalences x i which are h–

cobordant to homeomorphisms  i .

The choice of ! produces a similar outcome. For i D 0; 1, two homotopy equivalences
!ij W

SWij !Ni �DkC1 , for j D 0; 1, as in Lemma 4.1 represent the same element of
S.Ni�DkC1/, so again there is an h–cobordism . xXi ; SWi0; SWi1/, which is also a MCN
of .Ni� Œ0; 1�;Ni�f0g;Ni�f1g/ and also a homotopy equivalence !Ni�DkC1 W xXi!

Ni � Œ0; 1��DkC1 . Composing with hi � idW Ni � Œ0; 1��DkC1!M � Œ0; 1��DkC1

we obtain x‰i with analogous properties as the map x‰ in (4-6). We can glue xX , xX0
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and xX1 along their common boundary components. There is a corresponding homotopy
equivalence to M �DkC1 � Œ0; 1�. This has precisely the same properties as x‰ in
(4-6), so we may assume from now on that x‰ represents the difference between choices
(h0 , !0 ) and (h1 , !1 ).

Now we come to the choice of H . Consider a pair of h–cobordisms Ui , i D 0; 1, each
from SWi to Wi , with homotopy equivalences Hi between x i and homeomorphisms  i .
We can glue these two h–cobordisms onto xX along SW0 and SW1 , take a product of
the result with Œ0; 1� and rearrange the boundary to obtain a compact manifold Y

with boundary. The manifold Y can be seen as an h–cobordism either between
h–cobordisms U0 and U1 or between the h–cobordism xX and some h–cobordism
.X IW0;W1/. We also obtain a homotopy equivalence

GW .Y I xX ;X /! .M �DkC1
� Œ0; 1�� Œ0; 1�; Œ0; 1�� f0g; Œ0; 1�� f1g/

restricting to x‰ on the h–cobordism . xX I SW0; SW1/ and to a homotopy equivalence
‰W X !M �DkC1� Œ0; 1� on .X IW0;W1/ such that ‰jWi

D i , which are homeo-
morphisms. Further GjUi

DHi .

But we may also view Y as an h–cobordism between U0[X and U1 (just thicken W1

to W1 � Œ0; 1� and rearrange the boundary again). The point is that under this change
of viewpoint the homotopy equivalence G is a homeomorphism on W1 � Œ0; 1�.

Recall the constructions between Lemma 4.1 and Definition 4.2 which from the homo-
topy equivalence H of (4-1) produce the rel @ structure h0 on M �D2k of (4-5). Using
Corollary 3.3 in place of Theorem 3.1 we may now perform the precisely analogous
constructions with the homotopy equivalence G to obtain a rel @D2k � Œ0; 1� structure
on M �D2k � Œ0; 1�. This structure restricts to .h0; !0;H0[GjX /

0 and .h1; !1;H1/
0

on the respective ends and hence gives an h–cobordism rel @D2k� Œ0; 1� between these
two rel @D2k structures on M �D2k .

(Here the role of U in (4-1) is played by Y, that of SW by xX , that of W by W1� Œ0; 1�

and that of U@ by the part of the boundary of Y which constitutes the h–cobordism
between .U0/@ [X@ and .U1/@ where X@ is the part of the boundary of X which is
the h–cobordism between @W0 and @W1 . Keep in mind that . xX I SW0; SW1/ is a MCN
of .ZIN0;N1/.)

Thus we have proved:

Lemma 4.4 With G as above Œ.h0; !0;H0[GjX /
0�D Œ.h1; !1;H1/

0�2S@.M�D2k/.

It remains to show Œ.h0; !0;H0/
0� D Œ.h0; !0;H0 [ GjX /

0� which we prove in the
following paragraphs.
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Consider now GjX W X!M�DkC1�Œ0; 1� which is an h-cobordism between the home-
omorphisms  0 and  1 . As such GjX defines an element of S@f0;1g.M�DkC1�Œ0; 1�/

where the subscript @f0; 1g indicates that all structure invariants are defined relative to
M �DkC1�f0; 1g. Using the Sk�1 –branched cover viewpoint we will next show that
from GjX we can obtain a structure from M �D2k�Œ0; 1� relative to M �D2k�f0; 1g

which relates .h0; !0;H0/
0 and .h0; !0;H0[GjX /

0 .

The Hopf fibration S2k�1 ! Sk is given by a free Sk�1 –action on S2k�1 . If
we take the cone of this action we obtain an Sk�1 action on D2k , free except at
the centre point, which exhibits D2k as a branched Sk�1 –fibration over DkC1 D

D2k=Sk�1 . Taking the product with M we have M �D2k !M �DkC1 which
is a branched Sk�1 –fibration with branch set M � f0g � M � DkC1 . Now let
f W X !M �DkC1 � Œ0; 1� represent Œf � 2 S@f0;1g.M �DkC1 � Œ0; 1�/. If we make
f transverse to M � f0g � Œ0; 1�, then we may pull back the branched Sk�1 –fibration
�W M �D2k � Œ0; 1�! M �DkC1 � Œ0; 1� along f .5 The outcome, f �.�/, is a
branched Sk�1 –fibration over X which defines a structure on M �D2k � Œ0; 1� which
is relative to M �D2k � f0; 1g. Using transversality along the h–cobordisms which
define the equivalence relation in S@f0;1g.M �DkC1� Œ0; 1�/ we obtain a well defined
map

��W S@f0;1g.M �DkC1
� Œ0; 1�/! S@f0;1g.M �D2k

� Œ0; 1�/; Œf � 7! Œf �.�/�:

We have an obvious map

RW S@f0;1g.M �D2k
� Œ0; 1�/! S@f0;1g.M �S2k�1

� Œ0; 1�/

and an obvious action

colW S@f0;1g.M �S2k�1
� Œ0; 1�/�S@.M �D2k/! S@.M �D2k/

given, respectively, by restricting to the boundary and by adding a collar. It is straight
forward to verify that there is an identity of structures invariants

(4-7) Œ.h0; !0;H0[GjX /
0�D col..R.��.ŒGjX �//; Œ.h0; !0;H0/

0�/ 2 S@.M �D2k/:

The following two general Lemmas then complete our proof that CWk=2.Œh�/D Œh0� is
well-defined.

Lemma 4.5 Let M be a closed n–dimensional manifold and let l � 3 be such that
nC l � 5. Then the following action is trivial:

col ı .R� Id/W S@f0;1g.M �Dl
� Œ0; 1�/�S@.M �Dl/! S@.M �Dl/:

5Note that f is by definition a homeomorphism on @f0; 1g , hence transverse to anything, hence does
not have to be changed on @f0; 1g .
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Proof Represent ŒG�2S@f0;1g.M�Dl�Œ0; 1�/ by a structure GW X!M�Dl�Œ0; 1�.
Let F W N 0 ! M � Dl represent ŒF � 2 S@.M � Dl/. Consider extending F by
col.R.G//, which can be conveniently denoted as R.G/ [ F . We now have two
structures, F and R.G/[F on M �Dl and we need to show that they represent the
same element of S@.M �Dl/, that is, we need to find an h–cobordism between them.

One way to think about G is as of a homotopy between two homeomorphisms G0

and G1 , where Gi W Xi!M �Dl � fig are the appropriate restrictions. But we can
also think of G as a rel boundary h–cobordism between G1 [R.G/ and G0 . This
shows that G1[R.G/, when thought of as an element of the structure set of M �Dl

is trivial, since G0 is a homeomorphism.

Now both structures F and R.G/[F on M�Dl can be extended by a homeomorphism
to structures on M �S l , namely G1[R.G/[F and G0[F . But we can now glue G

considered as an h–cobordism as above with the trivial h–cobordism F � id to obtain
an h–cobordism between the two structures G1[R.G/[F and G0[F on M �S l .
This means that they represent the same element in the structure set of M � S l .
By Lemma 4.6 below the structures R.G/[ F and F represent the same element
of S@.M �Dl/.

For the statement of the next lemma, recall that if P if a closed manifold with a
decomposition P D Q [ C , where Q and C are codimension 0 submanifolds.
Then there is a well defined a map EW S@.Q/ ! S.P / given by extension with a
homeomorphism.

Lemma 4.6 Let M be a closed n–dimensional manifold and let l � 3 with nC l � 5.
Then the extension by a homeomorphism map

EW S@.M �Dl/! S.M �S l/

is injective.

Proof We establish some notation. Let � D�1.M /, let †j X denote j –fold reduced
suspension of a space X, let XC denote X with a disjoint basepoint, let T DM �S l ,
let pW T ! M be the projection, let i W M ! T be the obvious inclusion and let
cW T ! T= i.M /D†lMC be the collapse map so that we have a cofibration

M
i
�! T

c
�!†lMC:

We leave the reader to verify that E fits into the following commutative diagram
whose rows are fragments of the topological surgery exact sequences for M �Dl and
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T DM �S l .

Œ†lC1MC;G=TOP� LnClC1.�/ S@.M �Dl/ Œ†lMC;G=TOP�

Œ†1TC;G=TOP� LnClC1.�/ S.T / ŒT;G=TOP�

-�1

?
.†1c/�

-!1

?
D

-�1

?
E

?
c�

-�2 -!2 -�2

Here we have identified .M �Dl/=.M � S l�1/ with †lMC and c� and .†1c/�

denote respectively precomposition with c and its suspension. Note that G=TOP is an
infinite loop space, c� is split by p� and so c� and .†1c/� are split injective.

Now let Œf1�; Œf2�2S@.M �Dl/ be two structure invariants and suppose that E.Œf1�/D

E.Œf2�/. As c� is injective, it follows that Œf1� and Œf2� have the same normal invariant
and so there is an element x 2LnClC1.�/ such that Œf1�D Œf2�Cx where C denotes
the action of LnClC1.�/ on S@.M �Dl/. Hence E.Œf1�/DE.Œf2�/Cx and hence
x acts trivially on E.Œf1�/DE.Œf2�/.

Now we use the fact that the topological surgery exact sequence is a long exact sequence
of abelian groups by [31, C.5; 26, Theorem 18.5]. It follows that an element y 2

LnClC1.�/ acts trivially on an element of S.T / if and only if y 2Ker.!2/D Im.�2/

and similarly for S@.M �Dl/. We deduce that x 2 Im.�2/ and that it remains to show
that x 2 Im.�1/, ie that Im.�2/D Im.�1/.

By the commutativity of the above diagram Im.�1/� Im.�2/. On the other hand, we
see that

Œ†1TC;G=TOP�Š Im..†1c/�/˚ Im..†1p/�/:

Now the geometric description of .†1p/� is to multiply a degree one normal map to
M � Œ0; 1� by the identity map of S l and moreover S l has trivial symmetric signature.
Using a simple modification of [25, Proposition 8.1] to the relative case we conclude
that �2 vanishes on Im..†1p/�/. It follows that Im.�2/ D Im.�1/ and hence E is
injective.

Equation (4-7) and Lemma 4.5 yield:

Corollary 4.7 There is an equality Œ.h0; !0;H0/
0�D Œ.h1; !0;H0[GjX /

0�.

Lemma 4.4 and Corollary 4.7 show that the map CWk=2 is well defined.

Remark 4.8 The discussion above includes, in particular, a proof of [11, Lemma 1.1]:
for a fixed choice of ! , a choice of homotopy H does not effect the equivalence class
of .h; !;H /0W N 0!M �D2k in S@.M �D2k/. The proof of this in the appendix
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of [11] appears to us to be incorrect: the claim in the first paragraph of Hutt’s Appendix
that there exists a homotopy K between the homotopy �H2CH1 and an isotopy H
between  2 and  1 is not justified.

4.2 Extension by homeomorphism

Recall that M is a closed topological manifold, that F DC or H has real dimension
k D 2 or 4 and consider the obvious decomposition

M �FP2
D .M �D2k/[ .M �FP2�/

where FP2� WD FP2�D2k . Associated to this decomposition extension by homeo-
morphism gives the map of structure sets

EW S@.M �D2k/! S.M �FP2/:

For the structures h0W N 0 ! M �D2k defined in (4-5) above, we can realize the
map E as follows. Observe that FP2� is homeomorphic to the mapping cylinder (disk
bundle) of the Hopf map 
 W S2k�1! Sk and recall that the restriction of the map h0

to @N 0 D @W 0 is given by the Sk�1 –bundle map @ 0W @W 0 ! M � S2k�1 over
@ W @W !M �Sk . Thus we can simply extend @ 0 to the associated Dk –bundle
map. This amounts to extending to the associated mapping cylinders.

To be explicit, recall that qW W @W
0! @W is the projection in the source and define

(4-8) yN WDN 0[@W 0 cyl.qW /D cyl.p0/[U 0@ [@W 0 cyl.qW /:

If follows that a representative of EŒh0� given by

(4-9) yh WD h0[ cyl.@ 0; @ /W yN !M �FP2

where cyl.@ 0; @ / is the mapping cylinder (Dk –bundle) map associated to the square
@ ı q D 
 ı @ 0 .

As with the map h0 we note that the map yhW yN ! M � FP2 is not a map over
hW N !M since @ is not a map over h. On the other hand, we can replace the
structure yh with a structure that is over h. In fact one has the following h-decorated
version of a key lemma of Hutt.

Lemma 4.9 (Compare [11, Lemma 1.4].) There is a closed manifold xN with a map
xpW xN ! N and a homotopy equivalence of closed manifolds xhW xN ! M � FP2

covering the map h which represents the same element as yh in S.M �FP2/. Indeed
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there is a homotopy equivalence 'W xN ! N �FP2 over N such that the following
diagram commutes.

xN

M �FP2

N �FP2

HH
HHj

xh

?

'

��
��*
h�Id

Proof Recall the projection map q SW W @ SW
0! @ xW and also recall that the mapping

cylinder cyl.p0/ has boundary @ SW 0 . The manifold xN is defined as

(4-10) xN WD cyl.p0/[ cyl.q SW /

and we have the obvious projection map xpW xN !N . Recall the homotopy equivalence
!W SW !N �DkC1 over the identity on N from Lemma 4.1. Define 'W xN 'N �FP2

by

(4-11) ' D cyl.@!0; id/[ cyl.@!0; @!/;

and xhD .h� Id/ ı'W xN 'M �FP2 .

We need to show that xh is equivalent to yh and we achieve this with a sort of Alexander
trick. We first find an h–cobordism Z between the manifolds yN and xN . To this end
think of xN as

xN D cyl.p0/[ .@ SW � Œ0; 1�/[ cyl.q SW /:

Now the manifold Z3 WD cyl.qU@
/ yields an h–cobordism between cyl.qW / and

cyl.q SW /. The product U 0
@
� Œ0; 1� can be viewed as an h–cobordism Z2 between U 0

@

and @ SW 0 � Œ0; 1�. Let Z1 be the trivial product h–cobordism over cyl.p0/. Gluing all
these together gives the desired global h–cobordism.

It remains to produce a homotopy equivalence from Z to M � FP2 � Œ0; 1� which
restricts to yh and xh on the two ends. On Z1 we just take the product of cyl.@x 0; @x /
with the identity. On Z2 we take the product of H 0

@
with the identity, but this is modified

according to the way we think of Z2 . On Z3 we can take the map cyl.H 0
@
;H@/. All

these maps agree on the boundary and provide the required homotopy equivalence.

Remark 4.10 Notice that the only role played by h in the construction of the map '
is to define �2 ŒN;G=TOP�. Specifically ' is determined by @! and @! is determined
by � 2 ŒN IG=TOP�. Moreover the class � is all one needs to build the manifolds N 0 ,
yN and xN . This observation will be useful in the last Section 8 where coboundaries

for yN and xN will be constructed.
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5 The algebraic theory of surgery

We give a brief review of the algebraic theory of surgery. In particular we review
how algebraic surgery equips S.M / with an abelian group structure by identifying
it with the algebraic structure set SnC1.M /. In more detail, the aim of this section
is to define, for a closed n–dimensional topological manifold, the abelian algebraic
structure group SnC1.M / and the map sW S.M /! SnC1.M / which turns out to be a
bijection if n� 5. Hence one can equip S.M / with an abelian group structure via this
bijection. We will also discuss a generalization when M has a boundary. Furthermore
we will discuss the functoriality of SnC1.M / in M and we will present a condition
which implies that an element in SnC1.M / is zero. All these results will be used in
subsequent sections. The principal references are Ranicki’s papers [26; 24; 25; 28].

The abelian group SnC1.M / is defined as a quadratic L–group of a certain algebraic
bordism category.

An algebraic bordism category ƒD .A;B;C/ consists of an additive category with
chain duality .A; .T; e// and two full subcategories C , B � B.A/ of the category of
bounded chain complexes in A satisfying certain mild assumptions.

The chain duality .T; e/ consists of a contravariant functor T W B.A/! B.A/ and a
natural transformation eW T 2! id satisfying certain conditions. It allows one to define
the tensor product C ˝A D of chain complexes C;D 2 B.A/ such that the tensor
product C ˝A C becomes a chain complex of ZŒZ2�–modules. One defines an n–
dimensional symmetric structure on C 2B.A/ to be an n–cycle � in the chain complex
W %.C /DHomZŒZ2�.W; .C˝AC //, where W is the standard ZŒZ2�–resolution of Z.
An n–dimensional quadratic structure on C 2 B.A/ is defined as an n–cycle  in
the chain complex W%.C / D W ˝ZŒZ2� .C ˝A C /. An n–dimensional symmetric
structure consists of a collection of chains � D f�s 2 .C ˝A C /nCs j s � 0g satisfying
certain compatibility connections. An n–dimensional quadratic structure consists of a
collection of chains  D f s 2 .C ˝A C /n�s j s � 0g satisfying certain compatibility
connections. There is also a symmetrization map .1CT /W W%.C /!W %.C /.

The pair .C; �/ is called a symmetric algebraic complex, it is C–Poincaré if the
mapping cone of �0 , C.�0W †

nT C ! C /, lies in C . The pair .C;  / is called a
quadratic algebraic complex, it is C–Poincaré if .C; .1CT / / is C–Poincaré. In
the above formula recall that

(5-1) .C ˝A C /n WD HomA.T C;C /n D HomA.†
nT C; ;C /0:

All these notions are defined in [26, Chapters 1,3].
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L–Groups There is a well-defined notion of a cobordism of n–dimensional quadratic
algebraic complexes. The quadratic L–groups Ln.ƒ/ are the cobordism group of
n–dimensional algebraic complexes in ƒ, that means elements are represented by
those complexes which are in B � B.A/ which are C–Poincaré. If B and C are not
explicitly stated, we use the convention that BDB.A/ and CD 0. See [26, Definitions
1.8, 3.4].

Example AŒ�1.M /� For any ring with involution R, for example for ZŒ�1.M /�, the
category of finitely generated free based R–modules AŒR� has a chain duality given by
T .M /D HomR.M;R/. Examples 5.3, 5.4 below explain how to obtain symmetric
and quadratic algebraic complexes over the category ZŒ�1.M /�. The quadratic L–
groups Ln.ZŒ�1.M /�/ defined as cobordism groups of quadratic algebraic Poincaré
complexes agree with the usual Wall surgery L–groups defined using quadratic forms
or formations [25].

Example A�.K/ Let K be a simplicial complex, or more generally a �–set, and let
A be an additive category with chain duality. The category A�.K/ has as its objects
the so-called K–based objects of A, that means objects of A which come as direct
sums

M D
X
�2K

M.�/:

Morphisms are given by

MorA�.K /.M;N /D

�
f D

X
�;�2K

f .�; �/W M.�/!N.�/
ˇ̌̌
f .�; �/D0 unless� � �

�
:

The definition of the duality is stated in [26, Proposition 5.1], on the objects M 2A it
is given by

.TM /r .�/D T .M.�//rCj� j if � � �; j� j D j� j � 1:

This formula will not be used in the present paper. What is more important for us is
the observation that an n–dimensional quadratic algebraic complex .C;  / in A�.K/
includes in particular for each � 2 K a chain complex C.�/ and a duality map
 0.�/W †

nT C.�/! C.�/ (recall (5-1)). But it contains more information. There are
relations between these data for various simplices and of course the components  s

for s > 0. See [26, Definition 4.1, Proposition 5.1]. Also Examples 5.3, 5.5 below
explain how such complexes come from geometry.
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Functoriality Let � W K!L be a �–set map. Then we have an additive functor

(5-2) ��W A�.K/!A�.L/ .��M /.�/D
X

�2K ;�.�/D�

M.�/ for � 2L

which induces a functor on the chain complexes which also “commutes” with the chain
duality in a suitable sense so that one obtains a map of the L–groups

��W LnC1.A�.K//!LnC1.A�.L//:

See [26, Proposition 5.6, Example 5.8].

Assembly Slightly different functoriality is provided by the assembly functor denoted
AW Z�.K/! ZŒ�1.K/� and defined by

M 7!
X
z�2 zK

DM.p.z�//

which also induces a map of the L–groups

��W Ln.Z�.K//ŠHn.K;L�/!Ln.ZŒ�1.K/�/:

Here the isomorphism in the source is a calculation, the symbol L� denotes the
quadratic h0i–connective L–theory spectrum. See [26, Chapter 9; 26, Chapter 13] for
the spectrum L� .

Algebraic bordism categories So far we have only presented examples of additive
categories with chain duality. In order to obtain an algebraic bordism category we need
to specify interesting subcategories of B.A/. We will only be interested in the case
A D A�.K/ for which we will use three such subcategories, denoted D � C � B .
Here are the definitions:

B WD B.A�.K//;

C WD fC 2 B jA.C /' �g;

D WD fC 2 B j C.�/' � 8� 2Kg:

(5-3)

This gives us three possibilities to construct interesting algebraic bordism categories.
Using a suitable notion of a functor between algebraic bordism categories we obtain a
sequence

(5-4) ƒ00 D .A;C;D/ �!ƒ0 D .A;B;D/ �!ƒD .A;B;C/

which induces a long exact sequence of groups

(5-5) � � � !LnC1.ƒ/!Ln.ƒ
00/!Ln.ƒ

0/!Ln.ƒ/!Ln�1.ƒ
00/! � � � :

This material is discussed in [26, Chapter 3].
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Connective versions In order to obtain groups which relate well with geometry we
need to use a connective version of the above theory. Let q 2Z and let ƒD .A;B;C/
be an algebraic bordism category. Define the subcategory Bhqi � B to be the subcate-
gory of chain complexes in B which are homotopy equivalent to q–connected chain
complexes. Further define Chqi D Bhqi \C . Then ƒhqi D .A;Bhqi;Chqi/ is a new
algebraic bordism category. More details are given in [26, Chapter 15].

Definition 5.1 [26, Chapter 17] Let K be a �–set, n2N and let ƒ00 be the algebraic
bordism category given by (5-4). Define

SnC1.K/ WDLn.ƒ
00
�h1i/:

Algebraic surgery exact sequence Putting together the previous statements and defi-
nitions the long exact sequence (5-5) becomes the algebraic surgery exact sequence

(5-6) � � �!LnC1.ZŒ�1.K/�/!SnC1.K/!Hn.K;L�h1i/!Ln.ZŒ�1.K/�/!� � �

discussed in detail in [26, Chapters 14, 15]. We will mostly work directly with the group
SnC1.K/, but of course many of the properties of this group follow from the existence
of the sequence (5-6). For example recall that the assignment K 7! SnC1.K/ becomes
a covariant functor from �–sets to abelian groups via the functoriality described in
(5-2). So for � W K!L a �–set map we obtain the map

��W SnC1.K/! SnC1.L/:

In fact we obtain a map of exact sequences for K and L and it follows that the functor
SnC1.K/ is a homotopy functor. In particular this means that if � is a homotopy
equivalence of �–sets, then �� is an isomorphism of abelian groups, since the other
two terms clearly are homotopy functors.

Next we review how the above theory relates to topology. We begin with some remarks
about topological manifolds in the above setting. When M is a closed n–dimensional
topological manifold we can apply Definition 5.1 only if M is triangulated. In that
case it is possible to define a map sW S.M /! SnC1.M /, whose construction we
recall below and which can be shown to be a bijection [26, Chapter 18]. If M is not
triangulated we can choose a homotopy equivalence r W M ! K to a finite �–set.
Such an r will determine a map s.r/W S.M /! SnC1.K/ which can be shown to be a
bijection in the same way. In both cases the bijections s and s.r/ can be used to give
S.M / the structure of an abelian group. It also turns out that this group structure is
independent of both the choice of the triangulation and of the homotopy equivalence r .
Therefore, following Ranicki, we will abuse notation and write SnC1.M / for SnC1.K/

for any choice of a �–set K homotopy equivalent to M and sW S.M /! SnC1.M /

Algebraic & Geometric Topology, Volume 11 (2011)



1946 Diarmuid Crowley and Tibor Macko

for s.r/ given by any choice of a homotopy equivalence r W M !K . For the record
we make:

Definition 5.2 Let M be an n–dimensional topological manifold and let r W M !K

be a homotopy equivalence to a finite �–set. We write

SnC1.M /D SnC1.K/:

Now we explain the map sW S.M /! SnC1.M /. First we need some preparation.
In the following examples we explain the topological situations which give rise to
algebraic complexes, both symmetric and quadratic.

Example 5.3 Let K be a finite �–set with barycentric subdivision K0 . Consider the
simplicial chain complex C WD��.K

0/ as an object in B.Z/. Any n–cycle ŒK� in Cn

defines via the symmetric construction a symmetric structure � on C over Z, whose
component �0W †

nT C D C n��! C� corresponds to the cap product with ŒK�. If K

is a closed oriented n–dimensional topological manifold and ŒK� is its fundamental
class, then the resulting symmetric Poincaré complex is denoted ��.K/ and is called
the symmetric signature of K . See [25]

The chain complex C can also be thought of as an object in B.Z�.K// with C.�/D

��.D.�/; @D.�//, the simplicial chain complex of the dual cell relative to its bound-
ary. Then we have †nT C.�/ Š �n�j� j��.D.�//. Again by [26] for each n–cycle
ŒK� 2 Cn there is a refined symmetric construction. Thus we obtain an algebraic sym-
metric structure � over Z�.K/, which in particular contains for each � duality maps
�0.�/W †

nT C.�/! C.�/ which are cap products with certain .n�j� j/–dimensional
classes ŒK�.�/. See [26, Example 5.5].

Now let M be a topological manifold with a reference homotopy equivalence r WM!K

to a �–set, which is transverse to the dual cells of K0 . Consider the dissection

(5-7) M D
[
�2K

�
M.�/D r�1.D.�//:

�
The chain complex

(5-8) C D
X
�2K

�
C.�/D C.M.�/; @M.�//

�
where C.M.�/; @M.�// is the singular chain complex of the pair .M.�/; @M.�//,
yields an object in B.Z�.K//. As an object in B.Z/ it is weakly homotopy equivalent to
C�.M /, the singular chain complex of M . When considered as an object in B.Z�.K//,
then, similarly to above, there is for each n–cycle ŒM � 2 Cn a refined symmetric

Algebraic & Geometric Topology, Volume 11 (2011)



The additivity of the �–invariant and periodicity in topological surgery 1947

construction, so that we obtain an algebraic symmetric structure � over Z�.K/, which
in particular contains for each � duality maps �0.�/W †

nT C.�/! C.�/ which are
cap products with certain .n� j� j/–dimensional classes ŒM �.�/. For more details see
[26, Example 6.2].

Example 5.4 Let .f; b/W N !M be a degree one normal map of n–dimensional
closed manifolds. Denote by K.f / the algebraic mapping cone of the Umkehr map of
chain complexes

f !
WC� �M ' C n�� �M f n��

����! C n�� zN ' C� zN :

Then C� �M comes with a structure of an n–dimensional symmetric algebraic Poincaré
complex over ZŒ�1.M /�. This projects to a structure of an n–dimensional symmetric
algebraic Poincaré complex on K.f /. In [25] this is refined to an n–dimensional
quadratic algebraic Poincaré complex on .K.f /;  .f //.

Example 5.5 Let .f; b/W N !M be a degree one normal map of closed n–dimen-
sional manifolds and let r W M !K be a map to a �–set K such that both rf and r

are transverse to the dual cells of K . There are K–dissections N Š [N.�/ and
M Š [M.�/, so that C�N and C�M can be regarded as objects in B.Z�.K//.
There are preferred structures of n–dimensional symmetric algebraic complexes on
C�N and C�M , as objects of B.Z�.K// coming from the fundamental classes. By
analogy with Example 5.4, there is an algebraic Umkehr map

f !
W C�M �! C�N

in B.Z�.K// with mapping cone K.f /, say. The resulting structure of and n–
dimensional symmetric algebraic complex on K.f /, as an object of B.Z�.K//, has a
preferred refinement to a quadratic structure  .f /. The chain complex K.f /.�/ for
a � 2K can be identified with the mapping cone of an algebraic Umkehr map

C�.M.�/; @M.�// �! C�.N.�/; @N.�//:

See [26, Examples 9.13, 9.14] for details. Under assembly, this construction coincides
with that in Example 5.4.

Example 5.6 Note that .K.f /;  .f // is D–Poincaré. When in addition f is a
homotopy equivalence, then K.f / is contractible after assembly. Furthermore the
required connectivity assumptions are fulfilled so that the pair .K.f /;  .f // represents
an element in SnC1.M /.

Algebraic & Geometric Topology, Volume 11 (2011)



1948 Diarmuid Crowley and Tibor Macko

Definition 5.7 [26, Proposition 18.3] The map

sW S.M /! SnC1.M /; Œf W N !M � 7! ŒK.f /;  .f /�

is defined by the construction described in Examples 5.5, 5.6.

Example 5.8 [26, Proposition 18.3] In case we deal with a manifold with boundary
.Y; @Y /, the constructions in Examples 5.5, 5.6 yield a map from S@.Y / to SnC1.Y /.
When Y DM �Dk , then thanks to the homotopy invariance of S�.�/ we obtain a
map

sW S@.M �Dk/! SnC1Ck.M /:

Theorem 5.9 [26, Theorem 18.5] For a closed manifold M with dimension n� 5

we have

sW S.M /
�
�! SnC1.M /; sW S@.M �Dk/

Š
�! SnC1Ck.M /;

where � means a bijection and Š means an isomorphism of abelian groups.

Remark 5.10 Suppose that hW M!M 0 is a homotopy equivalence of n–dimensional
closed manifolds. Then the assignment Œf � 7! Œh ıf � provides us with a map of sets
S.M /! S.M 0/. On the other hand h induces a homomorphism h�W SnC1.M /!

SnC1.M
0/. We note that in general s.Œhıf �/¤ h�s.Œf �/, but there is the composition

formula s.Œh ı f �/ D h�s.Œf �/C Œh�; see [27]. This will indeed be used later in the
proof of Proposition 6.1.

Example 5.11 Let hW P !N be a homotopy equivalence of closed n–dimensional
manifolds representing an element in S.N /. Given a homotopy equivalence r W N !K

to a finite �–set K we have described s.Œh�/ 2 SnC1.N / in Examples 5.5, 5.6. Let
sW M !L be a homotopy equivalence from another closed n–dimensional manifold
to a finite �–set and let f W N !M be a map covering via the reference maps a
�–set map � W K ! L. Consider ��.s.Œh�// 2 SnC1.M /. From the description of
the functoriality in 5.11 we see that for each � 2L, ��.s.Œh�//.�/ has the underlying
chain complex the algebraic mapping cone of the map� [

�.�/D�

P .�/; @

�
�!

� [
�.�/D�

N.�/; @

�
:

See [26, Example 5.8].
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Example 5.12 We will need a special case of the above example when � is the
projection map �1W K˝L!K . Here K˝L is the geometric product of �–sets;
see [30; 26, Chapter 11]. A p–simplex of K˝L is a triple

.�; �; �/ where � 2K.m/; � 2L.n/; � 2 .�m
˝�n/.p/

with �m˝�n the product of ordered simplicial complexes. There is a homeomorphism
jK˝Lj D jKj � jLj and there is a projection map �1W K˝L!L which is a �–set
map (the explicit formula is easy but a little complicated and we do not need it). We
have [

�;�

D.�; �; �/DD.�/�L:

Let M and N be two closed topological manifolds with reference homotopy equiva-
lences to �–sets r W M !K and r 0W N ! L transverse to the dual cells. Then the
product map r �r 0W M �N !jKj�jLj is transverse to the dual cells of the geometric
product of the �–sets K˝L. Let hW P !M �N be a simple homotopy equivalence
representing an element in S.M �N / which is transverse to the dissection of M �N

induced by r � r 0 . We have s.Œh�/ 2 SmCnC1.M �N / and this element is represented
by an algebraic Poincaré complex over Z�.K˝L/ whose value at .�; �; �/ 2K˝L

has its underlying chain complex the mapping cone of the Umkehr map of the degree
one normal map

(5-9) h.�; �; �/W P .�; �; �/D h�1.M �N /.�; �; �/! .M �N /.�; �; �/:

Consider the projection map pW M �N !M . We have p�.s.Œh�// 2 SmCnC1.M /.
It follows from the above discussion that this element is represented by an algebraic
Poincaré complex in A�.K/ whose value at � 2K has its underlying chain complex
the mapping cone of the Umkehr map of the degree one normal map

(5-10) h.�/W P .�/D h�1.M.�/�N /!M.�/�N:

It may happen that such h represents a nontrivial element in S.M �N / and hence
s.Œh�/ is a nonzero element in SmCnC1.M �N / and at the same time for each � 2K

the map (5-10) is a simple homotopy equivalence. Then the underlying chain complex
for each � is contractible and hence the projection p�.s.Œh�//D 0 2 SmCnC1.M / by
the Proposition 5.13 below. Such a situation will indeed occur in the next section.

Proposition 5.13 Let .C;  / represent an element in SnC1.M /. Suppose in addition
that C.�/' � for each � 2K . Then

Œ.C;  /�D 0 2 SnC1.M /:
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Proof The homotopy equivalences for each � assemble to a null-bordism of chain
complexes in the algebraic bordism category ƒ00h1i with ƒ00 D .Z�.K/;C;D/ as in
(5-3) which defines SnC1.M /.

One of the important and useful features of the algebraic theory of surgery is a
particularly easy description of periodicity. Indeed, in case one works with the 0–
connective version of the algebraic structure set, denoted by xSnC1.M /, one obtains
the 4–periodicity given by the so-called skew-double-suspension

(5-11) xS2
W xSnC1.M /! xSnC5.M /:

If one works with the 1–connective version and for a positive integer k sets S2k WD

.S2/k one obtains in general an exact sequence

(5-12) 0! SnC1.M /
S2k

��! SnC2kC1.M /!Hn.M;L0.Z//! � � �

where in fact Hn.M;L0.Z//ŠHn.M;Z/; see [26, Remark 25.4].

This near-periodicity can also be defined using products in L–theory. Recall the
symmetric signature ��.M / of an n–dimensional Poincaré complex M , a symmetric
algebraic Poincaré complex over Z. The products in algebraic surgery [26, Appen-
dix B] give for an n–dimensional quadratic algebraic C–Poincaré complex .C;  /
representing an element in SnC1.M / a new .nC4/–dimensional quadratic algebraic
C–Poincaré complex .C;  /˝ ��.CP2/ representing an element in SnC5.M /. This
produces a map which coincides with the double skew-suspension. In geometry this map
corresponds to taking a product with the identity on CP2 and projecting algebraically.

More generally one has the following identity of injective homomorphisms

(5-13) .˝��.FP2/D Sk/W SnC1.M /! SnC2kC1.M /

where Sk is 2k –skew-suspension map and ˝��.FP2/ is the homomorphism defined
by taking the product with the symmetric signature of CP2 or HP2 for k D 2 or 4

respectively.

6 Siebenmann periodicity

Recall that M is a closed topological manifold of dimension n� 5 and Theorem 1.4
which states that the Cappell–Weinberger map CW2

W S.M /! S@.M �D8/ is an
injective homomorphism with cokernel a subgroup of Z. Theorem 1.4 is a direct
consequence of the Proposition 6.1 below. The exactness part follows from the exactness
of S4 in (5-12) and the identity ˝��.HP2/D S4 of (5-13).
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Proposition 6.1 For F DH , hence k D 4, the following diagram commutes.

S.M /
CWk=2

//

s

��

S@.M �D2k/

s

��

0 // SnC1.M /
˝��.FP2/

// SnC2kC1.M / // Hn.M IL0.Z//

Proof Recall that besides the map CWk=2 from S.M / to S@.M �D2k/ we have
also discussed the extension by a homeomorphism map E which brings us further
to S.M � FP2/. This map will be helpful in the proof, in fact the situation can be
described by the following diagram:

S .M /
CWk=2

//

�FP2

''

s

��

S
@
.M �D2k/

E

rr

s

��

S .M �FP2/
s

M�FP2

))

SnC2kC1.M �FP2/
p�

))

SnC1.M /
˝��.FP2/

// SnC2kC1.M /

The discussion at the end of the last section shows that the lower triangle commutes.
The triangle on the right commutes as well. We warn the reader that we do not claim
that the upper triangle commutes, in fact it does not (that’s why the arrow is dotted).6

Nevertheless we will show that the outer square commutes. For this we first recall
Lemma 4.9 which says that E.CW2.Œh�//' Œ.h� id/ı'� where 'W xN !N �FP2 is
a certain homotopy equivalence over the identity of N . The proof of the proposition
boils down to the following:

Lemma 6.2 For F DH , hence k D 4, there is an equality

p�
�
s.Œ'�/

�
D 0 2 SnC2kC1.N /

where p�W SnC2kC1.N � FP2/! SnC2kC1.N / is the homomorphism induced by
the projection pW N �FP2!N .

6Just before [11, Lemma 1.4, page 296], Hutt incorrectly stated that the upper triangle commutes.
However, it seems from the rest of the paper that this may well have been a typographical error.
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We finish the proof of the Proposition 6.1 and then prove Lemma 6.2. We have the
following equalities:

(6-1)

s.CWk=2.h//D pr1 s.E ıCWk=2.Œh�//

D pr1 s.Œ.h� id/ ı'�/

D pr1..h� id/�s.Œ'�/C s.Œh� id�//

D h� pr1 s.Œ'�/C s.Œh�/˝ ��.FP2/

D s.Œh�/˝ ��.FP2/:

The first equality follows from the definitions and the functoriality of S?.�/, the second
from Lemma 4.9, the third from the composition formula of [27], the fourth again from
the functoriality of S?.�/ and the fifth from Lemma 6.2.

Proof of Lemma 6.2 Recall the steps leading from a homotopy equivalence hW N!M

to the homotopy equivalence 'W xN !N �FP2 defined by (4-11):

(1) Start with a map �W N ! G=TOP (which was chosen so that .h � id/�� D
�Œh� id� 2 ŒM;G=TOP�).

(2) Construct the homotopy equivalence of pairs !W . SW ; @/! .N �DkC1; @/ over
the identity from the MCN pW . xW ; @/!N (in Proposition 3.4).

(3) Consider the restriction, @!W @ SW !N �Sk which is a homotopy equivalence
over the identity.

(4) Construct the homotopy equivalence @!0W @ SW 0!N �S2k�1 over the identity
as the pullback of 
N W N � S2k�1! N � Sk along @! (recall (4-2)). This
yields projection maps q SW W @ SW

0! @ SW and p0W @ SW 0!N .

(5) Define xN D cyl.p0/[ cyl.q SW / (Equation (4-10)).

(6) Define ' D cyl.@!0; id/[ cyl.@!0; @!/ (Equation (4-11)).

Next recall r W M ! K a homotopy equivalence from M to a �–set K which is
transverse to the dual cells of K so that we have a dissection

M D
[
�2K

M.�/

with M.�/ D r�1.D.�;K// a submanifold with boundary of dimension .n� j� j/.
Further assume that hW N !M is transverse to M.�/ for each � so that N.�/ D

h�1.M.�// is a submanifold with boundary of dimension .n�j� j/ and h.�/W N.�/!

M.�/ is a degree one normal map. We obtain a dissection

(6-2) N D
[
�2K

N.�/:
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Geometry We show that by a small homotopy it is possible to change �W N!G=TOP
so that xN possess a dissection indexed by simplices � 2K , the map p respects the
dissections of xN and N :

(6-3) xp D
[
xp.�/W xN D

[
xN .�/!N D

[
N.�/

and the homotopy equivalence 'W xN ! N � FP2 also respects these dissections.
Furthermore for each � 2K ,

(6-4) '.�/W xN .�/!N.�/�FP2

is a homotopy equivalence.

To this end modify the map � by a small homotopy so that when restricted to the collar
of each manifold with boundary .N.�/; @N.�// it is the product map with the identity
in the collar direction. Hence we have

�D
[
�.�/W N D

[
N.�/! G=TOP:

To achieve this we follow steps (1)–(6) above but in the relative setting. Note that
this requires Proposition 3.5 instead of Proposition 3.4 in step (2). We will proceed
inductively starting with simplices � of the top dimension, since then N.�/ has
dimension 0. Over such N.�/, steps (1) to (6) are trivial. To make the inductive
step note that as k D 4 the dimension restrictions Proposition 3.5 are fulfilled, since
by the inductive assumption the dimension of N.�/ is � 1. Steps (3) to (6) have
straightforward generalizations to the relative case.

The manifold xN is the union of all the manifolds yN .�/ just constructed and the projec-
tion map xpW xN!N is the union of the corresponding projections maps xp.�/. Similarly
the homotopy equivalence ' is the union of all the homotopy equivalences '.�/.

Algebraic surgery The homotopy equivalence ' represents an element in the structure
set S.N �FP2/. The map sW S.N �FP2/! SnC2kC1.N �FP2/ was described in
Section 5. To use it we need to choose a �–set homotopy equivalent to N �FP2 . Since
FP2 is a triangulable manifold we can choose a triangulation and denote the underlying
�–set by L, the reference map will be denoted r 0W FP2!L. Then we can pick as
our choice the geometric product K˝L, whose geometric realization we identify with
the product jKj�jLj, and the reference map xr WD .hır/�r 0W N �FP2!jKj�jLj is
automatically transverse to the dual cells of K˝L which we consider as the underlying
space of the geometric product of �–sets described in Section 5.

Note that each dual cell of K ˝L is a subspace of D.�/ �L for suitable � 2 K .
Hence also

.N �FP2/.�; �; �/�N.�/�FP2
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for each �; �. In fact [
�;�

.N �FP2/.�; �; �/�N.�/�FP2:

To determine a representative of s.Œ'�/ in SnC2kC1.N �FP2/, where we work over
the category Z�.K˝L/, the map ' needs to be made transverse to the submanifolds
.N �FP2/.�; �; �/ for each .�; �; �/2K˝L. This can be done by a small homotopy
which does not spoil the property that ' respects the dissections of xN and N �FP2

over K and that each '.�/ is a homotopy equivalence. To achieve this we can again
proceed inductively starting from the simplices � 2 K of the top dimension. We
change each '.�/ by a small homotopy to make it transverse to .N �FP2/.�; �; �/

for all choices of � and �, which if course does not spoil the fact that it is a homotopy
equivalence. Hence the new ' is the union of the new '.�/ and hence is transverse to
.N �FP2/.�; �; �/ for each .�; �; �/ 2K˝L.

Now we find ourselves in the situation described in Example 5.12. We have the
homotopy equivalence 'W xN !N �FP2 whose image s.Œ'�/ 2 SnC2kC1.N �FP2/

is represented by a quadratic chain complex over the category Z�.K˝L/ whose value
at each .�; �; �/ 2K˝L has its underlying chain complex the mapping cone of the
Umkehr map of the degree one normal map

(6-5) '.�; �; �/W xN .�; �; �/D '�1.N �FP2/.�; �; �/! .N �FP2/.�; �; �/:

This may very well be a representative of a nonzero element in S.N �FP2/.

But we are really interested in the projection p�
�
s.Œ'�/

�
2 SnC2kC1.N /. By Example

5.12 this is represented by a quadratic chain complex over the category Z�.K/ whose
value at each � 2K has its underlying chain complex the mapping cone of the Umkehr
map of the degree one normal map

(6-6) '.�/W xN .�/!N.�/�FP2:

But '.�/ is a homotopy equivalence for each � and so the resulting chain complex
over each � is contractible. Thus by Proposition 5.13 p�.s.Œ'�//D 0 as required.

Remark 6.3 The above proof shows why we chose k D 4. If k D 2, then the
dimension restrictions of Proposition 3.5 are not satisfied.7

7It is possible that the dimension restrictions in the relevant proposition can be relaxed. This would
require careful analysis of all the tools used in the proofs. This might be an interesting problem but lies
beyond the scope of this paper.
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7 The bordism groups �STOP
2d�1

.G=TOP � BG )

Let X be a space and let �STOP
n .X / denote the n–th oriented topological bordism

group of X . Recall that G is a finite group and BG is its classifying space. The
purpose of this section is to prove the following:

Lemma 7.1 For all d � 1, �STOP
2d�1

.G=TOP�BG/˝QD 0.

Proof The functor X ! �STOP
� .X /˝Q is a generalised homology theory with

coefficients �STOP
� ˝Q. By Theorem 2.1 for the trivial group �STOP

2d�1
.pt/˝QD 0.

To compute �STOP
� .X / applying the Atiyah–Hirzebruch spectral sequence,M

pCqD�

Hp.X I�
STOP
q ˝Q/H)�STOP

� .X /˝Q;

we see that if H2d�1.X IQ/Š 0 for all d then �STOP
2d�1

.X /˝QD 0 for all d .

Now applying [15, Remark 4.36] the space G=TOP is rationally a product of Eilenberg–
Mac Lane spaces K.Q; 4i/ for i � 1 and so H2d�1.G=TOPIQ/ D 0 for all d .
As G is a finite group H�.BGIQ/ D 0 for all � > 0 and so by the Künneth The-
orem we see that H2d�1.G=TOP �BGIQ/ D 0 for all d . Thus we conclude that
�STOP

2d�1
.G=TOP�BG/˝QD 0 for all d .

8 Completion of the proof of Theorem 1.1

In this section we prove Theorem 1.5 which completes the proof of Theorem 1.1.
Recall the definition of the maps z� , z�@ and the CWk=2 –map and that k D 2 or 4. In
addition recall the map defined by extension by a homeomorphism EW S@.M �D2k/!

S.M �FP2/. Let hW N !M represent an element in S.M /, let h0W N 0!M �D2k

represent CWk=2.Œh�/. Recall from Lemma 4.9 that E.Œh0�/ can be represented by
two homotopy equivalences, namely either by yhW yN !M � FP2 (see (4-9)) or by
xhW xN !M �FP2 (see just below (4-11)).

Lemma 8.1 There are identities

(1) �. xN /D z�@.Œh
0�/C �.M /,

(2) �. xN /D �.N /.

Proof of Theorem 1.5 Combining Lemma 8.1 (1) and (2) we have

z�@.Œh
0�/D �.N /� �.M /D z�.Œh�/:
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Proof of Lemma 8.1 (1) The argument is similar to the proof of Proposition 2.9.
From the rel. boundary structure h0W N 0 !M �Dk we form the closed manifold
M.h0/ WD N 0 [h0 .�M �D2k/ and by Definition 2.6, z�@.Œh0�/ D �.M.h0//. Recall
the operation #M in Definition 2.7 and observe that

M �FP2
D .M �FP2�/[ .M �D2k/:

If follows that we can form the closed manifold

(8-1) M.h0/ #M .M �FP2/

just as in Definition 2.7. By the same reasoning as in the proof of Proposition 2.9
we obtain that the �–invariant of the manifold in (8-1) is the sum of �–invariants
�.M.h0//C �.M �FP2/. But from the construction of yN in (4-8) we see that there
is a homeomorphism

yN ŠM.h0/ #M .M �FP2/:

The statement now follows since �.M � FP2/D �.M / and �. yN /D �. xN /, which
we have from the h–cobordism invariance of the �–invariant.

(2) We are given ŒhW N !M � 2 S.M / and ŒxhW xN !M � FP2� 2 S.M � FP2/

which represents E ıCWk=2.Œh�/ and we wish to prove that �. xN /D �.N / where the
reference map for xN is �.N /ı xp and xpW xN !N is the map constructed in Section 4.2.

Recall from Definition 2.2 the definition of the �–invariant of a .2d�1/–dimensional
manifold N equipped with a map �.N /W N ! BG inducing �.N /�W �1.N /! G ,
with G a finite group. Because �STOP

2d�1
.BG/˝Q D 0 there is a coboundary forFr

iD1 N over �.N / for some r � 1. That is, there is a manifold P with boundary
@P D

Fr
iD1 N , and with a map �.P /W P!BG extending

Fr
�.N /. The formula is

(8-2) �.N / WD .1=r/G–sign.P /:

To show the desired statement it is enough to find a coboundary, say xP , for
Fr

iD1
xN

over �. xN / D .�.N / ı xp/W xN ! N ! BG , such that xP ' P � FP2 . Then by the
multiplicativity of G –signature we would obtain

(8-3) �. xN /D .1=r/G–sign. xP /D .1=r/G–sign.P / � sign.FP2/D �.N /:

Recall from Section 4 that the closed manifold xN along with a homotopy equivalence
'W xN ! N � FP2 was constructed from a map �.N /W N ! G=TOP. Now, by
Lemma 7.1 we have �STOP

2d�1
.BG �G=TOP/˝QD 0. This implies that there exists a
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manifold P with boundary @P D
Fr

iD1 N and a map

�.P /WP ! BG �G=TOP

prG=TOP ı.�.P /j@P /D

rG
iD1

�.N /W

� rG
iD1

N

�
! G=TOPsuch that

prBG ı.�.P /j@P /D

rG
iD1

�.N /W

� rG
iD1

N

�
! BG:and

Here prG=TOP and prBG are the obvious projections. We have used the same let-
ter P as above because such a P can be used as a coboundary of

Fr
iD1 N in (8-2).

The improvement is that now P comes equipped with the composite map �.P / WD
prG=TOP ı�.P /W P ! G=TOP.

Recall the recipe for constructing xN from �.N /W N ! G=TOP repeated in the proof
of Lemma 6.2 as steps (1) to (6). In that proof a generalization of steps (1) to (6) was
used when one starts with a map from a manifold with boundary to G=TOP.

Using this generalised procedure we construct a manifold with boundary xP with
a homotopy equivalence '.P /W xP ! P � FP2 . The boundary is @ xP D

Fr
iD1
xN

since the map �.P /W P ! G=TOP, restricts to
Fr

iD1 �.N /W
Fr

iD1 N ! G=TOP on
@P D

Fr
iD1 N . Furthermore if xp.P /W xP ! P denotes the analogue of xpW xN ! N

obtain from the generalised procedure, then we have the map

�. xP /D .�.P / ı xp.P //W xP ! P ! BG;

which restricts to
Fr

iD1 �.
xN / on the boundary. If follows that xP is the desired

coboundary of
Fr

iD1
xN over �. xN / which may be used in (8-3).
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