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Flipping bridge surfaces
and bounds on the stable bridge number

JESSE JOHNSON

MAGGY TOMOVA

We show that if K is a knot in S3 and † is a bridge sphere for K with high distance
and 2n punctures, the number of perturbations of K required to interchange the two
balls bounded by † via an isotopy is n . We also construct a knot with two different
bridge spheres with 2n and 2n � 1 bridges respectively for which any common
perturbation has at least 3n� 4 bridges. We generalize both of these results to bridge
surfaces for knots in any 3–manifold.

57M25, 57M27, 57M50

1 Introduction

Reidemeister [6] and Singer [8] showed that any two Heegaard splittings for a 3–
manifold M have a common stabilization, ie, if † and †0 are two Heegaard surfaces
for M there exists a Heegaard surface †00 that is isotopic to a stabilization of † as
well as to a stabilization of †0 . A long standing question in Heegaard splittings asks
what is the minimal genus of †00 in terms of the genera of † and †0 . Examples of
Heegaard splittings that required many stabilizations were presented by Bachman [1],
Hass, Thompson and Thurston [3] and Johnson [5].

Bridge splittings are the natural extension of Heegaard splittings in the context of a
compact orientable manifold M containing a properly embedded tangle T . A bridge
splitting for .M;T / is a triple .†; .HC; �C/; .H�; ��// where † is a connected
surface that decomposes M into compression bodies HC and H� and decomposes T

into collections of arcs �C and �� that are embedded in the corresponding compression
bodies in specific ways. The surface † is called a bridge surface for .M;T /. Note
that if T D∅, then .†; .HC; �C/; .H�; ��// is a Heegaard splitting for M .

Given a bridge surface † of .M;T / one can always obtain another bridge surface †00

by performing stabilizations and perturbations. These operations are discussed in detail
by Scharlemann and Tomova [7] and they behave in a manner similar to stabilizations
of Heegaard splittings. In this paper we consider pairs of bridge splittings † and †0
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for .M;T / and study bridge splittings †00 that can be obtained from both † and †0

via stabilizations and perturbations. The results we obtain are similar but somewhat
weaker than the results obtained by Johnson for Heegaard splittings in [5] due to the
additional difficulties introduced by the presence of the knot.

At first we will distinguish a bridge splitting .†; .HC; �C/; .H�; ��// from the bridge
splitting .†; .H�; ��/; .HC; �C// in which the order of the compression bodies is
reversed. We ask what is the minimum value of 2��.†00/ such that the bridge splitting
.†00; .H 00C; � 00C/; .H 00�; � 00�// is isotopic to stabilizations and perturbations of both
bridge splittings .†; .HC; �C/; .H�; ��// and .†; .H�; ��/; .HC; �C//. This value
is called the flip Euler characteristic of † and it is analogous to the flip genus of a
Heegaard splitting defined in [5]. We give a bound on this quantity in terms of the
Euler characteristic of † and the distance of T with respect to † (Definition 4.1).

Theorem 1.1 Let T be a prime tangle properly embedded in a compact orientable
irreducible 3–manifold M and let .†; .HC; �C/; .H�; ��// be a bridge splitting
for .M;T / such that �.†/ � �4. Then the flip Euler characteristic of † is at least
maxf2� 2�.†/; d.†;T /g.

Corollary 1.2 Let T be a prime knot in S3 and let † be a bridge sphere for T with
n� 3 bridges such that d.T; †/� 4n. If .†00; .H 00C; � 00C/; .H 00�; � 00�// is a minimal
bridge number perturbation of both bridge splittings .†; .HC; �C/; .H�; ��// and
.†; .H�; ��/; .HC; �C//, then T has exactly 2n� 1 bridges with respect to †00 .

We next consider the problem of distinguishing bridge surfaces without keeping track
of the order of the compression bodies. To make this clear, we will consider only the
bridge surface rather than the bridge splitting. In this case we obtain the following
result.

Theorem 1.3 There exist infinitely many manifolds M˛ each containing a knot K˛

so that each pair .M˛;K˛/ has two bridge surfaces † and †0 with �.†/ D 2s and
�.†0/ D 2s � 2 so that if †00 is bridge surface that is isotopic to stabilizations and
perturbations of both † and †0 , then �.†00/� 3sC 4.

As a corollary of the above we obtained the following result:

Corollary 1.4 For every n � 2 there exists a knot zK in S3 with bridge spheres †
and †0 with bridge numbers 2n� 1 and 2n respectively such that every bridge sur-
face †00 that is isotopic to a perturbation of both has at least 3n� 4 bridges.
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In Section 2 we give the definition of a bridge splitting for a pair .M;T / and explain
how a sweepout is associated to any bridge splitting. Furthermore we define two
conditions on a pair of sweepouts: A sweepout g can split a second sweepout f for
the same manifold or can span it. Generically these are the only two options for how g

behaves with respect to f .

In Section 3 and Section 4 we consider two bridge splittings † and †0 for .M;T / with
associated sweepouts f and g . We show that if g spans f , then the Euler characteristic
of the punctured bridge surface † is bounded below by the Euler characteristic of
the punctured bridge surface †0 . Next we define the distance of a bridge splitting
and we show that if g splits f then the distance of † is bounded above by the Euler
characteristic of †0 . Finally we consider the case where g neither spans not splits f
and we show that this can only occur if �.†/� �3. Using these results, in Section 5
we prove Theorem 1.1 and in Section 6 we prove Theorem 1.3.

2 Preliminaries

2.1 Compression bodies containing trivial arcs

Let H be a compression body. Recall that a spine of H is a complex @�H [ �

where � �H is a properly embedded finite graph with no valence 1 vertices in the
interior of H and such that H is isotopic to a regular neighborhood of @�H [ � .
A set of properly embedded arcs � D ft1; : : : ; tng in H is trivial if each ti is either
parallel to @CH or is a vertical arc with one endpoint in @CH and the other endpoint
in @�H . If an arc is parallel to @CH the disk of parallelism is called a bridge disk.
We will denote the pair of a compression body H containing properly embedded
trivial arcs � by .H; �/. The arcs � can be isotoped in H so that the projection
H � spine.H / Š @H � Œ0; 1/! Œ0; 1/ has no critical points in the vertical arcs and
a single critical point, say a maximum, in each boundary parallel arc. Let si be a
collection of vertical arcs each connecting a single maximum of � to a spine of H . Let
spine..H; �//D spine.H /[fsig and note that there is a map .@H; @H\�/�I! .H; �/

which is a homeomorphism except over the spine, and the map gives a neighborhood
of the spine a mapping cylinder structure.

2.2 Bridge splittings

Let T be a properly embedded tangle in a compact oriented 3–manifold M and let
† be a properly embedded surface transverse to T such that † splits M into two
compression bodies HC and H� and such that �C DHC \T and �� DH� \T
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are trivial arcs in the corresponding compression body. In this case we say that
.†; .HC; �C/; .H�; ��// is a bridge splitting for .M;T / and † is a bridge surface.
As every compact orientable 3–manifold has a Heegaard splitting, it is easy to see that
every properly embedded tangle in any 3–manifold has a bridge splitting.

2.3 Surfaces in .M; T /

Suppose M is a compact, irreducible, orientable 3–manifold containing a properly
embedded tangle T and let F be a surface in M transverse to T . The surface F

gives rise to a punctured surface in the complement of a regular neighborhood �.T /
of T . We will refer to this punctured surface as F also and we will specify if we are
referring to the punctured or the closed surface whenever it is not clear from context.
Two surfaces in .M;T / will be considered isotopic only if there is an isotopy between
them transverse to the tangle.

A simple closed curve in F � �.T / is essential if it does not bound a disk in F and
it is not parallel to the boundary of a puncture. A properly embedded arc in F with
endpoints in F \ @M is essential if it does not cobound a disk with an arc in F \ @M .
An embedded disk D in M is a compressing disk for F if D\T D∅, D\F D @D

and @D is an essential curve in F � �.T /. A properly embedded disk Dc in M is a
cut-disk for F if Dc \T is a single point in the interior of Dc , Dc \F D @Dc and
@Dc is an essential curve in F � �.T /. A c-disk is either a cut or a compressing disk.

2.4 Obtaining new bridge splittings from known ones

We will consider two geometric operations which allow us to produce new bridge
surfaces from existing ones. These are generalizations of stabilizations for Heegaard
splittings. Following Hayashi and Shimokawa [4], the bridge surface † will be called
stabilized if there is a pair of compressing disks on opposite sides of † that intersect in
a single point. The bridge surface is called perturbed if there is a pair of bridge disks Di

on opposite sides of † such that ∅¤ .@D1\ @D2/� .†\T / and j@D1\ @D2j D 1.
These operations are discussed in detail in [7].

2.5 Sweepouts

Suppose .M;T /D .HC; �C/[† .H
�; ��/. From the definition of a spine one can

construct a map f W M ! Œ�1; 1� such that f �1.1/ is isotopic to a spine of .HC; �C/,
f �1.�1/ is isotopic to a spine of .H�; ��/ and f �1.t/ is a surface isotopic to
the punctured surface † for every t 2 .�1; 1/. This function is called a sweepout
representing .†; .H�; ��/; .HC; �C//.
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We give a brief overview of how sweepouts can be applied to study bridge surfaces
for tangles in a 3–manifold. Further details can be found in [10]. Consider a tan-
gle properly embedded in a 3–manifold with two bridge splittings. Let f be a
sweepout representing the bridge splitting .†; .H�; ��/; .HC; �C// and let g be
another sweepout representing a second bridge splitting for .M;T / which we denote
.†0; .H 0�; � 0�/; .H 0C; � 0C//.

Consider the two parameter sweepout f � g that maps .M;T / into the square
Œ�1; 1�� Œ�1; 1�. Each point .s; t/ in the square represents a pair of surfaces: †t D

f �1.t/��.T / isotopic to the punctured surface † and †0s D g�1.s/��.T / isotopic
to †0 . The graphic is the subset � of the square consisting of all points .s; t/ where
either †t is tangent to †0s or †t \†

0
s contains a point of T . We say that f � g is

generic if it is stable on the complement of the spines and each arc ftg � Œ�1; 1� and
Œ�1; 1�� fsg contains at most one vertex of the graphic. If f � g is generic then at
each (valence four) vertex of � there are two points of tangency, two points of T

in the intersection, or one of each. By general position of the spines f �1.˙1/ with
the surface †0 , the graphic � is incident to @I � I in only a finite number of points
corresponding to tangencies between f �1.˙1/ and †0 .

2.6 Splitting and spanning sweepouts

Suppose f and g are sweepouts for .M;T / and f �g is generic. Generalizing [5],
for some fixed values of s and t we will say that †t is mostly above †0s if each
component of †t \H 0�s (if there are any) is contained in a disk or a once-punctured
disk in †t . Similarly, we will say that †t is mostly below †0s if each component of
†t \H 0Cs is contained in a disk or once-punctured disk in †t . We will say that g

spans f if there are values tC , t� and s for which †tC is mostly above †0s and †t�

is mostly below †0s . We will say that g spans f positively if t� < tC and negatively
otherwise. These conditions are shown at the top of Figure 1. Note that g may span f
both positively and negatively.

We will say that g splits f if there is a value of s such that the horizontal line
Œ�1; 1��fsg � Œ�1; 1�� Œ�1; 1� does not intersect any vertices of � and for every t the
surface †t is neither mostly above nor mostly below †0s . This is shown at the bottom
left of Figure 1. Note that this condition is equivalent to the condition that there exists
an s such that for every t , †0s \†t contains at least one curve that is essential in †t .

3 Spanning sweepouts and bounds on Euler characteristic

As in the last section, we will let f and g be sweepouts for the pair .M;T / associated to
the two bridge splittings .†; .H�; ��/; .HC; �C// and .†0; .H 0�; � 0�/; .H 0C; � 0C//
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Figure 1: The blue regions are those where †t is mostly below †0s and
the red regions are where †t is mostly above †0s . The figures show g

spanning f positively, negatively, both positively and negatively and g

splitting f .

respectively. Define †t D f
�1.t/��.T /, and †0s D g�1.s/��.T / for s; t 2 .�1; 1/.

We will also name the compression bodies H 0�s D g�1.�1; s� containing the trivial
arcs � 0�s and H 0Cs D g�1Œs; 1/ containing the trivial arcs � 0Cs .

Theorem 3.1 Let f and g be sweepouts associated to bridge surfaces † and †0 for
a prime, unsplit tangle T in an irreducible orientable 3–manifold M . Suppose that
f �g is generic and suppose that there are values s and tC> t0 such that †tC is mostly
above †0s and †t0

is mostly below †0s . Then there is a sequence of compressions and
cut compressions of †0s after which there is a component of the compressed surface
which is parallel to †. The parallelism is supported in the complement of the spines
of †.

If there are values s and tC > t0 > t� such that †tC and †t� are mostly above †0s
and †t0

is mostly below †0s then there is a sequence of compressions and cut compres-
sions of †0 after which there are two components of the compressed surface which are
parallel to †. The parallelism is supported in the complement of the spines of †.

Because the Euler characteristic is nondecreasing under c-compression, this theorem
implies the following corollary:
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Corollary 3.2 Let f and g be sweepouts associated to bridge surfaces † and †0

for a prime, unsplit tangle T in an irreducible orientable 3–manifold M . If f �g is
generic and g spans f positively (or negatively) then �.†0/ � �.†/. If g spans f
both positively and negatively then �.†0/� 2�.†/.

Proof of Theorem 3.1 We will only prove the second statement as the proof of the
first statement is similar but simpler. Suppose there are values s and tC > t0 > t� such
that †tC and †t� are mostly above †0s and †t0

is mostly below †0s .

By definition, each loop in the intersection †0s \ .†tC [†t0
[†t�/ bounds a disk or

a once-punctured disk in †tC [†t0
[†t� . To facilitate this discussion color H 0s

�

blue and H 0s
C red. This induces a coloring on †tC , †t� and †t0

. As †tC and †t�

are mostly above †0s every component of .†tC [†t�/�†
0
s that is not contained in a

possibly once punctured subdisk of †tC or †t� is red. Every component of †t0
�†0s

that is not contained in a possibly once punctured subdisk of †t0
is blue.

Let ` be a curve of †0s\†tC that is innermost in †tC . By hypothesis, ` is necessarily
inessential in †tC . If ` is also inessential in †0s then it can be removed by an isotopy
of †0s as M is irreducible and T is prime. If ` is essential in †0s then the possibly
punctured disk it bounds in †tC is a c-disk for †0s . Replace †0s with the surface F0

that results from c-compressing †0s along this c-disk. Note that neither of these two
moves affects the coloring of any region of †tC�†

0
s that is not contained in a possibly

punctured subdisk of †tC . We can then repeat this construction with an innermost loop
of F0 \†tC , producing a surface F1 and so on until we find a surface Fk disjoint
from †tC . At the end of this sequence of isotopies and c-compressions, †tC will be
entirely red.

Repeat the above process with †t� and Fk playing the roles of †tC and †0s respec-
tively to obtain a surface F` disjoint from both †tC and †t� and leaving †t� entirely
red. Finally repeat the process beginning with †t0

and F` to obtain a surface Fm

disjoint from all of †tC [†t0
[†t� and leaving †t0

entirely blue.

Maximally c-compress the surface Fn D Fm \ f
�1.t�; tC/ in the complement of

†tC [†t0
[†t� to get a surface zF . Each component of zF is contained in a 3–

manifold homeomorphic to †� I and is c-incompressible in this manifold. By [11,
Corollary 3.7] each component of zF is either a sphere disjoint from T , a sphere
bounding a ball containing a trivial subarc of T or a component parallel to †t0

.
Note that zF was obtained from †0s by c-compressions and therefore it cannot have
sphere components disjoint from T as †0s does not have any such component, ie,
all components of zF have nonpositive Euler characteristic. In addition zF separates
†t0

from †tC and †t0
from †t� as †t0

is entirely blue and †tC and †t� are red.
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Therefore zF must have at least two components parallel to †t0
, one lying in the

product region between †t� and †t0
and one lying in the product region between †t0

and †tC .

4 Splitting sweepouts and bounds on distance

We briefly review the definition of distance of a bridge surface. For more details, see
Tomova [10].

Definition 4.1 Suppose M is a compact, orientable, irreducible 3–manifold con-
taining a properly embedded tangle T and suppose .†; .H�; ��/; .HC; �C// is a
bridge splitting for .M;T /. The curve complex C.†;T / is a graph with vertices
corresponding to isotopy classes of essential simple closed curves in †� �.T /. Two
vertices are adjacent in C.†;T / if their corresponding classes of curves have disjoint
representatives.

Let VC (resp V� ) be the set of all essential simple closed curves in †� �.T / that
bound disks in HC��.T / (resp H���.T /). Then the distance of the bridge splitting,
d.†;T /, is the minimum distance between a vertex in VC and a vertex in V� measured
in C.†;T / with the path metric.

Theorem 4.2 Let f and g be sweepouts associated to bridge surfaces † and †0 for
a prime tangle T in an irreducible 3–manifold M and suppose that �.†/ � �1. If
f �g is generic and g splits f then d.†;T /� 2��.†0/.

Proof Let s be such that for every t 2 .�1; 1/ the intersection †0s \†t contains
a curve that is essential in †t and Œ�1; 1�� fsg is disjoint from all vertices of � so
in particular gj†t

is Morse. Let H�t D f
�1Œ�1; t/ and HCt D f

�1.t; 1� be the two
components of M �†t . For values of t close to �1, all curves of †0s \†t bound
disks in H�t because †0s is transverse to the spine f �1.�1/. Similarly for values of t

close to 1, all curves of †0s \†t bound disks in HCt .

If for some value t there is a curve of †0 \†t that is essential in †t and bounds a
disk in HCt and simultaneously there is a curve of †0\†t that is essential in †t and
bounds a disk in H�t , then d.†;T /� 1.

We will say that two values t� , tC are adjacent if there is a single critical value for f
between them. In this case, the projections of the curves †0 \†t� to †tC can be
isotoped disjoint from the curves †0\†tC . Thus, if for some adjacent values t� , tC ,
there is a curve of †0\†t� that is essential in †t� and bounds a disk in H�t� and a
curve of †0\†tC that is essential in †tC and bounds a disk in HCtC , we can again
conclude that d.†;T /� 1.
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The above discussion shows that either d.†;T /� 1� 2��.†0/ or there is an interval
Œ˛; ˇ�, where ˛ ¤ ˇ are critical values for f j†0s such that for every t 2 .˛; ˇ/, no
curve of †0s \†t is both essential in †t and bounds a disk in †0s . Moreover for a
very small � , †0s \†˛�� contains a curve that is essential in †˛�� and bounds a disk
in H�˛�� and †0s \†ˇC� contains a curve that is essential in †ˇC� and bounds a disk
in HC

ˇC�
.

Let ˛0 be just above ˛ and ˇ0 be just below ˇ . Suppose some component of †0s\†˛0
bounds a disk in †0s . Then this component must also bound a disk in †˛0 and therefore
†0s can be isotoped to remove this component. After some number of isotopies we
obtains a surface †00 so that no curve of †00\†˛0 or †00\†ˇ0 bounds a disk in †00 .
Define S D†00\ f �1Œ˛0; ˇ0�. Because the boundary curves of S do not bound disks
in †00 , it follows that �.S/� �.†0s/. Let � be the projection map from f �1Œ˛0; ˇ0�

to †0 . By [5, Lemma 30], isotopy classes of loops in S project to isotopy classes
in †0 . Although we are now dealing with punctured surfaces the proof of this result is
the same so we will not repeat it here.

As in [5] we let L be the set of isotopy classes of loops of f jS and let �� be the
natural map from L to C.†0;T /, together with f0g where each curve in L maps to
the vertex that corresponds to its projection in †0 unless it is inessential in †0 in
which case it is mapped to f0g.

Note that L determines a decomposition of S into pairs of pants and punctured annuli.
Lemma 31 in [5] shows that if ` and `0 are cuffs of the same pair of pants, then their
images under �� are adjacent vertices in C.†0;T /. The same is true if ` and `0 are
the two boundary components of a punctured annulus. For if that is the case, then f j†0
passes through a puncture so it contains a level component which is an arc with both of
its endpoints lying in a boundary component of †0 . The projection of this component
to †0 is also an arc with both endpoints on some boundary component. The boundary
curves of a regular neighborhood of the arc together with the boundary component are
isotopic to the projections of ` and `0 and thus ` and `0 are disjoint.

Let L0D ��.L/\C.†0;T /. By [5, Lemma 32] this set is connected and has diameter
equal to at most the number of components of S �L. Each component of S �L is a
punctured annulus or a pair of pants and therefore contributes �1 to �.S/. It follows
that diam.L0/� ��.S/.

Recall that for a very small � , †0\†˛�� contains a curve that bounds a compressing
disk for H�˛�� and †0 \ †ˇC� contains a curve that bounds a compressing disk
for HC

ˇC�
. As the intervals .˛ � �; ˛0/ and .ˇ0; ˇC �/ contain exactly one critical

point each, every curve in the set �.†0 \†˛��/ is distance at most one from every

Algebraic & Geometric Topology, Volume 11 (2011)



1996 Jesse Johnson and Maggy Tomova

curve in the set �.†0 \†˛0/ and similarly every curve in the set �.†0 \†ˇC�/ is
distance at most one from every curve in the set �.†0\†ˇ0/. Adding these distances
we obtain the inequality d.†/� diam.L0/C 2� 2��.S/� 2��.†0/ as desired.

In this and in the previous section we saw that if f and g are two sweepouts associated
to bridge surfaces † and †0 for the pair .M;T / and g spans f , then we can relate
�.†/ and �.†0/ and if g splits f then we can relate d.†;T / and �.†0/. It is clear
that if g and f are sweepouts such that f �g is generic, then either g spans f , g

splits f or there are values of s and t such that for a small � , †t is mostly above †0s��
and †t is mostly below †0sC� . We now consider a slight generalization of this last case.

Lemma 4.3 Suppose f and g are sweepouts for a tangle in a manifold such that f �g

is generic except possibly for a single vertex of order 6 or two vertices of order 4 with
the same s coordinate. Suppose the graphic of f �g has a vertex at coordinates .s; t/
such that for a small � , †t is mostly above †0s�� and †t is mostly below †0sC� . If this
vertex has valence 4, then �.†/� �2. If the vertex has valence 6, then �.†/� �3.

Proof By the definition of f � g it follows that, gj†t0
is Morse where t 0 D t C �0

for a small �0 . Furthermore there are two critical values for gj†t0
, a< b with at most

one other critical value between them (if the valence of .s; t/ is 6) such that if a0 is a
regular value directly below a and b0 is a regular value directly above b , then †t 0 is
mostly above †0a0 and mostly below †0b0 .

Consider first †t 0\†
0
a0 . By definition each component of †t 0\H 0�a0 is contained in a

possibly punctured disk subset of †t 0 . Let ƒ be the set of all curves of †t 0 \†
0
a0 that

are not contained in the interior of a disk or punctured disk component of †t 0 �†
0
a0 ;

see Figure 2. Then †t 0 �ƒ is a collection of components all but one of which are
possibly punctured disks. Note that the Euler characteristics of each of these possibly
punctured disk components is at least 0.

Passing through each critical point between a0 and b0 is equivalent to adding a band
between two components of †t 0 �†

0
a0 or banding a component to itself. In either

case the sum of the Euler characteristics of all components is decreased by one. As
these bands correspond to a sweepout they all lie on the same side of †0 . As †t 0 is
mostly below †0b0 , it follows that after attaching at most three bands to a collection of
at most once punctured disks, the result is a surface isotopic to †t 0 with possibly some
disks and once punctured disks missing, ie †t 0 \†

0
b0 is also as in Figure 2 but now

the subsurface which is not contained in a punctured disk is below †0b0 . As at most
three bands were added, it follows that �.†t 0/� �3. If the vertex .s; t/ has valence
four, then only two bands need to be added so �.†t 0/� �2.
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Fa

ƒ

Figure 2

Using the results in this and the previous section we can obtain the following general-
ization of the main result in [10].

Theorem 4.4 Suppose N is a manifold containing a tangle K and let M be a
submanifold such that T DK\M is a properly embedded tangle. Let † be a bridge
surface of .M;T / and let †0 be a bridge surface of .N;K/. Then one of the following
holds:
� There is an isotopy of †0 followed by some number of compressions and cut-

compressions of †0 \M in M giving a compressed surface †00 , such that at
least one component of †00\M is parallel to †, in the complement of the spines
of †.

� d.†;T /� 2��.†0/.
� �.†/� �2.

Proof Because .M;T /� .N;K/ for values of s close to �1, †t is mostly above †0s
and for values of s close to 1, †t is mostly below †0s . Therefore there are three
possibilities. Either g spans f , g splits f or the graphic of f � g has a vertex
of valence 4 at coordinates .s; t/ such that for a small � , †t is mostly above †0s��
and †t is mostly below †0sC� . Thus there are three cases to consider.

Case 1 If g spans f then there are values s and tC and t� such that †tC is mostly
above †0s and †t� is mostly below †0s . By the arguments in Theorem 3.1 it follows
that after some number of compressions and cut-compressions of †0s \M in M we
obtain an incompressible surface †00 that separates †tC and †t� and therefore it is
parallel to † as desired.

Case 2 If g splits f , then the arguments in the proof of Theorem 4.2 show that
d.†;T /� 2��.†0/ as desired.

Case 3 Finally suppose that the graphic of f � g has a vertex at coordinates .s; t/
such that for a small � , †t is mostly above †0s�� and †t is mostly below †0sC� . Then
by Lemma 4.3 it follows that �.†/� �2.

Algebraic & Geometric Topology, Volume 11 (2011)



1998 Jesse Johnson and Maggy Tomova

5 Flipping bridge surfaces

In this section we want to restrict our attention to oriented isotopies, ie, if † and †0 are
bridge splittings for .M;T / splitting the manifold into compression bodies HC;H�

and H 0C;H 0� respectively, then the bridge splittings .†; .HC; �C/; .H�; ��// and
.†0; .H 0C; � 0C/; .H 0�; � 0�// will be called orientation isotopic if there is an isotopy
mapping † to †0 , .HC; �C/ to .H 0C; � 0C/ and .H�; ��/ to .H 0�; � 0�/. Follow-
ing [5] we will say that a bridge surface † is flippable if .†; .HC; �C/; .H�; ��// is
orientation isotopic to .†; .H�; ��/; .HC; �C//.

Suppose .†0; .H 0C; � 0C/; .H 0�; � 0�// is a bridge splitting for .M;T / isotopic to
stabilizations and perturbations of both bridge splittings .†; .HC; �C/; .H�; ��// and
.†; .H�; ��/; .HC; �C//. The minimal value of 2� �.†0/ is called the flip Euler
characteristic of † and it is analogous to the flip genus of a Heegaard splitting defined
in [5].

We will take advantage of several results previously proven for sweepouts of Heegaard
splittings. The proofs carry over with only minor modifications.

Lemma 5.1 (See [5, Lemmas 14 and 15].) If .†; .HC; �C/; .H�; ��// is a bridge
decomposition for some knot K � M then .†; .HC; �C/; .H�; ��// spans itself
positively. If .†0; .H 0C; � 0C/; .H 0�; � 0�// is either a perturbation or stabilization of
.†;.HC; �C/; .H�; ��//, then it spans the bridge splittings .†;.HC; �C/; .H�; ��//
positively and spans .†; .H�; ��/; .HC; �C// negatively.

Proof Let f be a sweepout for the decomposition .†; .HC; �C/; .H�; ��//. Then
there is a second sweepout g for .†; .HC; �C/; .H�; ��// such that g�1.0/D †0

0

is disjoint from and separates the spines f �1.�1/, f �1.1/. Thus for t� near �1 and
tC near 1, †t� will be mostly below †0

0
and †tC will be mostly above. This implies

that .†; .HC; �C/; .H�; ��// spans itself positively.

Similarly, for any perturbation or stabilization of the bridge decomposition, we can
perturb or stabilize †0

0
while keeping it disjoint from f �1.�1/, f �1.1/, then ex-

tend this surface to a sweepout for the perturbed or stabilized bridge decomposi-
tion. Therefore if .†0; .H 0C; � 0C/; .H 0�; � 0�// is a perturbation or stabilization of
.†;.HC; �C/; .H�; ��//, then it spans .†;.HC; �C/; .H�; ��// positively and spans
.†; .H�; ��/; .HC; �C// negatively.

Let †0 be a common stabilization or perturbation of .†; .H�; ��/; .HC; �C// and
.†; .HC; �C/; .H�; ��//. In particular there are sweepouts g and g0 representing
.†0; .H 0�; � 0�/; .H 0C; � 0C//, and a sweep out f representing .†;.H�; ��/; .HC; �C//
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such that g spans f positively and g0 spans f negatively. As g and g0 represent the
same bridge decomposition and are therefore orientation isotopic it follows that there
is a family of sweepouts fgr j r 2 Œ0; 1�g such that g0 D g , g1 D g0 .

Lemma 5.2 [5, Lemma 34] Let g and g0 be sweepouts such that f �g and f �g0

are generic and g is isotopic to g0 . There is a family of sweepouts fgr j r 2 Œ0; 1�g such
that g0 D g , g1 D g0 and for all but finitely many r , f �gr is generic. At the finitely
many nongeneric points there are at most two valence two or four vertices at the same
level or there is a single valence 6 vertex.

We can now prove our first main result.

Proof of Theorem 1.1 Consider the family of sweepouts fgr j r 2 Œ0; 1�g described
in Lemma 5.2. As g0 spans f positively and g1 spans f negatively there must be
some r such that either gr splits f , gr spans f both positively and negatively, or the
hypotheses of Lemma 4.3 are satisfied. This is illustrated in Figure 3.

Figure 3

Case 1 The sweepout gr splits f . In this case by Theorem 4.2 it follows that
d.†;T /� 2��.†0/ so �.†0/� 2� d.†;T /.

Case 2 The sweepout gr spans f both positively and negatively. In this case by
Theorem 3.1 it follows that �.†0/� 2�.†/.

Case 3 There are at most two valence two or four vertices at the same level or there is
a valence 6 vertex. By an argument identical to the one in the proof of [5, Lemma 33]
it follows that either we are in one of cases 1 or 2 or there is a vertex of valence 4 or
valence 6 corresponding to coordinates .s; t/ such that for a very small � the surface
f �1

tC� is mostly above g�1.s/ and f �1
t�� is mostly below g�1.s/. Lemma 4.3 shows

that in this case �.†/� �3 contradicting the hypothesis.
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Proof of Corollary 1.2 Figure 4 shows that if T has n bridges with respect to a bridge
sphere †, then there is a flippable bridge sphere †0 obtained from † by perturbations
with respect to which T has 2n� 1 bridges. The fact that there is no such bridge
sphere with fewer punctures follows by Theorem 1.1.

6 Bridge surfaces that require a large number of stabiliza-
tion and perturbations to become equivalent

Proof of Theorem 1.3 The proof of this theorem consists of a construction for a pair
.M;K/ where K is a knot with two distinct bridge surfaces with Euler characteristics
2s and 2s� 2 respectively so that every common stabilization/perturbation of the two
surfaces has Euler characteristic of at most 3s C 4. In particular this construction
gives examples of knots in S3 with distinct bridge spheres with bridge number 2n and
2n� 1, respectively, for which any common perturbation has at least 3n� 4 bridges.

Let K be a knot in a manifold M and let .†; .HC; �C/; .H�; ��// be a bridge
splitting for .M;K/ so that, �.†/ � �4 and d.†;K/ � �3�.†/. Such knots can
be obtained for example by modifying the construction used in [2] to generate high
distance Heegaard splittings by iterating a 2–fold Dehn twist operator.
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Suppose f is a sweepout for M associated to †. Let �C be a spine of .HC; �C/ and
let �� be a spine of .H�; ��/ so that �� D f �1.�1/ and �C D f �1.1/. Choose an
edge of �� that has a valence 1 vertex, ie, an edge that has one endpoint in K . Let
B be a ball that is a regular neighborhood of this edge and let M� be the closure of
M nB containing the one-strand tangle K� DK\M� . The sweepout f on M can
be modified to be a sweepout of M� by perturbing f to be constant in B . We will
use f to refer to either sweepout when the manifold is clear from context.

We will need a new invariant of a surface in M� which is very similar to Euler char-
acteristic but does not take into account certain punctures. Consider the manifold M�

described above with spines �� and �C . Then in the complement of ��[�C there
are 2n arcs of the knot where n is the bridge number of K in M . Of those, 2n� 2

have one endpoint on �� and one endpoint on �C and 2 arcs have one endpoint
on �C and their other endpoint is in the spherical boundary component of M� . Let
�1; : : : ; �2n�2 be the set of arcs that have both of their endpoints in ��[�C . For any
surface F in M� , let ˛.F / D 2g.F /C jF \ .�1 [ � � � [ �2n�2/j. This invariant is
well defined only up to isotopies of F that are disjoint from ��[�C . Note that ˛.F /
is nonincreasing under c-compressions.

Let P be a manifold homeomorphic to S2 � I containing two vertical arcs �1 and �2 .
Construct a new manifold M # M by gluing a copy of M� to each of the boundary
spheres of P so that the endpoints of each copy of K� are identified with one endpoint
of �1 and one endpoint of �2 to obtain a new knot K # K . Then .M # M;K # K/ is
the connect sum of two copies of .M;K/.

We will let M�
1

and M�
2

be the two copies of M� in the above construction. We will
let †1 and †2 be the copies of † contained in M�

1
and M�

2
respectively. Finally

we will let f1 and f2 be the sweepouts of M�
1

and M�
2

respectively associated with
†1 and †2 .

The pair .M # M;K # K/ has two natural generalized Heegaard splittings Ha and
Hb induced by the bridge splittings for M�

1
, M�

2
and P , shown in Figures 5 and 6.

In both cases we will take †1 and †2 to be the bridge surfaces for M�
1

and M�
2

.
However in the first generalized Heegaard splitting we will take the surface S2�f1=2g

to be the bridge surface for .P; �1 [ �2/ and for the second one we will take the
bridge surface for P to be the surface obtained by tubing together the two spheres
which are boundaries of small collars of S2 � f0g and S2 � f1g respectively along
a vertical tube; see Figure 5. Let †1""†2 and †1"#†2 be the two bridge surfaces
for .M # M;K # K/ obtained by amalgamating Ha and Hb respectively. Note that
�.†1""†2/ D �.†1/C �.†2/ D 2�.†/ and �.†1"#†2/ D �.†1/C �.†2/� 2 D

2�.†/� 2.
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Figure 5: Schematic depiction of †1""†2 and †1"#†2
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Figure 6: The figure depicts †1""†2 and †1"#†2 if M D S3 and †D S2 .

Lemma 6.1 If †0 is isotopic to a surface obtained via a sequence of stabilizations and
perturbations of †1""†2 and also to a surface obtained via sequence of stabilizations
and perturbations of †1"#†2 , then �.†0/� 3�.†/C 4.

Proof First observe the following:

Remark 6.2 (See [5, Lemma 19].) Let .f1""f2/ be the sweepout associated to
†1""†2 and .f1"#f2/ be the sweepout associated to †1"#†2 . Then .f1""f2/

spans f1 and f2 positively and .f1"#f2/ spans f1 positively and f2 negatively.

The remark is clear in the case when M D S3 and †D S2 , as shown in Figure 6. In
the general case the proof is very similar to the proof of [5, Lemma 19] so we leave
the details to the reader.

Let g and g0 be sweepouts for .M # M;K # K/ defined by perturbing and stabilizing
sweepouts .f1""f2/ and .f1"#f2/ enough times so that g and g0 represent isotopic

Algebraic & Geometric Topology, Volume 11 (2011)



Flipping bridge surfaces and bounds on the stable bridge number 2003

bridge decompositions. By Lemma 5.1 it follows that g spans .f1""f2/ positively.
By Remark 6.2 it follows that .f1""f2/ spans both f1 and f2 positively. Therefore
we conclude that g spans both f1 and f2 positively. Similarly, g0 spans f1 positively
and f2 negatively.

As g and g0 represent isotopic bridge decompositions, the sweepout g is isotopic to
either g0 or �g0 . In other words, there is a family of sweepouts fgr j r 2 Œ0; 1�g such
that g0D g , g1D˙g0 . Consider the family of sweepouts fgr j r 2 Œ0; 1�g described in
Lemma 5.2. Because g0 spans f1 positively and f2 negatively, the sweepout g1D˙g0

spans one of f1 or f2 positively and the other negatively. Without loss of generality,
assume g1 spans f1 negatively. As g0 spans f1 positively and g1 spans f1 negatively,
Lemma 5.2 implies that there is an r satisfying one of the following:

Case 1 The sweepout gr splits f1 or gr splits f2 . The argument is the same so
suppose gr splits f1 . In this case by Theorem 4.2 it follows that d.†;K/� 2��.†0/.
As d.†;K/��3�.†/ by construction, it follows that �.†0/� 3�.†/C4 as required.

Case 2 The sweepout gr spans f1 both positively and negatively and gr spans f2 ,
say positively.

By the definition of spanning there exist s and tC > t0 > t� such that .†1/tC and
.†1/t� are mostly above †0s \M�

1
and .†1/t0

is mostly below †0s \M�
1

and
there exist u and t 0

0
< t 0C so that .†2/t 0

0
is mostly below †0u \M�

2
and .†2/t 0

C
is

mostly above †0u\M�
2

. As in the proof of Theorem 3.1, there is then a sequence of
compressions and cut-compressions of †0s \M�

1
in M�

1
after which there are two

components of the c-compressed surface �†0s that are parallel to †1 in the complement
of the spines. As c-compressions do not increase ˛.�†0s/ it follows that 2˛.†/ �

˛.�†0s/� ˛.†0s\M�
1
/. Similarly we can conclude that ˛.†/� ˛. �†0u/� ˛.†0u\M�

2
/

where �†0u is the result of c-compressing †0u\M�
2

as in Theorem 3.1.

Let S be the decomposing sphere for .M # M;K # K/ (we may take S D S2�f1=2g

in P ) and let N be the product region cobounded by †0u and †0s . Then S \N is a
planar surface with at most 2 punctures properly embedded in N which separates N

into N1 DN \M�
1

and N2 DN \M�
2

. By [9, Lemma 20], it follows that

(1) g.M�
1 \†

0
s/Cg.M�

2 \†
0
u/� g.†0/:

Let � 0C and � 0� be the spines for †0 . If some strand of K1 #K2�.�
0
C[�

0
�/ intersects

both †0s \M1 and †0u \M2 then this strand must also intersect the decomposing
sphere. As the decomposing sphere has only two punctures it follows that

(2) j†0\ .K1 # K2/j D j†
0
s \M1\ .K1 # K2/jC j†

0
u\M2\ .K1 # K2/j � 2:
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Let � and �0 be the two arcs of K1 #K2 in the complement of the spines of †1 and †2

that intersect S . From Equation (1) and Equation (2) it follows that

(3)

2g.†0/Cj†0\ .K1 # K2/j

� 2.g.M�
1 \†

0
s/Cg.M�

2 \†
0
u//Cj†

0
s \M1\ .K1 # K2� .� [ �

0//j

C j†0u\M2\ .K1 # K2� .� [ �
0//j � 2

D ˛.M�
1 \†

0
s/C˛.M

�
2 \†

0
u/� 2:

Using the discussion in the first paragraph of this case, it follows that

˛.M�
1 \†

0
s/C˛.M

�
2 \†

0
u/� 2� ˛.�†0s/C˛. �†0u/� 2

� 2˛.†1/C˛.†2/� 2:(4)

Recall that †1 and †2 are copies of the same surface † which has 2n punctures. Of
those, two are not counted in the computation of ˛ so it follows that

2˛.†1/C˛.†2/� 2D 3.˛.†//� 2D 6g.†/C 6n� 8:(5)

We conclude that

2g.†0/Cj†0\ .K1 # K2/j � 6g.†/C 6n� 8:

It therefore follows that, as desired,

�.†0/D 2� 2g.†0/� j†0\ .K1 # K2/j � 2� 6g.†/� 6nC 8

D 3.2� 2g.†/� 2n//C 4D 3�.†/C 4:(6)

Case 3 There are at most two valence two or valence four vertices at the same level
or there is a valence 6 vertex. As in Theorem 1.1 this implies that �.†/��3 contrary
to our hypothesis.

Theorem 1.3 suggests that the bound obtained above can be improved as follows:

Conjecture 6.3 There exist infinitely many manifolds M˛ each containing a knot K˛

so that each pair .M˛;K˛/ has two bridge surfaces † and †0 with �.†/ D 2s and
�.†0/D 2s � 2 so that if †00 is a bridge surface that is isotopic to stabilizations and
perturbations of both † and †0 , then �.†00/� 3s .

The main obstacle to proving this conjecture is Case 2 of Lemma 6.1. As cut-
compressing can in fact increase the number of punctures of a surface current techniques
are insufficient to further sharpen this bound.
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