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Rational Zp –equivariant spectra

DAVID BARNES

We find a simple algebraic model for rational Zp –equivariant spectra, via a series of
Quillen equivalences. This model, along with an Adams short exact sequence, will
allow us to easily perform constructions and calculations.

55N91, 55P42

1 Introduction

Spaces with an action of a topological group G are of great interest to a wide range
of mathematicians. A particularly useful set of tools for studying these spaces are
G –equivariant cohomology theories. To study these cohomology theories, it is helpful
to understand the G–spectra that represent them. The homotopy theory of spectra is
extremely complex, as demonstrated by the stable homotopy groups of spheres. A
great deal of this difficulty comes from torsion, hence it is common to work rationally.
This corresponds to studying cohomology theories which take values in rational vector
spaces. The study of equivariant spectra up to homotopy is even more demanding, so it
is of even greater importance to rationalise in this case. Rationalising preserves much of
the interesting behaviour coming from the group, so we are left with a tractable problem
— understanding the rational homotopy theory of G –spectra — whose solution would
be useful in a number of different areas.

A solution to this problem would be twofold, firstly we would want an abelian category
A.G/, called the algebraic model and an equivalence between the homotopy category
of dgA.G/ and the homotopy category of rational G –spectra. We would also like the
algebraic model to capture homotopical structures like homotopy limits or colimits, so
we ask that our solution consists of a series of Quillen equivalences between the model
category of rational G–spectra and the model category dgA.G/. This is analogous
to how a derived equivalence of rings gives an equivalence of their derived categories
and preserves more homological structure than just having an equivalence of derived
categories. The algebraic model should be explicit and manageable so that constructing
objects or maps is straightforward.

Secondly we want to be able to calculate maps in the homotopy category of rational
G–spectra using the algebraic model. The Quillen equivalences provide us with an
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Adams spectral sequence relating maps in the homotopy category of dgA.G/ to maps
in the homotopy category of rational spectra. Studying the algebraic model should give
us information on this spectral sequence and help with its calculation.

These aims have been completed for finite groups, through the work of Greenlees and
May in [7, Appendix A], Schwede and Shipley in [11, Example 5.1.2] and these were
improved to the level of a monoidal Quillen equivalence by Barnes in [2].

The case of a torus has also been extensively studied by Greenlees [6], Shipley [12]
and Greenlees and Shipley [8]. The case of O.2/ has also been largely completed in
Greenlees [5] and Barnes [1].

In this paper we fix G to be Zp , the group of p–adic integers. We give a series of
Quillen equivalences between rational Zp –spectra and an algebraic model A.Zp/.
Furthermore the Adams spectral sequence in this case takes the form of a short exact
sequence, which makes the model particularly suited for calculations. We also relate
A.Zp/ to the algebraic model for Zp=p

n and pnZp via algebraic versions of restriction
and inflation. This makes it easy to see how these important equivariant functors behave
homotopically.

The group Zp is a profinite group: a projective limit of finite groups. Such groups
occur particularly often in algebraic geometry, algebraic K–theory, number theory
and chromatic homotopy theory. They are interesting to study, as they have a non-
trivial topology, but (as with finite groups) have all their homotopical information
concentrated in degree zero. This is the key fact needed for the construction of the
Quillen equivalences that we desire. We present in this paper a first step towards
classifying rational equivariant cohomology theories for profinite groups by starting
with the canonical example: the p–adic integers. We can think of this paper as taking
the known cases of rational Z=pn –spectra and taking the inverse limit over all n. With
this viewpoint, a particularly exciting prospect is that the methods of this paper could
be applied to the task of understanding rational equivariant cohomology theories for
general compact Hausdorff groups, all of which occur as inverse limits of compact Lie
groups.

Now we introduce the algebraic model for rational Zp –equivariant spectra, this is
Definition 4.4. An object M of A.Zp/ consists of a collection of QŒZp=p

k �–modules
Mk for k > 0 and a discrete Zp –module M1 , with a specified map of Zp –modules

�M W M1 �! colimn

Y
k>n

Mk

called the structure map of M . A map f W M!N in this category is then a collection of
QŒZp=p

k �–module maps fk W Mk!Nk and a map of Zp –modules f1W M1!N1
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such that the square below commutes:

M1
�M //

f1

��

colimn

Q
k>n Mk

Œ.fk/�

��
N1

�N // colimn

Q
k>n Nk

We also obtain an Adams short exact sequence, see Theorem 6.5. The inputs to this
sequence are the rational homotopy groups of a spectrum X , which give a graded
object �A

� .X / of A.Zp/, via Definition 6.1. Let ŒX;Y �Zp

� be the set of maps in the
homotopy category of rational Zp –spectra, then there is a short exact sequence

0 �! ExtA� .�
A
� .†X /; �A

� .Y // �! ŒX;Y �
Zp

� �! HomA.�
A
� .X /; �

A
� .Y // �! 0:

The algebraic model for Zp is also worth studying in its own right. It is more intricate
than those that occur for finite groups, for example, the injective dimension is non-zero.
Furthermore, the algebraic model we obtain in this case is strikingly similar to the
algebraic model for dihedral O.2/–spectra in Barnes [1], we discuss this in detail in
Section 8.

For technical reasons the Quillen equivalences we have provided are not monoidal
functors, if one were to construct a category of Zp –spectra in terms of EKMM S –
modules, it would be a simple matter to adjust this paper to show that the algebraic
model also captures the monoidal structure of rational Zp –spectra. With this in hand
one can use the algebraic model to study ring spectra and modules over them.

Organisation

We start by introducing the group Zp , the model category of Zp –spaces and the model
category of Zp –spectra in Section 2. Next we study the rational Burnside ring of Zp

in Section 3. Once this ring is known, we can define the algebraic model A and study
its properties in Section 4. We show how our algebraic model is equivalent to the
category of rational Mackey functors in Section 5. We use this to obtain an Adams short
exact sequence in Section 6. The proof that there is a Quillen equivalence between the
model category of differential graded objects in A and the model category of rational
Zp –spectra is given in Section 7. We finish by considering the relation of the algebraic
model for Zp to those for the groups pnZp and Z=pn in Section 8, where we also
compare A to the algebraic model for dihedral O.2/–spectra.
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2 A model category for rational Zp –spectra

Let p be a prime and let Z=pn denote the integers modulo pn , for n > 0. Let
projnW Z=p

n! Z=pn�1 denote the projection map. The inverse limit of these projec-
tion maps is Zp , the p–adic integers, this group comes with maps �nW Zp! Z=pn .
The set Zp is topologised with the inverse limit topology, so a set V is open in Zp

if and only if it is a union of sets of the form ��1
n .Vn/, where Vn is an open set in

Z=pn . This makes Zp into a compact, Hausdorff and totally disconnected space.

The open subgroups of a profinite group are precisely the closed subgroups of finite
index. The set of open subgroups of Zp is the collection of subgroups of form pnZp ,
for n> 0. The closed subgroups of Zp are the open subgroups and the trivial group.

In order to study Zp –spectra we use the paper of Fausk [3], which constructs a
model category of equivariant orthogonal spectra for compact Hausdorff groups. This
construction is a generalisation of Mandell and May [10]. We will then localise this
model structure to obtain a model category of rational Zp –spectra. When working with
equivariant spectra, we have to choose some collection of subgroups that we are inter-
ested in, different choices will change the model category (and the homotopy category)
that we obtain. With compact Lie groups, it is common to consider the collection of all
closed subgroups, whereas with profinite groups, it is usual to consider the collection
of all open subgroups. the following result comes from Fausk [3, Proposition 2.11].

Proposition 2.1 There is a cofibrantly generated proper model structure on the cate-
gory of based Zp –spaces with weak equivalences those maps f such that f H is a
weak equivalence of spaces, for all open subgroups H . Fibrations are those maps f
such that f H is a fibration of spaces for all open subgroups H . This model structure
is denoted ZpT.

Let IT be the set of inclusions Sn�1
C !Dn

C for n> 0, with S�1 D∅. Let JT be the
set of inclusions Dn

C! .Dn� Œ0; 1�/C , x 7! .x; 0/ for n> 0. These are the generating
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cofibrations and generating trivial cofibrations for the weak homotopy equivalence
model structure on based topological spaces, see Hovey [9, Definition 2.4.3].

The generating cofibrations IZpT and acyclic cofibrations JZpT are as below.

IZpT D f.Zp=p
n/C ^ i ji 2 IT; n> 0g

JZpT D f.Zp=p
n/C ^ j jj 2 JT; n> 0g

Definition 2.2 A Zp –universe U is a countable infinite direct sum U D˚1
iD1

U 0 of
real Zp –inner product spaces U 0 , such that:

(i) R� U (a canonical choice of the trivial representation)

(ii) U is topologised as the union of all finite-dimensional Zp –subspaces of U (each
with the norm topology)

(iii) the Zp –action on each finite dimensional Zp –subspace V of U factors through
a compact Lie group.

Such an object U is said to be complete if every finite dimensional irreducible repre-
sentation is contained (up to isomorphism) within U .

A complete universe always exists, one can be obtained by taking all irreducible
representations and taking the sum of each of these countably infinitely many times.
This definition of a universe is by Fausk [3, Definition 3.1] and below we give [3,
Definition 4.1].

Definition 2.3 A ��–equivalence of orthogonal Zp –spectra is a map f such that
�H

n .f / is an isomorphism for each open subgroup H .

By [3, Theorem 4.4] we have a model structure on Zp –spectra which behaves well
with respect to the smash product of spectra.

Theorem 2.4 Let U be a complete Zp –universe, then the category of orthogonal Zp –
spectra Zp Sp is a compactly generated, proper, monoidal model category satisfying
the monoid axiom.

The model category Zp Sp is a ZpT–model category, that is, it is enriched, tensored
and cotensored over ZpT in a manner compatible with the model structures, see
Hovey [9, Definition 4.2.18].

Lemma 2.5 The stable homotopy group functor, �pkZp

n is co-represented by the
spectrum †1.Zp=p

k/C ^Sn for n> 0 and †1R�n.Zp=p
k/C for negative n.
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Thus the objects †1.Zp=p
k/C (usually written as Zp=p

k
C ) for k > 0 are a set of

generators for the homotopy category. This result is Fausk [3, Lemma 4.6] and the
next is [3, Proposition 7.10], which shows that Segal–tom Dieck splitting holds in this
model category. It is our main tool for computations.

Proposition 2.6 If Y is a based Zp –space, then there is an isomorphism of abelian
groups M

k>0

��
�
†1

��
EZp=p

k
C

�
^Zp=pk Y pkZp

��
�! �

Zp

� .†1Y /:

The splitting result gives an additive description of ŒS;S �Zp

� Š �
Zp

� .S0/, we also need
a multiplicative description in degree zero, so we give [3, Lemma 7.11].

Lemma 2.7 The ring of self maps of the sphere spectrum in the homotopy category of
Zp –spectra is naturally isomorphic to colimk>0ŒS;S �

Z=pk

.

One could repeat this entire construction using pnZp as the group, choosing the set of
subgroups to be those of form pkZp for k > n, this would give a model category of
pnZp –spectra. We mention this now as later we will need to move between this model
category and the model category of Zp –spectra, using change of groups functors. The
inclusion inW p

nZp! Zp induces a Quillen pair
�
.Zp/C p̂nZp

.�/; i�n
�

between the
model categories of pnZp –spectra and Zp –spectra (this also works in the space-level
setting). We also have an inflation–fixed points Quillen adjunction between Zp –spectra
and Z=pn –spectra, coming from the projection �nW Zp! Z=pn .

Now we turn to the task of localising this model structure to obtain a model category of
rational Zp –spectra. We do so in a standard manner: Bousfield localisation. Following
Barnes [2] we introduce a rational sphere spectrum S0Q, designed so that the Bous-
field localisation of orthogonal Zp –spectra at this spectrum gives a model category
whose weak equivalences are precisely those maps which induce isomorphisms on all
rationalised homotopy groups.

The construction of S0Q is as follows, let F D˚q2QZ and let R be the kernel of
the map F !Q which sends 1 in factor q to q . Thus we have a free resolution of
Q as a Z–module: 0!R! F !Q. We can realise the map R! F as a map of
Zp –spectra:

W
R S0!

W
F S0 and take the cofibre which we call S0Q.

Theorem 2.8 Let U be a complete Zp –universe, then the model category of rational
orthogonal Zp –spectra, Zp SpQ , is a compactly generated, proper, monoidal model
category satisfying the monoid axiom.
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This is the model category we wish to study and understand via an algebraic model.
From now on we will always assume that we are working with some fixed complete
universe U that we omit from the notation.

Let us digress temporarily to the case of a general profinite group G . Repeating
the above work we can make a model category of rational G–spectra on a complete
universe, which has generators of form G=HC , where H runs over the set of all open
subgroups of G . Combining a calculation with a little more terminology we can prove
a first attempt at classifying rational G –spectra in terms of an algebraic model.

Theorem 2.9 For G a profinite group, the graded Q–module ŒG=HC;G=KC�
G SpQ
�

is concentrated in degree zero.

Proof To prove this we use the splitting result of Proposition 2.6, via the isomorphisms:

ŒG=HC;G=KC�
G
� Š ŒS;G=KC�

H
� Š �

H
� .G=KC/

where everything is stable and rational, of course. Now we split this homotopy group
into a sum over the collection of conjugacy classes of open subgroups of H .

�H
� .G=KC/Š˚.L/2Open.H /��

�
EWH LC ^WH L .G=KC/

L
�

Each L in the above has finite index in H , so WH L is a finite group. The G –set G=K

is also finite, hence .G=K/L is a finite WH L set. Thus we can decompose .G=K/L

as the following coproduct
`

i2I WH L=Mi , for I some finite indexing set. We then
have a series of isomorphisms:

��
�
EWH LC ^WH L .G=KC/

L
�
Š ˚i2I��

�
EWH LC ^WH L .WH L=Mi/C

�
Š ˚i2I��

�
.BMi/C

�
Š ˚i2I Q

which follow from the standard results: X ^G G=H Š X=H , .EG/=H D BH and
��.BHC/ŠQ, for a finite group H .

We now introduce the orbit category and Mackey functors, see Fausk [3, Definitions
8.23 and 8.24].

Definition 2.10 For G a profinite group, define the orbit category of G , OG , to be
the Q –mod–enriched category with objects the collection G=H , for H open in G

and morphisms given by

OG.G=H;G=K/D ŒG=HC;G=KC�
G SpQ
� :

A right module over OG is a contravariant enriched functor from OG to Q –mod. This
category is also known as the category of rational Mackey functors for the group G .
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When G is finite, this notion coincides with the usual concept of Mackey functors for
G . The category of differential graded right modules over OG , dg mod–OG , has a
model structure with weak equivalences and fibrations defined objectwise.

Theorem 2.11 For a profinite group G , the model category of rational G–spectra
is Quillen equivalent to the model category of differential graded right modules over
mod–OG .

Proof Since OG is concentrated in degree zero, the result follows from Schwede and
Shipley [11, Theorem A.1.1 and Proposition B.2.1].

We now have our topological category and in one sense we have completed our task
for a general profinite group G : we have an algebraic category that is equivalent to
rational G –spectra. But it isn’t always so clear what this algebraic model is, nor is it
necessarily easy to construct objects in it. We would also like a method of calculating
maps between two rational G –spectra via this category, so we look for an alternative
description. Since OG.G=H;G=K/ is a module over the rational Burnside ring of G ,
our next step is to study that ring.

3 The Burnside ring of the p–adic integers

The Burnside ring, A.G/, of a finite group G is the Grothendieck ring of finite G –sets.
There is an isomorphism between the Burnside ring and the self maps of the sphere
spectrum in the homotopy category of G –spectra.

Definition 3.1 We define the Burnside ring of Zp to be colimn A.Z=pn/, the colimit
over n of the Burnside rings of the finite groups Z=pn .

It is easy to see that colimn A.Z=pn/ is isomorphic to the Grothendieck ring of finite
discrete Zp –sets: those finite sets X where Zp acts on X by first projecting to Z=pn

for some n. From here on we only work rationally, so A.Zp/ or A.Z=pn/ will mean
the rationalised Burnside rings.

For our calculations an alternative description of the Burnside rings is useful. Let us
consider a finite group G , associated to this is the discrete space of conjugacy classes
of subgroups of G , SG . Then the Burnside ring of G is isomorphic to C.SG;Q/,
the ring of continuous maps from SG to the discrete topological space Q.

A group homomorphism Gi !Gj induces a map SGi ! SGj , which induces a map
C.SGj ;Q/! C.SGi ;Q/. Let’s use this to find a description of the Burnside ring of
Zp which we know to be isomorphic to the colimit over n of the rings C.SZ=pn;Q/.
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Some easy calculations give the following diagram, where we have added the undefined
term SZp .

SZ=p0 SZ=p1oo SZ=p2oo SZ=p3oo � � �oo SZp
oo

Z=p0 Z=p1oo Z=p2oo Z=p3oo � � �oo Zp
oo

pZ=p1

dd

pZ=p2oo pZ=p3oo � � �oo pZp
oo

p2Z=p2

ee

p2Z=p3oo � � �oo p2Zp
oo

p3Z=p3

ee

� � �oo p3Zp
oo

� � �

dd

To explain this concretely, consider pD 2, then the fourth column of the above diagram
says that the Z=8–subgroups 4Z=8 (a two element group) and 8Z=8 (the trivial group)
are identified under the projection Z=8! Z=4. Whereas the subgroup 2Z=8 (the
cyclic group of order 4) becomes 2Z=4 under the projection.

The set SZp of closed subgroups of Zp can be given a topology via the Hausdorff
metric on Zp . We can describe SZp as the subspace of R consisting of those points
p�n for n> 0 and the point 0. We label the point p�n as pnZp and the point 0 as
the trivial group. The space SZp then fits into the diagram as shown.

There are two important collections of idempotents that we will make use of.

Definition 3.2 Define the function enW SZp!Q to be that map which sends pnZp 2

SZp to 1 2Q and all other points to zero. We then define fk D 1�
Pk�1

iD0 ei .

Note that C.SZp;Q/ is the ring of eventually constant rational sequences: for large
enough k all points pkZp are sent to the same rational number. We can write such a
sequence as .a0; a1; a2; : : : / where an is the value of the sequence at pnZp .

Lemma 3.3 There is an isomorphism colimn C.SZ=pn;Q/! C.SZp;Q/ induced
by the maps SZp! SZ=pn , which sends pkZp to pkZ=pn and the trivial group to
pnZ=pn .
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Proof Take some element of colimn C.SZ=pn;Q/, then it is represented by some
element f 2 C.SZ=pn;Q/, for suitably large n. Now we define gW SZp!Q from
f , let g.pkZp/D f .p

kZ=pn/ for 0 6 k 6 n and let g.pkZp/D f .p
nZ=pn/ for

k > n. The map g is precisely that map induced from f by SZp!SZ=pn . This new
map is continuous as it is eventually constant. It is easy to check that this assignment
is well-defined and gives an isomorphism.

The ring C.SZp;Q/ is part of a pullback square in the category of commutative rings:

C.SZp;Q/ //

��

Q

��Q
n>0 Q // colimk

Q
n>k Q

We will need this kind of pullback square later and we also note that this ring occurs in
the study of rational O.2/–spectra, we discuss this further in Section 8.

It is also important to understand how the inclusion map pnZp! Zp induces a map
of Burnside rings i�n W A.Zp/! A.pnZp/. Since pnZp and Zp are isomorphic as
abelian groups (Zp! pnZp , x 7! pnx is an isomorphism), A.pnZp/ is isomorphic
as a ring to A.Zp/, but i�n is not an isomorphism. We can describe A.pnZp/ as the
ring of eventually constant sequences .an; anC1; anC2; : : : / where ak is the value of
the sequence at pkZp , for k > n. This gives a nice definition of i�n .

Lemma 3.4 The map i�n W A.Zp/!A.pnZp/ acts by truncation, it takes the eventu-
ally constant sequence .a0; a1; a2; : : : / to .an; anC1; anC2; : : : /.

Proof This is easy to see, the subgroups of pnZp have form pkZp for k > n, these
are sent to pkZp as a subgroup of Zp .

4 The algebraic model

Now we describe the algebraic model ADA.Zp/ that will represent the homotopy
category of rational Zp –spectra. By represent, we mean that we will produce (in
Section 7) a series of Quillen equivalences relating the model category of rational
Zp –spectra from Section 2 and the model category of differential graded objects in the
algebraic model. We begin with a brief introduction to sets with an action of Zp .

Definition 4.1 A Q–module M is said to be a discrete Zp –module if there is a group
action Zp �M !M such that for any m, the action of Zp on m factors through
some finite quotient of Zp .
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The purpose of this definition is that a Zp –module M is discrete if and only if the
action map Zp�M !M is a continuous map, using the discrete topology on M and
the standard topology on Zp .

Lemma 4.2 Let M be a set with a not necessarily continuous action of Zp and define
M pnZp to be the set of those elements of M fixed by all elements of pnZp . Then
there is a natural Zp –equivariant inclusion map of a discrete Zp –set into M :

colimn M pnZp �!M

and this map is an isomorphism if and only if M is discrete.

We can think of colimn M pnZp as the discrete part of M , if N ! M is a Zp –
equivariant map, with N discrete, then this map factors N ! colimn M pnZp !M .

The category of discrete Zp –modules is a closed monoidal category, with tensor product
given by tensoring over Q and homomorphism object given by taking the discrete part
of HomQ.�;�/, which is a Zp –module by conjugation.

Proposition 4.3 There is a cofibrantly generated model structure on the category of
differential graded rational discrete Zp –modules, where a map is a weak equivalence
if and only if it is a homology isomorphism and the fibrations are the surjections. Let
QŒZp �d –mod denote this model category of discrete Zp –modules.

Proof A colimit of discrete modules is discrete, limits are defined by taking the
limit in the category of Q–modules and then taking the discrete part. The generating
cofibrations are the maps of the form QŒZp=p

n�˝i , where i is a generating cofibration
for the model structure on differential graded Q–modules. Similarly, the generating
acyclic cofibrations are the maps of the form QŒZp=p

n�˝ j , where j is a generating
acyclic cofibration for the model structure on differential graded Q–modules.

Focusing on these generating sets, one sees that a map f is a fibration if and only if
each f pnZp is a surjection and f is a weak equivalence if and only if each f pnZp is
a homology isomorphism. Since the modules are discrete and rational, the fibrations
are precisely the surjections and the weak equivalences are precisely the homology
isomorphisms.

Most of the above results on Zp –modules hold in the case of a general profinite group
G .
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Definition 4.4 An object M of the category ADA.Zp/ is a collection of QŒZp=p
k �–

modules Mk for k > 0 and a discrete Zp –module M1 , with a specified map of
Zp –modules �M W M1 ! colimn

Q
k>n Mk , called the structure map of M . A

map f W M ! N in this category is then a collection of QŒZp=p
k �–module maps

fk W Mk!Nk and a map of Zp –modules f1W M1!N1 which give a commutative
square:

M1
�M //

��

colimn

Q
k>n Mk

��
N1

�N // colimn

Q
k>n Nk :

We call this category the algebraic model for rational Zp –spectra.

Note that for an object M of A, the Zp –module colimn

Q
k>n Mk is not, in general,

discrete. However, the image of the structure map of M , which is a submodule of
colimn

Q
k>n Mk , is discrete.

We introduce a number of special objects of A, these will be used to create the model
structure on A and will be needed for the main proof that the category of differential
graded objects in this algebraic model is Quillen equivalent to rational Zp –spectra.

Definition 4.5 For n > 0, let A.n/ be the object which takes value QŒZp=p
n� in

all entries greater than or equal to n (including infinity) and is zero elsewhere with
structure map given by the diagonal. We will also use U to denote A.0/. Let E.n/ be
the object which takes value QŒZp=p

n� at n and is zero everywhere else and let L.n/

be the object which takes value QŒZp=p
n� at 1 and is zero everywhere else.

As we will see later, once we have our Adams spectral sequence, A.n/ is the algebraic
model for the spectrum Zp=p

n
C and the collection of the A.n/ forms a generating set

for the algebraic model. The object U will be seen to be the unit of the monoidal
product on A. The collection consisting of all L.n/ and E.n/ for n > 0 is also a
generating set for the category. It is sometimes easier to work with the collection
of the L.n/ and E.n/, rather than the A.n/, as there are fewer maps between these
generators. In terms of spectra, E.n/ represents enZp=p

n
C and L.n/ is the algebraic

model for Hocolimk fkZp=p
n
C , as we show in Lemma 6.3.
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Let k;m; n> 0 with k ¤ n:

HomA.U;U / D A.Zp/ HomA.L.n/;L.m// D QŒZp=p
min.m;n/�

HomA.L.n/;U / D 0 HomA.E.n/;E.n// D QŒZp=p
n�

HomA.U;L.n// D Q HomA.E.n/;E.k// D 0

HomA.U;E.n// D Q HomA.L.n/;E.m// D 0

HomA.E.n/;U / D Q HomA.E.n/;L.m// D 0

Definition 4.6 For an object M 2A, let seqn.M /D
Q

k>n Mk and let tails.M /D

colimn

Q
k>n Mk . Let

p
n M be the following pullback.

p
n M //

��

seqn M

��
M1 // tails.M /:

We call
p

n M the set of eventually specified sequences in M , starting at n.

The map M1! tails.M / can be thought of giving a set of permissible behaviours for
sequences of elements in the modules Mn . An element of

p
n is then an element m

and a sequence .mk/, with mk 2Mk and k > n such that the sequence agrees with
the image of m in tails.M /, in other words, the sequence .mk/ is eventually specified
by m. The notation

p
n is meant to look like some combination of ˚ and

Q
, since the

elements of
p

n M are infinite sequences where we still have some control over their
eventual behaviour. Consider a special class of objects of A, those where M1 DMk

for all k and the structure map is the diagonal. Then an eventually specified sequence
in M is just an eventually constant sequence. We extend all these definitions to objects
of dgA without further decoration.

Theorem 4.7 The category dgA.Zp/ is a proper, cofibrantly generated model cate-
gory. The fibrations are those maps f which are a surjection at each n and infinity.
The weak equivalences are those maps f which are homology isomorphisms at each n

and infinity.

Proof Given a small diagram M i of objects of A, the colimit is formed by taking
the colimit at each point, so .colimi M i/k D colimi.M

i
k
/ and similarly so at infinity.

The map below induces (via the universal properties of colimits) a structure map for
colimi M i .

M i
1 �! colimn

Y
k>n

M i
k �! colimn

Y
k>n

colimi M i
k :
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Limits are harder to define. As before .limi M i/k D limi.M
i
k
/, though we must

remember to take the discrete part of the underlying set-theoretic limit. For the value
at infinity we must do the following. Form the pullback diagram

P //

��

colimN

Q
k>N limi M i

k

��

limi M i
1

// limi colimN

Q
k>N M i

k

then let .limi M i/1 be the discrete submodule of P . It is routine to check that these
constructions of colimits and limits have the appropriate universal properties.

The generating cofibrations and acyclic cofibrations are the sets

IA D fA.n/˝ Ig JA D fA.n/˝J g

where I (respectively, J ) is the set of generating cofibrations (respectively, acyclic
cofibrations) for dg Q –mod. To prove that this gives the model structure we have
described, we must identify the fibrations and acyclic fibrations.

A map f has the right lifting property with respect to I (or J ) if and only if
.
p

n f /
pnZp is a surjection for each n. It is routine to show that f has the lifting

property if and only if each fn and f1 is a surjection (or surjection and homology
isomorphism). The main points needed are the natural isomorphism�x

n

M
�pnZp

Š

� x

nC1

M
�pnZp

˚Mn

and the general technique of first dealing with the term from M1 and then dealing
with the remaining finite number of terms in the Mk which are not specified by the
image of M1 under the structure map of M .

Left properness is easy to see, for right properness we use the fact that for any finite
limit diagram M i , .limi M i/1 D limi.M

i
1/.

We introduce another category, related to A by an adjunction that is useful in under-
standing the monoidal structure of A.

Definition 4.8 Let B be the category of sheaves of discrete Zp –modules on the space
SZp . We call this the sheaf model for rational Zp –spectra.

Given any object A 2A, one defines a sheaf FA on SZp by setting FA.Sn/D
p

n A,
where Sn is the open set of SZp consisting of all points of the form pkZp for k > n
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and the trivial group. At the singleton set of pnZp we let FA take value An . Given
any M 2 B , define GM to be that object of A which takes value M.pnZp/

pnZp at
n and at infinity is given by following pullback:

.GM /1 //

��

colimn

Q
k>n M.pnZp/

pnZp

��
Me

// colimn

Q
k>n M.pnZp/:

In the above, Me is the stalk at the trivial group and the lower horizontal map is given
by realising stalks as an element of colimn M.Sn/ and then projecting onto the product
of the singleton sets pkZp for k > n.

Lemma 4.9 The functors F and G form an adjunction

F WA� B WG

where the left adjoint F is full and faithful.

Lemma 4.10 There is a termwise model structure on dgB where a map f is a
fibration or weak equivalence if each f .S/ is so for each open subset S of SZp . The
pair .F;G/ is a Quillen pair when dgA is given the above model structure and dgB is
given the termwise model structure.

The pair .F;G/ is a Quillen equivalence when dgA is given the above model structure
and dgB is given the model structure determined by applying F to the generating sets
of cofibrations and acyclic cofibrations of dgA.

This lemma is an example of what is sometimes known as the cellularisation principle,
see Greenlees and Shipley [8, Appendix B], where we co-localise the model structure
on dgB at the cells FA.n/, for n> 0.

The adjunction .F;G/ provides an alternate description of limits in A. The limit of a
diagram M i of objects of A, limi M i , is canonically isomorphic to G limi.FM i/,
the functor R applied to the limit of the B–diagram consisting of the FM i . Limits in
B are taken termwise as it is a category of sheaves, but we must take the discrete parts
of the underlying set-theoretic limits.

We can also use the adjunction .F;G/ to define a monoidal product and internal
homomorphism object on A. We start with the category of rational discrete Zp –
modules, which is a closed monoidal category with monoidal product ˝Q . This
monoidal product induces a tensor product on B , defined by

.M ˝N /.S/DM.S/˝Q N.S/:

Algebraic & Geometric Topology, Volume 11 (2011)



2122 David Barnes

The internal homomorphism object is as usual for sheaves,

Hom.M;N /.S/D HomBjS .MjS ;NjS /;

where the right hand side is the discrete part of the set of maps of rational sheaves from
M restricted to S to N restricted to S (where Zp acts by conjugation).

Now let M and N be in A, then the monoidal product of M and N is M ˝N ,
which at n takes value Mn˝Q Nn and at 1 takes value M1˝Q N1 . The structure
map is as follows.

M1˝N1 �! colimn

Y
k>n

Mk ˝ colimm

Y
l>m

Nl

�! colimn;m

 Y
k>n

Mk ˝

Y
l>m

Nl

!
Š
 � colimn

 Y
k>n

Mk ˝

Y
l>n

Nl

!

�! colimn

 Y
k>n

Mk ˝Nk

!
The internal function object requires us to briefly use B , we define Hom.A;B/ D
G Hom.FA;FB/, the functor G applied to the B–homomorphism object of maps
from FA to FB . The following series of adjunctions shows that this object has the
correct properties to be the internal homomorphism object of A:

A.A˝B;C /Š B.FA˝FB;FC /

Š B.FA;Hom.FB;FC //

ŠA.A;G Hom.FB;FC //

Lemma 4.11 The model category dgA is a monoidal model category that satisfies
the monoid axiom.

Proof The proof essentially relies on the corresponding statements for Q–modules
and the fact that QŒZp=p

n�˝Q QŒZp=p
m� is isomorphic, as a Zp –module, to the

direct sum of pm –copies of QŒZp=p
n�, for n>m.

Recall the unit of the monoidal product on A, U D A.0/. This object has Uk DQ
for all k , U1 DQ and structure map induced by the diagonal. The following result is
routine.
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Proposition 4.12 The model category dgA is a dg Q –mod–model category via the
symmetric monoidal adjunction

U ˝Q .�/ W dg Q –mod� dgA W HomA.U;�/:

Note that the right adjoint, applied to an object M 2 A, can be described as the
following pullback:

HomA.U;M / //

��

Q
k>0 M

Zp=p
k

k

��

M
Zp

1
// colimN

Q
k>N Mk

5 Rational Mackey functors

We now show that our algebraic category is really just the category of rational Mackey
functors. The main advantage of using A is the ease of description and construction,
especially when we construct the Adams short exact sequence.

To understand rational Zp –Mackey functors, it is important to have a good description
of OZp

, see Definition 2.10. We can calculate this via tom Dieck splitting, but to
obtain a more useful and neater characterisation, we need to see how the Burnside ring
appears in OZp

.

The set of Zp –equivariant maps of spaces from Zp=p
n to Zp=p

m is isomorphic to
Zp=p

min.n;m/ . Any such map f determines a map of suspension spectra, indeed,
there is an injective map

�W map.Zp=p
n;Zp=p

m/Zp ! ŒZp=p
n
C;Zp=p

m
C �

Zp :

Recall that there is an isomorphism A.pmax.n;m/Zp/! ŒS0;S0�p
max.n;m/Zp . There

is an injective map  W ŒS0;S0�p
max.n;m/Zp ! ŒS0;S0�p

nZp , given by sending some
eventually constant sequence starting at the maximum of n and m to one starting at n

by filling in the extra terms at the beginning with zeros.

Choose some map f 2map.Zp=p
n;Zp=p

m/Zp and some x 2A.pmax.n;m/Zp/, then
we have a map

�.f /^ .x/ 2 ŒS0;Zp=p
m
C �

pnZp Š ŒZp=p
n
C;Zp=p

m
C �

Zp :

The projection ŒS0;Zp=p
m
C �

pnZp ! ŒS0;S0�p
nZp takes �.f /^ .x/ to  .x/. Thus

for each f , the association x 7! �.f /^ .x/ is injective. It is also clear that �.f /^
 .x/ and �.g/^ .x/ are not homotopic whenever f ¤g2map.Zp=p

n;Zp=p
m/Zp .
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We have thus defined a map

�W A.pmax.n;m/Zp/�map.Zp=p
n;Zp=p

m/Zp �! ŒZp=p
n
C;Zp=p

m
C �

Zp

and we have seen that it is injective.

Proposition 5.1 For any n;m> 0, the map below is an isomorphism

�W A.pmax.n;m/Zp/˝QŒZp=p
min.n;m/� �! ŒZp=p

n
C;Zp=p

m
C �

Zp

Proof We know that the map � exists and is injective, a routine calculation of the
target by tom Dieck splitting shows that it is also surjective. The only point worthy
of note is that when written in terms of rational Grothendieck rings, the idempotent
en (introduced in Definition 3.2) is given by p�nZ=pn�p�n�1Z=pnC1 . With this
understood, we can see where a term such as en˝x is sent to in the tom Dieck splitting
of the target.

We briefly digress to consider the case of a general ring, R. Assume that there is a
countable collection of idempotents fek jk > 0g, where eiej D 0 for i ¤ j . We do
not require that these idempotents be non-zero, hence a finite collection of orthogonal
idempotents gives such a collection, by setting ek D 0 for sufficiently large k . Define
a new collection of idempotents by fk D 1�

Pk�1
iD0 ei .

The ring R can be described as the pullback in the category of rings of the diagram

R //

��

Q
k>0 ekR

��
colimn fnR // colimn

Q
k>n ekR:

This pullback description also applies with R in the above replaced by any R–module
M . In the case of a finite collection, colimn

Q
k>n ekRD 0 so this pull back is simply

describing R as a product of its idempotently split pieces. In this case the ei sum to
the unit if and only if colimn fnRD 0.

We want to understand in more detail what information is needed to define a Zp –
Mackey functor. We are guided by the standard example: the homotopy group Mackey
functor of a spectrum X . This takes the object Zp=p

kZp of OZp
to the graded

Q–module �pkZp

� .X /. We can also describe this homotopy group Mackey functor as
the functor below, which has codomain the category of graded Q–modules:

Œ�;X �
Zp

� W OZp
! gr Q –mod :
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Let M be a rational Mackey functor, then for each k > 0, one has a Q–module
M
�
Zp=p

k
C

�
, the spectrum Zp=p

k
C has a right action by Zp=p

k , so this Q–module
also has an action Zp=p

k . Further M
�
Zp=p

k
C

�
is a module over A.pkZp/, so we

have a pullback diagram:

M
�
Zp=p

k
C

�
//

��

Q
n>k enM

�
Zp=p

k
C

�
��

colimn fnM
�
Zp=p

k
C

�
// colimn

Q
m>n emM

�
Zp=p

k
C

�
:

Thus M can be reconstructed from the pieces enM
�
Zp=p

k
C

�
and the collection

of projection maps fnM
�
Zp=p

k
C

�
!
Q

m>n emM
�
Zp=p

k
C

�
for varying n and k .

Following the decomposition of rational Mackey functors in Greenlees [4], we expect
that this decomposition can be simplified. In particular, the pieces enM

�
Zp=p

k
C

�
should be recoverable from the terms Mn D enM

�
Zp=p

n
C

�
. Instead of needing all the

projection maps we would expect to only need a module M1 D colimn M
�
Zp=p

n
C

�
and a structure map M1! tails.M /.

Theorem 5.2 Let M be a rational Mackey functor for Zp and recall the idempotents
en and fk of Definition 3.2 where fk D 1 �

Pk�1
iD0 ei . Then, for k 6 n, there are

isomorphisms (natural in M ):

enM.Zp=p
k
C/Š .enM.Zp=p

n
C//

pkZp=p
n

DM
pkZp=p

n
C

n

colimn.fnM.Zp=p
k
C//Š .colimn M.Zp=p

n
C//

pkZp DM
pkZp

1 :

Hence we have the formula below for recovering a Mackey functor from the split pieces
and the structure map.

M.Zp=p
k
C/

//

��

Q
n>k M

pkZp=p
n

n

��

M
pkZp

1
// colimn

Q
m>n M

pkZp=p
m

m

Proof A variation on the Yoneda lemma states that if F is a contravariant C–enriched
functor from a C–enriched category E to C , the canonical map

R a2E C.x; a/˝F.a/!

F.x/ is a natural isomorphism. In our setting, where E DOZp
and C is the category

of Q–modules, this says that there is a natural isomorphismZ Zp=p
m
C
2OZp

ŒZp=p
n
C;Zp=p

m
C �

Zp ˝Q M.Zp=p
m
C/ �!M.Zp=p

n
C/:
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For the rest of this proof we remove the C from our notation for objects of the orbit
category. All tensor products will be over Q.

For each element x of Zp=p
n , we have a right multiplication map rx W Zp=p

n !

Zp=p
n . From these we construct Avn;k D pn�k

P
x2pkZp=pn rx , a map in the homo-

topy category of rational Zp –spectra. This map induces an idempotent map

.Avn;k/
�
W ŒZp=p

n;Zp=p
m�Zp �! ŒZp=p

n;Zp=p
m�Zp :

The image of this map is
˚
ŒZp=p

n;Zp=p
m�Zp

	pkZp , that is, the algebraic fixed points
of this discrete Zp –module. We now want to make use of the isomorphism G=K �G

X ! X=K for K a subgroup of the finite group G and X a G–set. To do so we
use the fact that fixed points in Q–modules correspond to orbits, that is, we have
isomorphisms:

˚
ŒZp=p

n;Zp=p
m�Zp

	pkZp Š
�!

˚
ŒZp=p

n;Zp=p
m�Zp

	
=pkZp

M.Zp=p
n/p

kZp
Š
�!M.Zp=p

n/=pkZp

The advantage of doing so is that the following isomorphism is clear when everything
is written in terms of left adjoints and orbits.

Z Zp=p
m n
ŒZp=p

n;Zp=p
m�Zp

o
=pkZp˝M.Zp=p

m/
Š
�!M.Zp=p

n/=pkZp

Similar arguments show that there are natural isomorphisms as below.

Z Zp=p
m

enŒZp=p
k ;Zp=p

m�Zp ˝M.Zp=p
m/Š enM.Zp=p

k/Z Zp=p
m ˚

enŒZp=p
n;Zp=p

m�Zp
	pkZp

˝M.Zp=p
m/Š enM.Zp=p

n/p
kZp

We want to prove that the right hand sides are isomorphic, we do so by proving
that the left hand sides are isomorphic, this reduces to showing that the Q–modules˚
enŒZp=p

n;Zp=p
m�Zp

	
=pkZp and enŒZp=p

k ;Zp=p
m�Zp are naturally isomorphic

for all m> 0. This amounts to proving that enAvn;kZp=p
n and enZp=p

k are weakly
equivalent. We delay this to attend to the second statement of the theorem for a short
while.
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For the second statement we follow the same pattern as before, we have a pair of natural
isomorphisms and we want to show that the right hand sides below are isomorphic.Z Zp=p

m

colimafaŒZp=p
k ;Zp=p

m�Zp˝M
�
Zp=p

m
�
Š colima

�
faM

�
Zp=p

k
��

Z Zp=p
m˚
colimaŒZp=p

a;Zp=p
m�Zp

	
=pkZp˝M

�
Zp=p

m
�
Š
�
colima M

�
Zp=p

a
��pkZp

This result will follow from the existence of a natural isomorphism between the Q–
modules colima faŒZp=p

k ;Zp=p
m�Zp and

˚
colimaŒZp=p

a;Zp=p
m�Zp

	
=pkZp . We

may as well assume that a is larger than k , then we have the following collection of
maps

faŒZp=p
k ;Zp=p

m�Zp �! ŒZp=p
k ;Zp=p

m�Zp

�! ŒZp=p
a;Zp=p

m�Zp

�!
˚
ŒZp=p

a;Zp=p
m�Zp

	
=pkZp:

Which are, from top to bottom, the inclusion of an idempotent summand, the map
induced by Zp=p

a! Zp=p
k and the quotient map. The composite of these maps is

an isomorphism if Ava;kZp=p
a and faZp=p

k are weakly equivalent (with this weak
equivalence being natural in a).

If Ava;kZp=p
a and faZp=p

k are weakly equivalent for a> k , then eaAva;kZp=p
a

and eafaZp=p
k ' eaZp=p

k are also weakly equivalent, which is our unfinished
business from the first statement.

Consider the projection map Zp=p
a!Zp=p

k , since Zp=p
k is fixed under the action

of pkZp , there is a map (in the homotopy category) from Ava;kZp=p
a to Zp=p

k .
Now compose with the map Zp=p

k ! faZp=p
k to obtain our map Ava;kZp=p

a!

faZp=p
k . Our calculations of OZp

in Proposition 5.1 show that we have our weak
equivalence.

Now we are just required to show that one can build M from the pieces Mm and the
map M1! tails.M /, but this follows immediately from the two isomorphisms of the
theorem and our earlier decomposition of M.Zp=p

kZp/.

Now we know precisely what information is needed to define a rational Mackey functor
for Zp , as expected, this information is sufficient to make an object of A.

Lemma 5.3 Any Mackey functor M defines an object of A.
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Proof For each k > n we have a map M.Zp=p
n
C/! ekM.Zp=p

k
C/ DMk . This

map is a composition of projection onto an idempotent summand and the restriction
map induced by pkZp! pnZp . This gives a map M.Zp=p

n
C/!

Q
k>n Mk . Taking

colimits over n of both sides of this map gives the structure map

M1! colimn

Y
k>n

Mk D tails.M /

hence we have an object of A.

The above theorem also shows that for any Mackey functor M , its image in A is all
that is needed to reconstruct it.

Corollary 5.4 The category of rational Mackey functors for Zp is equivalent to the
algebraic model A.

We are very close to completing half of our task, we know by Theorem 2.11 that the
model category of rational Zp –spectra is Quillen equivalent to differential graded
rational Mackey functors and we have just shown that the category of rational Mackey
functors is equivalent to A. But we still have to show that the model structure on dgA
that we introduced gives the correct homotopy category, this will be easier to do once
we have a better method of calculation.

6 The Adams short exact sequence

We define a functor from the homotopy category of rational Zp –spectra to graded
objects of A.Zp/. This allows us to find a short exact sequence relating the homotopy
category of spectra with A.Zp/, thus allowing us to understand maps in the homotopy
category of Zp SpQ .

For a spectrum X , the graded Mackey functor ��.X / is the represented functor
Œ�;X �

Zp

� from OZp
to graded rational vector spaces. From this we can make an object

of grA (the category of graded objects in A), following the recipe of the previous
section.

Definition 6.1 For a spectrum X , define �A
� .X / 2 grA as follows, at n it takes the

value en�
pnZp

� .X /, and at infinity it takes the value colimk �
pkZp

� .X /. There is a
map

�
pkZp

� .X / �!
Y

m>k

em�
pmZp

� .X /

given by restriction from pkZp to pmZp and projection onto an idempotent factor.
Applying colimits gives the structure map of �A

� .X /.
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We note that colimk �
pkZp

� .X / is a discrete Zp –module as any given element is in
some Zp=p

k –module. The homotopy groups above are, as usual, rationalised. Since
the functor �A

� from rational Zp –spectra to graded objects in A is defined in terms of
homotopy groups and idempotents, it follows that it passes to a functor on the homotopy
category of rational Zp –spectra.

Lemma 6.2 The monic maps in A are exactly those maps that are termwise injections.
If M 2A has a surjective structure map, then it is an injective object. For any object of
A there is a monomorphism to an injective object, whose cokernel is injective.

Proof The first statement is easily checked. For the second, the argument of Green-
lees [5, Lemma 4.2] is easily adapted to our setting.

For the third statement, let M be some object of A, then define LM1 to be that object
of A concentrated at 1 where it takes value M1 . Similarly EnMn will be the object
of A which is concentrated at n and takes value Mn . Let I DL.M1/

Q�Q
n EnMn

�
,

this is an injective object of A since it is a product of injectives. One can calculate that
In DMn and I1 is the discrete part of M1

Q
tails.M /. There is an injective map

M ! I , at n it is given by the identity map of Mn and at infinity it is given by the
identity map of M1 added to the structure map of M . It is clear that the cokernel of
this map is concentrated at infinity and hence is injective.

In particular, any object of A or grA that is concentrated at some n (or infinity) and
is zero elsewhere is injective.

Lemma 6.3 For any spectrum X , the object �A
� .enX / of grA is injective and is

concentrated at n, where it takes value en�
pnZp

� .X /.

For any spectrum X , the object �A
� .Hocolimm fmX / of grA is injective and is con-

centrated at infinity, where it takes value colimn �
pnZp

� .X /.

Recall the objects A.n/, E.n/ and L.n/ of Definition 4.5. The functor �A
� sends

the spectrum enZp=p
n
C to the object E.n/ 2 grA and sends Hocolimm fmZp=p

n
C to

L.n/ 2 grA, where n> 0. Similarly �A
� takes Zp=p

n to the object A.n/.

Proof The first statement is a simple calculation. The idempotent en is sent to zero
by the map of Burnside rings induced by the inclusion pkZp! pnZp , for k > n. It
follows that �A

� .enX / has no term at infinity. For m¤ n, emen D 0, hence the only
term is at n where it must take the stated value. Injectivity is then immediate.
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The second statement requires some harder calculations. It is clear that the object is
concentrated at infinity, as for large enough m, fmen D 0. We are left to calculate

colimn �
pnZp

� .Hocolimm fmX /D colimn colimm fm�
pnZp

� .X /

swapping the colimits, we obtain

colimm colimn fm�
pnZp

� .X /:

But for n > m, fm 2 A.Zp/ is sent to the identity of A.pnZp/ (via the inclusion
pnZp! Zp ). Hence

colimn fm�
pnZp

� .X /D colimn �
pnZp

� .X /

and now taking colimits over m has no effect, so they can be ignored. Injectivity is
also immediate in this case.

The calculations regarding A.n/, E.n/ and L.n/ are straightforward.

The following result is a consequence of the Yoneda lemma, the result holds for any
spectrum h I such that �A

� .h I/ is injective, but it is much easier to see if we restrict
ourselves to those that are concentrated at some n or infinity.

Lemma 6.4 Take any X in Zp SpQ and let h I be some spectrum such that I D

�A
� .h I/ is concentrated at some n or infinity. Then �A

� induces a natural isomorphism

ŒX; h I �
Zp

� �! HomA.�
A
� .X /; I/:

The above lemma and the theorem below are closely related to Fausk [3, Proposition
8.27].

Theorem 6.5 For any X and Y in Zp SpQ , there is a short exact sequence

0 �! ExtA�
�
�A
� .†X /; �A

� .Y /
�
�! ŒX;Y �

Zp

� �! HomA
�
�A
� .X /; �

A
� .Y /

�
�! 0

Proof Using Lemmas 6.2 and 6.3, we can create a map Y ! h I in the homo-
topy category of spectra, where h I is the product of the terms enY for n > 0 and
Hocolimm fmY such that

�A
� .Y /! I D �A

� .h I/

is a monomorphism into an injective object. If we extend this to a cofibre sequence in
the homotopy category of spectra,

Y ! h I ! h J
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and let �A
� .h J /D J then we also have short exact sequence

0! �A
� .X /! I ! J ! 0:

It follows that J is injective as it is concentrated at infinity. Hence we have an injective
resolution of �A

� .Y / in the algebraic model A.

Applying the functor ŒX;��Zp

� to the cofibre sequence produces a long exact sequence

� � � ! ŒX; h J �
Zp

nC1
! ŒX;Y �

Zp

n ! ŒX; h I �
Zp

n ! ŒX; h J �
Zp

n ! ŒX;Y �
Zp

n�1
! : : : :

Using Lemma 6.4, since I is a product of objects which are each concentrated at n or
infinity, we can identify two of the above terms as maps in A:

ŒX; h I �
Zp

n D HomA
�
�A
� .X /; I

�
n

ŒX; h J �
Zp

n D HomA
�
�A
� .X /;J

�
n
:

The map
HomA

�
�A
� .X /; I

�
n
! HomA

�
�A
� .X /;J

�
n

has kernel HomA
�
�A
� .X /; �

A
� .Y /

�
n

and cokernel ExtAn
�
�A
� .X /; �

A
� .Y /

�
, so the

result follows by splitting the long exact sequence into short exact sequences.

Since the objects L.n/ and E.n/ of Definition 4.5 generate A, it follows that the
spectra they represent generate the homotopy category of spectra.

Corollary 6.6 The collections enZp=p
n and Hocolimm fmZp=p

n for n> 0 together
form a collection of generators for Zp SpQ .

7 The proof

We are now able to complete our classification theorem and prove that Zp SpQ is
Quillen equivalent to dgA. Rather than follow on from Theorem 2.11, we give
an alternative proof using the pattern of Barnes [2], which is a method learnt from
Greenlees and Shipley. In this setting we do not attempt to make a statement that
involves the monoidal products, as the fibrant replacement functor of Zp –spectra isn’t
a monoidal functor.

We prefer this method of proof, since if one were to verify that there is a good model
category of equivariant EKMM spectra for profinite groups (and one would expect
every object of this model structure to be fibrant), then it would be routine to show that
dgA and Zp Sp are monoidally Quillen equivalent.

Theorem 7.1 The category of rational Zp –spectra is Quillen equivalent to the model
category of differential graded objects in the algebraic model A.Zp/.
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Proof Consider our chosen collection of generators, enZp=p
n and colimm fmZp=p

n ,
for n> 0. Take a fibrant replacement of each generator, call this set Gtop and call the
full spectral subcategory on this object set Etop . Then Zp SpQ is Quillen equivalent to
mod– Etop by Schwede and Shipley [11, Theorem 3.3.3]. Apply the functors of Ship-
ley [13] to obtain a dg Q–enriched category Et and a zig-zag of Quillen equivalences
between mod– Etop and mod– Et .

There is a zig-zag of functors of enriched categories

H0 Et  � C0Et �! Et

where .C0Et /n is zero for negative n, equal to .Et /n for n> 0 and is the zero cycles
of .Et /0 in degree zero. By the work of Shipley, we know that H� Et D ��Etop and,
by our calculations in Theorem 2.9, that these are both concentrated in degree zero. It
follows that H� Et D H0 Et . Hence, by Schwede and Shipley [11, A.1.1], this zig-zag
induces Quillen equivalences on the corresponding categories of right modules, so
mod– Et is Quillen equivalent to mod– H0 Et .

Let Ea be the full subcategory of dgA on the objects E.n/ and L.n/ for n> 0, then
dgA is Quillen equivalent to mod– Ea . This follows from [11, Theorem 3.3.3] with
spectra replaced by rational chain complexes.

The Adams short exact sequence of Theorem 6.5 implies that

�A
� W H0 Et �! Ea

is an isomorphism. Hence we have shown that mod– H0 Et is equivalent to mod– Ea .
Since mod– Ea is Quillen equivalent to dgA, we have proven the main result.

8 Relation to Zp=pn , pnZp and O.2/–spectra

The map Zp! Zp=p
n induces an algebraic inflation map A.Zp=p

n/!A.Zp/. An
object of A.Zp=p

n/ consists of a collection of QŒZp=p
k �–modules, for n > k > 0.

Let M be an object of this category, with Mk a QŒZp=p
k �–module. We inflate this to

an object of A.Zp/ by setting .infnM /k DMk for n> k > 0 and .infnM /m DMk

for all other m (including mD1). The structure map is then the diagonal. Denote
this algebraic inflation map by "�a .

We also have an algebraic restriction map coming from pnZp!Zp , this corresponds to
simply forgetting about M0; : : : ;Mn�1 and considering Mn as a Q–module, MnC1

as a QŒpnZp=p
nC1�–module and so on, with M1 being considered as a discrete

pnZp –module. Denote this algebraic restriction map by i�a .
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Proposition 8.1 There are commutative diagrams of triangulated categories

Ho Z=pn SpQ
"� //

�A
�

��

Ho Zp SpQ

�A
�

��

Ho Zp SpQ
i� //

�A
�

��

Ho pnZp SpQ

�A
�

��
Ho dgA.Z=pn/

"�a // Ho dgA.Zp/ Ho dgA.Zp/
i�a // Ho dgA.pnZp/:

The category A is strikingly similar to the algebraic model of Barnes [1], which we
now describe, starting with the Burnside ring of O.2/.

Definition 8.2 The space ˆO.2/ can be described as a subspace of R

PD f1=n j n> 1g[ f0;�1g

the point 1=n corresponds to the conjugacy class of dihedral subgroups of order 2n,
the point 0 corresponds to O.2/ and �1 corresponds to SO.2/. The Burnside ring of
O.2/, A.O.2//, is then the ring of continuous maps from P to Q (a discrete space).

Clearly, A.O.2// contains the ring of eventually constant sequences, but if we compare
ˆO.2/ and SZp , we see the accumulation points behave differently. In the first, the
accumulation point is the whole group, in the second it is the trivial group. This theme
continues as we further compare the case of O.2/ and Zp , one appears to be the ’dual’
of the other.

We let en be the idempotent which sends 1=n to 1 and all other points to zero, we
usually let c denote the idempotent e�1 . The model category of rational O.2/–spectra,
O.2/SpQ , is Quillen equivalent to

LcSO.2/SpQ �L.1�c/SO.2/SpQ

by Barnes [1]. We call L.1�c/SO.2/SpQ the model category of dihedral spectra, it is
Quillen equivalent to an algebraic model dgA.D/.

Definition 8.3 An object of A.D/ consists of a collection of QŒZ=2�–modules Mn

and a Q–module M1 , with a map of QŒZ=2�–modules

M1 �! colimn

Y
k>n

Mn D tails.M /:

The reason that Z=2 appears is that it is the Weyl group of any dihedral group of order
2n inside O.2/, we write D2n for such a dihedral subgroup.
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Any O.2/–Mackey functor gives an object of this algebraic model. Let M be an O.2/–
Mackey functor, then M.O.2/=D2n/ is the value of M at the spectrum .O.2/=D2n/C ,
and M.O.2/=O.2// is the value at O.2/=O.2/C . Define fnD 1� c�

Pn�1
iD0 en , then

let

Mn D enM.O.2/=D2n/; M1 D colimn fnM.O.2/=O.2//:

The projection from fnM.O.2/=O.2// to
Q

m>n M.O.2/=D2n/ induces the structure
map needed to make this data into an object of A.O.2//.

For an object of A.D/, the term at infinity has an action of the trivial group, whereas
for an object of A.Zp/ the term at infinity has an action of the whole group. That is,
if N is a rational Zp –Mackey functor, we obtain an object of A.Zp/ by the use of
the formulas below

Nn D enN.Zp=p
n/; N1 D colimn N.Zp=p

n/; N
pkZp

1 Š colimn fnN.Zp=p
k/:

In [4], Greenlees examines the behaviour of rational Mackey functors for compact
Lie groups; the comparison above demonstrates that one can expect rational Mackey
functors for profinite groups to follow many of the same rules, but in a ‘dual’ manner.
As an example, compact Lie groups often have infinite ascending chains of closed
subgroups: D2n tends to O.2/ as n tends to infinity, but cannot have infinite descending
chains of subgroups. It is these ascending chains that give structure maps: M1!

tails.M /. Profinite groups have descending chains of open subgroups that converge
to closed subgroups: pnZp tends to the trivial groups as n tends to infinity. Thus we
expect that it is these descending chains that give rise to structure maps: N1! tails.N /.
It will be interesting to find further instances of this dual behaviour.
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