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Quantum invariants of random 3–manifolds

NATHAN M DUNFIELD

HELEN WONG

We consider the SO.3/ Witten–Reshetikhin–Turaev quantum invariants of random
3–manifolds. When the level r is prime, we show that the asymptotic distribution
of the absolute value of these invariants is given by a Rayleigh distribution which is
independent of the choice of level. Hence the probability that the quantum invariant
certifies the Heegaard genus of a random 3–manifold of a fixed Heegaard genus g is
positive but very small, less than 10�7 except when g � 3 . We also examine random
surface bundles over the circle and find the same distribution for quantum invariants
there.

57M27; 57N10

1 Introduction

An important class of 3–manifold invariants arises from the topological quantum field
theories (TQFTs) introduced by Witten [26] and then formalized by Atiyah [1; 2]. At
the coarsest level, a TQFT associates to each closed 3–manifold M a complex number
Z.M /. Here, we study the distribution of Z.M / for a random 3–manifold in the sense
of Dunfield and W Thurston [7]. Such manifolds are generated by gluing together two
handlebodies of large genus by an extremely complicated element in the mapping class
group (see Section 2 for details). For the SO.3/ quantum invariants at a prime level, we
show that the distribution of jZ.M /j is in fact independent of the particular invariant:

1.1 Theorem Let Z be the SO.3/ TQFT associated to a prime level r � 5. Then
for a random 3–manifold M , the invariant jZ.M /j is distributed by the Rayleigh
distribution with mean

p
�=2. In particular, the probability that jZ.M /j is at least

some x 2 Œ0;1/ is:
P
˚
jZ.M /j � x

	
D e�x2

We conjecture that Z.M / itself is distributed by the standard complex Gaussian, though
we were not able to prove this. (See Section 4 for the definitions of these probability
distributions.) It is known that for each prime level the values of Z.M / form a dense
set in C (see Wong [28]).
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While Theorem 1.1 has intrinsic interest, our motivation was a classical topologi-
cal question: when does the rank of �1.M / determine the Heegaard genus of M ,
that is, the minimal genus of a Heegaard splitting of M ? This was first posed by
Waldhausen [10; 25], and in 1984 Boileau and Zieschang gave the first breakthrough
examples where the rank and genus differ [4]. However, when M is hyperbolic, there
are still no known examples where the rank and genus differ (see Souto [23] for a
survey). Garoufalidis [9] and Turaev [24] showed that jZ.M /j gives a lower bound on
Heegaard genus (see Theorem 3.6 below), and Wong used this to give an alternate proof
that the examples of Boileau and Zieschang have rank smaller than genus [27]. This is
interesting in part because the technique of [4] cannot be applied to any hyperbolic
3–manifold, whereas quantum invariants have no such apparent restrictions. This led
us to try to find hyperbolic 3–manifolds where the rank and genus differ and the genus
could be certified by jZ.M /j.

Unfortunately, in that search we found that quantum invariants typically gave very poor
bounds on the Heegaard genus. This can be explained by our results here. In particular,
Theorem 4.1 gives the precise distribution of jZ.M /j for a random 3–manifold of
Heegaard genus g , and we use this to show:

1.2 Theorem Fix a prime level r � 5. Let M come from a random Heegaard splitting
of genus g . Then the SO.3/ quantum invariant of level r gives a sharp lower bound
on the genus of M with probability

�
1��2

�d�1 , where �D 2p
r

sin �
r

, and d is the
dimension of the Hilbert space of this TQFT for a surface of genus g .

Here d depends on both g and r with d � �2�2g (see Lemma 3.11); since � < 1,
the dimension d increases rapidly in both r and g . Table 1.3 gives the probabilities
when r and g are small. For comparison, the far right column gives the corresponding

r D 5 r D 7 r D 11 r D 13 jH1.M IF2/j

g D 2 0:274 0:228 0:206 0:202 0:067

g D 3 0:011 1:6� 10�5 1:2� 10�17 4:0� 10�28 0:007

g D 4 1:3� 10�7 7:5� 10�42 1:8� 10�542 1:2� 10�1442 4:3� 10�4

g D 5 3:6� 10�25 1:2� 10�373 4:2� 10�18437 6:7� 10�80495 1:3� 10�5

Table 1.3: Probabilities that the SO.3/ quantum invariants of various levels
r give sharp bounds on genus.

probability that the rank of H1.M IF2/ certifies the genus, namely
Qg

kD1
.2kC1/�1 as
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determined by Dunfield and Thurston [7, Section 8.6]. As you can see, the probability
that Z.M / gives a sharp genus bound decreases as either g or r increases, and the
bound is very rarely sharp except when g D 2 or (marginally) when .g; r/D .3; 5/.
Unfortunately, the case g D 2 isn’t interesting for the question of rank versus genus
since by Perelman’s Geometrization Theorem, any closed 3–manifold where �1.M / is
cyclic must have genus one. Moreover, it seems more likely that hyperbolic examples
with rank differing from genus exist when g > 2. However, Table 1.3 makes it clear
that it would be very hard to find such examples where the genus is certified by Z.M /

via a brute force search. Of course, it is possible to systematically generate examples
where Z.M / does certify the genus by always doing certain powers of Dehn twists,
but we had no luck finding examples among such manifolds.

One natural class of hyperbolic 3–manifolds is surface bundles over the circle, and one
place we looked for possible examples was the Hall–Schleimer census of small genus
2 bundles [11]. For the natural notion of random surface bundle, we show here that the
asymptotic distribution of jZ.M /j is the same as that for all random 3–manifolds, even
though general random 3–manifolds are bundles with probability 0. This can be taken
as evidence for the naturality and robustness of this notion of random 3–manifold. We
also show that for a generic bundle, no SO.3/ quantum invariant certifies its Heegaard
genus. For details, see Section 5.

1.4 Outline

In Section 2, we review the notion of a random 3–manifold and make precise how we
discuss (asymptotically) their various properties. Then in Section 3, we introduce our
preferred formalism for Z.M /, in particular focusing on certain (projective) unitary
representations of mapping class groups. Section 4 is the core of the paper and contains
the proofs of the main results. The two main tools we use are the work of Freedman,
Larsen, and Wang [14; 8] on the density of these unitary representations, and the Ito–
Kawada theorem about equidistribution of random walks in compact groups. Finally,
Section 5 discusses what happens for surface bundles.
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ship. Some of this work was done while Wong was at Bowdoin College. The authors
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2 Random Heegaard splittings

We now review the notion of random 3–manifold studied by Dunfield and Thurston [7].
Fix a positive integer g . Let H be a genus–g handlebody, and denote @H by †. Let
� be the mapping class group of †. For any mapping class f 2 � , we may associate
to it a closed 3–manifold Mf obtained by gluing together two copies of H via the
homeomorphism f .

To define a random Heegaard splitting of genus g , fix generators T for � . A random
element w of � of complexity ` is defined to be the result of a random walk in the
generators T of length `, that is, a random word of length ` in T . For such a w , we
call Mw the manifold of a random Heegaard splitting of genus g and complexity `.

We are interested in the properties of such random Mw as the complexity `!1.
A priori, this might depend on the choice of generators T for � , though it turns out
that many properties behave nicely and are independent of such choices. Consider a
function

F W .closed 3–manifolds/! S;

where S is some set; a typical example is F.M / D dim H1.M IF2/. Now let �`
be the finitely supported atomic measure on S defined by taking �`.fsg/ to be the
probability that F.M /D s , where M is a random Heegaard splitting of genus g and
complexity `. If there is a measure �g on S so that, for every choice of generating
set of � , the measures �` converge weakly to �g as `!1, then we say that F is
distributed by �g for a random 3–manifold of genus g . When �g is atomic, we will
say things like “the probability that F.M /D s is �g.s/”, though properly speaking
this is a limiting statement as `!1.

If the �g themselves have a weak limit � as g!1, then we say that F is distributed
by � for a random 3–manifold. Of course, not all F have such limiting distributions � ,
but for instance F.M /D dim H1.M IFp/ does [7, Section 8.7]. Another example is
that, for fixed n, the number of epimorphisms from �1.M / to the alternating group An

is Poisson distributed with mean 1 [7, Theorem 7.1]. A geometric example is Maher’s
result that M is hyperbolic with probability 1 [17].

3 WRT invariants via unitary representations

In this section, we review the definition of the Witten–Reshetikhin–Turaev TQFT for
SO.3/ in terms of a certain unitary representation of an extension of the mapping
class group. Though the WRT TQFT was originally defined using the representation
theory of Uqsl.2/ in Witten [26] and Reshetikhin–Turaev [22], an equivalent definition
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using skein theory was developed by Blanchet, Habegger, Masbaum and Vogel [3]
and Lickorish [15], among others. We follow the latter approach as summarized by
Lickorish [16], and will also refer to Masbaum and Roberts [18] when necessary.

Fix an odd integer r � 5 as the level, and let AD ie2�i=4r . For a closed surface † of
genus g , the associated finite-dimensional Hilbert space .V; h�; �i/ has the following
form. Here V depends on both r and g , and so we will also denote it by Vr;g when
this needs to be emphasized. Let LD f0; 2; 4; : : : r � 3g be the set of even labels. The
basis elements of V correspond to the admissible L–labelings of trivalent spines of a
handlebody H with @H D†. The dimension of V is given by the Verlinde formula [3]
as

(3.1) d D
1

2g

�
r

2

�g�1 r�1X
jD1

�
sin

�j

r

�2�2g

Moreover, for our choice of A, there is an inner product h�; �i induced from the splitting
#gS1�S2DH [ .�H /, and these basis elements are orthogonal with respect to h�; �i.
See [16] for details.

Underlying this inner product, and indeed the entire WRT TQFT theory, is a skein
element ! which has the key property that if two links related by Kirby handleslides
are colored by ! , then the two resulting skeins have the same Kauffman bracket
evaluation. More precisely, we have chosen ! so that the Kauffman bracket of a 0–
framed unlink in S3 colored by ! is the number ��1 , where �2 D�

�
A2�A�2

�2
=r

and so � D 2p
r

sin �
r

. We denote the Kauffman bracket of a .�1/–framed unlink
colored by ! by �3 . Formulas for �3 appear in, for example, [3], but here all that is
needed is that �3 is a 4r th root of unity.

We now describe the (projective) action of the mapping class group � of † on V . Let
Dns denote the set of Dehn twists along non-separating curves on †. These generate
� , and to start, we define an action of the free group Free.Dns/ on V . To a word w
in Free.Dns/, we associate a link L.w/ whose components have framing ˙1 and that
lives in †� I , as in the proof of the Dehn–Lickorish theorem. Color the components
of L.w/ by the skein element ! to obtain s.w/. Consider the transformation on
V which adds to a collar neighborhood of H the skein s.w/. Because ! behaves
well under handleslides, this gives a unitary transformation on V . In other words,
we have a homomorphism �W Free.Dns/! U.V /. This construction is the “skein-
theoretic version of the original geometric action on Dehn twists" from [18]. While
the representation of Free.Dns/ on V does not descend to � itself, it does give a
projective representation of � , that is, there is a homomorphism �W �! PU.V / with
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the property that

(3.2)

Free.Dns/
�

����! U.V /??y ??y
�

�
����! PU.V /

commutes.

The WRT 3–manifold invariant may be described easily using this language of unitary
representations. For any word w in Free.Dns/, let Mw be the closed 3–manifold
obtained from the corresponding element of � . The vacuum vector v∅ 2 V is the
element corresponding to the empty link. Up to a phase factor involving �3 , the action
of �.w/ on v∅ determines Z.Mw/. The phase factor is in some sense a correction
factor for the framing, and depends on the exponent sum e.w/ of the word w and on
the signature �b.w/ of the linking matrix of L.w/. Precisely, the WRT invariant is
given by

(3.3) Z.Mw/D �
�3.�b.w/Ce.w//

�� � h�.w/v∅; v∅i

For example, since the vacuum vector has jv∅j2 D ��g , we have Z.S3/ D � and
Z.S1 �S2/D 1; in general Z.#gS1 �S2/D �1�g . Note that Z.M / here differs
from Ip.M / appearing in [18] by a factor of �.

It will be convenient to rewrite Z.Mw/ using matrix notation. Take the normalized
vacuum vector v∅

jv∅j
as the first basis element in an orthonormal basis for V , and denote

the .1; 1/–entry of V .w/ by �.w/.1;1/ . Then,

(3.4) Z.Mw/D �
�3.�b.w/Ce.w//

��1�g
� �.w/.1;1/;

and since � is a root of unity and � positive, we have

(3.5) jZ.Mw/j D �
1�g
j�.w/.1;1/j:

In particular, jZ.Mw/j � �
1�g , leading to the key observation of Garoufalidis [9] and

Turaev [24]:

3.6 Theorem Suppose M is a closed orientable 3–manifold with Heegaard genus
g.M /. Then jZ.M /j � �1�g.M / .

3.7 The image of �

We now turn to the properties of � that will be needed later. The first proposition
asserts that the image of � is contained in SU.V /, or in some exceptional cases, a
slightly larger group.
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3.8 Proposition Let r � 5 be odd. The image of the homomorphism

det ı�W Free.Dns/!C�

is 1 for all g � 2, except when both g D 2 and r � 0 .mod 5/. In the latter case, or
when g D 1, the image is contained in the subgroup generated by A4 .

Proof When g � 3, we need to show that det ı�W Free.Dns/! C� is the trivial
homomorphism. Following Masbaum and Roberts [18], there is a central extension z�1

of � to which � descends, and in this proof we consider z�1 as the domain of � . As
discussed in the proof of [18, Theorem 3.10], the abelianization z�ab

1
DH1.z�1IZ/ is 0

when g � 3. Thus the homomorphism det ı�W z�1! C� must be trivial as claimed,
since it factors through the trivial group.

So now we focus on g D 1; 2, where z�ab
1
D H1.z�1IZ/ D Z. By [18, Theorem 3.8

and Remark 3.9(ii)], all the Dehn twists in Dns become conjugate in z�1 . Thus the
abelianization H1.z�1IZ/ is generated by any single non-trivial element t˛ of Dns .
We proceed by calculating the determinant of �.t˛/ explicitly, and find �.t˛/D Ae

where

e D

8̂<̂
:

1
6
.r � 3/.r � 1/.r C 1/ when g D 1,

r
5

�
r�3

2

��
r�1

2

��
rC1

2

��
rC3

2

�
when both g D 2 and r � 0 mod 5,

0 in all other cases.

In the first two cases, it is easy to see that 4je , and so the image of det ı� is contained
in hA4i �C� .

First, consider the case gD2. We view the genus 2 handlebody H as a neighborhood of
the theta graph, with edges labeled by a; b; c 2 f0; 2; 4; : : : ; r �3g. The basis elements
of V correspond to those labelings that are admissible, namely those satisfying

aC bC c � 2.r � 2/; bC c � a; aC c � b; aC b � c:

Consider a simple closed curve ˛ �† which bounds a disc in H which is dual to the
edge labeled by a. Then each basis element .a; b; c/ of V is an eigenvector for �.t˛/,
with eigenvalue Aa2C2a . Now det �.t˛/ is the product of these eigenvalues, and hence
is Ae for e D

P
.a;b;c/ admissible a2C 2a.
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For a fixed label a, it can be shown that the number of admissible triples containing a

is exactly .aC 1/. r�1�a
2

/. Thus we can apply standard formulas to show that

e D
X
.a;b;c/

admissible

a2
C 2a

D

r�3X
even aD0

.a2
C 2a/.aC 1/

�
r � 1� a

2

�

D

r �3
2X

kD0

�8k4
C .4r � 16/k3

C .6r � 10/k2
C .2r � 21/k

D
r

5

�
r � 3

2

��
r � 1

2

��
r C 1

2

��
r C 3

2

�
:

To conclude, we claim 4r divides e and hence det �.t˛/DAe D 1 since A is a 4r th

root of unity. As 5 − r , then 5 must divide one of the consecutive integers r�3
2

, r�1
2

,
rC1

2
, rC3

2
and hence r je . It is also clear that 4 divides a2C 2a since a is even, and

hence 4je . Thus 4r je as needed.

When g D 1, we view the solid torus H as a neighborhood of a circle, with the Dehn
twist curve ˛ being a meridian linking the circle once. Thus the eigenvalues of �.t˛/ are
Aa2C2a all with multiplicity one. Then eD

Pr�2
even aD0 a2C2aD 1

6
.r�3/.r�1/.rC1/,

as claimed.

The next result is a simple corollary of the results of Freedman, Larsen, and Wang [8;
14] that the image of � is dense in PU.V / when r is an odd prime.

3.9 Proposition Let G �U.V / be the closure of the image of � . If g � 2 and r � 5

is prime, the group G contains SU.V /. Moreover G D SU.V / except if both g D 2

and r D 5.

Proof First suppose that .g; r/ ¤ .2; 5/, so that G � SU.V / by Proposition 3.8.
Since � is a homomorphism, G is a compact Lie subgroup of SU.V / and hence
dim G�dim SU.V /. On the other hand, the results of Freedman, Larsen, and Wang [14,
Theorem 3] show that the map � has dense image. Thus the commutativity of (3.2)
implies that G maps onto PU.V /, and so dim G � dim PU.V /. As dim SU.V / D
dim PU.V / and SU.V / is connected, we must have G D SU.V / as claimed.

If .g; r/D .2; 5/, then we saw in the proof of Proposition 3.8 that the image of det ı�
is contained in the finite subgroup of C� generated by A4 . Let G0 be the connected
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component of the identity, which must be contained in ker.det ı�/ since the image of
det ı� is finite. Now as before, we must have dim G� dim PU.V /. Since G0�SU.V /
and dim G0 D dim G this forces G0 D SU.V / as needed.

3.10 Remark Note that Proposition 3.9 remains true if we restrict the domain of � to
any subgroup of Free.Dns/ whose image generates � ; this is because the proof only
uses that the image of � is dense PU.V /.

We will also need to understand the dimension of V D Vr;g as a function of r and g

(recall here that � depends on r ).

3.11 Lemma Fix an odd integer level r � 5. Let dg be the dimension of the WRT
representation space Vr;g . Then

lim
g!1

dg

�2�2g
D 1:

As � < 1, this implies dg!1 as g!1.

Proof Using (3.1) and the formula for � we have:

dg

�2�2g
D

1

2

r�1X
jD1

�
sin.�j=r/

sin.�=r/

�2�2g

D
1

2

r�1X
jD1

a
2g�2
j where aj D

sin.�=r/

sin.�j=r/

Now when j D 1 or r � 1, then sin.�j=r/D sin.�=r/ and so aj D 1. However, for
any other j , we have sin.�j=r/ > sin.�=r/ and so 0� aj < 1. Thus

(3.12)
dg

�2�2g
D

1

2

 
2C

r�2X
jD2

a
2g�2
j

!

where all aj left are < 1 and hence a
2g�2
j ! 0 as g!1. As r is fixed, we see that

limg!1 dg=�
2�2g D 1 as claimed. Indeed, it converges exponentially fast in g .

4 Distribution of jZ.M /j

In this section, we calculate the distribution of jZ.M /j for random 3–manifolds. To
state our results, we first define some distributions. The standard complex Gaussian
is the probability distribution on C where the real and imaginary components of z

are independently distributed Gaussians of mean 0 and variance 1=2; equivalently the
distribution function is 1

�
e�jzj

2

(see, for example, Novak [19, page 5]) and hence the
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expectation of jzj2 is 1. The probability distribution describing of the absolute value of
a standard complex Gaussian is the Rayleigh distribution with mean

p
�

2
; explicitly the

density function is 2xe�x2

and PfR� xg D e�x2

(see, for example, Papoulis [20]).
We refer to this distribution here as the standard Rayleigh distribution; however, some
authors use this term for the Rayleigh distribution with mean

p
�=2 which arises when

the components of the original complex distribution have variance 1. Recall our main
result is:

1.1 Theorem Let Z be the SO.3/ TQFT associated to a prime level r � 5. Then for
a random 3–manifold M , the invariant jZ.M /j is distributed by the standard Rayleigh.

Along the way we give a complete picture for each fixed Heegaard genus, using the
following distribution. Let Xd be the random variable on C which gives the distribution
of the .1; 1/–entry of a unitary matrix of size d with respect to Haar measure; it is
well-known (see, for example, Hiai and Petz [12, page 140]) that the density in polar
coordinates is d�1

�
.1� r2/d�2 dA for 0� r � 1. Focusing on the absolute value jXd j,

we easily calculate

P fjXd j � xg D
�
1�x2

�d�1 for 0� x � 1:

We first show

4.1 Theorem Fix a genus g and prime level r � 5. Let dg be the dimension of the
Hilbert space Vr;g associated to the surface of genus g . Then the invariant jZ.M /j is
distributed by �1�gjXdg

j for a random Heegaard splitting of genus g . In particular

P fjZ.M /j � xg D
�
1��2g�2x2

�dg�1 for 0� x � �1�g:

Proof Consider a set T consisting of words t1; : : : tn 2 Free.Dns/ which together
generate � . Let w be a random word in T of length `. Then by (3.5), the manifold Mw

has jZ.Mw/j D �
1�gj�.w/.1;1/j. We need to show that the distribution of jZ.Mw/j

limits on �1�gjXdg
j as the length `!1.

Let G be the closure of image of the subgroup hT i under � . By Proposition 3.9 and
Remark 3.10, we know that G contains SU.V /. Now for the random word w , note
that �.w/ is the product of the �.ti/’s. Thus by the Ito–Kawada Theorem [13], the
matrix �.w/ becomes equidistributed on G with respect to Haar measure as `!1.
Thus if X denotes the distribution of the .1; 1/–entry of a random matrix in G , we
have that jZ.M /j is distributed by �1�gjX j.

Thus it remains to show X and Xd have the same distribution where d D dg D

dim V . If G D U.d/ this is obvious, so since SU.V / � G we must have dim G D
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dim SU.V /D dim U.V /� 1. Consider the homomorphism �W S1 �G! U.d/ given
by �.�;M / D �M . Since S1 � G ! U.d/ is a covering map, the Haar measure
(thought of as a differential form) on U.d/ pulls back to (a multiple of) the Haar
measure on S1 � G . Now the pullback of the random variable jXd j on U.d/ to
S1�G is equal to jX j, and as the Haar measure pulls back we have that jXd j and jX j
have the same distribution. To see that the distributions themselves are the same, for
any � 2 S1 consider left multiplication on G by the matrix A� 2G which is diagonal
with entries .�; ��1; 1; 1; : : : ; 1/. Notice that the absolute value of the .1; 1/–entry
remains unchanged, but the phase shifts by � . Since Haar measure is left-invariant, this
shows X to be rotationally symmetric, and hence the same as Xd .

We now consider the limit as the genus g gets large.

Proof of Theorem 1.1 We need to determine the limit of the random variables
�1�gjXdg

j as g ! 1. It is well known that
p

dgXdg
converges in distribution

to the standard complex Gaussian (see, for example, Novak [19]), and by Lemma 3.11
we know

p
dg � �1�g . Combining these can give that �1�gjXdg

j converges to
the standard Rayleigh distribution R, but instead we show this directly starting from
Theorem 4.1. If we fix x � 0, then since � < 1 we have

lim
g!1

PfjZ.M /j � xg D lim
g!1

�
1��2g�2x2

�dg�1

D lim
g!1

�
1�

x2

�2�2g

��2�2g

� lim
g!1

�
1�

x2

�2�2g

� dg�1

�2�2g

D e�x2

� 11

D e�x2

D PfR� xg

as needed.

As jZ.M /j is distributed by the standard Rayleigh distribution, it is very natural to
postulate

4.2 Conjecture Let r � 5 be prime. For a random 3–manifold M , the SO.3/
invariant Z.M / is distributed by a standard complex Gaussian.

Looking at the proof of Theorem 1.1, in fact we showed that �1�g�.w/.1;1/ is essen-
tially distributed by a standard complex Gaussian when g is large. From (3.4), we
see this quantity differs from Z.M / by ��3.�b.w/Ce.w// , where � is a certain 4r th

root of unity. Since r is fixed, this tells us the image of Z.M / in C=.z 7! �3z/ is
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distributed by the push-forward of the standard complex Gaussian. The exponent sum
e.w/ is a homomorphism eW Free.Dns/! Z and is thus easy to deal with, but �b.w/

is not a homomorphism. Indeed, the signature �b is not Markovian in the sense that
�b.w � t/ does not depend just on �b.w/ and t . While it seems almost certain that
�b.w/C e.w/ must be uncorrelated with �.w/.1;1/ , and hence Z.M / is the standard
complex Gaussian, we were unable to show this. If Conjecture 4.2 is true, it would
give an alternate proof that the values of Z.M / are dense in C (see Wong [28]).

4.3 Remark A natural approach to Conjecture 4.2 is to work with one of the extended
mapping class groups discussed by Masbaum and Roberts [18]. For instance, we used
one such group z�1 above in the proof of Proposition 3.8 since z�1 has an honest
representation on V , not just a projective one. Certainly, one can generate a random
Heegaard splitting via a random walk in z�1 instead of � , but one should think of the
output as a 3–manifold M and a p1 –structure � . That is, such a random model really
produces p1 –manifolds in the language of [18, Section 4]. The SO.3/ TQFT makes
sense for such p1 –manifolds, and the plain Z.M / is simply that more general invariant
of M and its canonical p1 –structure. Now the above arguments show that Z.M; �/ is
distribution by the standard complex Gaussian. However, when one attempts to use this
to understand the original question, the key issue is how a randomly chosen � differs
from the canonical one, which hinges on the signature issue discussed in the preceding
paragraph. Thus, while this line of thinking is a nice way to frame the underlying issue,
it does not seem to give purchase on Conjecture 4.2.

Finally, we compute the probability that Z.M / gives a sharp genus bound for each
genus g and level r .

Proof of Theorem 1.2 Fix a genus g . By Maher [17], a random Heegaard splitting
of genus g actually has Heegaard genus g with probability 1. Thus by Theorem 3.6,
the quantum invariant will give a sharp lower bound on Heegaard genus whenever
jZ.M /j > �2�g . By Theorem 1.1, this happens with probability

�
1��2

�dg�1
, as

claimed.

5 Random surface bundles

A simple class of 3–manifolds are those which are surface bundles fibering over the
circle. Such manifolds are built from some f 2 � by considering the mapping torus

M Tf D
†� Œ0; 1�

ı
.p; 1/� .f .p/; 0/
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For reasons of homology, a random 3–manifold in the sense of Section 2 fibers over
the circle with probability 0 (see Dunfield and Thurston [7, Corollary 8.5]) and even
among those manifolds with b1 > 0, surface bundles appear to be rare (see Dunfield
and Thurston [6]). Despite this, we show that for a natural model of random bundles
the distribution of jZ.M /j is the same as that of random manifolds more generally.
This can be taken as evidence for the naturality and robustness of this notion of random
3–manifolds.

Here, a random bundle with fiber a surface † of genus g is defined just as one expects
from Section 2: after fixing generators T of the mapping class group � of †, one
considers M Tf for f 2 � a random word in T of length `, as ` tends to infinity. If
we then send g!1, we find:

5.1 Theorem Consider the SO.3/ invariant for a prime level r � 5. Then jZ.M /j is
distributed by the standard Rayleigh for M a random surface bundle.

Proof Fix a genus g>2 for the fiber †. In the notation of Section 3, if w 2Free.Dns/

then we have (see, for example, Turaev [24, Section IV.7.2]):

jZ.M Tw/j D
ˇ̌
tr �.w/

ˇ̌
Thus as in the proof of Theorem 4.1, the Ito–Kawada Theorem tells us that jZ.M Tw/j

is distributed the same as j tr Aj for A 2 SU.V / chosen with respect to Haar measure.
Again as in Theorem 4.1, this is the same as the distribution of j tr Aj for A 2 U.V /.
Now as d ! 1, the distribution of tr A for A 2 U.d/ converges to the standard
complex Gaussian (see Diaconis and Shahshahani [5], see also Petz–Réffy [21] and
Novak [19]). Thus since dim V ! 1 as g ! 1 by Lemma 3.11, we have that
jZ.M /j is distributed by the standard Rayleigh for a random surface bundle.

A genus–g surface bundle M has a natural Heegaard splitting of genus 2g C 1

obtained by tubing together two of the fibers. Combining Maher [17] with Souto [23,
Theorem 4.2] shows that this is the minimal genus splitting with probability 1, and
explicit examples where this is the case are easy to construct by taking the monodromy
from the Torelli group. However, we claim that the SO.3/ quantum invariants can
never certify that M has Heegaard genus 2gC 1. As in the proof of Theorem 5.1,
we have jZ.M /j D j tr �.w/j, and since �.w/ is unitary, it follows that j tr �.w/j �
tr.Id/D dg . From (3.12), we see that dg � �

2�2g < �1�2g for any g when r � 5.
Thus jZ.M /j< �1�2g; and so Z.M / fails to give a sharp bound on Heegaard genus.
To summarize, this shows:

5.2 Proposition There exist closed hyperbolic 3–manifolds of arbitrary large Hee-
gaard genus such that no SO.3/ quantum invariant gives a sharp genus bound.
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