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Flat structures on surface bundles

JONATHAN BOWDEN

We show that there exist flat surface bundles with closed leaves having nontrivial
normal bundles. This leads us to compute the abelianisation of surface diffeomor-
phism groups with marked points. We also extend a formula of Tsuboi that expresses
the Euler class of a flat circle bundle in terms of the Calabi invariant of certain
Hamiltonian diffeomorphisms to surfaces of higher genus and derive a similar formula
for the first MMM–class of surface bundles with punctured fibre.

37E30, 57R30, 57R50; 57R17

1 Introduction

In this paper we study properties of the horizontal foliations of certain kinds of flat
bundles. The paper divides into two main parts, the first of which is concerned with
closed leaves of flat surface bundles and the second of which deals with fillings of flat
circle bundles.

The existence of flat bundles with compact fibre that have closed leaves with nontrivial
normal bundles is well known, with explicit examples given by certain flat sphere
bundles (see Mitsumatsu [11]). This leads to the question of whether similar foliations
exist on more general kinds of bundles. In view of this, we show the existence of foliated
surface bundles with closed leaves that have prescribed self-intersection numbers, where
the fibre can be taken to be any surface of sufficiently large genus. This is proved by a
variation of the stabilisation trick of Kotschick and Morita in [7] that was originally
used to show the existence of flat surface bundles with nonzero signatures. Indeed,
given a surface bundle with a section S , whose self-intersection number is divisible
by the Euler characteristic of the fibre, we show that S can be made the leaf of a flat
structure after stabilisation (Theorem 2.5).

To show the existence of flat surface bundles possessing closed leaves with nontrivial
normal bundles, we are naturally led to certain calculations involving the homology
of surface diffeomorphism groups with marked points. In particular, we show the
following:
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2208 Jonathan Bowden

Theorem 1.1 Let †h be a surface of genus h� 3 and let k � 2. Then

H1.DiffC
ı
.†h;k//DRC �Z2:

We also show that the abelianisation of the group of compactly supported diffeomor-
phism of R2 that fix the origin is RC . This is a special case of a result of Fukui [5],
although the proof given there seems to overlook a small, but important, technical
point (see discussion preceding Theorem 3.6). Moreover, our proof, which relies on
Sternberg Linearisation, is briefer than and independent of Fukui’s original argument.

The stabilisation trick can also be applied to obtain foliations that have transverse sym-
plectic structures. As in the case of flat bundles we show the existence of symplectically
flat surface bundles with closed leaves having prescribed self-intersection numbers
(Proposition 4.3). These results yield the existence of manifolds with certain kinds of
symplectic pairs, as defined by Kotschick and Morita in [7]. Indeed, by applying the
normal connected sum operation we deduce the existence of symplectic pairs both of
whose foliations have closed leaves with nontrivial normal bundles (Corollary 4.4).

Given a flat circle bundle, one can consider the problem of extending the flat structure
to the interior of a surface bundle. If the fibre is assumed to be a disc, then there is a
dichotomy depending on whether one requires that the foliation is symplectic or not.
For in the smooth case, it is relatively easy to show that any flat circle bundle over a
surface admits a flat disc bundle filling after stabilisation (Proposition 5.1). However,
in the symplectic case the Euler class provides an obstruction by a result of Tsuboi. In
fact, Tsuboi gave the following formula for computing the Euler class of a flat circle
bundle in terms of the Calabi homomorphism of certain extensions of the boundary
holonomy to the interior of a disc:

Theorem 1.2 [19] Let  W �1.†g/! Diff0.S
1/ be a homomorphism and let ai ; bi

be standard generators of �1.†g/. Furthermore, let fi ; hi 2 Symp.D2/ be extensions
of  .ai/;  .bi/ respectively and let e.E/ denote the Euler class of the total space of
the S1 –bundle E . Then

��2

3
e.E/D Cal.Œf1; h1� � � � Œfg; hg�/:

Tsuboi’s result can be reformulated in terms of the five-term exact sequence in group
cohomology. The advantage of this reformulation is that it can easily be generalised to
the case where the fibre of the filling is an arbitrary surface and the extensions of the
boundary holonomies lie in the extended Hamiltonian group (Theorem 6.7).

As a consequence we see that the Euler class gives an obstruction to filling a circle
bundle by a flat surface bundle with holonomy in the extended Hamiltonian group.
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Flat structures on surface bundles 2209

We contrast this result with the fact that any flat circle bundle can be filled by a flat
symplectic bundle after stabilisation (Theorem 5.3).

Another important topological quantity associated with a surface bundle is its signature.
By considering appropriate extended Hamiltonian groups, we will derive a Tsuboi-type
formula for the signature of bundles with fibre a once-punctured surface †1

h
.

Theorem 1.3 Let †1
h
!E!†g be a bundle with holonomy representation

�W �1.†g/!�1
h

and assume h�2. Furthermore, let ˛iD�.ai/ and ˇiD�.bi/ be the
images of standard generators ai ; bi of �1.†g/. Then for any lifts �i ;  i 2AHamc.†1

h
/

of ˛i ; ˇi the signature satisfies

�.E/D Cal.Œ�1;  1� � � � Œ�g;  g�/:

As is the case for fillings of circle bundles, this then implies restrictions on the topology
of bundles whose holonomy groups lie in the extended Hamiltonian group.

Outline of paper In Section 2 we show the existence of flat bundles possessing closed
leaves with nontrivial normal bundles and in Section 3 we compute the abelianisation
of diffeomorphism groups with marked points. In Section 4 we derive similar results
for symplectic surface bundles. Then after showing that the problem of filling circle
bundles is solvable after stabilisation in Section 5, we recast Tsuboi’s result in the
language of the five-term exact sequence and extend it to higher genus fillings in
Section 6. In Section 7 we derive the Tsuboi-type formula for the signature of surface
bundles with once-punctured fibre.

For the sake of completeness we give an explicit description of the five-term exact
sequence in group cohomology in Appendix A.

Acknowledgments The results of this article are taken from the author’s doctoral
thesis, which would not have been possible without the encouragement and support of
Professor D Kotschick. The financial support of the Deutsche Forschungsgemeinschaft
is also gratefully acknowledged.

Notation and conventions Throughout this paper †r
g;k

will denote a compact, ori-
ented genus g surface with k marked points and r boundary components. By �r

g;k

we shall denote the mapping class group of diffeomorphisms that preserve k marked
points and have support in the interior of †r

g .

All bundles will be assumed to be oriented and all maps are smooth. Unless otherwise
stated all homology groups will be taken with integral coefficients. Finally a topological
group will be decorated with a ı when it is to be considered as a discrete group.
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2 Closed leaves and horizontal foliations

Interesting examples of codimension two foliations come from considering the hor-
izontal foliations of flat surface bundles. In this section we will focus on the closed
leaves of such foliations. Any surface bundle †h!E! B determines a holonomy
representation

�1.B/
�
! �h:

Such a bundle is then flat if its holonomy representation � admits a lift to the group of
orientation preserving diffeomorphisms DiffC.†h/

DiffC.†h/

��
�1.B/

� //

x�
99r

r
r

r
r

�h:

If B is a manifold, then this is equivalent to the existence of a foliation that is comple-
mentary to the fibres. Such a foliation will be called a horizontal foliation.

For a flat bundle E over a manifold a closed leaf of the horizontal foliation intersects
each fibre in k points, where k is the homological intersection number of the leaf with
a fibre. The existence of such a foliation is thus equivalent to a lift of the holonomy
map � to the group DiffC.†h;k/ of diffeomorphisms fixing k marked points setwise

DiffC.†h;k/

��
�1.B/

� //

x�
88r

r
r

r
r

�h:

By taking pullbacks under a suitable finite cover of the base, one obtains a horizontal
foliation with a leaf S that intersects each fibre exactly once, in which case the
holonomy of E lies in DiffC.†h;1/. Moreover, the horizontal foliation induces a flat
structure on the normal bundle �S of S , which is given by composing x� with the
derivative map at p :

DiffC.†h;1/
Dp

! GLC.Tp†g/D GLC.2;R/:

In [10], Milnor constructed flat bundles with nontrivial Euler class over oriented surfaces
and, hence, the image of the Euler class in H 2.GLC

ı
.2;R// is nontrivial. In view of this,

to show that there are flat bundles with horizontal leaves of nonzero self-intersection
it will suffice to show that the map Dp induces an injection H 2.GLC

ı
.2;R// !

H 2.DiffC
ı
.†h;1//.
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To this end, we let Gp be the group of smooth diffeomorphism germs that fix the
marked point p . We then define

DiffC.†h;1/
� // Gp

xDp // GLC.Tp†g/

s

gg ;

where � is the map taking a diffeomorphism fixing p to its germ at p and xDp maps
a germ to its linear part. The kernel of the map � consists of diffeomorphisms with
support disjoint from the marked point p and will be denoted by Diffc.†h;1/. The final
map has an obvious section given by considering a linear map as an element of Gp . Thus,
to show that the map H 2.GLC

ı
.2;R//!H 2.DiffC

ı
.†h;1// is injective, it will be suf-

ficient to show that H 2.Gp/!H 2.DiffC
ı
.†h;1// is injective. To this end we first note

the following lemma, which is proved by a simple cut-off argument [4, Lemma 4.1.3].

Lemma 2.1 The following sequence of groups is exact:

1! Diffc.†h;1/! DiffC.†h;1/! Gp! 1:

We may now prove the existence of horizontal foliations that have compact leaves with
nontrivial self-intersection numbers.

Proposition 2.2 If h � 3, then there exist flat surface bundles †h!E!†g with
horizontal foliations that have leaves of nonzero self-intersection.

Proof We consider the last three terms of the five-term exact sequence in cohomology
associated to the extension of groups in Lemma 2.1:

H 1.Diffc
ı.†h;1//

Gp !H 2.Gp/
��

��!H 2.DiffC
ı
.†h;1//:

From our discussion above it is sufficient to show that the map �� is injective or
by exactness that H 1.Diffc

ı.†h;1//
Gp D 0. We claim that H1.Diffc

ı.†h;1// is in fact
trivial and by the Universal Coefficient Theorem the same holds in cohomology.

Let †�
h
D†hnD� denote †h with a disc of radius � removed. We note that Diffc.†h;1/

is isomorphic to the direct limit of the groups Diffc.†�
h
/. By the stability result of

Harer H1.�
1
h
/ D H1.�h/ for h � 3 (see Ivanov [6]). Moreover, �h is perfect for

h� 3 (see Powell [15]). Finally, by the classical result of Thurston [18] the identity
component of Diffc.†�

h
/ is also perfect. The five-term sequence in homology then

implies that H1.Diffc
ı.†

�
h
//D 0. Hence, each of the groups H1.Diffc

ı.†
�
h
// is trivial

and we conclude that H1.Diffc
ı.†h;1// also vanishes.
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One may interpret the proof of Proposition 2.2 in a more geometric fashion, which
gives a sharper result, and we note this in the following proposition.

Proposition 2.3 If h�3 and k 2Z, then there are flat surface bundles †h!E!†g

with horizontal foliations that have closed leaves of self-intersection k .

Proof Let ai ; bi 2 �1.†g/ denote the standard generators of the fundamental group
and let �k be a flat GLC.2;R/–bundle over †g that has Euler class k � g � 1 as
provided by Milnor [10]. This corresponds to a holonomy representation

ai 7!Ai ;

bi 7! Bi ;

for Ai ;Bi 2GLC.2;R/. Then by Lemma 2.1 there are diffeomorphisms �i ;  i which
agree with Ai ;Bi in a small neighbourhood of p so that the product �D

Qg
iD1

Œ�i ;  i �

has support disjoint from p , that is � 2 Diffc.†h;1/. This group is perfect and, thus,
we may write ��1D

Qg0

iD1Œ˛i ; ˇi � where ˛i ; ˇi 2Diffc.†h;1/. We define a flat bundle
over †gCg0 by the holonomy representation

ai 7! �i ; bi 7!  i for 1� i � g;

agCj 7! j̨ ; bgCj 7! ǰ for 1� j � g0;

which we denote by � . This bundle then has a compact leaf S corresponding to the
marked point p . The Euler class of the normal bundle �S to S is computed from the
induced holonomy representation Dp� :

ai 7!Dp.�i/DAi ; bi 7!Dp. i/D Bi for 1� i � g;

agCj 7!Dp. j̨ /D Id; bgCj 7!Dp. ǰ /D Id for 1� j � g0:

It then follows that e.�S /D k and thus ŒS �2 D k .

With the geometric construction of Proposition 2.3 we are now able to say when a
section S of a bundle E can be made a leaf of a horizontal foliation after stabilisation.

Definition 2.4 A surface bundle E0 over a surface is called a stabilisation of a bun-
dle E , if it is the fibre sum of E with a trivial bundle †h�†g0 . This is then a bundle
over the connected sum †g #†g0 D†gCg0 that is trivial over the second factor.

We will show that under certain conditions any bundle E with a section S of self-
intersection k can be stabilised to a bundle E0 that admits a horizontal foliation with a
closed leaf S 0 that agrees with S on E0j†g

.
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If the bundle E is trivial then after stabilisation it remains trivial. For a trivial bundle
the Euler class of the vertical tangent bundle e.E/ is divisible by 2h� 2 and, hence,
the same is true for the self-intersection of S and its stabilisation S 0 . Thus, the
condition that ŒS �2 is divisible by 2h� 2 is, in general, necessary for the existence of
a stabilisation of the desired form. It is, however, also sufficient and this is the content
of the following theorem.

Theorem 2.5 Let †h ! E ! †g be a surface bundle that has a section of self-
intersection k , where k is divisible by 2h� 2. Then after stabilisation E admits a flat
structure whose horizontal foliation has a closed leaf of self-intersection k .

Proof We first stabilise E until the Milnor–Wood equality is satisfied for S . We let
xgD gCg0 denote the genus of the base of the stabilisation and let x�W �1.†xg/! �h;1

be its holonomy representation. Since the Milnor–Wood inequality is satisfied for S ,
it has a tubular neighbourhood �S that is diffeomorphic to a flat GLC.2;R/–bundle.
We let � denote the corresponding horizontal foliation on �S and we extend � to a
horizontal distribution � 0 that agrees with � on a (possibly smaller) neighbourhood
of S . We choose curves ai ; bi representing the standard generators of �1.†xg/ and
let �i ;  i 2DiffC.†h/ be the holonomy maps induced by � 0 , so that Œ�i �D x�.ai/ and
Œ i �D x�.bi/ in �h . Note that these diffeomorphisms depend on the choice of curves
and not just their homotopy classes.

By construction the distribution � 0 is a foliation in a neighbourhood of S . Hence
the product of commutators �D

Qxg
iD1

Œ�i ;  i � has compact support disjoint from the
marked point corresponding to the section S , and is thus an element in Diffc.†1

h
/. We

next consider the following diagram that relates the mapping class groups �1
h
; �h;1

and �h :
1

��

1

��
Z

��

Z

��

1 // �1.T1†h/ //

��

�1
h

��

// �h
// 1

1 // �1.†h/ //

��

�h;1

��

// �h
// 1

1 1

Here Z is generated by a positive Dehn twist �@ along an embedded curve parallel to
the boundary of †1

h
and T1†h denotes the unit tangent bundle of †h .
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Now the image of � in �h;1 is trivial. Thus �D�k
@

where k is the self-intersection of S .
This is because the second column is the central extension corresponding to the vertical
Euler class as a characteristic class in the group cohomology of �h;1 (see Morita [12]).
By assumption k is divisible by 2h�2 and hence �2H1.�1.T1†h//DH1.T1†h/ is
trivial. Again this is because the left most column is the central extension corresponding
to the Euler class of the unit tangent bundle over †h and Œ�� is a multiple of the fibre
class of this S1 –bundle that is divisible by 2h� 2. Hence ��1 D

QN
jD1Œ j̨ ; ǰ � is

a product of commutators in �1
h

, each of which lie in the kernel of the natural map
to �h .

We let �j ;  j 2DiffC.†1
h
/ be representatives of the mapping classes j̨ ; ǰ respectively,

and consider the product 
 D �
QN

jD1Œ�j ;  j � in Diffc
0.†

1
h
/. Since this group is perfect

we may write 
�1 D
QM

lD1Œ
l ; ıl �. Letting ai ; bi be the standard generators for
�1.†xgCNCM /, we define a flat bundle via the holonomy map

ai 7! �i ; bi 7!  i for 1� i � xg;

axgCj 7! j̨ ; bxgCj 7! ǰ for 1� j �N;

axgCNCl 7! 
l ; bxgCNCl 7! ıl for 1� l �M:

This gives a horizontal foliation with a closed leaf of self-intersection k on a stabilisation
of E . That the bundle is a stabilisation of the original bundle follows since the mapping
classes represented by j̨ ; ǰ ; 
l ; ıl are trivial in �h .

Bestvina, Church and Souto [2] show the nonexistence of certain lifts of bundles with
sections to the diffeomorphism group with marked points, using the bounds on the Euler
class given by the Milnor–Wood inequality. In particular, the diagonal section in the
product of two genus h surfaces provides such an example. However, by Theorem 2.5,
these examples do possess lifts after stabilisation.

3 Abelianisation of diffeomorphism groups with marked
points

Our discussion above will enable us to calculate the first group homology of DiffC.†h;1/

and, in particular, we will show that this group is not perfect. In fact it is clear that the
group DiffC.†h;1/ is not perfect, as there is a surjection to GLC.2;R/ given by the
derivative map and

H1.GLC
ı
.2;R//DH1..SL.2;R/�RC/ı/DRC;

since SL.2;R/ is a perfect group. But this is the only contribution to H1.DiffC
ı
.†h;1//

if h� 3. The proof of this fact is based on the following result of Sternberg.
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Theorem 3.1 (Sternberg’s Linearisation Theorem [16]) Let � be a smooth dif-
feomorphism defined in a neighbourhood U of the origin in Rn and let �.0/ D 0.
Further, let s1; : : : ; sn 2C denote the eigenvalues (counted with multiplicities) of the
Jacobian D0.�/ at the origin and assume that

si ¤ s
m1

1
� � � smn

n ;

for all nonnegative integers m1; : : : ;mn with
P

mi > 1. Then there is a change of
coordinates  that fixes the origin so that on a possibly smaller neighbourhood W �U

the following holds
 � �1

DD0.�/:

Remark 3.2 We note that the hypotheses of Theorem 3.1 hold, in particular, if
D0.�/D � Id for �¤ 0; 1. Sternberg’s Theorem may also be interpreted in terms of
germs of diffeomorphisms, ie if the hypotheses of the theorem are satisfied for a germ
� 2 Gp , then � is conjugate to the germ represented by Dp.�/.

Proposition 3.3 Let †h be a surface of genus h� 3. Then

H1.DiffC
ı
.†h;1//DRC:

Proof We consider the extension given in Lemma 2.1

1! Diffc.†h;1/! DiffC.†h;1/
�
! Gp! 1:

Since the group Diffc.†h;1/ is perfect (see Proposition 2.2), the associated five-term
exact sequence yields H1.DiffC

ı
.†h;1// D H1.Gp/. We next consider the exact se-

quence

1! Gp;Id! Gp

Dp

! GLC.2;R/! 1;

where Gp;Id is the set of germs whose linear part is the identity. By Remark 3.2
above, if � 2 Gp and Dp.�/ D � Id for some � > 1, then there is a  2 Gp so that
 � �1D � Id. We set A�D � Id, then for any � 2 Gp;Id , there is a germ  such that

A� D  .A��/ 
�1:

Since A� is central in GLC.2;R/, we may assume that  2 Gp;Id after conjugating
the above equation with the element Dp . Thus � D  �1A�1

�
 A� D Œ 

�1;A�1
�
�

and we have shown that H1.Gp;Id/GLC.2;R/ D 0.

In view of this, the five-term exact sequence gives

0DH1.Gp;Id/GLC.2;R/!H1.Gp/!H1.GLC
ı
.2;R//! 0

and, hence, H1.DiffC
ı
.†h;1//DH1.GLC

ı
.2;R//DRC .
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We let PDiffC.†h;k/ denote the group of pure orientation preserving diffeomorphisms,
ie an element � 2 PDiffC.†h;k/ is a diffeomorphism of †h , which fixes a set of k

marked points pointwise. With exactly the same argument as in Proposition 3.3 we
obtain the following.

Proposition 3.4 Let †h be a surface of genus h� 3. Then

H1.PDiffC
ı
.†h;k//D .R

C/k :

Using Proposition 3.4 it is now possible to compute the first homology of the full
diffeomorphism group DiffC.†h;k/.

Theorem 3.5 Let †h be a surface of genus h� 3 and let k � 2. Then

H1.DiffC
ı
.†h;k//DRC �Z2:

Proof By considering the action on the marked points induced by DiffC.†h;k/, we
obtain the following extension of groups

1! PDiffC.†h;k/! Diff.†h;k/! Sk ! 1:

The five-term exact sequence for group homology then gives

H2.Sk/
@
!H1.PDiffC

ı
.†h;k//Sk

!H1.DiffC
ı
.†h;k//!H1.Sk/! 0:

By Proposition 3.4 we have that H1.PDiffC
ı
.†h;k// D .R

C/k , which, in particular,
implies that H1.PDiffC

ı
.†h;k//Sk

D RC . Since Sk is a finite, the group H2.Sk/

consists entirely of torsion elements. Hence, as RC is torsion free the connecting
homomorphism @ is trivial and we obtain the following short exact sequence:

0!RC!H1.DiffC
ı
.†h;k//!H1.Sk/D Z2! 0:

Finally, since in RC every element has a square root, this extension has a section and
we conclude that

H1.DiffC
ı
.†h;k//DRC �Z2:

The proof of Proposition 3.3 above will allow us to calculate the first group homology
of Diffc.R2; 0/, which here denotes the group of diffeomorphisms of the plane that
have compact support and fix the origin. This fact was stated in a more general form
by Fukui [5], however his argument appears to be incomplete.

Fukui argues as follows [5, page 485]. Let � 2 Diffc.Rn; 0/ have D0� D Id. Then
there is a product of commutators so that �D �

Qg0

iD1
Œ˛i ; ˇi � is the identity on some

Algebraic & Geometric Topology, Volume 11 (2011)
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neighbourhood of 0. He then claims that by Thurston’s result on the perfectness of
the identity component of the group of diffeomorphisms, we may write � as a product
of commutators of elements in Diffc.Rn n f0g/, which denotes the group of compactly
supported diffeomorphisms of Rnn0. In order to apply the result of Thurston, one must
have that � is isotopic to the identity through diffeomorphisms with compact support
away from the origin. However, it is not clear that � is isotopic to the identity through
diffeomorphisms with support disjoint from the origin. In fact for nD 2 the mapping
class group of compactly supported diffeomorphisms on R2nf0g is isomorphic to Z (see
Ivanov [6, Corollary 2.7 E]). As a corollary of the results we have obtained thus far we
are now able to give a complete proof of the theorem stated by Fukui in the case nD 2.

Theorem 3.6 H1.Diffc
ı.R

2; 0//DRC .

Proof We have the exact sequences

1! Diffc.R2
n f0g/! Diffc.R2; 0/

�
! Gp! 1;

1! Diffc
0.R

2
n f0g/! Diffc.R2

n f0g/! Z! 1:

We then consider the five-term sequence in cohomology associated to the first exact
sequence above:

0!H 1.Gp/!H 1.Diffc
ı.R

2; 0//!H 1.Diffc
ı.R

2
n f0g//Gp

ı
!H 2.Gp/!H 2.Diffc

ı.R
2; 0//:

By Thurston’s result Diffc
0.R

2nf0g/ is perfect and applying the five-term exact sequence
to the second exact sequence above implies that H 1.Diffc

ı.R
2 n f0g//D Z.

Next we consider the sequence of classifying spaces

BDiffc
ı.R

2; 0/ // BGp
// BGLC

ı
.2;R/ // BGLC.2;R/:

The Euler class is a generator of H 2.BGLC.2;R// and the pullback to H 2.Gp/ is
nonzero and primitive, as one sees by evaluating this class on a flat GLC.2;R/–bundle
with Euler class 1, thought of as an element in H2.Gp/. Moreover, a flat bundle
with holonomy in Diffc.R2; 0/ is topologically trivial, since it admits a section with
vanishing self-intersection number. Hence the pullback of e to H 2.Diffc

ı.R
2; 0// is

zero. The exactness of the five-term sequence above implies that eDı.f / for some f 2
H 1.Diffc

ı.R
2nf0g//Gp �Z. Hence as e is a primitive, nontorsion class, the connecting

homomorphism for the five-term exact sequence in homology must be surjective. Thus
by exactness

H1.Diffc
ı.R

2; 0//DH1.Gp/DRC;

where the second equality was shown in the proof of Proposition 3.3.
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4 Closed leaves of flat bundles with symplectic holonomy

One may consider flat bundles with additional structure. In the context of surface bundles
with horizontal foliations it is natural to consider bundles whose horizontal foliations are
transversally symplectic. This is equivalent to the existence of a fibrewise symplectic
form that is holonomy invariant, and such a bundle will be called symplectically flat.
In this way, a flat bundle †h ! E ! B with a transversal symplectic structure is
equivalent to a holonomy representation �W �1.B/! Symp.†h; !/, where ! is the
symplectic form restricted to a fibre. We shall for the most part suppress any explicit
reference to the symplectic form, since by Moser stability any two symplectic forms
on †h are equivalent after rescaling.

In order to prove the existence of symplectically flat bundles, we wish to mimic the
proof of Proposition 2.3. In order to do this we note that the analogue of Lemma 2.1
holds in the symplectic case (see Bowden [4, Proposition 4.2.1]). So if GSymp

p the group
of symplectomorphism germs that fix the marked point p and Sympc.†h;1/ consists
of symplectomorphisms whose supports are disjoint from p , we have the following.

Lemma 4.1 The following sequence of groups is exact:

1! Sympc.†h;1/! Symp.†h;1/
�
! GSymp

p ! 1:

The other important ingredient is the fact that the compactly supported symplectomor-
phism group is perfect. The proof of this fact is implicit in the articles of Kotschick and
Morita [7; 8] and for a detailed proof we refer to the author’s thesis [4, Lemma 4.2.7].

Lemma 4.2 The group Sympc.†k
h
/ is perfect for h� 3.

With these facts the proof of the following is entirely analogous to the smooth case and
the details are left to the reader.

Proposition 4.3 For h�3, there exist flat bundles †h!E!†g that have symplectic
holonomy and whose horizontal foliations have arbitrarily many closed leaves Sk of
prescribed self-intersection ŒSk �

2 D mk � h� 1. In particular, if mk D 0 we may
assume that the horizontal foliation in some neighbourhood �k of Sk is given by the
kernel of a projection �k D†h �D2!D2 .
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Kotschick and Morita [7] introduced the notion of a symplectic pair (see also Bande
and Kotschick [1]). In the case of four-manifolds, a symplectic pair consists of a pair of
complementary, two-dimensional transversally symplectic foliations. As a consequence
of Proposition 4.3 we may now give examples of manifolds with symplectic pairs, both
of whose foliations have closed leaves of nonzero self-intersection.

Corollary 4.4 There exist 4–manifolds that admit symplectic pairs .!1; !2/ both of
whose foliations F1;F2 have closed leaves L1;L2 with ŒLi �

2 ¤ 0.

Proof We let E1 be a flat symplectic bundle with a closed leaf s1 such that Œs1�
2¤ 0.

We further let E2 be a flat symplectic bundle with two closed leaves s2; t2 , the first of
which has nontrivial self-intersection and the second of which has a neighbourhood on
which the horizontal foliation is given by projection to a disc. The existence of these
bundles is guaranteed by Proposition 4.3. By a suitable choice of E1 we may assume
that the genus of its fibre g.F1/ to be arbitrarily large. After stabilisation of E2 , we
may also assume that the genus of the base of E2 is g.F1/. As noted in [1], the
assumptions on the foliation in a neighbourhood of t2 imply that the normal connected
sum

E1 #F1Dt2
E2

admits a symplectic pair, whose foliations we denote by �Fi . Then by construction the
connected sums

�1 D s1 # F2;

�2 D s2 # F1

are leaves of �Fi and Œ�i �
2 D Œsi �

2 ¤ 0.

For smooth diffeomorphisms we computed the abelianisation of DiffC.†h;k/. It is
then natural to try to determine the abelianisation of Symp.†h;k/, however one cannot
mimic the proof of Proposition 3.3 used above. The first step is still valid and thus
one has that H1.Sympı.†h;1//DH1.G

Symp
p /. There is also a version of the Sternberg

Linearisation Theorem for symplectic germs, but the normal form that it yields is
not linear (see Sternberg [17]), and thus the computation of the abelianisation of
Symp.†h;1/ remains an open question.

The case of genus 0

So far the results that we have obtained have been for bundles with fibre of genus at
least 3. We shall now consider the case of genus 0, where one can give a fairly precise
description of the possible compact leaves of a (symplectically) flat bundle.
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Examples of sphere bundles with horizontal foliations that have closed leaves of
arbitrary self-intersection have been given by Mitsumatsu [11]. We shall summarise
his construction here. Let R2! �k !†g be a flat bundle of Euler class k � g� 1

as given by Milnor [10]. Then the sphere bundle Ek D S.�k ˚R/ is flat and has two
sections L˙ corresponding to the north and south poles of the fibre and ŒL˙�2 D˙k .

We would of course like to have similar examples for flat bundles with symplectic
holonomy. The flat structures that one obtains via the construction of Mitsumatsu
cannot have symplectic holonomy. For if so, then one would have a vertical symplectic
form !v that is positive on each fibre, ie !v.ŒF �/¤ 0, and vanishes identically on the
leaves of the horizontal foliation. But the set fL�;LCg generates H2.Ek ;R/, which
is a contradiction. It is not difficult to adapt the argument of Proposition 4.3 to produce
horizontal foliations of sphere bundles with symplectic holonomy (see [4, page 76]).
Interestingly, this gives foliations with a unique compact leaf. For if L0 were any other
leaf then fL;L0g would generate H2.Ek ;R/ and this would contradict the existence
of a vertical symplectic form.

5 Filling flat S 1–bundles

Given a flat S1 –bundle, we would like to know when it bounds a flat surface bundle.
To answer this question in full generality is a subtle matter. However for bundles over
compact surfaces this can always be achieved after stabilisation.

Proposition 5.1 Let h � 3 or h D 0 and let M be a flat S1 –bundle. Then there is
a flat bundle †1

h
! E! †g , whose boundary is a stabilisation of M . In particular,

there exist flat †1
h

–bundles whose boundaries have nontrivial Euler class.

Proof Let ai ; bi 2 �1.†g/ denote the standard generators of the fundamental group
and let �i D �.ai/ and  i D �.bi/ be the images of these generators in Diff0.S

1/

under the monodromy homomorphism. Since �i ;  i are isotopic to the identity, we
may extend them to diffeomorphisms x�i ; x i on a collar of the boundary Œ0; 1��S1 in
such a way that

x�i.t;x/D .t; �i.x//; x i.t;x/D .t;  i.x// for 0� t < �;

x�i.t;x/D x i.t;x/D Id for 1� � < t � 1:

We then extend by the identity to obtain x�i ; x i 2DiffC.†1
h
/ such that �D

Qg
iD1

Œx�i ; x i �

lies in Diffc.†1
h
/.

For h � 3 the group Diffc.†1
h
/ is perfect (see Proposition 2.2) and for h D 0 this

is the classical result of Thurston [18]. Thus we may write ��1 D
Qg0

iD1Œ˛i ; ˇi �,
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where ˛i ; ˇi 2 Diffc.†1
h
/. We define a flat bundle E over †gCg0 by the holonomy

representation
ai 7! x�i ; bi 7! x i for 1� i � g;

agCj 7! j̨ ; bgCj 7! ǰ for 1� j � g0:

The boundary of E is a flat S1 –bundle and by construction it is a stabilisation of M

as required.

For the second statement we note that there exist flat GLC.2;R/–bundles with nontrivial
Euler classes, with explicit examples described in [10]. The associated projective space
bundles are then flat S1 –bundles with nontrivial Euler classes and these can then be
filled by flat disc bundles after stabilisation, which does not affect the Euler class.

Proposition 5.1 implies that any flat circle bundle can be filled in by a flat disc bundle
after a suitable stabilisation. On the other hand, if we require that the bundle have
symplectic holonomy, then this is no longer true (see Theorem 1.2). However, if the
fibre has genus h� 3, then one can indeed find a filling by a symplectically flat bundle
after a suitable stabilisation. To this end we shall need an analogue of the extension
trick of Proposition 5.1 in the symplectic case.

Proposition 5.2 Let �W �1.†g/!Diff0.S
1/ be a flat structure on an S1 –bundle M

and let �i ;  i denote �.ai/; �.bi/ respectively. Then there are symplectic extensions
z�i ; z i on the annulus A D S1 � Œ0; 1� that are the identity in a neighbourhood of
S1 � f1g such that

Qg
i Œ
z�i ; z i � has support in the interior of A.

Proof Let F be the horizontal foliation given by the flat structure on M and let
˛ 2�1.M / be a defining 1–form for F . We choose a function � on Œ0; 1�, which is
equal to t on a neighbourhood of 0 and is identically zero for all t in a neighbourhood
of 1. Set ! D dt ^˛C�.t/d˛ on E DM � Œ0; 1� and let @=@� denote a vector field
that is tangent to the fibres of M . Then

!

�
@

@t
;
@

@�

�
D ˛

�
@

@�

�
¤ 0;

since F is transverse to the fibres of M and, thus, ! is a nowhere vanishing 2–form
on E . Furthermore, since F is a foliation we compute

!2
D .dt ^˛C�.t/d˛/2

D 2�.t/dt ^˛^ d˛ D 0:

Thus F! D Ker.!/ is a well-defined distribution that is transverse to the (annular)
fibres of E ! †g . Moreover, since ! D d.t˛/ in a neighbourhood of M � f0g
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this distribution is integrable and transversally symplectic on this neighbourhood, and
restricts to F on M � f0g. On a neighbourhood of M � f1g the form ! reduces
to dt ^ ˛ and again the kernel distribution is integrable and agrees with F on this
neighbourhood.

We choose a base point x0 2†g and embedded representatives ai ; bi for the standard
generators of �1.†g;x0/ and let x�i ; x i be the holonomies of the curves ai ; bi given
by the distribution F! . Then on S1 � f0g and near S1 � f1g these diffeomorphisms
are given by �i � Id and  i � Id respectively, where �i ;  i are the images of the
standard basis under the holonomy representation of M . Since �i ;  i lie in Diff0.S

1/,
we may alter the maps x�i ; x i near S1 � f1g so that they restrict to the identity in a
neighbourhood of S1�f1g. We shall continue to denote these altered maps by x�i ; x i .

We let � be the restriction of ! to the annular fibre over x0 . Then since the holonomies
x�i ; x i have support in S1� Œ0; 1/ and the distribution defining them was transversally
symplectic in a neighbourhood of M � f0g, the forms x��i ��� and x �i ��� have
compact support in the interior of S1 � .0; 1/. MoreoverZ

A

.x�
�

i ���/D

Z
A

.x 
�

i ���/D 0;

so that the forms x��i � and x �i � are cohomologous to � in compactly supported
cohomology. By applying a Moser isotopy, which will have support in the interior of
S1 � Œ0; 1�, we obtain symplectomorphisms z�i ; z i that are symplectic extensions of
�i ;  i respectively, and by construction

Qg
i Œ
z�i ; z i � has support in the interior of A.

Proposition 5.2 is the main step in extending flat structures symplectically and the
following result follows from this and the perfectness of Sympc.†1

h
/.

Theorem 5.3 Let M be a flat S1 –bundle and assume that h� 3. Then some stabili-
sation of M bounds a flat †1

h
–bundle with symplectic holonomy.

Proof Let �W �1.†g/! Diff0.S
1/ be the holonomy representation associated to M

and let z�i ; z i 2 Symp.A/ be the extensions given by Proposition 5.2. After a suitable
choice of symplectic form on †1

h
, we may symplectically embed ADS1� Œ0; 1� in †1

h

so that S1 � f0g maps to @†1
h

. We then consider � D
Qg

i Œ
z�i ; z i � as an element in

Sympc.†1
h
/. By Lemma 4.2 this group is perfect and, thus, we may write ��1 as a

product of g0 commutators. We then define the associated flat bundle E0 over †gCg0 as
in the proof of Proposition 5.1, and by construction the boundary of E0 is a stabilisation
of M .
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Theorem 5.3 can be interpreted in terms of the five-term exact sequence of a certain
extension of groups. For this we let Symp.†1

h
/ as usual denote the group of symplecto-

morphisms of †1
h

. We further let Symp.†1
h
; @†1

h
/ denote those symplectomorphisms

that restrict trivially to the boundary. Then as a consequence of Proposition 5.2 the
following sequence, which is given by restriction to @†1

h
, is exact:

1! Symp.†1
h; @†

1
h/! Symp.†1

h/! DiffC.@†1
h/D Diff0.S

1/! 1:

With this notation we have the following proposition.

Proposition 5.4 For h � 3 the connecting homomorphism in the five-term exact
sequence in real cohomology associated to the following exact sequence is trivial:

1! Symp.†1
h; @†

1
h/! Symp.†1

h/! DiffC.@†1
h/D Diff0.S

1/! 1:

Proof By the Universal Coefficient Theorem it suffices to show that the map

H2.Sympı.†
1
h//!H2.Diff0;ı.S

1//

is surjective on integral cohomology. This follows immediately from Theorem 5.3, since
any flat S1 –bundle extends after stabilisation and this does not change the homology
class represented by this bundle in H2.Diff0;ı.S

1//.

The Godbillon–Vey class of the horizontal foliation of a flat S1 –bundle M defines
an element GV in H 2.Diff0;ı.S

1/;R/, which is nontrivial by the work of Thurston
(see Bott [3]). It is possible that the Godbillon–Vey class provides an obstruction to the
existence of a flat symplectic bundle E that bounds M . However, by Proposition 5.4
the image of the class GV in H 2.Sympı.†

1
h
/;R/ is nontrivial. Geometrically, this

means that after stabilisation the horizontal foliation of any S1 –bundle extends to
a transversally symplectic foliation on some surface bundle E with fibre †1

h
. In

particular, the Godbillon–Vey class is not an obstruction to finding a null-cobordism
that extends the horizontal foliation of M to the interior of E symplectically.

6 Flat bundles and the extended Hamiltonian group

In Section 5 we showed that any flat circle bundle over a surface can be filled by a
flat disc bundle with smooth holonomy after stabilisation. However, as was shown by
Tsuboi in [19], it is not in general possible to fill in a flat circle bundle by a flat disc
bundle that has symplectic holonomy, even after stabilisation, since the existence of
such a filling implies that the Euler class of the circle bundle vanishes. More specifically
Tsuboi proved the following theorem.
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Theorem 6.1 [19] Let  W �1.†g/! Diff0.S
1/ be a homomorphism and let ai ; bi

be standard generators of �1.†g/. Furthermore, let fi ; hi 2 Symp.D2/ be extensions
of  .ai/;  .bi/ respectively and let e.E/ denote the Euler class of the total space of
the S1 –bundle E associated to  . Then

��2

3
e.E/D Cal.Œf1; h1� � � � Œfg; hg�/:

In the case of a disc, a diffeomorphism is symplectic if and only if it is Hamiltonian.
For bundles with fibres of higher genus we shall generalise Tsuboi’s result under the
assumption that the holonomies are Hamiltonian. As usual a symplectomorphism
 2 Symp0.†

1
h
/ will be called Hamiltonian if it is isotopic to the identity via an

isotopy  t such that � P t
! D dHt for 0 � t � 1. As a first step, following [19]

we note that it is always possible to extend diffeomorphisms on the boundary of †1
h

to its interior by a Hamiltonian diffeomorphism. It suffices to consider the case
M D Œ0; 1/� S1 and to show that any diffeomorphism of the boundary extends to
a Hamiltonian diffeomorphism on M that has compact support. The following is
essentially [19, Lemma 2.2] and the proof will be omitted.

Lemma 6.2 Let M D Œ0; 1/�S1 and let ! be a symplectic form of finite total volume.
Then the map Hamc.M /! Diff0.S

1/ given by restriction is surjective.

As a consequence of Lemma 6.2 we obtain an exact sequence

1! Ham.†1
h; @†

1
h/! Ham.†1

h/! DiffC.@†1
h/D Diff0.S

1/! 1;

where Ham.†1
h
; @†1

h
/ denotes the intersection Symp.†1

h
; @†1

h
/\Ham.†1

h
/.

Exactly as in the case of compactly supported symplectomorphisms, we define a Flux
homomorphism Symp0.†

1
h
/!H 1.†1

h
;R/ via the formula

Flux. /D
Z 1

0

.� P t
!/ dt;

where  t is an isotopy from Id to  . As in the compactly supported case, one can show
that Flux. /D Œ�� ��� for any primitive � such that ! D�d� [9, Lemma 10.14].
Hence, Flux is well-defined independently of the choice of isotopy  t and primitive �.
Moreover, it is easy to show that Ker.Flux/D Ham.†1

h
/ [4, Lemma 5.2.4].

One may also define a Calabi homomorphism Cal on Ham.†1
h
; @†1

h
/. For this let �

be a primitive such that ! D�d� and define

Cal.�/D�
1

3

Z
†1

h

���^�:
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Again this definition is independent of the choice of � [9, Lemma 10.26].

We will now extend Tsuboi’s result to bundles with fibre †1
h

. In order to do this we shall
need to reinterpret Theorem 6.1 in terms of a five-term exact sequence. Now the map
Cal is an element of H 1.Hamı.D2; @D2/;R/ and we claim that it is invariant under
the conjugation action of Ham.D2/. For let  2 Ham.D2/ and � 2 Ham.D2; @D2/,
and let � be a primitive such that ! D�d�. Then  �� is also a primitive for ! and
we have

�
1

3

Z
D2

���^�D�
1

3

Z
D2

��. ��/^ . ��/D�
1

3

Z
D2

. � �1/��^�:

Thus, Cal 2 H 1.Hamı.D2; @D2/;R/Diff0.S
1/ and we claim that Tsuboi’s result can

be interpreted as saying that the image of Cal under the connecting homomorphism
in the five-term exact sequence is a nonzero multiple of the Euler class e considered
as an element in the real group cohomology of Diff0.S

1/. For this we need to make
use of an explicit description of the connecting homomorphism, which is described in
Appendix A below.

Theorem 6.3 Consider the extension of groups

1! Ham.D2; @D2/! Ham.D2/! Diff0.S
1/! 1;

and let ı denote the connecting homomorphism in the five-term exact sequence in
real cohomology. Then ıŒCal� is .��2=3/ e , where e denotes the Euler class in
H 2.Diff0;ı.S

1/;R/.

Proof In order to verify the equality ı CalD .��2=3/ e in real cohomology, it suffices
to evaluate both sides on 2–cycles Z in H2.Diff0;ı.S

1//. Such a cycle may be thought
of as the image of the fundamental class under the map induced by a representation of
a surface group  W �1.†g/! Diff0.S

1/. If we let ai ; bi be standard generators of
�1.†g/, then a generator of H2.�1.†g// may be described by the group 2–cycle

z D .a1; b1/C .a1b1; a
�1
1 /C � � �C .a1b1 � � � bg�1a�1

g ; b�1
g /

� .2gC 1/.e; e/�

gX
iD1

.ai ; a
�1
i /C .bi ; b

�1
i /:

Since Œa1; b1� � � � Œag; bg�D e in �1.†g/, we compute that

@z D

gX
iD1

.ai/C .a
�1
i /C .bi/C .b

�1
i /�

gX
iD1

Œ.ai/� .e/C .a
�1
i /C .bi/� .e/C .b

�1
i /�

� 2g.e/C .Œa1; b1� � � � Œag; bg�/� .e/D 0:
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We let fi ; hi denote representatives of  .ai/;  .bi/ in Diff0.S
1/ considered as a

quotient group, and let zz be the associated lift of the fundamental cycle above. Then
we compute

@zz D .Œf1; h1� � � � Œfg; hg�/� .e/:

Thus, by Lemma A.1, there is a set-theoretic extension CalS of Cal to Ham.D2/ such
that

ı Cal.Z/D ı CalS . �Œ†g�/D CalS .@zz/

D CalS ..Œf1; h1� � � � Œfg; hg�/� .e//D Cal.Œf1; h1� � � � Œfg; hg�/;

and by Proposition 6.4 this is equal to .��2=3/ e.E/.

We are now ready to generalise Theorem 6.1 to the case of surfaces of higher genus.

Proposition 6.4 Let  W �1.†g/ ! Diff0.S
1/ be a homomorphism and let ai ; bi

be standard generators of �1.†g/. Let fi ; hi 2 Ham.†1
h
/ be any extensions of

 .ai/;  .bi/ respectively and let e.E/ denote the Euler class of the total space of the
S1 –bundle E associated to  . Then

��2

3
e.E/D Cal.Œf1; h1� � � � Œfg; hg�/:

Proof By Lemma 6.2 we may assume that the extensions fi ; hi are Hamiltonian
and have support in a collar K D Œ0; 1/�S1 of the boundary. We may then consider
K �D2 with an appropriately chosen area form � on D2 and fi ; hi as elements in
Diff�.D2/. We then compute

 �ı Cal.Œ†g�/D Cal†
1
h.Œf1; h1� � � � Œfg; hg�/D CalD

2

.Œf1; h1� � � � Œfg; hg�/;

where the first equality follows as in Theorem 6.3 and the second follows from our
choice of extensions. The latter value is .��2=3/ e.E/ by Theorem 6.3. Thus, since
the left hand side of the equation above is independent of any choices, we conclude
that for any extensions fi ; hi

Cal†
1
h.Œf1; h1� � � � Œfg; hg�/D

��2

3
e.E/:

In particular, it follows by the exactness of the five-term sequence that the boundary
of any flat bundle with holonomy in Ham.†1

h
/ is trivial as an S1 –bundle. Further-

more, with our interpretation of Tsuboi’s result we may extend our discussion to
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extended Hamiltonian groups as introduced in [7]. To this end we define the map
eFlux�W Symp.†1

h
/!H 1.†1

h
;R/ by

eFlux�.�/D Œ.�
�1/�����

for some fixed primitive �d� D ! . This map is a crossed homomorphism and is
referred to as an extended Flux homomorphism, since is restricts to the ordinary Flux
map on Symp0.†

1
h
/. We note that the definition of eFlux� depends in an essential way

on the choice of primitive �. For if �0 is another primitive, then ���0 D ˛ is closed
and

(1) eFlux�.�/D eFlux�0.�/C Œ.��1/�˛�˛�:

In terms of group cohomology this means that the elements eFlux� and eFlux�0 are
cohomologous, when considered as elements in H 1.Symp.†1

h
/;H 1.†1

h
;R//. The

extended Hamiltonian group eHam.†1
h
/ is defined as the kernel of eFlux� , which is a

subgroup since eFlux� is a crossed homomorphism. The group Ham.†1
h
/ is contained

in eHam.†1
h
/ and we may extend the Calabi homomorphism to a map fCal� on the

group eHam.†1
h
; @†1

h
/D Symp.†1

h
; @†1

h
/\ eHam.†1

h
/ by defining

fCal�.�/D�
1

3

Z
†1

h

���^�D
1

3

Z
†1

h

.��1/��^�;

where � is the primitive chosen in the definition of eFlux� . This is a homomorphism
on eHam.†1

h
; @†1

h
/, since the following holds on Symp.†1

h
; @†1

h
/ [8, Proposition 19]:

(2) fCal�.� /D fCal�.�/C fCal�. /C
1

3
eFlux�.�/^ .�

�1/�eFlux�. /:

Again the definition of fCal� depends on the choice of primitive �. However, we do have
the following technical lemma, which will be important in showing the equivariance
of fCal� .

Lemma 6.5 Let � 2 eHam�.†1
h
; @†1

h
/ \ eHam�0.†1

h
; @†1

h
/ for two different primi-

tives �; �0 and set ˛ D �� �0 , further assume that ��˛ � ˛ D dH� is exact. ThenfCal�.�/D fCal�0.�/.

Proof By assumption �� .��1/�� is exact and hence �����D dF� is also exact.
Since the boundary of †1

h
is connected we may further assume that F� D 0 on @†1

h
.
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We compute

fCal�.�/D�
1

3

Z
†1

h

���^�D�
1

3

Z
†1

h

.�����/^�

D�
1

3

Z
†1

h

dF� ^�D�
1

3

Z
†1

h

d.F��/�F� ^ d�D
1

3

Z
†1

h

F�!:

Similarly one computes

fCal�0.�/D fCal�.�/�
1

3

Z
†1

h

��˛^˛ D
1

3

Z
†1

h

F�!C
1

3

Z
†1

h

H�!;

where ��˛�˛ D dH� and again we assume that H� D 0 on @†1
h

. We finally have

�

Z
†1

h

H�! D

Z
†1

h

H�d�D

Z
†1

h

d.H��/� dH� ^�

D

Z
†1

h

.˛���˛/^�D

Z
†1

h

˛^����˛^�

D

Z
†1

h

��˛^������˛^�D

Z
†1

h

��˛^ .�����/

D 0

since �����D dF� , d˛ D 0 and F� j@†1
h
D 0.

Lemma 6.5 then implies that fCal� is equivariant under the conjugation action of
eHam.†1

h
/.

Corollary 6.6 If  2 eHam�.†1
h
/, then fCal� D fCal �� . In particular, fCal� is equi-

variant under the action of eHam�.†1
h
/.

Proof Let �0D ��. Then �0 is also a primitive with �d�0D! and ˛D�0��DdH 

is exact since  2 eHam�.†1
h
/. By formula (1), it follows that eFlux� D eFlux�0 and

hence
eHam�.†

1
h; @†

1
h/D

eHam�0.†1
h; @†

1
h/:

By applying Lemma 6.5 we conclude that fCal� D fCal �� . This then implies

fCal�.�/D�
1

3

Z
†1

h

���^�D�
1

3

Z
†1

h

��. ��/^ �.�/

D�
1

3

Z
†1

h

. � �1/��^�D fCal�. � 
�1/;

which is the desired equivariance.
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We may now prove an analogue of Tsuboi’s result for the extended Hamiltonian group.
For the sake of notational expediency, we shall drop any explicit references to �.

Theorem 6.7 Let  W �1.†g/!Diff0.S
1/ be a homomorphism and let ai ; bi be stan-

dard generators of �1.†g/. Let fi ; hi 2 eHam.†1
h
/ be any extensions of  .ai/;  .bi/

respectively and let e.E/ denote the Euler class of the total space of the S1 –bundle E

associated to  . Then

��2

3
e.E/D Cal.Œf1; h1� � � � Œfg; hg�/:

In particular, if †1
h
! E ! †g is a flat bundle with holonomy in the extended

Hamiltonian group, then the boundary is a trivial bundle.

Proof We consider the commuting diagram

1 // Ham.†1
h
; @†1

h
/ //

��

Ham.†1
h
/ //

��

Diff0.S
1/ //

��

1

1 // eHam.†1
h
; @†1

h
/ // eHam.†1

h
/ // Diff0.S

1/ // 1:

The five-term sequence then gives the commuting triangle

H 1.Hamı.†1
h
; @†1

h
/;R/Diff0.S

1/ ı // H 2.Diff0;ı.S
1/;R/

H 1.eHamı.†1
h
; @†1

h
/;R/Diff0.S

1/

OO
ı

44
:

By Corollary 6.6 we see that fCal 2 H 1.eHamı.†1
h
; @†1

h
/;R/Diff0.S

1/ . If � denotes
the inclusion of Ham.†1

h
; @†1

h
/ into eHam.†1

h
; @†1

h
/, then ��fCal D Cal and, hence,

ı.fCal/D ı.Cal/ is also a multiple of the Euler class by Proposition 6.4. The explicit
formula for e.E/ then follows by repeating the calculations in the proof of Theorem 6.3.

The second statement follows from the exactness of the five-term sequence.

A comparison of Theorem 5.3 and Theorem 6.7 exhibits a stark difference between the
two groups Symp.†1

h
/ and eHam.†1

h
/.
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7 The Calabi map and the first MMM–class

We have seen that the Euler class of the boundary of a surface bundle with one
boundary component can be interpreted as the image of the Calabi map under the
connecting homomorphism of a certain five-term exact sequence. We shall give a
similar construction for the first Mumford–Miller–Morita (MMM) class e1 , which
represents a generator of H 2.�1

h
;R/ŠR for h� 3. We recall that the first MMM–

class of a surface bundle over a surface is up to a constant just the signature of the total
space.

In order to describe the first MMM–class in terms of a five-term exact sequence we shall
need to consider compactly supported extended Hamiltonian groups. We first define
an extended Flux homomorphism eFluxc on Sympc.†1

h
/� Symp.†1

h
/ by restricting

the map eFlux� defined in Section 6. There are other possible extensions of Flux to
crossed homomorphisms, but on the level of group cohomology these can be easily
described and the following is a slight variant of [8, Theorem 11].

Lemma 7.1 Let eFlux be an extended Flux homomorphism on Sympc.†1
h
/. Then the

following holds in H 1.Sympc.†1
h
/;H 1

c .†
1
h
;R//

ŒeFlux�D ŒeFluxc �C aŒp�kR�;

where a 2 R and kR 2 H 1.�1
h
;H 1

c .†
1
h
;R// Š R is the generator defined by the

extended Johnson homomorphism of Morita.

Proof We let �D eFlux�eFluxc . For � 2 Sympc
0.†

1
h
/ and  2 Sympc.†1

h
/ we see

that on the level of cochains

�.� ı /D ŒeFlux�eFluxc �.� ı /

D ŒeFlux.�/�eFluxc.�/�C .�
�1/�ŒeFlux. /�eFluxc. /�

D ŒFlux.�/�Flux.�/�C ŒeFlux. /�eFluxc. /�

D ŒeFlux. /�eFluxc. /�D�. /:

Moreover, � vanishes on Sympc
0.†

1
h
/ by definition and is coclosed, hence Œ��Dp�Œˇ�

for some Œˇ� 2H 1.�1
h
;H1.†

1
h
;R// and this group is isomorphic to R with an explicit

generator given by the extended Johnson homomorphism of Morita [8; 13].

In view of Lemma 7.1 we set

AFluxa D
eFluxc C a p�kR for any a 2R:
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The kernel of AFluxa will then be denoted by AHamc
a.†

1
h
/ and by considering the

projection to the mapping class group we obtain the following extension of groups:

1! Hamc.†1
h/!

AHamc.†1
h/

p
! �1

h ! 1:

For any group G there is a pairing H 1.G;H 1
c .†

1
h
;R// � H 1.G;H 1

c .†
1
h
;R// !

H 2.G;R/, which we denote Œ˛ : ˇ� for classes Œ˛�; Œˇ� 2H 1.G;H 1
c .†

1
h
;R//. This is

defined via the formula

˛ : ˇ.�;  /D ˛.�/^ .��1/�ˇ. /:

The induced map on cohomology is well-defined independently of the chosen represen-
tatives, and is natural with respect to pullbacks [8, Lemma 18]. With these preliminaries
we may now prove the following theorem.

Theorem 7.2 Let h� 2 and let

1! Hamc.†1
h/!

AHamc
a.†

1
h/

p
! �1

h ! 1

be the extension associated to the extended Hamiltonian group defined by the extended
flux map AFluxa . Then the image of ŒCal� under the connecting homomorphism of the
associated five-term exact sequence is 1

3
a2e1 . In particular, if a is nonzero, then any

flat bundle with holonomy in AHamc
a.†

1
h
/ has signature zero.

Proof We consider the following part of the five-term exact sequence associated to
the extended Hamiltonian group

H 1.BHamc
a;ı
.†1

h/;R/!H 1.Hamc
ı.†

1
h/;R/

�1
h
ı
!H 2.�1

h ;R/:

We first claim that the Calabi map lies in the invariant part of H 1.Hamc.†1
h
/;R/.

For if � is a primitive for the symplectic form ! on †1
h

, then so is  �� for any
 2AHamc

a.†
1
h
/. Thus, since the Calabi map is independent of the choice of primitive

for any � 2 Hamc.†1
h
/, we compute that

Cal.�/D�
1

3

Z
†1

h

���^�D�
1

3

Z
†1

h

��. ��/^ . ��/

D�
1

3

Z
†1

h

. � �1/��^�D Cal. � �1/;

and ŒCal� lies in H 1.Hamc.†1
h
/;R/�

1
h as claimed.

If i denotes the inclusion AHamc
a.†

1
h
/ ,!Sympc.†1

h
/, then by definition AFluxa vanishes

on AHamc
a.†

1
h
/ and we see that i�ŒeFluxc �D�a : i�.p�ŒkR�/. Let zf D fCal� and note
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that by formula (2) this map satisfies the hypotheses of Lemma A.3. Thus we have an
explicit description of the connecting homomorphism in terms of fCal� . More precisely,
let x�; x 2 �1

h
be considered as elements of the quotient, then we compute

ı.Cal/.x�; x /D fCal�.�/C fCal�. /� fCal�.�: /

D�
1

3
eFluxc.�/^ .�

�1/�eFluxc. /

D�
1

3
a : i�.p�kR/.�/^ .�

�1/�a : i�.p�kR/. /

D�
1

3
a2kR.x�/^ .�

�1/�kR.x /:

Hence we have shown that Œı.Cal/� D �1
3
a2ŒkR:kR�. Now we know by [14, Propo-

sition 4.2] that ŒkR:kR�D �e1 , where e1 is the first MMM–class, and we conclude
that ıŒCal�D 1

3
a2e1 . The second claim follows by the exactness of the five-term exact

sequence.

We may now give an interpretation of the signature of certain surface bundles in terms
of the Calabi map of commutators lying in the kernel of a particular extended Flux
homomorphism. Specifically, we let eFlux be the pullback of the extended flux map on
Symp.†h/ under the inclusion Sympc.†1

h
/ ,! Symp.†h/. By [8, Theorem 12] we

know that ŒeFlux�D ŒeFluxc �Cp�ŒkR�. Then as a consequence of Theorem 7.2 and the
calculations in the proof of Theorem 6.3 we obtain the following corollary.

Corollary 7.3 Let †1
h
! E ! †g be a bundle that has holonomy representation

�W �1.†g/!�1
h

and assume h�2. Furthermore, let ˛iD�.ai/ and ˇiD�.bi/ be the
images of standard generators ai ; bi of �1.†g/. Then for any lifts �i ;  i 2AHamc

1.†
1
h
/

of ˛i ; ˇi the signature satisfies

�.E/D Cal.Œ�1;  1� � � � Œ�g;  g�/:

We contrast Corollary 7.3 with results of [7], where it is shown that there exists
Sympc.†1

g/–bundles with nonzero signature. In particular, we see that those bundles
cannot have holonomy in the subgroup AHamc

1.†
1
g/.

Appendix A Five-term exact sequences

To any extension of groups 1! N ! G ! Q! 1 one may associate a five-term
exact sequence is group cohomology of the form

0!H 1.Q;R/!H 1.G;R/!H 1.N;R/Q
ı
!H 2.Q;R/!H 2.G;R/:
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This exact sequence is generally derived by means of the Hochschild–Serre spectral
sequence, but we choose to give an alternate description in order to obtain an explicit
formula for the connecting homomorphism. It can be shown that the connecting
homomorphism that one obtains in this way agrees with the usual one up to sign, at
least for cohomology with real coefficients, but for a detailed account of this and the
results below we refer to [4, Appendix A].

Lemma A.1 Consider an extension

1!N !G
�
!Q! 1

of groups and let S denote a normalised set-theoretic section of the final map so that
s.e :N / D e . Further let � 2 H 1.N;R/Q lie in the invariant part of H 1.N;R/ for
any coefficient ring R. Define

�S .g/D �.ng/Cf .s.N :g//

where ng 2N is the unique element such that g D ng : s.N :g/ and f is any function
on the set of coset representatives determined by s .

Then the map ıW H 1.N;R/!H 2.Q;R/ defined by ı�D�.ı�S / is well-defined and
the five-term sequence is exact with ı as the connecting homomorphism. Furthermore
if 1

2
2R, then we may assume that �S .g

�1/D��S .g/.

The five-term exact sequence is natural in the following sense.

Lemma A.2 Consider the following commuting diagram of group extensions:

1 // N // G // Q // 1

1 // N 0 //

OO

G0 //

OO

Q //

OO

1:

Then there is a commutative diagram of five-term exact sequences:

H 1.Q;R/ //

��

H 1.G;R/ //

��

H 1.N;R/Q
ı //

��

H 2.Q;R/ //

��

H 2.G;R/

��
H 1.Q;R/ // H 1.G0;R/ // H 1.N 0;R/Q

ı // H 2.Q;R/ // H 2.G0;R/:

There is a slightly different formulation of Lemma A.1 that is useful in performing
calculations.
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Lemma A.3 Let 1! N ! G ! Q! 1 be an extension of groups and let f 2
H 1.N;R/Q . Further let zf be an extension of f to G such that zf .n:g/D zf .n/C zf .g/
for all n 2 N and g 2 G . Then for any Œg1�; Œg2� 2 Q in the quotient, there is a
representative cocycle for ı� 2H 2.Q;R/ such that

ıf .Œg1�; Œg2�/D zf .g1/C zf .g2/� zf .g1:g2/:
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