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Bounds for fixed points and fixed subgroups
on surfaces and graphs

BOJU JIANG

SHIDA WANG

QIANG ZHANG

We consider selfmaps of hyperbolic surfaces and graphs, and give some bounds
involving the rank and the index of fixed point classes. One consequence is a
rank bound for fixed subgroups of surface group endomorphisms, similar to the
Bestvina–Handel bound (originally known as the Scott conjecture) for free group
automorphisms.

When the selfmap is homotopic to a homeomorphism, we rely on Thurston’s classifi-
cation of surface automorphisms. When the surface has boundary, we work with its
spine, and Bestvina–Handel’s theory of train track maps on graphs plays an essential
role.

It turns out that the control of empty fixed point classes (for surface automorphisms)
presents a special challenge. For this purpose, an alternative definition of fixed
point class is introduced, which avoids covering spaces hence is more convenient for
geometric discussions.

55M20, 57M07; 20F34, 57M15, 57N05

1 Introduction

Fixed point theory studies fixed points of a selfmap f of a space X . (A selfmap is a
map from a space to itself.) Nielsen fixed point theory, in particular, is concerned with
the properties of the fixed point set Fixf WD fx 2 X j x D f .x/g that are invariant
under homotopy of the map f (see Jiang [4] for an introduction).

The fixed point set Fixf splits into a disjoint union of fixed point classes. Two fixed
points are in the same class if and only if they can be joined by a Nielsen path which is
a path homotopic (relative to endpoints) to its own f –image. Each fixed point class F
is an isolated subset of Fixf hence its index ind.f;F/ 2 Z is defined.

For an endomorphism �W G!G of a group, its fixed subgroup refers to the subgroup
Fix.�/ WD fg 2 G j g D �.g/g � G . The stabilizer of a fixed point x 2 Fixf is
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the subgroup Stab.f;x/ WD Fix.f�/ � �1.X;x/ where f� W �1.X;x/ ! �1.X;x/

is induced by f . (See the Remark in Section 2.2.) Since fixed points in the same
class have isomorphic stabilizers, the stabilizer of a fixed point class F is defined as
Stab.f;F/D Stab.f;x/ for any x 2 F. The rank of F is defined as

rank.f;F/ WD rank Stab.f;F/;

where the rank of a group means the minimal number of generators.

We are primarily interested in selfmaps of surfaces and graphs. In this setting, we find
it convenient to introduce another term. The characteristic of a fixed point class F is
defined as

chr.f;F/ WD 1� rank.f;F/;
with the only exception that chr.f;F/ WD �.X / when X is a closed surface and
Stab.f;F/D �1.X /. This number restricts the ‘potential’ shape of F in the sense that,
when f is homotoped to f 0W X !X and F corresponds to a fixed point class F0 of
f 0 , F0 cannot contain a connected �1 –injective subset whose Euler characteristic is
less than chr.f;F/.

For brevity, we will write Stab.F/, rank.F/ and chr.F/ if no confusion is possible for
the selfmap f in the context.

In Nielsen theory, a fixed point class F is allowed to be empty. In that case the above
definition of rank.F/ (and chr.F/) does not make sense. An alternative approach, that
works for empty classes as well but avoids covering spaces, will be given in Section 2.4.

Our main result is

Theorem 1.1 Suppose X is either a connected finite graph or a connected compact
hyperbolic surface, and f W X !X is a selfmap. Then

(A) ind.F/� chr.F/ for every fixed point class F of f ;

(B) when X is not a tree,X
ind.F/Cchr.F/<0

find.F/C chr.F/g � 2�.X /;

where the sum is taken over all fixed point classes F with ind.F/C chr.F/ < 0.

Both the index and the rank appear in the inequalities. Weaker bounds that involve only
one of them were known before. Replacing ind.F/ with chr.F/ in (B) we get the rank
bound

P
chr.F/<0fchr.F/g � �.X / of Bestvina and Handel [1] which solves the Scott

conjecture for free group automorphisms. On the other hand, replacing chr.F/ with 1 in
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(A) and (B) gives the index bounds ind.F/� 1 and
P

ind.F/C1<0find.F/C1g � 2�.X /

for surface maps (see Jiang [5]). So our result can be seen as a unification and
strengthening of both.

A consequence of Theorem 1.1 is a rank bound for fixed subgroups of surface group
endomorphisms:

Theorem 1.2 Suppose G is the fundamental group of a closed hyperbolic surface.
Then for any endomorphism �W G!G , we have

(1) rank Fix.�/� rank.G/ if � is epimorphic, with equality if and only if � D id;

(2) rank Fix.�/� 1
2

rank.G/ if � is not epimorphic.

The paper is organized as follows. Section 2 gives a very brief account of the basic
notions and facts of Nielsen fixed point theory. Section 3 motivates our quest for
Thurston’s theory of surface automorphisms. Section 4 deals with graph maps based
on Bestvina–Handel train track theory, and completes the proofs of Theorem 1.1 and
Theorem 1.2. Some examples will be given in Section 5.

Acknowledgements We would like to thank the referee for helping to clarify an
argument in a proof.

This work is partially supported by a NSFC grant and a MOEC grant.

2 Background

Let X be a connected compact polyhedron, and f W X !X a selfmap.

2.1 Fixed point class

Let pW zX ! zX be the universal covering of X , with group � of covering translations
which we identify with the fundamental group �1.X /.

For any lifting zf W zX ! zX of f , the projection of its fixed point set is called a fixed
point class of f , written F D p

�
Fix zf

�
. Strictly speaking, we say two liftings zf

and zf 0 of f are conjugate if there exists 
 2 � such that zf 0 D 
�1 ı zf ı 
 . Then
FD p

�
Fix zf

�
is said to be the fixed point class of f labeled by the conjugacy class

of zf . Thus, a fixed point class always carries a label which is a conjugacy class of
liftings. The fixed point set Fixf decomposes into a disjoint union of fixed point
classes. However, empty fixed point classes may have different labels hence be regarded
as different. We would better think of them as hidden rather than nonexistent.
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2.2 Index and stabilizer

The index of a fixed point class F is defined to be the fixed point index ind.f;F/.
Empty fixed point classes clearly have index 0. It is well known that the total index of
all fixed point classes equals the Lefschetz number, that is,

P
F ind.f;F/DL.f /.

Each lifting zf induces an endomorphism zf � W �! � defined by

zf ı 
 D zf �.
 / ı zf ; for all 
 2 �:

The stabilizer of a fixed point class FD p.Fix zf /, is defined as the subgroup

Stab.f;F/ WDf
 2 � j 
�1
ı zf ı 
 D zf g;

which is identical to the fixed subgroup of the endomorphism zf � ,

Fix. zf �/Df
 2 � j 
 D zf �.
 /g:

Up to group isomorphism, it is independent of the choice of zf in its conjugacy class.

Remark This terminology (and notation) stems from the � –action by conjugation,

 W zf 7! 
�1ı zf ı
 , on the set of liftings of f . The orbit (of a lifting zf ) of this action
is the conjugacy class of liftings labeling F, and the stabilizer under this action is the
Stab.f;F/ defined above. For the use of stabilizer in a different setting, see Jiang [4,
page 36].

For nonempty fixed point classes this definition reduces to the simpler one given in
Section 1.

2.3 Invariance

The following facts are proved in [4]. The fixed point class correspondences involved
will be given in our alternative approach of Section 2.4.

Fact (Homotopy invariance) A homotopy H D fhtgW f0 ' f1W X ! X gives rise
to a natural bijective correspondence H W F0 7! F1 from f0 –fixed point classes to
f1 –fixed point classes, and

ind.f0;F0/D ind.f1;F1/; Stab.f0;F0/Š Stab.f1;F1/:

Remark A homotopy may create non-empty fixed point classes, or remove fixed point
classes. The above correspondence is bijective only when empty fixed point classes are
taken into account.
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Fact (Morphism) A morphism from a selfmap X
f
�!X to a selfmap Y

g
�!Y means

a map hW X ! Y such that h ı f D g ı h. It induces a natural function Ff 7!
Fg from f –fixed point classes to g–fixed point classes, such that h.Ff / � Fg and
h� Stab.f;Ff /� Stab.g;Fg/.

Fact (Commutation invariance) Suppose �W X!Y and  W Y!X are maps. Then
the selfmaps X

 ı�
�!X and Y

�ı 
�!Y are said to differ by a commutation. The morphism

� between them sets up a natural bijective correspondence F ı� 7!F�ı from . ı�/–
fixed point classes to .� ı /–fixed point classes, and

ind. ı�;F ı�/D ind.� ı ;F�ı /; Stab. ı�;F ı�/Š Stab.� ı ;F�ı /:

2.4 Alternative definitions

The above definitions of fixed point class and stabilizer involve covering spaces. An
alternative approach using paths is sometimes more convenient.

Suppose f W X !X is a self-map of a connected compact polyhedron.

Definition 2.1 By an f –route we shall mean a homotopy class (rel. endpoints) of
paths wW I !X from a point x 2X to f .x/. For brevity we shall often say the path
w (in place of the path class hwi) is an f –route at x D w.0/. An f –route w gives
rise to an endomorphism fwW �1.X;x/! �1.X;x/, defined as hai 7! hw.f ı a/ xwi,
where a is any loop based at x , and xw denotes the reverse of w .

Two f –routes hwi, hw0i are conjugate if there is path qW I !X from x D w.0/ to
x0Dw0.0/ such that hw0iD hxqw.f ıq/i, that is, w0 and xqw.f ıq/ are homotopic rel.
endpoints. We also say that the (possibly tightened) f –route xqw.f ı q/ is obtained
from w by an f –route move along the path q .

Note that a constant f –route w corresponds to a fixed point x D w.0/ D w.1/ of
f , and the endomorphism fw becomes the usual f� W �1.X;x/! �1.X;x/. Two
constant f –routes are conjugate if and only if the corresponding fixed points can be
joined by a Nielsen path. This motivates the following definition.

Definition 2.2 With an f –route w (more precisely, with its conjugacy class) we
associate a fixed point class Fw of f , which consists of the fixed points that correspond
to constant f –routes conjugate to w . Thus fixed point classes are associated bijectively
with conjugacy classes of f –routes. A fixed point class Fw can be empty if there is
no constant f –route conjugate to w . Empty fixed point classes are distinguished by
their associated route classes.
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Remark This definition is equivalent to the traditional one in Section 2.1 because an
f –route specifies a lifting zf .

Definition 2.3 The fixed subgroup of the endomorphism fw is the subgroup

Fix.fw/ WD f
 2 �1.X; w.0// j 
 D fw.
 /g:

The stabilizer of the fixed point class Fw is defined to be Stab.f;Fw/ WD Fix.fw/,
it is well defined up to isomorphism because conjugate f –routes have isomorphic
stabilizers.

Remark Let x 2 X be any given point. The set of f –routes at x is in bijective
correspondence with �1.X;x/. The group �1.X;x/ acts on the set of f –routes at x ,
with a loop class hai acting as hwi 7! hxaw.f ı a/i. The orbits of this action represent
all conjugacy classes of f –routes. The stabilizer of hwi under this action coincides
with the fixed subgroup Fix.fw/.

The correspondences between fixed point classes mentioned in Section 2.3 can now be
explicitly defined.

Definition 2.4 Under a homotopy H D fhtgt2I W X !X , each h0 –route w0 gives
rise to an h1 –route

w1 D w0 �H.w0.0//; where H.w0.0// is the path fht .w0.0//gt2I :

Clearly w0 and w1 share the same starting point, and .h0/w0
D .h1/w1

. The function
w0 7! w1 defines the fixed point class function Fw0

7! Fw1
induced by the homotopy.

Definition 2.5 For a morphism hW X ! Y from a selfmap X
f
�!X to a selfmap

Y
g
�!Y , h sends an f –route w to a g–route h ıw . The function w 7! h ıw defines

the fixed point class function Fw 7! Fhıw induced by the morphism.

3 Surface automorphisms

The aim of this section is to prove Theorem 3.1. The special case for empty fixed point
classes, stated as Theorem 3.2, is interesting in itself.

Theorem 3.1 Suppose M is a compact connected surface with negative Euler charac-
teristic, and f W M !M is a homeomorphism. Then

(A) ind.F/� chr.F/ for every fixed point class F of f ;
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(B)
X

ind.F/Cchr.F/<0

find.F/C chr.F/g � 2�.M /:

The proof is based on Thurston’s isotopy classification of surface automorphisms. The
following theorem summarizes the Thurston canonical map from [9], supplemented by
the standard form developed by Jiang and Guo [6] with fine-tuned local behavior.

Theorem T Suppose M is a compact connected surface with negative Euler charac-
teristic. Every homeomorphism f W M !M is isotopic to a diffeomorphism ' such
that either

(1) ' is a periodic map, that is, 'm D id for some m� 1, or equivalently, ' is an
isometry with respect to some hyperbolic metric on M ; or

(2) ' is a pseudo-Anosov map, that is, there is a number � > 1 and a pair of
transverse measured foliations .Fs; �s/ and .Fu; �u/ such that '.Fs; �s/ D

.Fs; 1
�
�s/ and '.Fu; �u/D .Fu; ��u/; or

(3) ' is a reducible map, that is, there is a system of disjoint simple closed curves
� D �1[ : : :[�n in the interior of M with the properties below.
(a) � is invariant by ' (but the �i ’s may be permuted), and each component of

M n� has negative Euler characteristic.
(b) � has a '–invariant tubular neighborhood N .�/ such that on each '–

component (= either a single '–invariant component, or a disjoint union of
components which are cyclically permuted by ' ) of M nN .�/, ' is either
periodic or pseudo-Anosov. (Note that the definitions in (1) and (2) apply to
a '–component as well.)

(c) � is minimal among all systems satisfying (a) and (b).
(d) ' is in the standard form as defined in [6, page 79].

The ' above will be called a standard map isotopic to f . Components of N .�/ will
be called strips, and components of M nN .�/ will be called pieces. A strip is either
an annulus or a Möbius strip. A piece is either periodic or pseudo-Anosov according as
the type of the '–component of that piece. A periodic piece on which ' is the identity
map will be called an identity piece.

Remark The minimality condition (c) is equivalent to the condition of maximal
periodic pieces, that is, no periodic piece can be combined with a neighboring one by
eliminating the reducing curve between them.

Since chr.F/ and ind.F/ are homotopy invariants, in Theorem 3.1 the general auto-
morphism f can be replaced by a standard map ' . For nonempty fixed point classes
it is only a matter of observation:
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Corollary T Suppose ' is a standard map in Theorem T. Then

(A 0 ) ind.F/� �.F/D chr.F/ for every nonempty fixed point class F of ' ;

(B 0 )
X

ind.F/Cchr.F/<0
F nonempty

find.F/C chr.F/g � 2�.M /.

Remark It is the equality �.F/D chr.F/ here that motivates the definition of chr.F/
given in Section 1.

Proof of Corollary T It follows from [6, Lemmas 1.2, 2.2 and 3.4] that each Nielsen
path of ' can be deformed (rel. endpoints) into Fix' . Hence every nonempty fixed
point class F is connected, and its stabilizer Stab.';F/ can be represented in F itself.
Therefore chr.F/D �.F/.

A complete list of possible types of fixed point classes of ' is given in [6, Lemma 3.6].
They are submanifolds of M . Conclusion (A 0 ) can be read off from that list. The
argument below for (B 0 ) parallels the proof of [6, Theorem 4.1].

Let us examine the list and focus on fixed point classes F that contribute to the
summation in (B 0 ). A 0–dimensional F must be a fixed point x which is an interior px –
prong singularity of a pseudo-Anosov piece Mj , and ind.';F/C chr.';F/D 2�px .
A 1–dimensional F is a fixed circle C which is a pC –prong boundary component
of a pseudo-Anosov piece, and ind.';F/C chr.';F/D�pC . A 2–dimensional F is
either an identity piece, or a strip, or an identity piece combined with some neighboring
strips, and moreover, ind.';F/C chr.';F/D 2�.F/�

P
pC where the summation is

over components C of @F which is at the same time a pC –prong boundary component
of a pseudo-Anosov piece Mj . HenceX

ind.F/Cchr.F/<0
F nonempty

find.F/C chr.F/g �
X

1

�X
x

.2�px/C
X
C

.�pC /

�
C

X
2

2�.Mj /

where
P

1 sums over the pseudo-Anosov pieces Mj of ' , inside the braces x runs
over all interior singularities of 'jMj and C runs over all boundary components, andP

2 sums over the periodic pieces Mj of ' . Note that non-identity periodic pieces
contribute nothing to the left and negative to the right. By the Euler–Poincaré formula
of Fathi, Laudenbach and Poénaru [3, page 75] (applied to the stable foliation of 'jMj ),
the sum in the braces equals 2�.Mj /. Thus the inequality (B 0 ) follows:X

ind.F/Cchr.F/<0
F nonempty

find.F/C chr.F/g �
X

1

2�.Mj /C
X

2

2�.Mj /D 2�.M /:
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The remainder of this section is devoted to proving the following result

Theorem 3.2 Suppose ' is a standard map in Theorem T. Then rank.';F/ � 1 for
any empty fixed point class F.

This Theorem says that empty fixed point classes satisfy Theorem 3.1 (A) and do
not contribute to the summation in Theorem 3.1 (B). It supplements Corollary T to
complete the proof of Theorem 3.1.

Proof of Theorem 3.2 for periodic ' First assume M is a closed surface. Then '
is an isometry with respect to a hyperbolic metric on M . The universal cover of M is
the hyperbolic plane H 2 . Let z'W H 2!H 2 be a lifting of ' labeling an empty fixed
point class F. Then z' is a hyperbolic isometry without fixed points, so it has an axis
L.

By definition, any nontrivial deck translation 
 2 Stab.F/ commutes with z' , so the
axis of 
 coincides with L. Thus the elements of the group Stab.F/ share a common
axis, hence it is commutative. But nontrivial commutative subgroups of �1.M / are
cyclic. So if Stab.F/ is nontrivial then rank.F/D 1. Thus Theorem 3.2 is valid for
closed M .

Next assume M has boundary. Then ' is an isometry with respect to a hyperbolic
metric on M (with totally geodesic boundary). Let M 0 be the double of M . The
metric on M extends to a hyperbolic metric on M 0 , the isometry 'W M !M extends
to an isometry '0W M 0!M 0 , and the '–fixed point class F is included in a '0–fixed
point class F0 . The inclusion i and projection p give a commutative diagram of maps
(so they are morphisms between selfmaps)

M
i

����! M 0
p

����! M

'

??y '0

??y '

??y
M

i
����! M 0

p
����! M

and p ı i D idM . Hence p.F0/D F and p�.Stab.'0;F0//D Stab.';F/.

Now F is empty implies F0 is empty. Since M 0 is a closed surface, it follows that
rank.';F/� rank.'0;F0/� 1.

Proof of Theorem 3.2 for pseudo-Anosov ' Suppose ' is pseudo-Anosov with
stable and unstable measured foliations .Fs; �s/ and .Fu; �u/, respectively, and with
expansion constant �> 1. Suppose w is a '–route. Let g1;g2 2 Fix.'w/ be nontrivial
elements represented by loops c1; c2 , respectively.
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Deform c1 to a loop 
1W S
1!M quasi-transverse to Fs , see Fathi, Laudenbach and

Poénaru [3, page 76]. (Use ' to denote free homotopy.) Then 
1 ' ' ı 
1W S
1!M

and ' ı 
1 is also quasi-transverse to Fs . Thus

�s.
1/D inff�s.c01/ j c
0
1 ' 
1 g D inff�s.c01/ j c

0
1 ' ' ı 
1 g D �

s.' ı 
1/:

But �s.' ı 
1/D ��
s.
1/ and � > 1, hence �s.
1/D 0. This means 
1 runs along

the leaves of Fs . Thus 
1 is quasi-transverse to Fu . Then a similar argument shows
that 
1 also runs along the leaves of Fu . This can occur only if 
1 is in a component
� of @M . So g1 can be represented by a loop of the form q
1q�1 , where q is a path
ending in �. By a '–route move along q , we can assume the base point b D w.0/ is
in �, and c1 D 
1 . Since hc1i D hw.' ı c1/ xwi, we can deform w to make it lie in �.

The same argument as the previous paragraph, but using based homotopy instead of
free homotopy, shows c2 is homotopic to a loop 
2 in �. Hence g1;g2 lie in a cyclic
group �1.�/.

What we have actually shown is that for pseudo-Anosov ' , any fixed point class F has
rank.F/� 1, and those with nontrivial stabilizer can only live in @M .

We need some preparation for the reducible ' .

Lemma 3.3 Suppose `W S1!M is a loop that crosses @N .�/ but is freely homotopic
to one that does not. Then ` must have at least one “loose segment”.

Here by a “segment” we mean an arc A�S1 obtained by cutting S1 along `�1@N .�/;
it is “loose” if `jA can be deformed into @N .�/ rel. endpoints.

Proof Suppose H W S1 � I !M is the homotopy of `. Assume that it is smooth
and transverse to @N .�/. By an innermost disk argument, we can deform H so that
H�1@N .�/ contains no disk-bounding circles. Then some arc A� f0g � S1 � f0g

will combine with an arc in H�1@N .�/ to bound a disk in S1 � I . This A is a loose
segment.

Proposition 3.4 Suppose cW S1!M is a homotopically nontrivial loop freely ho-
motopic to its '–image. Then c can be freely deformed to lie either in a strip N .�i/

or in a piece Mj .

Proof We can assume that c minimizes (in its free homotopy class) the number of
intersections with @N .�/. Take a free homotopy H W S1 � I !M from c to ' ı c

which is smooth and transverse to @N .�/. Then H�1@N .�/ consists of disjoint arcs
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and simple closed curves in S1 � I . There can be no arc in H�1@N .�/ joining two
points of S1�f0g, otherwise c can be deformed to decrease the number of intersections
with @N .�/, contradicting its minimality. Recall that c and 'ıc have the same number
of intersections with @N .�/ because '�1@N .�/D @N .�/.

By an innermost disk argument, the map H can be deformed rel. S1 � @I so that one
of the following occurs:

(1) H�1@N .�/ is empty; or

(2) H�1@N .�/ consists of disjoint simple closed curves parallel to S1 � f0g; or

(3) H�1@N .�/ consists of disjoint arcs from S1 � f0g to S1 � f1g.

In case (1), the loop c is already in a component of M n @N .�/ which is either in a
strip or in a piece. So the conclusion holds.

In case (2), the loop c deforms into @N .�/ through the annulus between S1 � f0g

and the component of H�1@N .�/ nearest to S1 � f0g, hence deforms further into � .
So the conclusion also holds.

We are going to rule out case (3). Note that since an iterate of a standard map is again
a standard map, in the argument below we have the freedom to replace ' by an iterate
'` , and to stack up ` copies of H to get a homotopy H .`/ from c to '` ı c (but still
denoting them as ' and H ).

By replacing ' with an iterate of ' , we can assume that all periodic pieces of ' are
identity pieces; and since � is assumed to be a minimal reduction system, ' is a
nontrivial twist on each strip sandwiched between identity pieces.

Suppose H�1@N .�/ consists of arcs a1; : : : ; a2m (in cyclic order), ak being from
.zk ; 0/ to .z0

k
; 1/. By looking at a further iterate of ' if necessary, we can assume

zk D z0
k

.

Then, H�1@N .�/ cuts S1�I into curvilinear rectangles R1;R2; : : : ;R2m (in cyclic
order) which are, alternatingly, sent by H into pieces and strips.

If Rk is sent into a piece Mjk
, the restriction H jRk defines a '–relation (see Jiang

and Guo [6, page 70] for the definition) between two boundary components of Mjk
.

On a pseudo-Anosov piece, by [6, Lemma 2.2] the bottom side of Rk would give a
segment of c that is deformable into @N .�/, contradicting the minimality assumption
on c . So Mjk

must be an identity piece, and the top and bottom sides of Rk match.
Since the bottom side of Rk is not deformable into @N .�/ (again by the minimality
assumption of c ), the left and right sides of Rk must be contractible loops. Thus every
arc ak is mapped to a contractible loop in @N .�/.
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Now look at a rectangle Rk sent into a strip N .�ik
/. Since both its left and right

sides are mapped by H to contractible loops in @N .�/, the top and bottom sides must
contribute the same degree in the �ik

direction. This contradicts the assumption that '
is a nontrivial twist on such a strip. Thus the case (3) is ruled out.

This concludes the proof of the Proposition.

Proposition 3.5 Suppose w is a '–route, and g1;g2 2 Fix.'w/ are nontrivial ele-
ments.

Then, up to '–route move, g1;g2 can both be represented either in the same strip or in
the same piece.

Proof Without loss we assume that the base point w.0/ is not in @N .�/. By
Proposition 3.4, for k D 1; 2, gk is represented by a loop of the form ukckxuk , where
ck is a loop in M n @N .�/ and uk is a path transverse to @N .�/ which crosses the
latter mk times. We assume that the total crossing number m1Cm2 is minimal among
all such representations, up to '–route moves. We want to show m1 Dm2 D 0.

When mk > 0, let vk denote the initial subpath of uk up to its first crossing with
@N .�/. When mk D 0, take uk to be the constant path.

The product g1g2 is represented by the loop c D u1c1xu1u2c2xu2 . By Proposition 3.4,
since hci is in Fix.'w/, c is freely homotopic to a loop in M n @N .�/.

By Lemma 3.3, c has loose segments. Clearly the part ukckxuk cannot contain any
loose segment, otherwise mk can be decreased by tightening.

Case 1 Both mk ’s are positive. The only possible loose segments are xv1v2 and xv2v1 ,
inverse to each other. Suppose xv1v2 deforms into a component C1 of @N .�/. Define
q to be the path v1 slightly extended across C1 , and move the '–route w along q .
After tightening, both m1 and m2 decrease by 1. This contradicts the minimality of
m1Cm2 . So Case 1 is ruled out.

Case 2 One mk is zero (say, m2 D 0). Then the loose segment must be xv1c2v1 .
Move the '–route w along q as in Case 1. Then m1 decreases by 1 as before. Now
g2 is represented no longer by c2 , but by the loop xqc2q which tightens to a loop c0

2
in

M n @N .�/. In other words, the representative of g2 is changed from c2 to this c0
2

on the other side of C1 . Hence m2 D 0 is kept. So Case 2 is also ruled out.

Case 3 Both mk ’s are zero. This is what we want.
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Proof of Theorem 3.2 for reducible ' Suppose F is associated with a '–route w
and rank Fix.'w/ > 1. Let g1;g2 2 Fix.'w/ be two elements generating a non-cyclic
subgroup. By Proposition 3.5, up to a '–route move, both can be simultaneously
represented either in a strip or in a piece. But the rank condition rules out the strips, so
they can be represented in some piece Mj .

Clearly, Mj is invariant under ' . Let 'j W Mj !Mj denote the restriction of ' . The
'–route w , now in Mj , associates with a 'j –fixed point class Fj . It is clear that
Fj � F and g1;g2 2 Fix..'j /w/ so Fix..'j /w/ > 1. From the proof of Theorem 3.2
for periodic and pseudo-Anosov maps, it follows that Fj is nonempty. Hence F is
nonempty.

4 Graph selfmaps

Our discussion of graph maps is based on Bestvina and Handel’s theory of train track
maps [1]. We follow their terminology.

A graph X is a 1–dimensional (or possibly 0–dimensional) finite cellular complex.
The 0–cells and (open) 1–cells are called vertices and edges respectively. A graph
map ˛W X ! Y is a cellular map, that is, it maps vertices to vertices. Up to homotopy
there is no loss to assume that the restriction of ˛ to every edge e of X is either locally
injective or equal to a constant map. A graph map ˛W X ! Y is �1 –injective if it
induces an injective homomorphism of the fundamental group on each component of
X . It is an immersion if it sends edges to edges and it is locally injective at vertices.
Clearly immersions are always �1 –injective.

A path p in a graph X is a map pW Œ0; 1�!X that is either locally injective or equal
to a constant map; in the latter case we say that p is a trivial path. For a nontrivial
path p in X , its initial tip is the maximal initial open subpath that lies in an edge of
X . The terminal tip is defined similarly.

A graph map ˛W X ! Y induces a function D˛ on the set of oriented edges of X . It
sends an oriented edge e to the first oriented edge of ˛.e/; if ˛.e/ is trivial we say
D˛.e/D 0.

For a graph selfmap ˇW Z!Z , a ˇ–Nielsen path is a nontrivial path p in Z joining
two fixed points of ˇ such that ˇ.p/' p rel. endpoints; it is indivisible if it cannot be
written as a concatenation p D p1 �p2 , where p1 and p2 are subpaths of p that are
ˇ–Nielsen paths.

The following theorem summarizes the results of Bestvina and Handel [1] that we need.
See Jiang [5, Theorem BH].
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Theorem BH Let X be a connected graph but not a tree, and let f W X ! X be a
�1 –injective map. Then f has the same homotopy type as a graph selfmap ˇW Z!Z ,
where Z is a connected graph without vertices of valence 1 and all fixed points of ˇ
are vertices, and there is a ˇ–invariant proper subgraph Z0 , containing all vertices of
Z . The map ˇW .Z;Z0/! .Z;Z0/ of the pair is of one of the following types.

Type 1: ˇ sends Z into Z0 .

Type 2: ˇ cyclically permutes the edges in Z nZ0 .

Type 3: ˇ expands edges of Z nZ0 by a factor � > 1 with respect to a suitable
non-negative metric L supported on Z nZ0 , and has the properties (a)–(c)
below.
(a) For every oriented edge e in Z nZ0 , Dˇ.e/ lies in Z nZ0 .
(b) There is at most one indivisible ˇ–Nielsen path that intersects Z nZ0 .
(c) If p is an indivisible ˇ–Nielsen path that intersects Z nZ0 , then the tips of

p are in Z nZ0 and invariant under ˇ , and exactly one turn of p in Z nZ0

(at a vertex vp of valence � 3 in Z ) degenerates under Dˇ .

Proof Compared to [5, Theorem BH], we only added the requirement that Z0 contains
all fixed points of ˇ . This is achieved in two easy steps. Firstly, on each ˇ–invariant
oriented edge we can adjust ˇ to get rid of interior fixed points, so that ˇ has only
finitely many fixed points. Secondly, we can subdivide Z at the non-vertex fixed points
and include them into Z0 .

Information on fixed point classes follows.

Corollary BH Denote ˇ0 WDˇjZ0
W Z0!Z0 . If there exists an indivisible ˇ–Nielsen

path p that intersects Z nZ0 , it is unique. (In Type 2 when Z nZ0 is a single edge e ,
take p WD e .) There are three possible cases.

(i) No such path p exists (as always in Type 1, in Type 2 when Z nZ0 has more
than one edge, and possibly in Type 3). Then the ˇ–fixed point classes are the
same as the ˇ0 –fixed point classes. Their characteristics are also carried over:

chr.ˇ;F0/D chr.ˇ0;F0/

for all ˇ0 –fixed point classes F0 .

(ii) The path p connects two different ˇ0 –fixed point classes F0
1

and F0
2

. Then
the ˇ–fixed point classes are the same as the ˇ0 –fixed point classes, except
that F0

1
and F0

2
combine into a single ˇ–fixed point class F0 D F0

1
[F0

2
. Their

characteristics are also carried over, except that

chr.ˇ;F0/D chr.ˇ0;F01/C chr.ˇ0;F02/� 1:
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(iii) The path p has both ends in a ˇ0 –fixed point class F0
0

. Then the ˇ–fixed point
classes are the same as the ˇ0 –fixed point classes. Their characteristics are also
carried over, except that

chr.ˇ;F00/D chr.ˇ0;F00/� 1:

Proof Case (i) The conclusion is immediate, since every Nielsen path is a product
of indivisible Nielsen paths, hence lies in Z0 .

Case (ii) Suppose the path p goes from a 2 F0
1

to b 2 F0
2

. For the chr equation it
suffices to show that

Stab.ˇ; a/Š Stab.ˇ0; a/�Stab.ˇ0; b/:

Define the natural homomorphism � from the right hand side to the left hand side by
�.hui/D hui and �.hvi/D hpv xpi, where u and v are Nielsen paths in Z0 at a and
b , respectively, and h�i denotes loop class.

First observe that � is injective. In fact, the �–image of any nontrivial element of the
right hand side is represented by a product w D u1pv1 xp : : :u`pv` xpu`C1 , where ui

and vi are Nielsen paths in Z0 at a and b , respectively. (We allow that u1 and u`C1

be trivial, but assume other subpaths are nontrivial.) By Property (c) in Theorem BH,
both tips of p are in Z nZ0 , so w is an immersed Nielsen path and represents a
nontrivial element in the left hand side.

On the other hand, any nontrivial element of the left hand side is represented by a
concatenation of ˇ–Nielsen paths, hence by a product like the w above, so � is
surjective. Thus the desired isomorphism is established.

Case (iii) Suppose the path p goes from a to b , both in F0
0

. Pick a ˇ0 –Nielsen path
q in Z0 from b back to a. It suffices to show that

Stab.ˇ; a/Š Stab.ˇ0; a/�J;

where J is the infinite cyclic group generated by the loop class represented by the loop
t WD pq when a¤ b , but taking t WD p when aD b . The argument for establishing
the isomorphism is similar to case (ii).

Theorem 4.1 Let X be a connected graph and f W X !X be a graph map. Then

(A) ind.f;F/� chr.f;F/ for every fixed point class F of f ; and

(B) when X is not a tree,X
ind.F/Cchr.F/<0

find.F/C chr.F/g � 2�.X /:
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Proof It follows from Bestvina and Handel [1, Lemma 2.1] and Dicks and Ventura [2,
Lemma I.5.4] that empty fixed point classes have index equal to zero and non-negative
characteristic, so they satisfy (A) and do not contribute to (B). Hence we only need to
consider nonempty fixed point classes.

By [5, Lemma A], without loss of generality we may assume that f is �1 –injective.
Then it suffices to prove the bounds (A) and (B) for the graph selfmap ˇW .Z;Z0/!

.Z;Z0/ in Theorem BH. We can assume �.Z/ < 0 since Theorem 4.1 is trivial if
�.Z/� 0.

Let Zi , i D 1; : : : ; n be the connected components of Z0 . Suppose the ˇ–invariant
ones are i D 1; : : : ; k . Denote ˇ0 WD ˇjZ0

W Z0!Z0 and ˇi WD ˇjZi
W Zi !Zi for

1� i � k .

Since Z is a connected graph without vertices of valence 1, and Z0 is a proper
subgraph, it is easy to see that all �.Zi/ > �.Z/. So, working inductively, we may
assume that Theorem 4.1 is true for every ˇi .

The characteristics of ˇ–fixed point classes are already analyzed in Corollary BH. We
will refer to the cases (i)–(iii) there.

In order to discuss indices, we introduce some notation. For a vertex v of Z , let !.v/
be the number of oriented edges e in Z nZ0 starting at v ; and let ı.v/ be the number
of such oriented edges e with the additional requirement that e gets initially expanded
along itself by ˇ . Recall that ind.ˇ; v/D ind.ˇ0; v/�ı.v/. For a ˇ–invariant subgraph
Y �Z , let !.Y / and ı.Y / denote the sum of !.v/ and ı.v/, respectively, over all
v 2 Y . So, for every ˇ–fixed point class F we have ind.ˇ;F/D ind.ˇ0;F/� ı.F/.

The inequality (A) is obvious except for the combined fixed point class F0 in case (ii) of
Type 3. For this F0 the index is ind.ˇ;F0

1
/Cind.ˇ;F0

2
/� ind.ˇ0;F01/Cind.ˇ0;F02/�2

since both ı.F0
1
/� 1 and ı.F0

2
/� 1 by Property (c). So (A) follows from the inductive

hypothesis.

To prove (B), we use the function �.x/ WDminfx; 0g D 1
2
.x� jxj/. It is superadditive

in the sense that �.xCy/� �.x/C�.y/. Denote

Si WD

X
Fi

�.ind.ˇi ;Fi/C chr.ˇi ;Fi/� ı.Fi//;

for 1� i � k , where the summation is taken over all ˇi –fixed point classes Fi ; and
let Si WD 0 for k < i � n. Then we observe thatX

ind.F/Cchr.F/<0

find.F/C chr.F/g �

(Pn
iD1 Si ; in case (i);Pn
iD1 Si � 1; in cases (ii) and (iii).
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We shall show that the right hand side� 2�.Z/ by two claims.

Claim 1 Si � 2�.Zi/�!.Zi/ for 1� i � n.

In fact, the inequality is trivial for i > k . (It is non-obvious only when �.Zi/ D 1.
But �.Zi/D 1 implies !.Zi/ � 2 because Z has no vertices of valence 1.) So we
now assume i � k .

If �.Zi/� 0, by the inductive hypothesis we have

Si D

X
Fi

�.ind.ˇi ;Fi/C chr.ˇi ;Fi/� ı.Fi//

�

X
Fi

�.ind.ˇi ;Fi/C chr.ˇi ;Fi//�
X
Fi

ı.Fi/

� 2�.Zi/� ı.Zi/

� 2�.Zi/�!.Zi/:

If �.Zi/D 1, then Zi is a tree. The unique ˇi –fixed point class Fi has ind.ˇi ;Fi/D

chr.ˇi ;Fi/ D 1, so Si D �.2 � ı.Fi// � �.2 � !.Zi// D 2�.Zi/ � !.Zi/. Thus
Claim 1 is proved.

Claim 2 In cases (ii) and (iii), there exists 1� h� n with Sh > 2�.Zh/�!.Zh/.

In fact, when ˇ is of Type 3, the argument of Jiang [5, page 475, lines 6–19] repeated
verbatim.

When ˇ is of Type 2, ZnZ0 is a single edge e , and no component of Z0 can be a tree.
On the other hand, only one end of e is expanded by ˇ , so ı.Z0/D 1< 2D !.Z0/.
Hence ı.Zh/ < !.Zh/ for some component Zh . Then by the proof of Claim 1 we
see Sh � 2�.Zh/� ı.Zh/ > 2�.Zh/�!.Zh/. Thus Claim 2 is proved.

It follows from Claims 1–2 that in all cases (i)–(iii),X
ind.F/Cchr.F/<0

.ind.F/C chr.F//�
nX

iD1

.2�.Zi/�!.Zi//D 2�.Z/:

This is the inequality (B) for ˇ .

The inductive proof of the Theorem is now complete.

Proof of Theorem 1.1 We have already taken care of graph selfmaps and surface
automorphisms (Theorems 4.1 and 3.1). Surfaces with boundary have the same ho-
motopy type as graphs. So it easily reduces to graph selfmaps. It remains to consider
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the case that X is a closed hyperbolic surface and f is not homotopic to a self-
homeomorphism. Then by [5, Lemma B], f is homotopic to a non-surjective selfmap.
Hence the endomorphism f� W �1.X /! �1.X / factors through a free group.

For a group G , let Ir.G/ denote its inner rank defined as the maximal rank of free
homomorphic images of G . It is known that if G is the fundamental group of a closed
surface, then Ir.G/D brank.G/=2c. (See Lyndon and Schupp [7, page 52] where it is
attributed to Zieschang [10].)

So, the endomorphism f� W �1.X /!�1.X / factors through the free group Fr of rank
r D brank.�1.X //=2c, which is isomorphic to �1.Y / for a connected graph Y . Since
X and Y are aspherical, the algebraic factorization can be realized topologically, that
is, f is homotopic to a composition X

 ı�
�!X .

By the homotopy and commutation invariance, we can replace f with the composition
Y
�ı 
�!Y which is a graph selfmap.

The above argument actually proves the next Proposition with a bound stronger than
that of Theorem 1.1.

Proposition 4.2 Suppose X is a closed hyperbolic surface, and f W X ! X is a
selfmap homotopic to a non-surjective one. Then

X
ind.F/Cchr.F/<0

find.F/C chr.F/g �

(
�.X /; if �.X / is even,

�.X /C 1; if �.X / is odd.

Proof of Theorem 1.2 Regard �W G!G as induced by a selfmap f W X !X of a
closed hyperbolic surface. Then rank Fix.�/D rank.F/ for some fixed point class F
of f .

When � is epimorphic, it is an automorphism because the group G is Hopfian. So, up
to homotopy, we can assume f to be a homeomorphism, even to be a standard map of
Theorem T. Replacing ind.F/ with chr.F/ in Corollary T, we see chr.F/� �.X /D
2� rank.G/. If FDX then �D id, while if not, we have chr.F/D 1� rank.F/, hence
rank Fix.�/ < rank.G/.

When � is not epimorphic, f is homotopic to a non-surjective selfmap. Replacing
ind.F/ with chr.F/ in Proposition 4.2, we have 1� rank.F/ D chr.F/ � 1

2
�.X / D

1� 1
2

rank.G/, so that rank Fix.�/� 1
2

rank.G/.
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5 Examples

Theorem 1.1 places restrictions on the possible .chr; ind/ pairs. In Table 1, � stands
for impossible values, � for values controlled by (B), � for uncontrolled ones, and

 for situations where empty fixed point classes persist.

H
HHH

HHchr
ind

1 0 �1 �2 � � � � � � �
2�

C2

2�

C1
2�

2�

�1

1 � 
 � � � � � � � � � � � � �
0 � 
 � � � � � � � � � � � � �
�1 � � � � � � � � � � � � � � �
�2 � � � � � � � � � � � � � � �
::: � � � � : : : � ::: � � � �

� � � � � � � � � � � �

Table 1: Possible values of ind and chr

A natural question is whether all pairs marked with � are realizable. We shall see
below that the answer is “yes” for graphs (hence also for surfaces with boundary). But
for closed orientable surfaces, there are exceptions.

Example 5.1 Let X be the wedge sum of n > 1 circles. Take the common point
of these circles to be the base point. Suppose r and d are integers with 0 � r � n

and 0 � d � 2n� 2r . We shall construct a selfmap f W X ! X which has a fixed
point class F such that chr.F/D 1� r and ind.F/D chr.F/� d . This means all pairs
.chr; ind/ permitted in Table 1 are realizable.

The construction follows. Let 
i be the simple loop along the i th circle. Define f by

f ı 
i D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:


i if i � r;


 2
i if r < i � r C d

2
;


i
1 if i D r C dC1
2
> 1;


i
n if i D r C dC1
2
D 1;

1 if r C dC1
2
< i � n:

We can perturb f slightly on the first r circles so that the base point is the only fixed
point. Clearly it has the desired characteristic and index.
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Now consider a hyperbolic closed surface X . We will try to construct a standard map
(see Section 3) f W X ! X with a fixed point class F such that c D chr.F/ � 1 and
d D chr.F/� ind.F/� 0. The area marked with � in Table 1 is characterized by the
inequality maxf2cC 1; 0g � d � 2c � 2�.X /.

We need some direct consequences of Masur and Smillie [8, Theorem 2] (where 2–
prong punctures are not taken into account). Let Tg denote the orientable closed
surface of genus g � 0, and let Tg;k denote the k –times (k � 0) punctured Tg . They
represent all compact orientable surfaces.

Lemma 5.2 (1) There exists a pseudo-Anosov map on Tg;k (k � 0) with a p–
prong interior singularity if and only if 3�p� 4g�2CkD�2�.Tg;k/�kC2

and .�.Tg;k/; k;p/¤ .�1; 1; 3/; .�2; 0; 5/.

(2) There exists a pseudo-Anosov map on Tg;k (k � 1) such that the total prong
number of the punctures is p if and only if k � p � 4g� 4C 2k D�2�.Tg;k/

and .�.Tg;k/; k;p/¤ .�1; 1; 1/; .�2; 2; 3/; .�3; 1; 5/.

In the following constructions, the pseudo-Anosov maps are assumed to preserve every
prong, and to keep the boundary fixed pointwise.

Example 5.3 (for chr.F/D1 on orientable X ) Suppose X is a hyperbolic orientable
closed surface X . Let 3 � d � �2�.X / C 2. By Lemma 5.2(1), except when
.�.X /; d/D .�2; 5/, there exists a pseudo-Anosov map f on X such that one of its
singularities is d –pronged. This singularity forms a fixed point class F with chr.F/D 1

and chr.F/� ind.F/D d .

So, every entry .chr; ind/ in the first row (chrD 1) of Table 1 is realizable by a pseudo-
Anosov map, except when .�I chr; ind/D .�2I 1;�4/. It is easy to see that this one
fails also for periodic and reducible maps, so it is actually unrealizable.

Example 5.4 (for chr.F/ D 1 on non-orientable X ) A hyperbolic non-orientable
closed surface X can be cut open along a circle � into an orientable surface X 0 with
k punctures, where k D 1 or 2 according as �.X / is odd or even, respectively. Clearly
�.X 0/D �.X /.

Let f 0 be a pseudo-Anosov map on X 0 which has an interior d –prong singularity. Let
f W X !X be the map induced by f 0 . The d –prong singularity forms a fixed point
class F of f with chr.F/D 1 and ind.F/D 1� d .

By Lemma 5.2(1), this construction works if and only if 3 � d � �2�.X /� k C 2

and .�.X /; k; d/¤ .�1; 1; 3/. Hence, in the first row of Table 1, an entry .chr; ind/
is realizable if
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� for �.X /D�1: ind¤�2 and �3;

� for odd �.X /� �3: ind¤ 2�.X /� 1;

� for even �.X /: ind¤ 2�.X / and 2�.X /� 1.

We are unable to decide the realizability of these exceptional entries.

Example 5.5 (for chr.F/� 0) Suppose a closed hyperbolic surface X is cut along
a system of circles � D �1 [ : : :[ �k , k � 1, into two pieces X1 tX2 , both are
k –times punctured surfaces other than the disk, and X2 is orientable. We observe
that when �.X1/D c is given, �.X /� c � 0, the choice of k is limited to the range
1� k � 2�maxfc; �.X /� cg and k � �.X /� c mod 2.

Let f2 be a pseudo-Anosov map on X2 such that the total prong number of the
punctures is d when d � k or k when 0 � d < k . If such an f2 does not exist,
then we take f2 to be the identity map on X2 . Define f to be the standard map
with f jX1 D id, f jX2 D f2 , and with no twist on � if d � k , but with Dehn
twists on k � d components of � if 0 � d < k . Then X1 forms a fixed point class
F with chr.F/ D c and chr.F/ � ind.F/ D d (see Jiang and Guo [6, Lemma 3.6]).
By Lemma 5.2(2), this construction works if and only if 0 � d � 2c � 2�.X / and
.�.X /� c; k; d/¤ .�1; 1; 1/; .�1; 3; 1/; .�1; 3; 2/; .�2; 2; 3/; .�3; 1; 5/.

On a given X , we can try the construction for every k in the range stated above. Then
we see that in the ‘chr< 1’ rows of Table 1, a permitted entry .chr; ind/ is realizable on
X if .�I chr; ind/¤ .�.X /I�.X /C1; �.X //, .�2I 0;�3/, .�3I 0;�5/, .�3I �1;�4/.
For example, .�4I �1;�6/ can be realized for k D 3 and X2 D T1;3 , .�4I �2;�5/

can be realized for k D 4 and X2 D T0;4 .

When X is orientable, for a fixed point class F of a standard map f with .�I chr; ind/D
.�.X /I�.X /C 1; �.X //, F must be an identity piece next to a pseudo-Anosov piece
of Euler characteristic �1. Such a decomposition is ruled out by Lemma 5.2(2). Hence
the entry .�I chr; ind/D .�.X /I�.X /C 1; �.X // is indeed unrealizable.

For the entry .�I chr; ind/D .�2I 0;�3/, X is the double torus, F is a strip joining
pseudo-Anosov pieces. It cuts X either into a 2–punctured torus, or into two 1–
punctured tori. The former case is ruled out by Lemma 5.2(2). The latter case is ruled out
because the puncture on either component must have 2 prongs, but to make ind.F/D�3

the prong numbers should add up to 3. Hence the entry .�I chr; ind/D .�2I 0;�3/ is
also unrealizable.

When X is non-orientable, we are unable to decide the realizability of the exceptional
entries.
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