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The Goodwillie tower for S 1 and Kuhn’s Theorem

MARK BEHRENS

We analyze the homological behavior of the attaching maps in the 2–local Goodwillie
tower of the identity evaluated at S1 . We show that they exhibit the same homological
behavior as the James–Hopf maps used by N Kuhn to prove the 2–primary Whitehead
conjecture. We use this to prove a calculus form of the Whitehead conjecture: the
Whitehead sequence is a contracting homotopy for the Goodwillie tower of S1 at the
prime 2 .

55P65; 55Q40, 55S12

1 Introduction and statement of results

The aim of this paper is to explain the relationship between the Goodwillie tower of
the identity evaluated on S1 and the Whitehead conjecture (proved by N Kuhn [12]).
Such a relationship has been conjectured by Arone, Dwyer, Lesh, Kuhn and Mahowald
(see [5; 4; 7]).

The author has learned that similar theorems to the main theorems of this paper
(Theorem 1.8 and Corollary 1.10) were proved recently by Arone, Dwyer and Lesh [4]
by very different methods. The two proofs were discovered independently and essen-
tially at the same time.

Throughout this paper we freely use the terminology of Goodwillie’s homotopy calculus
of functors [11] and Weiss’s orthogonal calculus [18]. We use the notation:

fPi.F /g D Goodwillie tower of F ;

Di.F /D i–th layer of the Goodwillie tower;

Di.F /D infinite delooping of F (a spectrum valued functor);

@i.F /D i–th Goodwillie derivative of F (a †i–spectrum);

PW
i ; DW

i ; DW
i D the corresponding constructions in Weiss calculus:

When F D Id, we omit it from the notation. We use E_ to denote the Spanier–
Whitehead dual of a spectrum E . We let conn.X / denote the connectivity of a space X .
As usual, we let QX denote the space �1†1X . All homology and cohomology is
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implicitly taken with F2 coefficients. Everything in this paper is implicitly localized at
the prime 2.

Let Spn.S/ denote the n–th symmetric power of the sphere spectrum. There are
natural inclusions Spn.S/ ,! SpnC1.S/, and, by the Dold–Thom theorem, the colimit
is given by

Sp1.S/D lim
�!

Spn.S/'HZ:

Thus the symmetric products of the sphere spectrum may be regarded as giving an
increasing filtration of the integral Eilenberg–Mac Lane spectrum. Nakaoka [15]
showed that (2–locally) the quotients Spn.S/=Spn�1.S/ are nontrivial only when
nD 2k . The nontrivial quotients are therefore given by the spectra

L.k/ WD†�k Sp2k

.S/=Sp2k�1

.S/:

These spectra were studied extensively by Kuhn, Mitchell and Priddy [14], and occur
in the stable splittings of classifying spaces. Applying �� to the symmetric powers
filtration gives rise to an exact couple, and hence a homological type spectral sequence

.1:1/ E1
k;t D �tL.k/) �kCtHZ:

Kuhn’s theorem [12], known as the “Whitehead conjecture,” states that this spectral
sequence collapses at E2 , where it is concentrated on the k D 0 line.

Arone and Mahowald [6] proved that the layers of the (2–local) Goodwillie tower of
the identity functor evaluated on spheres satisfy Di.S

n/' � unless i D 2k . Arone
and Dwyer [3] proved there are equivalences

.1:2/ †kD2k .S1/'†L.k/:

Applying �� to the fiber sequences

�1D2k .S1/! P2k .S1/! P2k�1.S1/

results in an exact couple, giving the Goodwillie spectral sequence for S1 :

.1:3/ E
k;t
1
D �tD2k .S1/) �t .S

1/:

Spectral sequences (1.1) and (1.3) both converge to Z, and, by (1.2), have isomorphic
E1 –terms. They differ in that one is of homological type, and one is of cohomological
type, and thus in particular their d1 –differentials go in opposite directions. Kuhn’s
theorem leads to the following natural question: does the Goodwillie spectral sequence
for S1 also collapse at its E2 –page? More specifically, do the d1 –differentials in each
of the spectral sequences serve as contracting chain homotopies for the E1 –pages of
the other? The aim of this paper is to prove that indeed this is the case.
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To more precisely state the main theorem of this paper, we need to recall exactly what
Kuhn proved in [12]. In his proof of the 2–primary Whitehead conjecture, Kuhn formed
a Kahn–Priddy sequence

.1:4/ S1 // �1†L.0/
oo

ı0

// �1†L.1/
d0oo

ı1

// �1†L.2/
d1oo

ı2

// � � � :
d2oo

The maps dk are the infinite loop space maps induced by the composites

L.kC 1/D†�k�1 Sp2kC1

.S/=Sp2k

.S/
@
�!†�k Sp2k

.S/=Sp2k�1

.S/DL.k/:

The maps dk may be regarded as the attaching maps between consecutive layers of
the symmetric powers filtration on HZ, and induce on �� the d1 –differentials in the
spectral sequence (1.1). To define the maps ık , Kuhn constructed summands Xk of
the suspension spectra †1.S1/^2k

h†ok
2

, and showed that these summands are equivalent
to †L.k/ [12, Corollary 1.7]. In particular, we have retractions

.1:5/ †L.k/
id //

�k ""

†L.k/

†1.S1/^2k

h†ok
2

:

pk

<<

The maps ık in (1.4) are given by the composites

�1†L.k/
�1�k
����!Q.S1/^2k

h†ok
2

JH
�!Q.S1/^2kC1

h†
o.kC1/

2

�1pkC1

������!�1†L.kC 1/:

Here, JH is the James–Hopf map. Kuhn showed that the sum

dkık C ık�1dk�1

is a self-equivalence of �1†L.k/. This amounts to an analysis of the diagram

.1:6/

E�1

��

E0

}}

h0

��

E1

}}

h1

��

S1 �1†L.0/oo

bb

�1†L.1/
d0

oo
zd0

aa

�1†L.2/
d1

oo
zd1

aa

� � �

where the infinite loop spaces Ek fit into fiber sequences

Ek ���!�1†L.k/
zdk�1
���!Ek�1
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and the maps hk are given by the composites

Ek !�1†L.k/
ık
�!�1†L.kC 1/:

To prove the Whitehead conjecture, Kuhn proved the following theorem.

Theorem 1.7 [12] The composites zdk ı hk are equivalences.

Kuhn proved Theorem 1.7 by showing that zdk ı hk is a homology equivalence.

We now turn our attention to the Goodwillie tower of the identity functor. As explained
in [4], precomposing the Goodwillie tower of the identity with the functor

� W V 7! SV

gives the Weiss tower for the functor �: we have natural equivalences of towers of
functors from vector spaces to spaces

fPW
i .�/.V /g ' fPi.Id/.SV /g:

(See [1, Lemma 1.2] and [18, Example 5.7] for the proof of an almost identical result.)
Let

�k W D2k .SV /! BD2kC1.SV /

be the attaching map between consecutive nontrivial layers in the Weiss tower. Arone,
Dwyer and Lesh prove that there exist natural transformations

 k W B
kD2k .SV /! BkC1D2kC1.SV /

�k k D �k :so that

Under the Arone–Dwyer equivalence †L.k/'†kD2k .S1/, we get a delooped calcu-
lus version of the Kahn–Priddy sequence

S1 // D1.S
1/

oo

 0

// BD2.S
1/

d0oo

 1

// B2D4.S
1/

d1oo

 2

// � � � :
d2oo

Our main theorem is the following [4, Conjecture 1.4]:

Theorem 1.8 The sums
dk k C k�1dk�1

are equivalences.

Remark 1.9 Our proof uses no specific properties of the natural transformations  k ,
except for the fact that they are k –fold deloopings of the natural transformations �k .
Therefore Theorem 1.8 holds independently of the choice of the deloopings.
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As the maps  k induced the d1 –differentials in the spectral sequence (1.3) on �� , we
get the following corollary.

Corollary 1.10 The Goodwillie spectral sequence for S1 collapses at the E2 page.

Our proof of the main theorem is similar to that of Kuhn in that we analyze the diagram
of fiber sequences

.1:11/

E�1

��

E0

��

h0
0

��

E1

��

h0
1

��

S1 D1.S
1/oo

__

BD2.S
1/

d0

oo
zd0

__

B2D4.S
1/

d1

oo
zd1

aa

� � �

where the maps h0
k

are given by the composites

Ek ! BkD2k .S1/
 k
��! BkC1D2kC1.S1/:

To prove Theorem 1.8, it suffices to show that the composites zdk ıh0
k

are equivalences.
We prove this by establishing that these composites induce isomorphisms on mod 2

homology. We will do this by endowing H��
1†L.k/ with a weight filtration, and

will prove:

Theorem 1.12 The induced maps

. k/�; .ık/�W E0H�†L.k/!E0H�†L.kC 1/

on the associated graded homology groups with respect to the weight filtration are
equal.

This theorem, together with the observation that the maps dk behave well with respect
to the weight filtration, will allow us to deduce Theorem 1.8.

The homological analysis of the maps  k will be performed by observing that, at least
up to the weight filtration, the homological behavior of the attaching maps between
i –th and 2i –th layers of any functor F from spaces to spaces is essentially dictated
by the homological behavior of the left action of the operad @�.Id/ on the derivatives
@�.F / (such left operadic module structure exists by the work of Arone and Ching [2]
and Ching [9]). The 2–primary homological behavior of this action in the case of the
identity functor, when evaluated on spheres, was determined by the author [7].

This paper is organized as follows. In Section 2 we study functors from spaces to
spaces concentrated in degrees Œ i; 2i �, and relate the attaching maps in their Goodwillie
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tower to the left action of @�.Id/. In Section 3 we recall from [7] the construction
of homology operations xQj which act on the stable homology of the derivatives of
any functor from spaces to spaces, and their relationship to the Arone–Mahowald
computation of the stable homology of the Goodwillie tower of the identity evaluated
on spheres [6]. We also recall some homology calculations of [12]. The main theorems
are proved in Section 4.
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for S1 is the Whitehead conjecture,” sparking the author’s desire to know “why.”
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2 Generalized quadratic functors

For the purposes of this section, let F be an analytic finitary homotopy functor

F W Top�! Top�

for which there exists an integer i � 1 so that the Goodwillie layers Dk.F / are trivial
unless i � k � 2i . We regard such functors as “generalized quadratic functors,” as the
operadic structure of their derivatives bears similarities to the quadratic case of i D 1.
In this section we analyze the relationship between the left action of @�.Id/ on @�.F /
and the attaching maps between layers of the Goodwillie tower of F .

There is only one potentially nontrivial component to the left action of @�.Id/ on
@�.F /: this is the map

.2:1/ �W @2.Id/^ @i.F /^ @i.F /! @2i.F /:

We remind the reader that @2.Id/' S�1 (with trivial †2 action).
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There is a fiber sequence of functors

.2:2/ F.X /! P2i�1.F /.X /
�
�! BD2i.F /.X /:

By [4, Theorem 4.2], the functor P2i�1.F /.X / admits a canonical infinite delooping

P2i�1.F /.X /'�
1P2i�1.F /.X /;

where P2i�1.F / is a spectrum valued functor. The attaching map � has an adjoint

z�W †1�1P2i�1.F /.X /!†D2i.F /.X /:

Viewing z� as a natural transformation of functors Top� ! Sp, there is an induced
natural transformation on 2i –th layers of the Goodwillie towers of these functors:

.2:3/ z�2W D2i.†
1�1P2i�1.F //.X /!†D2i.F /.X /:

The following lemma identifies the domain of z�2 .

Lemma 2.4 There is a natural equivalence

D2i.†
1�1P2i�1.F //.X /'Di.F /.X /

^2
h†2

:

Proof The derivatives of the functor †1�1 are well known to be given by

@i.†
1�1/D S

with trivial †i –action (see, for instance, [13, Example 6.2]). We have (by the chain
rule [2])

@2i.†
1�1P2i�1.F //' .@�.†

1�1/ ı @�.P2i�1F //2i

'†2iC ^
†2o†i

@i.F /
^2:

We therefore have

D2i.†
1�1P2i�1.F //.X /' @2i.†

1�1P2i�1.F //^h†2i
X^2i

' Œ†2iC ^
†2o†i

@i.F /
^2�^h†2i

X^2i

'Di.F /.X /
^2
h†2

:

Lemma 2.4 allows us to regard z�2 as a map

z�2W Di.F /.X /
^2
h†2
!†D2i.F /.X /:

Our main observation is the following.
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Theorem 2.5 The map

†�1z�2W †
�1Di.F /.X /

^2
h†2
!D2i.F /.X /

is homotopic to the composite

†�1Di.F /.X /
^2
h†2
' .@2.Id/^ @i.F /

^2 ^X^2i/h†2o†i

�^1
���! .@2i.F /^X^2i/h†2i

' D2i.F /.X /:

The proof of Theorem 2.5 will occupy the remainder of this section, and will require a
series of supporting lemmas. At the heart of the argument is the following idea: given
the attaching map � , compute the induced left action of @�.Id/ on @�.F /. This will
result in a formula relating z�2 and �.

To compute the left action we use the machinery of Arone and Ching. For a functor
GW Top�! Top� , Arone and Ching [2] show that @�.†1G/ is a left comodule over
the commutative cooperad Comm� , and moreover show that @�.G/ can be recovered
from the cooperadic cobar construction

@�.G/' C.1�;Comm�; @�.†1G//:

The cobar construction is Spanier–Whitehead dual to the bar construction

.2:6/ C.1�;Comm�; @�.†1G//' B.1�;Comm�; @�.†1G//_:

Here, following [2],
@�.†1G/ WD @�.†

1G/_;

and must be interpreted as a symmetric sequence of pro-spectra for a general functor G .
Note that in the right-hand side of (2.6), we have abusively used Comm� to also denote
the commutative operad, as it has the same underlying symmetric sequence as the
commutative cooperad. Ching’s topological model for the bar construction [9]

B.1�;Comm�; @�.†1G//

carries a left coaction by the cooperad

B.1�;Comm�; 1�/' @�.Id/:

The action of @�.Id/ induced on the dual recovers the left action of @�.Id/ on @�.G/.
The proof of Theorem 2.5 will follow from an analysis of how this process plays out,
when applied to our functor F .
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The first step to the approach outlined above is to compute @�.†1F /. The strategy
is to use the fiber sequence (2.2). Note that as the functors P2i�1.F / and BD2i.F /

factor through the category of spectra, the derivatives of †1 of these functors are
easily deduced from the derivatives of †1�1 by applying the chain rule [2].

Since F is analytic, for X sufficiently highly connected there is a natural equivalence

†1F.X /' hTot†1.BD2i.F /.X /
��
�P2i�1.F /.X //.2:7/

T �.X / WD BD2i.F /.X /
��
�P2i�1.F /.X /where

is the Rector cosimplicial model [17] for the homotopy fiber (2.2)

P2i�1.F /.X /
//
// BD2i.F /.X /�P2i�1.F /.X /oo

//
//
//
BD2i.F /.X /

�2�P2i�1.F /.X /���oo
oo

and hTot denotes homotopy totalization.

In preparation for our arguments, we briefly discuss some general properties of the
homotopy Tot–tower. For a cosimplicial spectrum Z� , this tower takes the form

h Tot0 Z� h Tot1 Z� h Tot2 Z� � � � :

Let fibn Z� denote the homotopy fiber

fibn Z�! h Totn Z�! h Totn�1 Z�:

There are homotopy fiber sequences

fibn Z�!Zn
! holim

Œn��Œk�
k<n

Zk :

Since a surjection Œn�� Œk� is uniquely determined by specifying the subset of arrows of

Œn�D .0! 1! 2! � � � ! n/

which go to identity arrows in Œk�, the fiber fibn Z� is computed as the total homotopy
fiber of an n–cubical diagram

.2:8/ fibn Z� ' h tfiberfZn�jS j
gS�n;

where the maps in the n–cubical diagram are given by codegeneracy maps of Z� .

Since F was assumed to be analytic, there exists � , q such that on sufficiently highly
connected spaces X the natural transformations

F.X /! Pk.F /.X /

are .q�k.��1/C.kC1/ conn.X //–connected. We will need the following connectivity
estimate.
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Lemma 2.9 On sufficiently highly connected spaces X , the map

†1F.X /! h Totn†1T �.X /

is ..nC1/.q�.2i�1/.��1//C1C2i.nC1/ conn.X //–connected.

Proof Using the splitting

†1.Y �Y 0/'†1Y _†1Y 0 _†1Y ^Y 0

for Y;Y 0 2 Top� , one inductively computes from (2.8) that

fibn†1T �.X /'†1BD2i.F /.X /
^n
^P2i�1.F /.X /C :

For conn.X /� � the map

P2i.F /.X /! P2i�1.F /.X /

is .q�.2i�1/.��1/C2i � conn.X //–connected. This means that the fiber D2i.F /.X /

is .q�.2i�1/.��1/C2i � conn.X /�1/–connected, and the space BD2i.F /.X / is
.q�.2i�1/.��1/C2i � conn.X //–connected. Let X be highly enough connected to
make this number positive. Then fibn†1T � is .n.q�.2i�1/.��1//C2in� conn.X //–
connected. We deduce that the map

†1F.X /' h Tot†1T �.X /! h Totn†1T �.X /

is ..nC1/.q�.2i�1/.��1//C1C2i.nC1/ conn.X //–connected.

We are now able to identify @�.†1F / for � � 2i .

Lemma 2.10 There are equivalences

@k.†
1F /' @k.F /; for i � k < 2i ,

@2i.†
1F /' fiber

�
†2iC ^

†2o†i

@i.F /
^2 @2i .z�2/
�����!†@2i.F /

�
:

Proof Recall from the proof of Lemma 2.4 that we used the chain rule to deduce

@2i.†
1P2i�1.F //'†2iC ^

†2o†i

@i.F /
^2:

The same argument shows that

@k.†
1P2i�1.F //' @k.F / for i � k < 2i ;

@2i.†
1BD2i.F //'†@2i.F /:
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By Lemma 2.9, the functors †1F and h Tot0†1T � agree to order 2i � 1 and the
functors †1F and h Tot1†1T � agree to order 2i . It follows [11] that

@k.†
1F /' h Tot0 @k.†

1T �/; k < 2i;

@2i.†
1F /' h Tot1 @2i.†

1T �/:

This immediately implies the first equivalence of the lemma.

To prove the second equivalence, we must compute h Tot1 @2i.†
1T �/. The @2i

computations above imply that

.2:11/ @2i.†
1T s/'†@2i.F /_ � � � _†@2i.F /„ ƒ‚ …

s

_†2iC ^
†2o†i

@i.F /
^2:

We claim that under the equivalences (2.11), the last coface map in the cosimplicial
†2i –spectrum @2i.†

1T �/ from level 0 to level 1 is given by

d1
D @2i.z�2/� 1;

and the codegeneracy map from level 1 to level 0 is the map which collapses out the
wedge summand †@2i.F /. The second equivalence of the lemma follows immediately
from this claim.

To establish the claim concerning the cosimplicial structure maps above, observe that
the d1 map from level 0 to level 1 in the cosimplicial functor †1T �.X / is the
composite

ıW †1P2i�1.F /.X /
†1�
�����!†1 .P2i�1.F /.X /�P2i�1.F /.X //

†1��1
�����!†1 .BD2i.F /.X /�P2i�1.F /.X // :

The induced map @2i.ı/ is determined by the composites with the projections onto the
wedge summands of

@2i.†
1.BD2i.F /�P2i�1.F //'†@2i.F /_†2iC ^

†2o†i

@i.F /
^2
h†2

:

Composing ı with the projection onto the second factor gives the identity, and this
implies that the second component of @2i.ı/ is the identity. Composing ı with the
projection onto the first factor is the natural transformation

†1�W †1P2i�1.F /.X /!†1BD2i.F /.X /:

Using the fact that the adjoint z� is the composite

†1�1P2i�1.F /.X /
†1�
���!†1�1†D2i.F /.X /

�
�!†D2i.F /.X /;

Algebraic & Geometric Topology, Volume 11 (2011)



2464 Mark Behrens

together with the fact that � is a @2i –equivalence, we deduce that the first component of
@2i.ı/ is @2i.z�2/, as desired. The claim concerning the codegeneracy of @2i.†

1T �/

follows immediately from the fact that the codegeneracy from level 1 to level 0 of the
cosimplicial functor T �.X / projects away the first component.

The last equivalence of Lemma 2.10 gives a fiber sequence of †2i –spectra:

.2:12/ @2i.F /
�
�! @2i.†

1F /
�
�!†2iC ^

†2o†i

@i.F /
^2 @2i .z�2/
�����!†@2i.F /:

Our next task is to understand the left coaction of Comm� on @�.†1F / in low degrees
in terms of the attaching map � .

Lemma 2.13 Under the equivalence @i.F /' @i.†
1F /, the map � of (2.12) agrees

with the left Comm�–comodule structure map

@2i.†
1F /!†2iC ^

†2o†i

Comm2 ^@i.†
1F /^2:

Proof The left coaction of Comm� on

@�.†
1P2i�1.F //D @�.†

1�1P2i�1.F //

is easily deduced from the chain rule [2], together with the fact that under the equivalence

@�.†
1�1/' Comm�;

the left coaction of Comm� on @�.†1�1/ is given by the left coaction of Comm�
on itself. In particular, the coaction map corresponding to the partition 2i D i C i is
given by the composite (of equivalences)

@2i.†
1P2i�1.F //

'
�!†2iC ^

†2o†i

@i.F /
^2 '
�!†2iC ^

†2o†i

@i.†
1P2i�1.F //

^2:

The natural transformation of functors

F ! P2i�1.F /

induces a map of left Comm�–comodules

@�.†
1F /! @�.†

1P2i�1.F //:
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In particular, there is a commutative diagram

@2i.†
1F /

� //

��

†2iC ^
†2o†i

@i.F /
^2

D

��
†2iC ^

†2o†i

@i.†
1F /^2

'
// †2iC ^

†2o†i

@i.F /
^2

where the vertical arrows are Comm�–comodule structure maps. We conclude that the
map � in (2.12) encodes the primary Comm�–comodule structure map, as desired.

Proof of Theorem 2.5 By [2], we have

.2:14/ @�.F /' C.1�;Comm�; @�.†1F //:

In particular, we have

@2i.F /' C.1�;Comm�; @�.†1F //2i

' fiber
�
@2i.†

1F /
�
�!†2iC ^

†2o†i

@i.F /
^2
�
:

This equivalence was already recorded in the fiber sequence (2.12), but now it implicitly
records more structure, as (2.14) is an equivalence of left @�.Id/–modules. Indeed,
we now compute from (2.14) the @�.Id/–module structure of @�.F / in terms of the
attaching map � .

To accomplish this, we work with dual derivatives, and then dualize. We have

@�F D B.1�;Comm�; @�.†1F //:

Using the Ching model for the bar construction [9], we have a pushout

@I ^†2iC ^
†2o†i

@i.F / � � //

�_

��

I ^†2iC ^
†2o†i

@i.F /

��
@I ^ @2i.†1F / // B.1�;Comm�; @�.†1F //2i
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and the @�.Id/–comodule structure map is explicitly given by the map of pushouts:

@I ^†2iC ^
†2o†i

@i.F / � � //

�_

��

D

%%

I ^†2iC ^
†2o†i

@i.F /

��

D

&&
@I ^†2iC ^

†2o†i

@i.F / � � //

��

I ^†2iC ^
†2o†i

@i.F /

��

@I ^ @2i.†1F / //

%%

@2i.F /

''

� // †2iC ^
†2o†i

@2.Id/^ @i.F /^2

In particular, we deduce that the coaction map

�_W @2i.F /!†2iC ^
†2o†i

@2.Id/^ @i.F /^2

is precisely the connecting morphism .†�1@2i.z�2//
_ in the cofiber sequence dual to

the fiber sequence (2.12):

†2iC ^
†2o†i

@i.F /^2 �_

��!@2i.†1F /
�_

��!@2i.F /
.†�1@2i .z�2//

_

����������!†
�
†2iC ^

†2o†i

@i.F /^2
�
:

Dualizing, we deduce that
�D†�1@2i.z�2/

and the theorem follows.

3 Homology of the layers

In this section we briefly recall some facts about the homology of the layers of the
Goodwillie tower of the identity evaluated on spheres. This computation is due to
Arone and Mahowald [6], but we will need to take advantage of the interpretation
presented in [7].

Let F W Top� ! Top� be a reduced finitary homotopy functor. In [7], the author
introduced operations

xQj
W H�.Di.F /.X //!H�Cj�1.D2i.F /.X //:
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These operations were defined as follows: the left action of @�.Id/ on @�.F / yields a
map

�W †�1@i.F /
^2
' @2.Id/^ @i.F /

^2
! @2i.F /:

This map induces a map

�0W †�1Di.F /.X /
^2
h†2
!D2i.F /.X /:

The operations are given by

.3:1/ xQj .x/ WD �0��
�1Qj x

for x 2H�.Di.F /.X //.

In [7], the Arone–Mahowald computation is interpreted in terms of these operations,
and it is shown that

H�.D2k .Sn//D F2

˚
xQi1 � � � xQik �n W is � 2isC1C 1; ik � n

	
:

Recall that H�.S
1/^2k

h†ok
2

contains a direct summand

zR1.k/D F2

˚
Qi1 o � � � oQik �1 W is � isC1C � � �C ik C 1

	
:

In [12], certain idempotents ek are constructed to act on zR1.k/ (in [12], these idem-
potents are denoted Dk�1 , but we use the notation ek in this paper so as to not
create confusion with the notation used for the layers of the Goodwillie tower). These
idempotents split off the summand H�.†L.k//. Kuhn shows that

H�.†L.k//D F2

˚
ek.Q

i1 o � � � oQik �1/ W is � 2isC1C 1; ik � 1
	
:

Lemma 3.2 Under the equivalence †L.k/'†kD2k .S1/ of (1.2), we have a bijection
between the two bases

ek.Q
i1 o � � � oQik �1/$ �k xQi1 � � � xQik �1:

Proof In Section 1.4 of [7] an algebra xRn of operations xQj is defined, with relations

(1) xQr xQs
D

X
t

��
s� r C t

s� t

�
C

�
s� r C t

2t � r

��
xQrCs�t xQt ,

(2) xQj1 � � � xQjk D 0 if j1 < j2C � � �C jk C n .

Here, and throughout this section, mod 2 binomial coefficients
�

a
b

�
2 F2 are defined

for all a; b 2 Z by �
a

b

�
D coefficient of tb in .1C t/a .
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Let xRn.k/ be the summand additively generated by length k sequences of operations.
It is shown in [7] that H�†

kD2k .S1/ is precisely the quotient of zR1.k/ by relation (1)
above, and therefore

H�D2k .S1/D xR1.k/f�1g:

Kuhn’s idempotents ek are defined in [12] as certain iterates of idempotents

TsW
zR1!

zR1; 1� s � k � 1;

where

Ts.Q
i1 o � � � oQik /DX

t

��
isC1� isC t

isC1� t

�
C

�
isC1� isC t

2t � is

��
Qi1 o � � � o xQisCisC1�t

oQt
o � � � oQik :

Let

.3:3/ �k W
zR1.k/! xR1.k/

be the canonical surjection. Clearly �kTs D �k , and therefore �kek D �k . In particular

�kekQi1 o � � � oQik D xQi1 � � � xQik :

We remark that the above lemma, and the homomorphisms used in its proof, allow us
to easily describe the effect on homology

.�k/�W H�†
kD2k .S1/!H�.S

1/^2k

h†ok
2
;

.pk/�W H�.S
1/^2k

h†ok
2
!H�†

kD2k .S1/

of the splitting maps (1.5) in terms of the xQ–basis. Namely, we have

.�k/��
k xQi1 � � � xQik �1 D ek.Q

i1 o � � � oQik �1/;.3:4/

.pk/�Q
i1 o � � � oQik �1 D �

k xQi1 � � � xQik �1:.3:5/

Since (1.2) and (1.5) give the spectrum †kD2k .S1/ as a summand of the suspen-
sion spectrum †1.S1/^2k

h†ok
2

, we can explicitly describe the homology of its zeroth
space [10]:

H�.B
kD2k .S1//D F

�
F2

˚
�k xQi1 � � � xQik �1 W is � 2isC1C 1; ik � 1

	�
:

Here, F is the functor

F W graded F2 –vector spaces! allowable R–algebras
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which associates to a graded F2 –vector space V the free allowable algebra over the
Dyer–Lashof algebra.

We endow H�.B
kD2k .S1// with a (decreasing) weight filtration by declaring that

w.x/D 2k for x 2H�†
kD2k .S1/;

w.Qix/D 2 �w.x/;

w.x �y/D w.x/Cw.y/:

This weight filtration is related to Goodwillie calculus in the following manner. As
indicated in the proof of Lemma 2.4, the functor †1�1 has derivatives

@i.†
1�1/D S

with trivial †i –action. For connected spectra E , the Goodwillie tower Pi.†
1�1/.E/

converges, giving a spectral sequence

.3:6/ E
i;�
1
DH�.E

^i
h†i

/)H�.�
1E/:

In [13, Example 6.1], it is explained that the Goodwillie tower for †1�1 splits when
evaluated on connected suspension spectra. In these cases the spectral sequence (3.6)
degenerates. By naturality, this also holds for summands of connected suspension
spectra. The weight filtration is simply an appropriate scaling of the filtration in this
spectral sequence.

The induced morphisms

H�B
kD2k .S1/

.ık/�

// H�B
kC1D2kC1.S1/

.dk/�oo

were computed in [12]: we end this section be recalling these explicit descriptions.

Suppose that Qj1 � � �Qj`�kC1 xQi1 � � � xQikC1 �1

is an algebra generator of H�B
kC1D2kC1.S1/. Writing

ekC1Qi1 o � � � oQikC1 D

X
Qi0

1 o � � � oQi0
kC1 ;

we have

.dk/�Q
j1 � � �Qj`�kC1 xQi1 � � � xQikC1 �1 D

X
Qj1 � � �Qj`Qi0

1�k xQi0
2 � � � xQi0

kC1 :

Furthermore, as dk is an infinite loop map, .dk/� is a map of algebras. We see that
.dk/� preserves the weight filtration. In fact, .dk/� is isomorphic to its own associated
graded (with respect to the monomial basis).

Suppose that Qj1 � � �Qj`�k xQi1 � � � xQik �1
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is an algebra generator of H�B
kD2k .S1/. Then we have

.ık/�Q
j1 � � �Qj`�k xQi1 � � � xQik �1 D

X
s

Qj1 � � � xQjs � � �Qj`�k xQi1 � � � xQik �1:

Here, we move the xQi past the Qj ’s using the mixed Adem relation

xQr Qs
D

X
t

��
s� r C t

s� t

�
C

�
s� r C t

2t � r

��
QrCs�t xQt :

In particular, .ık/� preserves the weight filtration on algebra generators. While the
map .ık/� is not a map of algebras, Kuhn shows that its associated graded with respect
to the weight filtration is a map of algebras [12, Proposition 2.7].

4 Homological behavior of  k

In this section we will prove Theorem 1.12, and then explain how it implies Theorem 1.8.

The map ık is given by the composite

.4:1/ �1†kD2k .S1/
JH
�!�1.†kD2k .S1//^2

h†2

�1˛k
����!�1†kC1D2kC1.S1/

where ˛k is the composite (see (1.2) and (1.5))

.†kD2k .S1//^2
h†2

.�k/
^2
h†2

�����!†1.S1/^2kC1

h†okC1
2

pkC1

����!†kC1D2kC1.S1/

and the James–Hopf map JH is defined by the splitting of †1�1†kD2k .S1/ induced
by the retract of the Goodwillie towers:

Pi.†
1�1/.†kD2k .S1//

.�k/� ))

id // Pi.†
1�1/.†kD2k .S1//

Pi.†
1�1/.†1.S1/^2k

h†ok
2

/

.pk/�

55

Consider the natural transformation of functors from vector spaces to spectra given by
the adjoint of  k :

z k W †
1�1†kD2k .SV /!†kC1D2kC1.SV /:

On the level of the 2kC1–st layers of the corresponding Weiss towers, z k induces a map

Œz k �2W .†
kD2k .SV //^2

h†2
'DW

2kC1.†
1�1†kD2k ı�/.V /!†kC1D2kC1.SV /:

The proof of Theorem 1.12 will rest on the following two lemmas.
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Lemma 4.2 The natural transformation  k , when evaluated on S1 , admits a factor-
ization

�1†kD2k .S1/
JH
�!�1.†kD2k .S1//^2

h†2

�1Œz k �2
������!�1†kC1D2kC1.S1/:

Proof of Lemma 4.2 Since the functor †kC1D2kC1.SV / is of degree 2kC1 in V ,
the adjoint z k factors as

†1�1†kD2k .SV /! PW
2kC1.†

1�1†kD2k ı�/.V /
�k
�!†kC1D2kC1.SV /:

Specializing to the case of V DR, and using the splitting

PW
2kC1.†

1�1†kD2k ı�/.R/' P2.†
1�1/.†kD2k .S1//

'†kD2k .S1/_ .†kD2k .S1//^2
h†2

;

we see that in this case �k may be decomposed as

�k D Œz k �1 _ Œz k �2:

Using [16, Corollary 5.4], we see that

Œ†kD2k .S1/; †kC1D2kC1.S1/�Š ŒL.k/;L.kC 1/�D 0:

Therefore Œz k �1 ' �, and the lemma follows.

Lemma 4.3 The induced maps

.˛k/�; .Œz k �2/�W H�.†
kD2k .S1//^2

h†2
!H�†

kC1D2kC1.S1/

are equal.

Proof of Lemma 4.3 The map

.˛k/�W H�.†
kD2k .S1//^2

h†2
!H�†

kC1D2kC1.S1/

can be computed using (3.4), (3.5), and the relation �kTs D �k established in the proof
of Lemma 3.2. One finds that .˛k/� is given by

.˛k/�Q
j�k xQi1 � � � xQik �1 D �

kC1 xQj xQi1 � � � xQik �1:

We just need to show that the same holds for Œz k �2 .
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Since �k D�
k k , the evaluation maps †k�k ! Id allow one to fit the adjoints z�k ,

z k of these natural transformations into the commutative diagram

†k†1�1D2k .SV /
†k z�k //

Ek

��

†kC1D2kC1.SV /

D

��

†1�1†kD2k .SV /
z k

// †kC1D2kC1.SV / :

On the level of 2kC1 –st Weiss layers, evaluated on V DR, we get a diagram

†k.D2k .S1//^2
h†2

†k Œz�k �2//

Ek

��

†kC1D2kC1.S1/

D

��
.†kD2k .S1//^2

h†2 Œz �2

// †kC1D2kC1.S1/

The map
.Ek/�W H�†

k.D2k .S1//^2
h†2
!H�.†

kD2k .S1//^2
h†2

is surjective, since Qi –operations commute with .Ek/� (see [8, Lemma II.5.6], for
example). Therefore, it suffices to compute

.Œz�k �2/�W H�.D2k .S1//^2
h†2
!H�†D2kC1.S1/:

We compute this map using the technology of Section 2.

Let P2k ;2kC1.X / be the generalized quadratic functor defined by the fiber sequence

P2k ;2kC1.X /! P2kC1.X /! P2k�1.X /:

Then, as explained in Section 2, there is a fiber sequence

P2k ;2kC1.X /!�1P2k ;2kC1�1.X /
�k
��!�1†D2kC1.X /:

Here we have purposefully abused notation, as this new attaching map �k agrees with
the old �k when X is a sphere. Associated to the adjoint of �k is a transformation

Œz�k �2W D2k .X /^2
h†2
!†D2kC1.X /

which reduces to the previously defined Œz�k �2 when X is a sphere. Theorem 2.5
implies that †�1Œz�k �2 is given by the map

†�1D2k .X /^2
h†2
!D2kC1.X /
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induced by the left action of @�.Id/. Letting X D S1 , and using (3.1), we deduce that

.Œz�k �2/�Q
j xQi1 � � � xQik �1 D � xQ

j xQi1 � � � xQik :

We therefore deduce that

.Œz k �2/�Q
j�k xQi1 � � � xQik �1 D �

kC1 xQj xQi1 � � � xQik �1;

and the lemma follows.

Using the above two lemmas, we may now prove Theorem 1.12 and deduce Theorem 1.8.

Proof of Theorem 1.12 Endow

H��
1.†kD2k .S1//^2

h†2
D FH�.†

kD2k .S1//^2
h†2

with a weight filtration by defining

w.x/D 2kC1 for x 2H�.†
kD2k .S1//^2

h†2
;

w.Qix/D 2 �w.x/;

w.x �y/D w.x/Cw.y/:

Then, by Propositions 2.5 and 2.7 of [12], the map

JH�W H��1†kD2k .S1/!H��
1.†kD2k .S1//^2

h†2

preserves the weight filtration. The maps of the (collapsing) spectral sequences (3.6)
induced by ˛k and Œz k �2 imply that the maps

.�1˛k/�; .�
1Œz k �2/�W H��

1.†kD2k .S1//^2
h†2
!H��

1†kC1D2kC1.S1/

both preserve the weight filtration. Lemma 4.3 implies that on the level of associated
graded groups, the maps E0.�

1˛k/� and E0.�
1Œz k �2/� are equal. It follows from

(4.1) and Lemma 4.3 that

E0.ık/� DE0. k/�W E0H�B
kD2k .S1/!E0H�B

kC1D2kC1.S1/

as desired.

Remark 4.4 The referee points out that the fact that the map JH� preserves the weight
filtration can also be easily deduced from calculus: take the induced map of Goodwillie
towers on the natural transformation of functors

†1 JHW †1Q.�/!†1Q.�/^2
h†2

from spaces to spectra, and apply homology.
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Proof of Theorem 1.8 Referring to Diagram (1.11), it is shown in [12] that

H�.Ek/D Im.dk/� �H�B
kD2k .S1/:

The weight filtration on H�B
kD2k .S1/ therefore induces a weight filtration on H�Ek .

It follows from Theorem 1.12 that

E0.h
0
k/� DE0.hk/�W E0H�Ek !E0H�B

kC1D2kC1.S1/:

Kuhn proved Theorem 1.7 by showing that

E0. zdk/� ıE0.hk/D IdW E0H�Ek !E0H�Ek :

We deduce that

E0. zdk/� ıE0.h
0
k/D IdW E0H�Ek !E0H�Ek

and thus zdk ı h0
k

is a self-equivalence of Ek . Consider the induced splittings

BkD2k .S1/'Ek�1 �Ek :

With respect to these splittings, dk takes “matrix form”

dk D

�
0 0

1 0

�
and there exist self-equivalences fk W Ek !Ek so that

 k D

�
� fk

� 0

�
:

We deduce that

dk k C k�1dk�1 D

�
fk�1 0

� fk

�
and in particular, dk k C k�1dk�1 is an equivalence.
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