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Real homotopy theory of semi-algebraic sets
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We complete the details of a theory outlined by Kontsevich and Soibelman that
associates to a semi-algebraic set a certain graded commutative differential algebra
of “semi-algebraic differential forms” in a functorial way. This algebra encodes the
real homotopy type of the semi-algebraic set in the spirit of the de Rham algebra of
differential forms on a smooth manifold. Its development is needed for Kontsevich’s
proof of the formality of the little cubes operad.
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1 Introduction

We start with a brief review of rational homotopy theory whose beginnings go back to
Sullivan [24] and whose full development can be found in Bousfield and Gugenheim [2]
and Félix, Halperin and Thomas [7]. To any topological space X , one can associate in
a functorial way a certain commutative differential graded algebra (or CDGA for short)
APL.X / with coefficients in Q. The main feature of this algebra is that if X is nilpotent
(eg, simply connected) with finite Betti numbers, then any CDGA .A; d/, where d is
the differential, that is quasi-isomorphic to APL.X / contains all the information about
the rational homotopy type of X . For example, an analog of the de Rham theorem
implies that the rational singular cohomology algebra of X is given by the homology
of .A; d/, ie H�.X IQ/ŠH.A; d/. Another procedure also recovers ��.X /˝Q, the
rational homotopy groups of X , from .A; d/ [24].

Sullivan’s construction was inspired by de Rham theory which associates to a smooth
manifold M a commutative differential graded algebra of smooth differential forms
��C1.M / with coefficients in R. In fact, the de Rham and Sullivan constructions are
related because ��C1.M / is quasi-isomorphic to APL.M IR/ WDAPL.M /˝Q R. One
loses some information about the rational homotopy type of M after tensoring with R
but what is left (the “real homotopy type”) is still valuable. For example, one can still
recover the real singular cohomology (this is the classical de Rham’s theorem) or the
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dimension of the rational homotopy groups. In some applications, the de Rham CDGA
of smooth forms is even more manageable than APL.M IR/ because it is closer to
the geometry of the manifold. For instance, a variation of this approach is used to
prove that compact Kähler manifolds are formal in Deligne, Griffiths, Morgan and
Sullivan [4].

The goal of the present paper is to supply the details of a theory sketched by Kontse-
vich and Soibelman in [19, Appendix 8] which produces an analog of the de Rham
differential algebra for semi-algebraic sets (subsets of Rn defined by finitely many
polynomial equations, inequalities and boolean operations). More precisely, following
their approach, we will construct a functor

��PAW SemiAlg �! CDGA

X 7�!��PA.X /

where SemiAlg is the category of semi-algebraic sets and ��PA.X / is the CDGA with
real coefficients of so-called PA forms on the semi-algebraic set X . Here “PA” stands
for “piecewise semi-algebraic” which is the terminology coined by Kontsevich and
Soibelman for describing a wider class of spaces than we will consider in this paper;
nevertheless, we will retain the “PA” notation for the benefit of ease of translation
between this paper and the Kontsevich–Soibelman one. Our main result is Theorem 6.1
which we restate here.

Theorem 1.1 For X a compact semi-algebraic set, ��PA.X / and APL.X IR/ are
connected by a zigzag of natural transformations of CDGAs that induce isomorphisms
on homology.

This in particular implies that any CDGA quasi-isomorphic to ��PA.X / contains all
the information about the real homotopy type of a compact semi-algebraic set X .

Our main motivation for supplying the details of the proof of this theorem and various
results related to it is that it is an essential ingredient in Kontsevich’s proof of the
formality of the little cubes operad in [18, Section 3]. Details of this formality proof
will be given by the second and fourth authors in [20].

1.1 Outline of the paper

We build on [19, Appendix 8], which gives a good first idea of the theory. The roadmap
of the present paper is as follows.

In Section 2, we review semi-algebraic sets and their stratifications; some PL topol-
ogy and the semi-algebraic Hauptvermutung; and the notion of a current which is a
convenient alternative to a singular chain in Rn .
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In Section 3, we define semi-algebraic chains in terms of currents (this corresponds to
what Kontsevich and Soibelman call chains in [19]). Briefly, a k –chain  2 Ck.X /

in a semi-algebraic set X � Rn is represented by a linear combination of bounded
semi-algebraic oriented smooth k –dimensional submanifolds Vi in Rn whose closure
is contained in X . By a remarkable property of semi-algebraic sets, the k –volume
of the Vi is finite. Any two such linear combinations

P
niJViK and

P
n0j JV 0j K are

declared to be equal if, for any smooth form with compact support in Rn ,X
ni

ˆ
Vi

! D
X

n0j

ˆ
V 0
j

!:

In other words, two chains are equal if they are equal as currents. This defines a chain
complex C�.X / whose boundary @ is the classical boundary of currents. In order to
prove that @.Ck.X //�Ck�1.X / and that a semi-algebraic map f W X ! Y induces a
chain map, we need to establish a generalization of Stokes’ Theorem to semi-algebraic
manifolds, which is Theorem 3.5. In this section, we also construct a natural cross
product �W C�.X /˝C�.Y /! C�.X �Y /.

In Section 4, we develop a suitable notion of convergence for sequences of chains. This
will be important for showing that some cochains are determined by their value on a
dense subset, ie at generic points.

In Section 5, we build the cochain complex of PA forms. We begin this process in
Section 5.1 by defining the cochain complex C�.X / with coefficients in R as the
dual of C�.X /. The CDGA of PA forms that we are after will be a subcomplex
��PA.X / � C�.X /. Along the way, we first define a subcomplex of minimal forms
��min.X / � C�.X / in Section 5.2 and show that it is equipped with a graded com-
mutative cross product. The key property necessary for the proof of the existence of
that product is the fact that a minimal form is smooth at a generic point, which is the
content of Proposition 5.7.

The problem with ��min.X / is that it does not satisfy the de Rham isomorphism. We
thus need to extend this algebra in order to have the right homotopical properties. For
this, we first define in Section 5.3 a notion of strongly continuous family of chains
which allows us to construct the desired cochain complex of PA forms ��PA.X / in
Section 5.4, where we also exhibit an algebra structure on ��PA.X / (the proof turns
out to be more involved than for minimal forms).

In Section 6, we prove Theorem 1.1. The proof mainly follows the scheme of the analog
result for the de Rham algebra of smooth manifolds. The main difference is that our
proof of the Poincaré Lemma is more complicated and it relies on the semi-algebraic
Hauptvermutung.
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In Section 7, we show that the weak equivalence established in the previous section are
monoidal, and we prove other monoidal equivalences. This is useful in applications to
operads, which is our main motivation.

In Section 8, we study integration along the fiber for semi-algebraic bundles whose
fibers are compact oriented manifolds.

In Section 9, we discuss some differences between this paper and [19, Appendix 8]
and explain why we were unable to prove some of the claims made there.
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2 Background

2.1 Review of semi-algebraic sets and stratifications

A short summary of semi-algebraic sets with definitions and most of the properties
that we will need can be found in Hardt [12, Section 1] and a complete reference is
Bochnak, Coste and Roy [1]. Briefly, a subset X of Rm is semi-algebraic if it is a finite
union of finite intersections of solution sets of polynomial equations and inequalities. A
semi-algebraic map is a continuous map of semi-algebraic sets X �Rm and Y �Rn

whose graph is a semi-algebraic set in Rm �Rn . By a semi-algebraic function we
will mean a semi-algebraic map with values in R. Note that in this paper we always
assume that semi-algebraic maps and functions are continuous. Semi-algebraic sets are
clearly stable under taking finite intersections, finite unions, and complements. Also,
given a semi-algebraic set X , its closure xX and its interior int.X / are semi-algebraic.
The same is true for the image f .X / or the preimage f �1.X / under a semi-algebraic
map f [1, page 23].

Definition 2.1 A semi-algebraic manifold of dimension k is a semi-algebraic set such
that each point has a semi-algebraic neighborhood semi-algebraically homeomorphic
to Rk or to RC �Rk�1 .
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Clearly a semi-algebraic manifold is a topological manifold with boundary, that is,
a semi-algebraic manifold of dimension k � 1. We can therefore talk about the
orientability and the orientation of a semi-algebraic manifold as well as the induced
orientation on the boundary.

We will also consider smooth submanifolds of Rn , always without boundary except
when stated otherwise. If X is a semi-algebraic set in Rn , by a semi-algebraic smooth
submanifold in X we mean a smooth submanifold of Rn that is a semi-algebraic subset
of X .

Definition 2.2 A semi-algebraic set X �RN is called bounded if it is contained in a
ball of finite radius.

A fundamental tool in the theory of semi-algebraic sets we will need is the existence of
certain type of finite partitions into smooth submanifolds called stratifications. By a
smooth stratification of a subset X of Rn , we mean a finite partition S of X such that
each S 2S is a connected smooth submanifold and its relative closure X\ xS is a union
of elements of S , one being S and the others being of dimension < dim S . Here an
element of S is called a stratum, and S is called a semi-algebraic stratification if each
of its strata is semi-algebraic. Semi-algebraic sets and mappings admit smooth semi-
algebraic stratifications. More precisely, we have the following [1, Proposition 9.1.8]:

Proposition 2.3 Given a semi-algebraic set X � Rm and a semi algebraic map
f W X ! Rn there exists a stratification S of X such that each stratum S is a semi-
algebraic smooth submanifold, the restriction f jS is a smooth map of constant rank,
and ff .S/ W S 2 Sg is a stratification of f .X /.

We will call S of Proposition 2.3 a smooth semi-algebraic stratification of X with
respect to f . Given a finite family A of semi-algebraic subsets of a semi-algebraic
set X (for example A may itself be a stratification), we say that the stratification S is
a refinement of A if each element of A is a union of strata in S . The above smooth
stratification of X relative to f can be chosen to be a refinement of any given finite
family A of semi-algebraic subsets of X .

There is a larger class of subanalytical sets introduced by Hironaka in [14] (see also
Hardt [10]) which he proved are also smoothly stratifiable.

If T � RN is smoothly stratifiable, the local dimension of T at x 2 T , denoted
by dimx.T /, is the highest dimension of a smooth submanifold M � T such that
x 2 SM . The dimension of T is dim.T /D supx2T dimx T . If T �X is an inclusion
of smoothly stratifiable sets in RN , we say that T is of codimension (at least) 1 in X
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if, for each x 2 T , dimx.T / < dimx.X /. For a semi-algebraic set X and a map
f W X ! Y , dim. xX nX / < dim X [1, Theorem 2.8.12] and dimf .X / � dim X [1,
Section 2].

For k � 0, any subset Y of Rn has a k –dimensional Hausdorff (outer) measure,
Hk.Y / 2 Œ0;1�, defined for example in [6, 2.10.2]. In particular, the k –dimensional
Hausdorff measure of a k –dimensional smooth submanifold of Rn is its usual k –
dimensional volume with respect to the Riemannian metric induced from Rn . For a
smoothly stratifiable set X �RN , dim.X / < k if and only if Hk.X /D 0. For us, the
key property will be that bounded semi-algebraic sets have finite volume.

Theorem 2.4 If X is a bounded semi-algebraic set of dimension � k then its Haus-
dorff k –measure Hk.X / is finite.

This fact was discovered in the complex case by Lelong [21] and is proved in the real
case in Federer [6, 3.4.8 (13)]. See also van den Dries [5, Proposition 4.1, page 178]
for a more modern reference.

Compact semi-algebraic sets admit semi-algebraic triangulations. More precisely, if X

is a compact semi-algebraic set, there exists a finite simplicial subcomplex K of Rq for
some q and a semi-algebraic homeomorphism �W K

Š
!X . Moreover, if S is a given

stratification of X , we can choose K and � such that each stratum of S is the union
of the images of some open simplices of K under � [1, Théorème 9.2.1]. The image
under � of the standard combinatorial stratification of K into open simplices gives a
new stratification that refines S ; this is called a triangulation of X compatible with S .
Further, the polyhedron K is unique up to PL homeomorphism (see Theorem 2.6).
Any n–simplex can be naturally decomposed as a union of nC1 n–dimensional cubes,
ie subspaces homeomorphic to Œ0; 1�n , whose vertices are the barycenters of the various
faces of the simplex. These cubes meet along codimension 1 faces. Therefore any
compact semi-algebraic set is semi-algebraically homeomorphic to a finite union of
cubes; we call this a semi-algebraic cubification of the semi-algebraic set.

There is also a weaker notion of triangulation in the noncompact case. Indeed, since Rn

is semi-algebraically homeomorphic to .0; 1/n , any semi-algebraic set is homeomorphic
to a bounded one, so there is no loss of generality in assuming that a semi-algebraic set X

is bounded. Then its closure xX is compact and admits a semi-algebraic triangulation
that refines the stratification fX; xX nX g. This means that X is semi-algebraically
homeomorphic to a finite union of open simplices and the collection of these simplices
is a stratification. The closure in X of each stratum consists of that open simplex and
of all of its faces that belong to X . We call such an open simplex with some of its
faces semi-open and this stratification a semi-open triangulation of X , or by abuse
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of terminology, a triangulation of X . Any finite stratification of X can be refined by
such a semi-open triangulation.

By the main result of [12] (see also [1, Proposition 9.3.1]), given a semi-algebraic map
f W X ! Y and a stratification of X there exists a refinement of that stratification such
that, for each stratum S of this refinement, the restriction f jS W S ! f .S/ is a trivial
bundle. In other words, there exists a semi-algebraic homeomorphism S Š f .S/�F

in which f jS corresponds to the projection on the first factor. We say that the refined
stratification trivializes f .

A stratification particularly useful to us is the following:

Lemma 2.5 Let X �RN be a semi-algebraic set of dimension k and let f W X !Rn

be a semi-algebraic map. Any stratification of X can be refined to a stratification S
with each of its strata S a smooth submanifold (without boundary) of RN , and with
the restriction f jS a smooth map that satisfies:

� f jS is of rank k , f .S/ is a submanifold of dimension k in Rn , and f jS is a
diffeomorphism between S and f .S/; or

� f jS is of rank < k and dim.f .S// < k .

This dichotomy is preserved by passing to a smooth refinement of S . The stratifica-
tion S can furthermore be refined so that for each pair of strata S and S 0 on which the
restriction of f is of rank k , either f .S/D f .S 0/ or f .S/\f .S 0/D∅.

Proof Start with a stratification of f .X / into smooth submanifolds and refine its
preimage under f into a smooth semi-algebraic stratification of X with respect to f
as in Proposition 2.3. Take a refinement that trivializes f and such that each stratum
is connected. We still have that on each stratum S of this refinement, f jS is either
of constant rank k or everywhere of rank < k . Let S be a stratum such that f jS
is of constant rank k . Since f jS W S ! f .S/ is a trivial bundle and its domain and
codomain are both of dimension k , its fiber is discrete. Since S is connected, we
deduce that f jS is a bijection. Moreover f .S/ is contained in a submanifold of
dimension k , ie f jS is a smooth injective immersion into a submanifold of the same
dimension. Thus f .S/ is a submanifold of dimension k and f jS is a diffeomorphism
onto its image. On the other hand, if S is a stratum such that rank.f jS / < k then
dimf .S/ < k .

It is clear that this dichotomy is preserved by passing to a refinement.

For the last part, let S1; : : : ;Sl be the strata on which f is of rank k . Let A be
the smallest partition of

Sl
iD1 Si such that each set Si \

T
j2J f

�1.f .Sj // is a
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union of elements of A for 1 � i � l and J � f1; : : : ; lg. Consider the family
A0DfintX .A/ WA2Ag, where intX .A/ is the interior of A in X . Then for A1;A22A0
we have that f .A1/ D f .A2/ or f .A1/\ f .A2/ D ∅. Moreover [A0 is dense inSl

iD1 Si . Now let X 0DX n[A0 (this is also semi-algebraic) and take a smooth semi-
algebraic stratification S 0 of X 0 with respect to f jX 0 and that refines fA0\X 0 WA02A0g
It is straightforward to check that A0 [ S 0 is a stratification of X with the desired
properties.

A maximal stratum is a stratum that is not a subset of the closure of any other stratum.
The closure of a maximal stratum is disjoint from any other maximal stratum. The
union of the maximal strata of a smooth stratification is a dense smooth submanifold
(not necessarily of the same dimension on each connected component).

By partitioning each stratum into its connected components, we can refine any stratifica-
tion into a stratification whose strata are connected. All the properties of stratifications
considered above (smoothness, trivializations, properties from Lemma 2.5) are pre-
served by taking such connected refinements.

2.2 Review of PL topology

We will at several points throughout the paper need various results from PL topology.
In particular we will need the Hauptvermutung (uniqueness of triangulations) for semi-
algebraic sets and the notion of collapsing polyhedra (strong form of contractibility).
The basic reference from which we extract the following review of these concepts is
Hudson [16, Chapters I–II] (most of the results are also in Rourke and Sanderson [22]).

A closed simplex in Rn is the convex hull of at most nC 1 points in general position.
An open simplex is the interior of a closed simplex in the affine subspace of the same
dimension and containing the closed simplex (a point is both a closed and an open
0–simplex). A closed simplex can be partitioned into a finite family of open simplices
called its faces. In this paper we define a polyhedron as a subspace of Rn that is the
union of finitely many closed simplices (therefore in this paper a polyhedron is always
compact). A PL map between two polyhedra is a continuous map whose graph is a
polyhedron and it is a PL homeomorphism if it is bijective.

A simplicial complex is a finite partition of a polyhedron into open simplices, also called
a triangulation of the polyhedron. A subdivided triangulation of a given triangulation
is another triangulation which is a refinement (as partition) of the former. Any two
triangulations of the same polyhedron admit a common subdivided triangulation. We
will often abuse notation by identifying a simplicial complex (which is a partition) with
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its geometric realization (which is a polyhedron obtained by taking the union of the
elements of the partition.)

A PL ball is a polyhedron PL homeomorphic to a closed simplex. A subspace F � B

of a PL ball B is called a face if there is a PL homeomorphism from B to some simplex
that sends F onto a face of that simplex. If P0 � P1 is an inclusion of polyhedra one
says that P1 elementary collapses to P0 if P1 nP0 is a ball and if P1 nP0\P0 is a
face of that ball. More generally, a polyhedron P collapses to a subpolyhedron P0 if
there is a decreasing sequence of polyhedra, P D Pr�Pr�1� : : :�P0 , such that Pi

elementary collapses to Pi�1 , 1� i � r . In this situation we write P &P0 . One says
that a polyhedron P is collapsible if P&�, where � is a one-point space. A collapsible
polyhedron is clearly contractible but the converse is not true (a counterexample is
given by the “dunce hat” of Zeeman [25]).

We say that a simplicial complex K simplicially collapses to a subcomplex K0 , and
we write K &s K0 , if there exists a sequence of simplicial subcomplexes K D

Kr�Kr�1� � � � �K0 such that Ki DKi�1[ �i where �i is a simplex with an open
codimension 1 face which is disjoint form Ki�1 [16, Definition in II.1 and remark
following it, page 43].

It is clear that if a simplicial complex simplicially collapses to a subcomplex, then there
is a collapse of the underlying polyhedra. Conversely, suppose that a polyhedron P

collapses to a subpolyhedron P0 and that K is a triangulation of P such that some
subcomplex K0 of K is a triangulation of P0 . Then there exists a subdivision K0 of K

that simplicially collapses to K0
0

[16, Theorem 2.4]. In particular, any triangulation of
a PL ball admits a subdivided triangulation that simplicially collapses to a point.

We have already reviewed the fact that a compact semi-algebraic set admits a semi-
algebraic triangulation, ie is semi-algebraically homeomorphic to a compact polyhedron.
A very useful fact is the following result about the uniqueness of this triangulation,
proved by Shiota and Yokoi [23, Corollary 4.3].

Theorem 2.6 (Hauptvermutung for compact semi-algebraic sets) If a compact semi-
algebraic set is semi-algebraically homeomorphic to two polyhedra, then those polyhe-
dra are PL-homeomorphic.

The following is an immediate consequence.

Corollary 2.7 If a compact semi-algebraic set is semi-algebraically homeomorphic to
a collapsible polyhedron, then any semi-algebraic triangulation of it admits a subdivided
triangulation that simplicially collapses to a vertex.
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2.3 Review of currents

To define semi-algebraic chains, we will find the language of currents very convenient,
so we review this notion here. A basic reference is Federer [6].

Denote by Dk.Rn/ the vector space of smooth differential k –forms on Rn with
compact support. This space can be endowed with the with the usual Frechet topology
(see [6, 4.1.1]) but we will not use it The exterior differential d W Dk.Rn/!DkC1.Rn/

is linear and continuous.

A k –current on Rn is a linear continuous form T W Dk.Rn/ ! R. We denote by
Dk.R

n/ the vector space of k –currents. In other words, Dk.R
n/ is the topological

dual of Dk.Rn/. The adjoint of the exterior differential d W Dk.Rn/! DkC1.Rn/

defines a boundary operator @W DkC1.R
n/!Dk.R

n/ by @T .!/D T .d!/.

For U an open subset of Rn , we define Dk.U / as the subspace of smooth forms
in Rn whose support lies in U . The support of a current T in Rn , spt.T /, is the
smallest closed subset of Rn such that ! 2Dk.Rn n spt.T //H) T .!/D 0. Clearly
spt.@T /� spt.T /. For X �Rn we set

Dk.X /D fT 2Dk.R
n/ W spt.T /�X g

and thus get a chain complex

D�.X / WD
�M

k�0

Dk.X /; @

�
:

The most important example of a current for us is the following:

Example 2.8 Denote by Hk the k –dimensional Hausdorff measure on Rn . Let V

be a smooth k –dimensional oriented submanifold of Rn such that Hk.V / <1. One
defines a k –current JV K 2Dk.R

n/ by

JV K.!/D
ˆ

V

!; ! 2Dk.Rn/:

Currents can be equipped with various (semi-)norms and we review some of them from
[6, Section 1.8.1 page 38, Section 4.1.7 page 358, and Section 4.1.12 pages 367–368].

Definition 2.9

� The comass of a differential form ! 2Dk.Rn/ is

M.!/D supf!.x/.v1 ^ � � � ^ vk/ W x 2Rn; vi 2Rn; kvik � 1g 2RC:
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� The mass of a k –current T 2Dk.R
n/ is

M.T /D supfT .!/ W ! 2Dk.Rn/;M.!/� 1g 2RC[f1g:

� A current T 2 Dk.R
n/ is called normal if spt.T / is compact and M.T / and

M.@T / are finite.

� The flat seminorm of T 2Dk.R
n/ relative to a compact set K�Rn is defined by

FK .T /D inffM.T � @S/CM.S/ W S 2DkC1.R
n/; spt.S/�Kg:

� A current is called a flat chain if it is the limit of a sequence of normal currents
for the flat seminorm relative to some compact set.

We will write Mk.T / for the mass when we want to emphasize the dimension of the
current. Also, when there is no ambiguity about the compact set K in the definition of
the flat seminorm, we will drop it from the notation.

A normal current is clearly a flat chain. Also, the boundary of a flat chain is a flat chain
[6, page 368]. There are two other properties of flat chains we will use:

(1) Absolute continuity, which states that if T is a k –dimensional flat chain and if
Hk.spt.T //D 0, then T D 0 [6, Theorem 4.1.20];

(2) Constancy theorem, which states that if U is an open set in Rn , T is a flat
k –chain in Rn with U \ spt.T / a connected k –dimensional oriented smooth
submanifold V and U \ spt.@T /D∅, then, in U , T is just a constant multiple
of the k –current JV K given by integration along V [6, Section 4.1.31 (2)]. In
case T is an integral flat chain (as will be the case for the semi-algebraic chains
considered later), this multiple is an integer.

The norms of Definition 2.9 can be used to study convergence of sequences of currents.
It is clear that convergence in mass implies convergence in the flat seminorm. We can
also equip Dk.R

n/ with its weak topology characterized by the fact that a sequence of
currents .Tn/n�1 converges weakly to T in Dk.R

n/, which we denote by Tn * T ,
if, for each ! 2 Dk.Rn/, .Tn.!//n�1 converges to T .!/ in R. An elementary
computation shows that convergence in flat norm implies weak convergence.

If V is a smooth oriented submanifold of dimension k in Rn with finite Hausdorff
k –measure, then the current JV KW ! 7!

´
V ! is of mass M.JV K/DHk.V /.
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3 Semi-algebraic chains

The goal of this section is to functorially associate to each semi-algebraic set X a chain
subcomplex .C�.X /; @/� .D�.X /; @/ consisting of “semi-algebraic chains”.

Let M be an oriented compact semi-algebraic manifold of dimension k and let
f W M !Rn be a semi-algebraic map. Consider a stratification of M with connected
strata, having all the properties of Lemma 2.5. Let S1; : : : ;Sl be the strata such that
f jSi

is of rank k . Each of the submanifolds Si is oriented by the orientation of M .
Consider the family N D ff .Si/ W 1� i � lg of image submanifolds, which could be
of cardinality < l because f .Si/D f .Sj / for i 6D j is a possibility. Fix an arbitrary
orientation on each N 2 N and set nN D

P
i;f .Si /DN �i where �i D ˙1, the sign

depending on whether the diffeomorphism f jSi
W Si

Š
! N preserves or reverses the

orientation. Since M is compact, the semi-algebraic set N � f .M / is bounded
and by Theorem 2.4 it is of finite k –volume. Therefore we can define a current
f�JM K 2Dk.R

n/ by the formula

(1) f�JM K.!/D
X

N2N

nN

ˆ
N

!

for ! 2 Dk.Rn/. This current is of finite mass, in other words, M.f�JM K/ DP
N2N jnN j �Hk.N / <1. Notice also that

f�JM K.!/D
lX

iD1

ˆ
Si

f �!:

It is easy to check that the right side of the last equation does not depend on the
choice of the stratification, because it is clearly unchanged under refinement, and any
two stratifications satisfying the properties of Lemma 2.5 have a common refinement
with the same properties. It is also clear that if hW M 0 Š! M is a semi-algebraic
homeomorphism preserving orientation, then currents f�.JM K/ and .f ı h/�.JM 0K/
are equal. Note that if f is also smooth or even Lipschitz, then f�.JM K/ coincides with
the usual pushforward operation for currents [6, Section 4]. However, a semi-algebraic
map in general is not Lipschitz even though it is piecewise smooth.

Definition 3.1 A semi-algebraic k -chain in Rn is a current of the form f�JM K 2
Dk.R

n/ as constructed above for some oriented compact semi-algebraic k –dimensional
manifold M and some semi-algebraic map f W M !Rn . The set of semi-algebraic
k -chains in Rn is denoted by Ck.R

n/. If X is a semi-algebraic set in Rn , we set

Ck.X /D f 2 Ck.R
n/ W spt. /�X g:
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The elements of Ck.X / are called the semi-algebraic k –chains in X , or simply
k –chains.

Lemma 3.2 Ck.X / is a subgroup of Dk.X /.

Proof The chain f1�JM1KCf2�JM2K can be represented by .f1tf2/�JM1 tM2K
where, without loss of generality, we have supposed that the manifolds M1 and M2

are disjoint subsets of the same Rm . Also �f�JM K D f�J�M K where �M is M

with the opposite orientation.

The proof of the following is straightforward.

Proposition 3.3 If i > dim.X /, then Ci.X /D 0.

It is clear that any semi-algebraic chain in Ck.X / can be represented by a semi-
algebraic map gW M !X where M is an oriented compact semi-algebraic manifold
of dimension k . However, here is another useful representation of semi-algebraic
chains.

Proposition 3.4 (Alternative description of semi-algebraic chains) Let V1; : : : ;Vr

be disjoint smooth semi-algebraic oriented k –dimensional submanifolds of RN such
that each SVi is a compact subset of the semi-algebraic set X �RN . Let n1; : : : ; nr be
integers. Then

Pr
iD1 niJViK represents an element of Ck.X /. Conversely, any element

of Ck.X / admits such a representation.

Proof Let X be a semi-algebraic set and let V �X be an oriented k –dimensional
semi-algebraic manifold, not necessarily compact but with a compact closure xV in X .
We do not suppose that xV is a manifold. We can stratify V into a finite number of
disjoint smooth semi-algebraic submanifolds Vi of dimension k and a subset Z of
dimension < k . By Theorem 2.4, the Vi have finite k –volume and we can define the
pushforward current JV K 2Dk.X / by

JV K.!/D
X

i

ˆ
Vi

!:

This formula is independent of the choice of stratification. We want to show that
JV K 2 Ck.X /. Notice first that by [1, Proposition 2.8.12], dim. xV n V / < k and
dim. xVi n Vi/ < k . The compact space xV admits a semi-algebraic triangulation
�W K

Š
! xV where K is a finite simplicial complex and we can assume that the

triangulation refines the family fVig [ fZg. Each closed k –dimensional simplex �
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of K is mapped into the closure of some Vi and the orientation of Vi induces an
orientation of � . We thus get a semi-algebraic k -chain ��J�K and it is clear that
JV KD

P
� ��J�K 2 Ck.X /, where the sum is taken over all k –simplices of K .

The converse is an immediate consequence of formula (1).

We now turn to functorial properties of semi-algebraic chains. Let gW X ! Y be a
semi-algebraic map. If f�JM K is a semi-algebraic chain in X then .g ıf /�JM KD
g�.f�JM K/ is a semi-algebraic chain in Y . It is easy to check that this gives a
well-defined homomorphism

g�W Ck.X / �! Ck.Y /

and that this association is functorial. In other words, .h ıg/� D h� ıg� and id� D id.

In order to prove that g� defines a chain map in Corollary 3.7, we need the following.

Theorem 3.5 Let M be a compact semi-algebraic oriented manifold and f W M!Rn

be a semi-algebraic map. Then @.f�.JM K//D f�.J@M K/.

Remark 3.6 When f is the identity map, this theorem can be thought of as a gener-
alization of Stokes’ Theorem which states that @JM KD J@M K, and in the general case
it is a combination of Stokes’ Theorem and naturality of the boundary operator with
respect to f� .

Proof Suppose that M � Rm and set k D dim M . Take a triangulation of M

such that each stratum S is a smooth submanifold of Rm and f jS is smooth. Since
both sides of the equation we want to establish are clearly additive, it is enough to
prove that the equation holds on each closed simplex of maximal dimension in that
triangulation. Thus we can assume that M is stratified as the standard combinatorial
stratification of the k –simplex �k . In particular, M has the unique maximal stratum
V D int.M/DM n @M of dimension k , and kC 1 codimension 1 connected strata
S0; : : : ;Sk whose union is dense in @M . Since f is smooth on the interior of the
simplex [1, Remark 9.2.3], by replacing the original triangulation by its barycentric
subdivision we can furthermore assume that f jMn SS0

is smooth.

The proof now proceeds by induction on k D dim.M /. If k D 0, there is nothing
to show. If k D 1, there exists a semi-algebraic homeomorphism �W Œ0; 1�

Š
!M that

is smooth on .0; 1�. For 0 < � < 1, set M� D �.Œ�; 1�/. Since M.f�JM K/ < 1,
Lebesgue’s Bounded Convergence Theorem and smooth Stokes’ Theorem imply that
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for each smooth 0–form ! 2D0.Rn/ we have

.@f�JM K/.!/

D f�JM K.d!/D
ˆ

int.M /

f �.d!/D lim
�!0

ˆ
M�

f �.d!/D lim
�!0

ˆ
@M�

f �.!/

D lim
�!0

!.f .�.1///�!.f .�.�///D !.f .�.1///�!.f .�.0///D .f�Œ@M �/.!/:

This proves the result for k D 1.

Suppose that the theorem has been proved in dimension < k for some k � 2. We first
prove it in dimension k with the assumption that f is injective on M and of maximal
rank on each stratum.

To do this, we first observe that f�JSiK and @f�JM K are flat chains as in Definition 2.9.
Notice that f�JSiKD f�JSiK and, by induction hypothesis, @f�JSiKD f�J@SiK. Since
these semi-algebraic chains are of finite mass we deduce that f�JSiK is a normal current,
hence a flat chain. For JM K, consider an increasing sequence M1 �M2 � � � � of
k –dimensional compact smooth manifolds whose union is V D int.M /. By the
smooth Stokes’ Theorem, M.@f�ŒMn�/ D M.f�Œ@Mn�/ < 1, and M.f�ŒMn�/ �

M.f�JM K/<1. Thus each current f�ŒMn� is normal and, by Lebesgue’s convergence
theorem, their sequence converges in mass, and hence in flat semi-norm, to f�JM K.
This implies that f�JM K is a flat chain, so the same is true for @f�JM K by [6, page 368].

Using the fact that f is smooth on M n @M , and injective and continuous on M , it is
easy to check with the smooth Stokes’ Theorem that spt.@f�.JM K//� f .@M /.

To continue, we will use the constancy theorem from Section 2.3. Since f is a
homeomorphism on its image and is smooth on each stratum,

Sk
iD0 f .Si/ is a smooth

submanifold and is open in the closed subset f .@M /. Set Z D f .@M /n
Sk

iD0 f .Si/.
This is a closed subset of dimension < k � 1. Since each f .Si/ is a connected
component of

Sk
iD0 f .Si/, by [6, Section 4.1.31 (2)] with C D f .Si/ and r D ci ,

there exist ci 2R such that

spt.@f�.JM K/� cif�JSiK/\f .Si/D∅:

Now set T D @f�.JM K/�
Pk

iD0 cif�ŒSi �. We deduce that spt.T /�Z . Since T is a
flat .k�1/–chain and dim.Z/ < k � 1, Theorem 4.1.20 of [6] implies that T D 0. In
other words,

(2) @f�.JM K/D
kX

iD0

cif�JSiK:
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Clearly f�Œ@M � D
Pk

iD0 f�JSiK, so it remains only to prove that all the ci ’s are 1.
For 1� i � k , this is an immediate consequence of the classical Stokes’ Theorem since
f is smooth on M n SS0 . Applying the boundary operator to both sides of Equation (2)
and using the induction hypothesis we get that

c0f�Œ@SS0�C

kX
iD1

f�Œ@Si �D 0:

For 1 � i � k , let Bi be the .k�2/–dimensional stratum of M whose closure is
@SS0\@Si . After canceling terms, the last equation becomes

Pk
iD1.c0�1/f�ŒBi �D 0.

Clearly f .B1/ � spt.f�ŒB1�/ and, for 2 � i � k , f .B1/\ spt.f�ŒBi �/ D ∅. Since
k � 2, f .B1/ 6D∅ and we deduce that c0 D 1. This proves the theorem in dimension
k under the extra assumption that f is injective and of maximal rank on each stratum.

For the general case, consider the semi-algebraic inclusion i W M ,! Rm and, for
� 2 Œ0; 1�, define the map

f�W M �!Rn
�Rm

x 7�! .f .x/; � � i.x//:

When � > 0, f� is injective and smooth of maximal rank on each stratum, and therefore
by the beginning of the proof we have that @f��.JM K/ D f��.J@M K/. Since the
boundary operator @ is continuous with respect to weak convergence, in order to finish
the proof it is enough to show that f��.JM K/ and f��.J@M K/ converge weakly to
f0�.JM K/ and f0�.J@M K/ as �! 0, respectively.

We prove that f��.JM K/ * f0�.JM K/, the case of @M being completely analogous.
Let ı > 0. Consider a differential form ˛ 2Dk.Rn�Rm/. Since f and i are smooth
on the complement of a codimension 1 semi-algebraic subset of M , there exists a
compact semi-algebraic codimension 0 smooth submanifold with boundary M 0 �M

on which f and i are smooth and such that M.f1�.JM nM 0K// � ı=.4 �M.˛//.
Moreover, notice that f� D q� ıf1 , where q� is the map

q�W R
n
�Rm

�!Rn
�Rm

.u; v/ 7�! .u; � � v/

and which admits Lipschitz constant 1. Therefore for all � 2 Œ0; 1� we also have

M.f��.JM nM 0K//�
ı

4 �M.˛/
:
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Hence

jhf��.JM K/�f0�.JM K/; ˛ij

� jhf��.JM nM 0K/�f0�.JM nM 0K/; ˛ijC jhf��.JM 0K/�f0�.JM 0K/; ˛ij(3)

� ı=2CjhJM 0K; ..f�jM 0/�� .f0jM 0/
�/.˛/ij:

It is clear that f�jM 0 converges in the C1 –norm to f0jM 0 , and therefore for � small
enough the second summand in (3) is also less than ı=2. Therefore f��.JM K/ converges
weakly to f0�.JM K/.

The proof that f��.J@M K/ * f0�.J@M K/ is exactly the same and we will omit it.

The following is now immediate.

Corollary 3.7

� If X is a semi-algebraic set, then @.Ck.X // � Ck�1.X / and C�.X / WD
.
L

k�0 Ck.X /; @/ is a chain complex.

� If gW X ! Y is a semi-algebraic map, then g�W C�.X /! C�.Y / is a chain
map, that is, g�@D @g� .

We end this section by introducing a cross product on chains by the following easy
result.

Proposition 3.8 Let X1 and X2 be semi-algebraic sets. There exists a degree-
preserving linear map

�W C�.X1/˝C�.X2/ �! C�.X1 �X2/

characterized by the formula

f1�.JM1K/�f2�.JM2K/D .f1 �f2/�.JM1 �M2K/

where Mi are compact oriented semi-algebraic manifolds and fi W Mi !Xi are semi-
algebraic maps, i D 1; 2.

This product satisfies the Leibniz formula

@.1 � 2/D @.1/� 2C .�1/deg.1/1 � @.2/:

Let T W X1 �X2!X2 �X1 given by .x1;x2/ 7! .x2;x1/ be the twisting map. Then

T�.1 � 2/D .�1/deg.1/ deg.2/2 � 1:
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4 Convergence in Ck.X/

The goal of this section is to introduce a suitable notion of convergence of sequences
of semi-algebraic chains. There are three classical notions of convergence for currents,
which are, from the strongest to the weakest (see Definition 2.9):

� convergence in mass (ie for the mass norm M);

� convergence in flat norm (ie for the norm F relative to some compact subspace);

� weak convergence, ie Tn * T in Dk.R
N / if, for each ! 2Dk.RN /, Tn.!/!

T .!/ in R.

However, these definitions of convergence cannot be adapted well to semi-algebraic
chains because they are not preserved by semi-algebraic maps (because those are
not locally Lipschitzian). As a simple example, consider the semi-algebraic map
f W R ! R;x 7!

p
jxj. For n � 1 set n D n�JŒ0; 1=n2�K, which is a sequence in

C1.R/. Then M.n/D 1=n which converges to zero but f�.n/D n�JŒ0; 1=n�K does
not converge to 0 even weakly.

We thus introduce the following more suitable notion of convergence in Ck.X /.

Definition 4.1 A sequence .n/n�1 in Ck.X / converges semi-algebraically to  2
Ck.X /, denoted by n

SA
!  , if there exists a semi-algebraic map hW M � Œ0; 1�!X ,

where M is a compact semi-algebraic oriented manifold, and a sequence .�n/n�1 in
Œ0; 1� converging to zero, such that n D h�.JM � f�ngK/ and  D h�.JM � f0gK/.

The following is immediate from the definition.

Proposition 4.2 Let f W X ! Y be a semi-algebraic map. If n
SA
!  in Ck.X / then

f�.n/
SA
! f�. / in Ck.Y /.

The following says that if a semi-algebraic subset X0 is dense in X , then Ck.X0/ is
“dense” in Ck.X / in terms of SA convergence.

Proposition 4.3 Let X be a semi-algebraic set and let X0 � X be a dense semi-
algebraic subset. Then for each  2 Ck.X /, there exists a sequence .n/n�1 in
Ck.X0/ such that n

SA
!  .

Proof Choose a triangulation of X such that X0 and X nX0 are unions of simplices
and such that  D

P
� n� � Jx�K where the sum runs over some k –simplices of the

triangulation and the orientations of those simplices are chosen so that the integers n�
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are nonnegative. For each such simplex, since � � X0 and since X0 is a union of
simplices, there exists an open simplex � (which could be � ) such that � �X0 and �
is a face of � . It is easy to build a semi-algebraic map

h� W �
k
� Œ0; 1� �! x�

such that h� .�
k � .0; 1�/� � and h� .�; 0/W �

k Š!x� is a homeomorphism preserving
the orientation. Set M D

F
�

Fn�
iD1

�k and consider the map

hD
F
�

Fn�
iD1

h� W M � Œ0; 1� �!X:

Then n D h�.JM � f1=ngK/ is the desired sequence.

Our last important result is that SA (semi-algebraic) convergence implies weak conver-
gence as currents.

Proposition 4.4 If n
SA
!  in Ck.X / then n * .

Proof Take h, M , and �n as in Definition 4.1. Then

n�  D h�.JM � @Œ0; �n�K/

D˙.h�.J@.M � Œ0; �n�/K/� h�.J.@M /� Œ0; �n�K//

D˙.@h�.JM � Œ0; �n�K/� h�.J.@M /� Œ0; �n�K//

which implies that

F.n�  /�MkC1.h�.JM � Œ0; �n�K//CMk.h�.J.@M /� Œ0; �n�K//

where the flat norm is taken with respect to the compact space h.M � Œ0; 1�/.

Define the map

zhW M � Œ0; 1� �!X �M

.u; t/ 7�! .h.u; t/;u/:

Hence zh is a homeomorphism on its image and hD pr1
zh where pr1W X �M !X is

the projection which is 1–Lipschitzian. Therefore

MkC1.h�.JM � Œ0; �n�K// �MkC1.zh�.JM � Œ0; �n�K//

DMkC1.Jzh.M � Œ0; �n�/K/

DHkC1.zh.M � Œ0; �n�//:
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By Theorem 2.4, HkC1.zh.M � Œ0; 1�// <1. The Lebesgue Bounded Convergence
Theorem implies that

HkC1.zh.M � Œ0; �n�/!HkC1.zh.M � f0g// as n!1

and HkC1.zh.M � f0g//D 0 because dim zh.M � f0g/� k . This implies that

lim
n!1

MkC1.h�.JM � Œ0; �n�K// D 0:

A completely analogous argument shows that

lim
n!1

Mk.h�.J.@M /� Œ0; �n�K// D 0:

Thus limn!1 F.n�  /D 0 which implies the weak convergence.

Remark 4.5 Actually, the above proof shows that SA-convergence implies conver-
gence in the flat norm, which is stronger than weak convergence, but we will not use
this fact.

5 PA forms

The aim of this section is to construct the contravariant functor of PA forms,

��PAW SemiAlg! CDGA;

(see Theorem 5.32), which we will show in Section 6 to be weakly equivalent to
APL.�IR/. The construction is in two stages. We will first build a functor ��min of
minimal forms in Section 5.2. Unfortunately this functor is not weakly equivalent to
APL.�IR/ because it does not satisfy the Poincaré Lemma. Building on ��min , we
will then define ��PA in Section 5.4 which will resolve this issue. These PA forms are
defined by integration of minimal forms along the fiber, but to define this integration
correctly, we will need the notion of strongly continuous family of chains which is
given in Section 5.3.

5.1 Semi-algebraic cochains and smooth forms

Let X be a semi-algebraic set. We consider the vector space of semi-algebraic cochains
with values in R as the linear dual of the chains, ie we let

Ck.X /D hom.Ck.X /;R/:

This gives a cochain complex of real vector spaces C�.X / WD
L

k�0 Ck.X / with co-
boundary ıW Ck.X /!CkC1.X / defined as the adjoint of the boundary @W CkC1.X /!

Ck.X /.

Algebraic & Geometric Topology, Volume 11 (2011)



Real homotopy theory of semi-algebraic sets 2497

The real number giving the value of a cochain � 2 Ck.X / on a chain  2 Ck.X / is
denoted by h�;  i. By convention this value is 0 if � and  have different degree.

One has a contravariant functor C�W SemiAlg! Ch�.R/ with values in cochain com-
plexes over R. In particular a semi-algebraic map f W X!Y induces a map of cochains
f �W C�.Y /! C�.X / defined by hf �.�/;  i D h�; f�. /i. When f W X ,! Y is an
inclusion we write �jX WD f �.�/.

Lemma 5.1 Let W �RN be a semi-algebraic smooth submanifold of dimension m

and let ! 2�k
C1.W / be a smooth differential form. There is a well defined linear map

h!;�iW Ck.W / �!R

 7�! h!;  i D
X

ni

ˆ
Vi

!

when Vi are bounded semi-algebraic smooth oriented submanifolds in W and ni are
integers such that  D

P
niJViK. Moreover, the map

(4)
h�;�iW ��C1.W / ,! C�.W /

! 7! h!;�i

is an inclusion.

Proof By Proposition 3.4, a chain  2 Ck.W / can be represented by a linear combi-
nation of smooth submanifolds Vi �W of finite volume. Further, the smooth form !

is bounded on the compact support of  . Therefore each integral
´

Vi
! converges and

it is clear that the value of the linear combination depends only on the chain  .

For the injectivity of the map (4) we need to show that the value of ! 2�k
C1.W / at

any point x 2W is completely characterized by the values of h!;�i on semi-algebraic
chains in W . Indeed consider the m–dimensional affine subspace TxW �RN tangent
to W at x . The orthogonal projection � of a neighborhood of x in W onto TxW is
a semi-algebraic diffeomorphism onto its image. For an orthonormal k –multivector �
in TxW and a small � > 0, let �Œ�� be a k –dimensional cube in TxW based at x with
edges of length � in the directions of � . Then J��1.�Œ��/K 2 Ck.W / and the value of
!.�/ is given by

lim
�!0

��k
h! ; J��1.�Œ��/Ki:

Definition 5.2 Let W be a semi-algebraic smooth submanifold of RN . A cochain in
C�.W / which is in the image of ��C1.W / under the map (4) is called smooth.
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Lemma 5.3 (Strong Künneth formula for smooth cochains) Let W1 and W2 be two
semi-algebraic smooth submanifolds in Rn1 and Rn2 and let ! 2��C1.W1 �W2/. If,
for all 1 2 C�.W1/ and 2 2 C�.W2/, h!; 1 � 2i D 0, then ! D 0.

Proof The proof is analogous to the proof of the injectivity of the map (4) in
Lemma 5.1.

5.2 Minimal forms

In this section we give the first version of “semi-algebraic differential forms” following
[19, Section 8.3].

Let X �RN be a semi-algebraic set and let f0; f1; : : : ; fk W X !R be semi-algebraic
functions. We will define a cochain

�.f0If1; : : : ; fk/ 2 Ck.X /

which, when X and the fi ’s are smooth, is just the smooth cochain f0 df1^� � �^dfk 2

�k
C1.X /. To define �.f0If1; : : : ; fk/ in the general case, set

f D .f0; f1; : : : ; fk/W X �!RkC1

which is a semi-algebraic map. Recall that an element of Ck.R
kC1/ is a k –current

in RkC1 , and hence can be evaluated on smooth k –forms with compact support in
RkC1 . For a semi-algebraic k -chain  2 Ck.X /, define

h�.f0If1; : : : ; fk/ ;  i D f�. /.� �x0 dx1 ^ � � � ^ dxk/;

where x0; : : : ;xk are the coordinates in RkC1 and �W RkC1!R is a smooth bump
function with compact support that takes the value 1 on spt.f�. //. Clearly the
result is independent of the choice of � , and abusing notation we will simply write
f�. /.x0 dx1 ^ � � � ^ dxk/.

Definition 5.4 We denote by �k
min.X / the subgroup of Ck.X / generated by the

cochains �.f0If1; : : : ; fk/. Its elements are called the minimal forms.

The pullback of a minimal form along a semi-algebraic map is again a minimal form.
More precisely, let gW X ! Y be a semi-algebraic map and let fi W Y !R be semi-
algebraic functions for 0� i � k . It is immediate to check that

g�.�.f0If1; : : : ; fk//D �.f0 ıgIf1 ıg; : : : ; fk ıg/:

The following formula implies the coboundary of a minimal form is also a minimal form.
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Proposition 5.5 ı.�.f0If1; : : : ; fk// D �.1If0; f1; : : : ; fk/.

Proof Let  2 CkC1.X /. Recall that the boundary @ on CkC1.X / � DkC1.X / is
defined as the adjoint of d on Dk.RN /. Thus using the definitions and Corollary 3.7,
we have

hı.�.f0If1; : : : ; fk/ ;  i D h�.f0If1; : : : ; fk ; @ i

D ..f0; f1; : : : ; fk/�.@ // .x0dx1 � � � dxk/

D .@ ..f0; f1; : : : ; fk/�. /// .x0dx1 � � � dxk/

D ..f0; f1; : : : ; fk/�. // .dx0dx1 � � � dxk/

D ..1; f0; f1; : : : ; fk/�. // .tdx0dx1 � � � dxk/

D h�.1If0; f1; : : : ; fk/ ;  i:

The above implies that ��min.X / is a cochain complex. We will later define an algebra
structure on it using a certain cross product. However, in order to prove that this product
is well defined, we first need to show in the three following propositions that minimal
forms are well approximated by smooth forms.

First we have continuity of h�;�i.

Proposition 5.6 Let X be a semi-algebraic set and let � 2�k
min.X /. If n

SA
!  in

Ck.X /, then limn!1h�; ni D h�;  i.

Proof By linearity, it is enough to prove this when �D �.f0If1; : : : ; fk/ for some
semi-algebraic functions fj W X ! R. Set f D .f0; f1; : : : ; fk/W X ! RkC1 . By
Proposition 4.2 and Proposition 4.4, f�.n/ * f�. /, and so

lim
n!1

h�; ni D lim
n!1

.f�.n/.x0dx1 : : : dxk//

D .f�. /.x0dx1 : : : dxk//

D h�;  i:

Notice that we have implicitly used the fact that the bump function � in front of
x0dx1 : : : dxk can be chosen to be the same for all n because, by the SA convergence,S1

nD1 spt.n/ is included in some compact set.

We next show that a minimal form is smooth at a “generic point” and that any minimal
form is determined by its values at such points.

Proposition 5.7 Let X be a semi-algebraic set and let � 2�k
min.X /. There exists a

semi-algebraic smooth submanifold W that is open and dense in X and such that �jW
is smooth.
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Proof Suppose �D
Pp

iD1
�.f .i/

0
If .i/

1
; : : : ; f .i/

k
/ for some semi-algebraic functions

f .i/j W X !R. Take a stratification of X into smooth submanifolds on which the f .i/j

are smooth. Let W be the union of the maximal strata. This is open and dense in X

and �jW D
P

i f
.i/

0
df .i/

1
: : : df .i/

k
is a smooth form.

Proposition 5.8 Let X be a semi-algebraic set and let � 2�k
min.X /. If X0 �X is a

dense semi-algebraic subset and if �jX0
D 0 then �D 0.

Proof Let  2 Ck.X /. Since X0 is dense in X , by Proposition 4.3 there exists
a sequence .n/n�1 in Ck.X0/ converging semi-algebraically to  . By hypothesis,
h�; niD 0, and we conclude by Proposition 5.6 that �D 0 since it is 0 when evaluated
at an arbitrary chain  .

Proposition 5.9 Let X1 and X2 be semi-algebraic sets and let � 2�k
min.X1 �X2/.

If h�; 1 � 2i D 0 for all 1 2 C�.X1/ and 2 2 C�.X2/ then �D 0.

Proof By Proposition 5.7 there exists a semi-algebraic smooth submanifold W , open
and dense in X1 �X2 , such that ! WD �jW is smooth. We show that ! D 0. Let
.x1;x2/ 2W . There exist smooth neighborhoods Ui � Xi of xi for i D 1; 2 such
that U1 �U2 �W . By Lemma 5.3, !jU1�U2

D 0. This implies that ! D 0. Since W

is dense in X , we deduce the desired result by Proposition 5.8.

Proposition 5.10 Let X1 and X2 be semi-algebraic sets. There is a degree-preserving
linear map

�W ��min.X1/˝�
�
min.X2/ �!��min.X1 �X2/

given by

(5) h�1 ��2; 1 � 2i D h�1; 1i � h�2; 2i

for �i 2�
�
min.Xi/ and i 2 C�.Xi/. This formula satisfies the Leibniz rule

ı.�1 ��2/D ı.�1/��2C .�1/deg.�1/�1 � ı.�2/:

Further, let T W X1�X2!X2�X1 be the twisting map, given by .x1;x2/ 7! .x2;x1/.
Then

T �.�2 ��1/D .�1/deg.�1/ deg.�2/�1 ��2:

Proof Let ki be nonnegative integers, let f .i/
0
; : : : ;f .i/ki

W Xi!R be semi-algebraic
functions for i D 1; 2, and set �i D �.f

.i/
0
If .i/

1
; : : : ; f .i/ki

/ 2�ki
min.Xi/. Consider also

the projections pri W X1 �X2!Xi . Set

(6) �1��2 D �
�
.f .1/0 pr1/ � .f

.2/
0 pr2/If

.1/
1 pr1; : : : ;f

.1/
k1

pr1;f
.2/

1 pr2; : : : ;f
.2/

k2
pr2

�
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and extend bilinearly. It is straightforward to check that this definition satisfies
Equation (5) of the proposition.

The fact that the minimal form �1 � �2 is characterized by Equation (5), and in
particular that the right side of (6) is independent of the choice of the representatives
of the �i ’s, is a consequence of Proposition 5.9.

The Leibniz and twisting formulas are consequences of the corresponding formulas for
chains in Proposition 3.8.

For �1; �2 2�
�
min.X /, we define a multiplication on ��min.X / by

�1 ��2 D�
�.�1 ��2/

where �W X!X�X is the diagonal map. It is immediate from the previous proposition
that this multiplication satisfies the Leibniz formula and is graded commutative.

In conclusion we have:

Theorem 5.11 The above construction of minimal forms defines a contravariant func-
tor ��minW SemiAlg! CDGA.

Remark 5.12 Note that we do not have the analog of de Rham theorem for the functor
��min ; in general H.��min.X // is not isomorphic to H�.X IR/. For example, consider
the contractible semi-algebraic set X D Œ1; 2� and the minimal 1–form �D �.f0If1/

with f0; f1W X ! R defined by f0.t/ D 1=t and f1.t/ D t for t 2 Œ1; 2�. In other
words, � D dt=t , and this is a smooth form which is a ı–cocycle but it is not a
ı–coboundary in ��min.X / because the map t 7! log.t/ is not semi-algebraic. This is
an issue we will get around by enlarging the cochain complex ��min in Section 5.4.

5.3 Strongly continuous families of chains

Definition 5.13 Let f W Y ! X be a semi-algebraic map. A strongly continuous
family of chains or, shortly, a (strongly) continuous chain of dimension l over X

along f is a map
ˆW X �! Cl.Y /

such that there exist:

(1) a finite semi-algebraic stratification fS˛g˛2I of X , and, for each ˛ 2 I ,

(2) an oriented compact semi-algebraic manifold F˛ of dimension l ;

(3) a semi algebraic map g˛W S˛ �F˛! Y , where S˛ is the closure of S˛ in X ,
satisfying:
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(a) the diagram

S˛ �F˛
g˛ //

pr
��

Y

f

��
S˛

� � // X

commutes;
(b) for each ˛ 2 I and x 2 S˛ , ˆ.x/D g˛�.Jfxg �F˛K/.

We say that the family f.S˛;F˛;g˛/g˛2I trivializes or represents the continuous
chain ˆ and we denote by Cstr

l .f W Y !X / the set of strongly continuous l –chains.

Remark 5.14 Note that if we had asked that the maps g˛ be defined only on S˛�F˛
instead of on the closure S˛ � F˛ in the above definition, we would obtain a sort
of semi-algebraic parametrized chain in Y over X , lacking a continuity condition.
We would therefore not have the Leibniz formula from Proposition 5.17. It appears
that Kontsevich and Soibelman had something weaker in mind in their definition
of continuous chains [19, Definition 22] and we have thus added strongly and the
adornment str in order to distinguish our definition from theirs. See the discussion in
Section 9.

It is clear that if fS 0
ˇ
gˇ2J is a stratification of X refining the stratification fS˛g˛2I

of the above definition, that is, if for each ˇ 2 J there exists ˛ D ˛.ˇ/ 2 I such that
S 0
ˇ
� S˛ , then there is an induced trivialization f.S 0

ˇ
;Fˇ;gˇ/gˇ2J with Fˇ D F˛.ˇ/

and gˇ D g˛.ˇ/jS 0
ˇ
�Fˇ

.

Consider the set
map.X;Cl.Y // WD fˆW X ! Cl.Y /g

of all maps of sets from X to the l –chains on Y . This set has an abelian group structure
induced by that on Cl.Y /. Moreover, if ˆ 2map.X;Cl.Y // we define its boundary
@ˆ 2map.X;Cl�1.Y // by the formula

.@ˆ/.x/D @.ˆ.x//; x 2X:

Let map.X;C�.Y //D
L

l�0 map.X;Cl.Y // and Cstr
� .Y !X /D

L
l�0 Cstr

l .Y !X /.
It is clear that the former is a chain complex of abelian groups and that the latter is a
subset.

Lemma 5.15 Cstr
� .Y !X / is a chain subcomplex of map.X;C�.Y //.

Proof We prove first that each Cstr
l .Y !X / is a subgroup.
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The zero element of map.X;Cl.Y // is an element of Cstr
l .Y ! X / since it is repre-

sented by f.X;∅;X �∅D∅ ,! Y /g.

Let ˆ;ˆ0 2 Cstr
l .Y ! X /. By taking a common refinement we can suppose that

these continuous chains are represented by f.S˛;F˛;g˛/g˛2I and f.S˛;F 0˛;g
0
˛/g˛2I

respectively. Letting g00˛ D .g˛;g
0
˛/W S˛ � .F˛ tF 0˛/! Y , it is clear that ˆCˆ0 is

represented by f.S˛;F˛ tF 0˛;g
00
˛/g˛2I , so it is also a continuous chain.

The inverse of a continuous chain can be represented by reversing the orientations of
the manifolds F˛ .

It remains to prove that @.Cstr
l .Y ! X // � Cstr

l�1.Y ! X /. Indeed suppose that
ˆ 2 Cstr

l .Y !X / is represented by f.S˛;F˛;g˛/g˛2I . Then by Theorem 3.5, @ˆ is
represented by f.S˛; @F˛; @g˛/g˛2I where @g˛ is the restriction of g˛ to S˛�@F˛ .

Let f W Y ! X be a semi-algebraic map, let  2 Ck.X / and let ˆ 2 Cstr
l .Y ! X /.

We construct a chain  Ëˆ2CkCl.Y / as follows. Take a trivialization f.S˛;F˛;g˛/g
of ˆ. We can suppose that the stratification is fine enough to be adapted to  in the
sense that there exist integers n˛ such that

 D
X
˛

n˛ � JS˛K;

where S˛ are compact oriented semi-algebraic manifolds (take for example a stratifica-
tion whose restriction to spt. / is a suitable triangulation.) Set

(7)  ËˆD
X
˛

n˛ �g˛�.JS˛ �F˛K/:

We will prove in Proposition 5.17 that this operation is well-defined and satisfies the
Leibniz formula. In order to do so we need the following version of Fubini’s Theorem.

Lemma 5.16 Let gW S�F!Y and g0W S�F 0!Y be two semi-algebraic maps such
that S , F , and F 0 are compact oriented semi-algebraic manifolds with dim FDdim F 0 .
Suppose that for all x 2 S we have g�.Jfxg �FK/D g0�.Jfxg �F 0K/ in C�.Y /. Then
g�.JS �FK/D g0�.JS �F 0K/.

Proof Set T D F t�F 0 where �F 0 is F 0 with the opposite orientation and con-
sider the map f D g t g0W S � T ! Y . By linearity, for each x 2 S we have
f�.Jfxg �T K/D 0 and what we now have to show is that f�.JS �T K/D 0.

Set nDdim.S/Cdim.T /. Without loss of generality we can assume that Y Df .S�T /,
and hence dim.Y /� n. If dim.Y / < n then the conclusion of the lemma is immediate,
so we assume dim.Y /D n.
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Let W be a semi-algebraic smooth submanifold that is open and dense in S �T and
let Z � S �T be the closure of

.S �T nW /[

�
.s; t/ 2W

ˇ̌̌̌
f is not smooth at .s; t/ or it is smooth
but df .s; t/ is of rank < n

�
Then dimf .Z/<n and there exists a nonempty smooth n–dimensional semi-algebraic
submanifold Y0 � Y n f .Z/ such that spt.f�.JS �T K// � SY0 . Set X0 D f

�1.Y0/

and let f0 be the restriction of f to X0 . Then f0 is locally a diffeomorphism onto its
image and for y0 2 Y we have f �1.y0/D f

�1
0
.y0/. This set is discrete, and hence

finite by compactness of S �T .

The multiplicity in f�.JS �T K/ of the neighborhood of a point y0 2 Y0 is given by
the formula

mult.y0/D
X

x2f �1.y0/

sgn.det.df .x///:

We have

f �1.y0/D f.s1; t
1
1 /; : : : ; .s1; t

r1

1
/; : : : ; .sp; t

1
p /; : : : ; .sp; t

rp

p /g

with the si are all distinct in S , and so the multiplicity can be rewritten as
pX

iD1

� riX
jD1

sgn.det.df .si ; t
j
i ///

�
:

If this expression is nonzero then one of the terms in the brackets has to be nonzero, but
this contradicts the fact that f�.Jfsig �T K/D 0. So the multiplicity at y0 is zero.

Proposition 5.17 The formula (7) above defines a natural linear map

ËW Ck.X /˝Cstr
l .Y !X / �! CkCl.Y /

 ˝ˆ 7�!  Ëˆ

which satisfies the Leibniz formula @. Ëˆ/D .@ /ËˆC .�1/deg. / Ë .@ˆ/:

Proof We need to prove that the right side of (7) is independent of the choice of
trivialization of ˆ. First, it is clear that if we take a refinement of the stratification and
consider the induced trivialization, the right side is unchanged. Therefore it is enough to
prove the invariance for two trivializations f.S˛;F˛;g˛/g and f.S˛;F 0˛;g

0
˛/g with the

same underlying stratification. But this is an immediate consequence of Lemma 5.16.

By linearity of Ë and @, it is enough to check the Leibniz formula when  D JSK,
with S a closed subset of X that is a compact oriented manifold over which ˆ is
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trivial in the sense that there is a semi-algebraic map gW S �F! Y with F a compact
oriented manifold and, for each x 2 S , ˆ.x/D g�.Jfxg �FK/. Using Theorem 3.5
we then get

@. Ëˆ/D @.g�.JS �FK//

D g�.J.@S/�FK/C .�1/dim.S/g�.JS � .@F /K//

D .@ /ËˆC .�1/deg. / Ë .@ˆ/:

We now define the pullback of continuous chains.

Proposition 5.18 Suppose given a pullback of semi-algebraic sets

Y 0 DX 0 �X Y
yh //

f 0

��
pullback

Y

f

��
X 0

h

// X

and ˆ 2 Cstr
l .Y ! X /. There exists a unique continuous chain ˆ0 2 Cstr

l .Y
0! X 0/

such that, for each x0 2X 0 , yh�.ˆ0.x0//Dˆ.h.x0//.

Proof Set x D h.x0/. Since Y 0 is the pullback, the restriction of yh to fibers over x0

and x induces an isomorphism yhx0 W f
0�1.x0/

Š
! f 0�1.x/. Since the support of ˆ.x/

is included in the fiber over x we deduce that the value ˆ0.x0/ is completely determined
as .h�1

x0 /�.ˆ.x//. This implies the uniqueness.

The fact that ˆ0 is indeed a continuous chain comes from existence of a trivialization
obtained by taking the pullback of a trivialization of ˆ in a straightforward way.

Definition 5.19 We call the continuous chain ˆ0 from the previous proposition the
pullback of ˆ along h and we denote it by h�.ˆ/. In case of an inclusion hW X 0 ,!X ,
we also write ˆjX 0 D h�.ˆ/.

It is easy to check that the pullback operation

h�W Cstr
� .Y !X / �! Cstr

� .Y
0
!X 0/

is a morphism of chain complexes. Also, given ˆ1 2 Cstr
l1
.Y1 ! X1/ and ˆ2 2

Cstr
l2
.Y2! X2/, we can construct in the obvious way a continuous chain ˆ1 �ˆ2 2

Cstr
l1Cl2

.Y1 �Y2!X1 �X2/ characterized by

.ˆ1 �ˆ2/.x1;x2/Dˆ1.x1/�ˆ2.x2/:
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The Leibniz formula

@.ˆ1 �ˆ2/D @.ˆ1/�ˆ2C .�1/deg.ˆ1/ˆ1 � @.ˆ2/

clearly holds.

Now let F be a compact oriented semi-algebraic manifold of dimension l and let X be a
semi-algebraic set. We define the constant continuous chain yF 2Cstr.pr1W X �F!X /

by yF .x/D Jfxg �FK.

5.4 The cochain complex of PA forms

As we explained in Remark 5.12, ��min.�
k/ is not acyclic. In this section we will

enlarge the cochain complex ��min.X / into a cochain complex ��PA.X / which will
satisfy the Poincaré lemma.

Let f W Y ! X be a semi-algebraic map, let ˆ 2 Cstr
l .f W Y ! X / be a continuous

l –chain and let � 2�kCl
min .Y /. We define a cochain

ffl
ˆ � 2 Ck.X / by

(8)
� 
ˆ

�;  i D h�;  Ëˆ
�

for  2 Ck.X /:

Definition 5.20 A PA form of degree k in X is a cochain in X of the form
ffl
ˆ � as

defined in Equation (8) for some semi-algebraic map f W Y ! X , some continuous
chain ˆ 2 Cstr

l .f W Y ! X /, and some minimal form � 2 �kCl
min .Y /. We denote by

�k
PA.X /� Ck.X / the subset of all PA forms in X .

Definition 5.21 Given a closed semi-algebraic subset A � X , we say that a PA
form ˛ 2�k

PA.X / is a trivial fiber integral over A if there exists a continuous chain
ˆ 2 Cstr

l .Y ! X / and a minimal form � 2 �kCl
min such that ˛ D

ffl
ˆ � and A is the

relative closure of a stratum of some trivialization of ˆ.

Notice that by definition of a PA form there always exists a (semi-open) triangulation
of the space such that the PA form is a trivial fiber integral over the relative closure of
each simplex. When ˛ 2�k

PA.X / is a trivial fiber integral over A then by definition
˛jA D

ffl
yF
� for some compact oriented semi-algebraic manifold F and some minimal

form � 2 �kCdim.F /
min .A � F /, where yF 2 Cstr

dim.F /.prW A � F ! A/ is the constant
continuous chain introduced before Definition 8.1.

Proposition 5.22 �k
PA.X / is a subgroup of Ck.X /.

Proof Let ˛i D
ffl
ˆi
�i be two PA forms in �k

PA.X / with ˆi 2Cstr
li
.fi W Yi!X / and

�i 2�
kCli
min .Yi/, for i D 1; 2.
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We first show that we can assume that l1D l2 . For concreteness, suppose that l1� l2 and
set r D l2�l1� 0. There is a natural isomorphism Cstr

r .Œ0; 1�
r!�/ŠCr .Œ0; 1�

r / given
by ˆ 7!ˆ.�/, and hence we can realize JŒ0; 1�r K as an element of Cstr

r .Œ0; 1�
r !�/.

Consider also the smooth minimal form dt1 � � � dtr D �.1I t1; : : : ; tn/ 2�
r
min.Œ0; 1�

r /

where t1; : : : ; tr are the coordinates in Œ0; 1�r . Then

˛1 D

 
ˆ1�JŒ0;1�r K

�1 � dt1 � � � dtr ;

where ˆ1 � JŒ0; 1�r K 2 Cstr
l2
.Y1 � Œ0; 1�

r !X ��/ so we can assume that l1 D l2 .

Now consider the obvious continuous chain ˆ1Cˆ2 2 Cstr
l1
.Y1 t Y2! X / and the

minimal form �1C�2 2�
kCl1
min .Y1 tY2/. Then 

ˆ1

�1C

 
ˆ2

�2 D

ˆ
ˆ1Cˆ2

�1C�2;

and so the sum of two PA forms is still a PA form. It is obvious that 0 is a PA form as
well as is the inverse of a PA form.

The coboundary of a PA form is again a PA form because of the following.

Lemma 5.23 ı.
ffl
ˆ �/D

ffl
ˆ ı�C .�1/deg.�/�deg.ˆ/

ffl
@ˆ �.

Proof Evaluate both side on a chain  using the Leibniz formula for the boundary of
 Ëˆ and unravelling definitions.

It is also clear that �k
min.X / � �

k
PA.X / because a minimal form � on X can be

written as
ffl
y�
� where y� 2 Cstr

0 .X
D
!X / is the constant continuous 0–chain defined

by y�.x/D JfxgK.

If gW X 0!X is a semi-algebraic map then g�.��PA.X //��
�
PA.X

0/ because of the
formula g�.

ffl
ˆ �/D

´
g�ˆ g��, which is straightforward to check.

The following is a direct consequence of Proposition 3.3.

Proposition 5.24 Let ˛ 2�PA.X /. If deg.˛/ > dim.X / then ˛ D 0.

In order to finally prove that ��PA.X / is an algebra we need the following extension of
Proposition 5.9 to PA forms.

Proposition 5.25 Let X1 and X2 be semi-algebraic sets and let ˛ 2�k
PA.X1 �X2/.

If h˛; 1 � 2i D 0 for all 1 2 C�.X1/ and 2 2 C�.X2/ then ˛ D 0.
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The proof of this proposition is more complicated than for the case of minimal forms,
in particular because it is unclear whether, for a PA form ˛ on X , there exists a dense
semi-algebraic smooth manifold on which ˛ is smooth.

To prove Proposition 5.25, first we establish two lemmas. The first is an integral
representation of PA forms. To state it, we introduce the following notation. Suppose
that X D .0; 1/n is an open n–cube and let x1; : : : ;xn be the standard coordinates.
For a subset K D fi1; : : : ; ikg � nD f1; : : : ; ng with 1� i1 < � � �< ik � n we set

dxK D dxi1
^ � � � ^ dxik

:

Lemma 5.26 Let X D .0; 1/n and ˛ 2 �k
PA.X /. Assume that ˛ is a trivial fiber

integral over X . There exists a subset X0 �X such that the complement T DX nX0

is a closed smoothly stratifiable set of codimension 1 and there exists, for each subset
K � n of cardinality k , a smooth function GK W X0!R satisfying the following: If
V is a semi-algebraic smooth oriented submanifold of dimension k in Rn such that
xV �X0 , then

(9) h˛; JV Ki D
X
K

ˆ
V

GK dxK ;

where the sum runs over all subsets K � n of cardinality k .

Remark 5.27 Here by
´

V GK dxK we mean
´

V i�.GK dxK /, where i W V ,!X is
the inclusion and i� is the pullback of differential forms.

Remark 5.28 Since X0 may not be semi-algebraic, we cannot quite speak of the
restriction ˛jX0

, but we will nevertheless abuse notation and say that ˛jX0
is given by

the integral representation (9). If we just ask for the integral representation without
smoothness assumption on the GK ’s then we can assume that X0 is semi-algebraic
(see formula (12) below which gives an integral representation on the semi-algebraic
dense subset X 0 ).

Proof Since ˛ is a trivial fiber integral over X there exists a compact oriented semi-
algebraic manifold Y of dimension l and a minimal form � 2�kCl

min .X �Y / such that
˛D

ffl
Y �. By taking a finite cubification of Y it is easy to see that we can suppose that

Y D Œ0; 1�l (by replacing � by the sum of the restrictions of � over a finite partition
“up to codimension 1 faces” of Y into cubes Œ0; 1�l ).

Now, �D
Ps

jD1 �.f
j

0
If

j
1
; : : : ; f

j

kCl
/ for f j

i W X �Y !R semi-algebraic functions.
There exists a codimension 1 semi-algebraic subset Z �X �Y on the complement of
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which the f j
i are smooth, and hence

�j.X�Y /nZ D

sX
jD1

f
j

0
df

j
1
: : : df

j

kCl
:

Denote by x1; : : : ;xn and y1; : : : ;yl the coordinates on X and Y . Then on .X�Y /nZ ,

(10)
sX

jD1

f
j

0
df

j
1
: : : df

j

kCl
D

X
K ;L

gK ;L dyL dxK

where the sum runs over subsets K � n and L� l with jKjC jLj D kC l and gK ;L

are semi-algebraic smooth functions on .X �Y /nZ ( gK ;L is a signed sum of .kC l/!

products of f j
0

with first order partial derivatives of f j
i for 1 � i � k C l ). When

K � n is of cardinality k then LD l and we set gK D gK ;l .

For x 2X , consider the slice

(11) Z.x/D fy 2 Y W .x;y/ 2Zg:

Now set T 0 D fx 2 X W dim Z.x/D lg. This is a semi-algebraic subset of X as can
be seen from the semi-algebraic local triviality theorem [1, Proposition 9.3.1] applied
to prW Z!X . Further, dim T 0 < n because dim Z < nC l .

Fix K � n of cardinality k . For x 2X nT 0 , the function

gK .x;�/W Y �!R

y 7�! gK .x;y/D gK ;l.x;y/

is almost everywhere defined and, by [1, Proposition 2.9.1 and remark that follows it],
it is semi-algebraic on its domain. Set gC

K
Dmax.gK ; 0/ and g�

K
DgC

K
�gK . Consider

the hypographs of g˙
K

,

U˙K WD f.x;y; t/ 2 ..X �Y / nZ/�R W 0� g˙K .x;y/� tg:

With analogous notation for the slice as in Equation (11), we thus have, for x 2X nT 0 ,

HlC1.U˙K .x//D

ˆ
Y

g˙K .x;y/ dyl ;

and gK .x;�/ is integrable if and only if UC
K
.x/ and U�

K
.x/ are of finite .lC1/–

volume. By [3, Theorem 3], the set

T 00K WD fx 2X nT 0 W gK .x;�/ is not integrable over Y g

is semi-algebraic.
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We now claim that dim.T 00
K
/ < n.

Let fikC1; : : : ; ing be the complement of the set K in n and define the top degree
minimal form

�K D

sX
jD1

�.f
j

0
If

j
1
; : : : ; f

j

kCl
;xikC1

; : : : ;xin
/ 2�nCl

min .X �Y /

which is also smooth on .X �Y / nZ . Using (10), we have that

˙

sX
jD1

f
j

0
df

j
1
: : : df

j

kCl
dxikC1

� � � dxin
D gK dyl dxn

where the sign comes from the signature of the permutation of the shuffle .K; n nK/.
For concreteness, we will assume that this signature is C1. Set

A˙K D f.x;y/ 2X �Y nZ W g˙K .x;y/ > 0g:

To avoid issues arising from the noncompactness of the open cube X , fix � > 0 and let
X�D Œ�; 1���

n and A˙
K ;�
DA˙

K
\.X��Y /. Consider the chains JA˙

K ;�
K2CnCl.X�Y /

obtained by taking the .nCl/–dimensional strata of A˙
K ;�

equipped with the orientation
of X �Y . Thenˆ

X��Y

jgK .x;y/j dyl dxn D h�K ; JACK ;�Ki � h�K ; JA�K ;�Ki<1;

and hence gK is integrable over X� � Y . By Fubini’s Theorem (and since � > 0 is
arbitrary), we deduce that for almost every x 2X nT 0 , gK .x;�/ is integrable, which
establishes the claim.
Now set

X 0 DX nT 0[
S

K�n;jK jDk T 00
K
:

This is an open dense semi-algebraic subset of X . For each x 2 X 0 , g˙
K
.x;�/ is

integrable on Y and we set

G˙K W X
0
�!R

x 7�!

ˆ
Y

g˙K .x;y/ dyl

and GK D GC
K
� G�

K
. If V is a semi-algebraic k –dimensional oriented smooth

submanifold with closure in X 0 , then since V \T 0 D∅ we have that Z\ .V �Y / is
negligible in V �Y and using (10) we have

h˛; JV Ki D
ˆ
.V�Y /nZ

X
K ;L

gK ;L dyL dxK :
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If jLj < l then jKj > k and since V is k –dimensional in the direction of the xi ’s
and F is in the direction of the yi ’s, we have that the restriction of the differential
form gK ;L dyL dxK to the tangent space of .V �Y / nZ is zero. Therefore the only
contributions come from the gK D gK ;l , and by Fubini’s Theorem we have

(12) h˛; JV Ki D
X
K

ˆ
V

GK .x/ dxK :

It remains to prove that GK is smooth on the complement of a codimension 1 smoothly
stratified closed subspace T of X . The value of the integral GK .x/, for x 2X 0 , can be
obtained as the difference of volumes of the slices at x of the hypographs of gC

K
and g�

K
.

These hypographs are semi-algebraic sets, hence they are global subanalytic sets (see [3]
for a quick definition and a list of references on global subanalytic sets and functions).
By Theorem 1’ of [3] there exist (global) subanalytic functions A1; : : : ;AsW X

0!R
(not necessarily continuous) and a polynomial P 2RŒa1; : : : ; as;u1; : : : ;us � such that

GK D P .A1; : : : ;As; log.A1/; : : : ; log.As//:

By [14] (see also [10]), graphs of subanalytic functions are stratifiable, and therefore
there exists a finite stratification of X 0 into subanalytic smooth submanifolds such that
GK is smooth on each stratum. Let X0 be the union of the maximal strata. Then GK

is smooth on X0 and its complement T D X 0 nX0 is a closed smoothly stratifiable
subset of codimension 1.

We next establish a continuity principle for PA forms: A PA form is determined by its
values on the complement of any closed codimension 1 smoothly stratifiable subset.
We have an analogous statement for minimal forms in Proposition 5.8 but the proof
there was easier because we assumed that the codimension 1 subset was semi-algebraic.

Lemma 5.29 Let X be a semi-algebraic set, let T � X be a closed codimension 1

smoothly stratifiable subset, and let ˛ 2�k
PA.X / be a PA form. If for all  2 Ck.X /,

spt. /\T D∅ H) h˛;  i D 0;

then ˛ D 0.

Remark 5.30 This could be summarized by “˛jX nT D 0 H) ˛ D 0” but this does
not quite make sense because X nT may be not semi-algebraic.

Proof Let  2 Ck.X /. We will prove that h˛;  i D 0.

Consider a cubification of X such that ˛ is a trivial fiber integral over each closed
cube and such that  is a linear combination of cubes. By linearity it is enough to
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prove the statement when  D Jx�K, where � is a single cube. Let � be an open cube
of maximal dimension such that � is a face of it. There exists some semi-algebraic
homeomorphism which lets us assume that x� D Œ0; 1�n and that x� D Œ0; 1�k � f0gn�k .
The image of T under this semi-algebraic homeomorphism is still of codimension 1.

Since ˛ is a trivial fiber integral over Œ0; 1�n , there exists a compact oriented manifold F

of dimension l and a minimal form

�D

rX
iD1

�.f i
0 If

i
1 ; : : : ; f

i
kCl/ 2�

kCl
min .Œ0; 1�

n
�F /

such that ˛jx� D
ffl
yF
�. There exists Z � Œ0; 1�n �F of codimension 1 such that the

f i
j are smooth on the complement of Z . As seen in the proof of Lemma 5.26 (the

part following equation (11)), the set T 0 WD fx 2 Œ0; 1�n W dim.Z \ fxg �F / D lg is
semi-algebraic of codimension 1 and the same is true for its closure. Since we can
always enlarge T , we can assume that T 0 � T . This implies that if V is a smooth
submanifold in X then the f i

j ’s are smooth almost everywhere on .V nT /�F .

We now claim that there exists a sequence fng in C k.x�/ such that n
SA
!  and

Hk.spt.n/\T /D 0.

First recall that  D JŒ0; 1�k � f0gn�kK. To prove the claim, consider the positive
orthant of the .n�k�1/–dimensional sphere

Sn�k�1
C D fv 2 Œ0; 1�n�k

W kvk D 1g

and of the .n�k/–disk

Dn�k
C D fv 2 Œ0; 1�n�k

W kvk � 1g:

Since T is of codimension 1 in Œ0; 1�n , we have that Hn.T \ .Œ0; 1�k �Dn�k
C //D 0.

Passing to polar coordinates we have

Hn.T \ .Œ0; 1�k �Dn�k
C //D C �

ˆ 1

0

ˆ
Sn�k�1
C

Hk.T \ Œ0; 1�k � frvg/ rn�k�1 dv dr

where C is a positive constant, dv is the standard .n�k�1/–area measure on Sn�k�1
C

and dr is the Lebesgue measure on the interval Œ0; 1�. Hence the double integral
is zero and since the integrand is nonnegative, there exists v0 2 Sn�k�1

C such that
Hk.T \ Œ0; 1�k � frv0g/ D 0 for almost every r 2 Œ0; 1�. Therefore there exists a
sequence frng in Œ0; 1�, decreasing to 0, such that if we set

n D JŒ0; 1�k � frn � v0gK 2 Ck.Œ0; 1�
n/

then Hk.T \ spt.n//D 0 and n
SA
!  . This proves the claim.
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Clearly n � JFK SA
!  � JFK and from Proposition 5.6 we have

(13) h˛;  i D h�;  � JFKi D lim
n!1

h�; n � JFKi D lim
n!1

h˛; ni:

Therefore it is now enough to prove that h˛;  i D 0 when Hk.T \ spt. //D 0, and
from now on we suppose that spt. / \ T has zero k –volume. We can moreover
suppose that  D JV K, where V is a semi-algebraic oriented smooth submanifold of
dimension k .

Let m� 1. Since T is closed, spt. /\T is compact and it is covered by finitely many
open balls B.x

.m/
i ; 1=m/, centered at x

.m/
i 2T and of radius 1=m, for 1� i �Nm . Set

Vm D V n
SNm

iD1
BŒx

.m/
i ; 2=m�. This is a semi-algebraic oriented smooth submanifold.

Since Vm\T D∅, the hypothesis of the lemma implies that h˛; JVmKi D 0. Using
that the f i

j are smooth almost everywhere on .V nT /�F , that Hk.T \V /D 0, and
that

S
m�1 Vm D V n T , as well as the Lebesgue Bounded Convergence Theorem,

we get
h˛; JV Ki D h�; JV �FKi

D

rX
iD1

ˆ
.V nT /�F

f i
0 df i

1 � � � df
i

kCl

D lim
m!1

rX
iD1

ˆ
Vm�F

f i
0 df i

1 � � � df
i

kCl

D lim
m!1

h˛; JVmKi

D 0:

Proof of Proposition 5.25 Let  2 Ck.X1 �X2/. We will prove that h˛;  i D 0.

Because spt. / is compact, we are able to restrict to the product of compact sets
pr1.spt. //�pr2.spt. //�X1�X2 , so we can suppose that X1 and X2 are compact.
Take cubifications f�1

i g and f�2
j g of X1 and X2 . By linearity it is enough to check

that ˛jx�1
i
�x�2
j
D 0 for all pairs of closed cubes in X1 and X2 . Hence we can suppose

that X1 D Œ0; 1�
n1 and X2 D Œ0; 1�

n2 .

Now take a triangulation of X1 �X2 such that ˛ is a trivial fiber integral over the
closure of each simplex and such that  is a linear combination of simplices. By
linearity, without loss of generality we can assume that  D Jx�K for a single simplex � .
Let � be a maximal dimensional open simplex such that � is a face of x� . By the same
argument as in the proof of Proposition 4.3, we can construct a sequence fng �Ck.�/

such that n
SA
!  . By the same argument as in equation (13), it is enough to show that

h˛; ni D 0. In other words, there is no loss of generality in supposing that spt. / is
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contained in the simplex � which is an open set in X1 �X2 (because it is of maximal
dimension).

Since spt. / is compact, it is covered by finitely many open sets of the form O1 �O2

contained in � and such that Oi is an open set in Xi semi-algebraically homeomorphic
to .0; 1/ni for i D 1; 2. To conclude the proof, we will show that ˛jO1�O2

D 0.

Set X D O1 �O2 Š .0; 1/n with n D n1 C n2 and notice that ˛ is a trivial fiber
integral over X since X � � . By Lemma 5.26, there exists a closed codimension 1

smoothly stratified T � X and smooth functions GK W X n T ! R for K � n of
cardinality k , giving the integral representation (9) for ˛jX nT . We prove that GK D 0.
For concreteness, suppose that KDf1; : : : ; k1; n1C1; : : : ; n1Ck2g with k1Ck2D k

and 0� ki � ni . If GK was not zero there would exist an x 2X nT such that, say,
GK .x/ > 0. By continuity, there exists � > 0 and nonempty subsets U1 � O1 and
U2 �O2 such that GK jU1�U2

> � . Take V1 � U1 a nonempty k1 –dimensional semi-
algebraic submanifold parallel to the linear space Œ0; 1�k1 � f0gn�k1 (ie a codimension
0 manifold contained in some translate of Œ0; 1�k1 �f0gn�k1 ) and similarly a nonempty
k2 –dimensional manifold V2�U2 parallel to f0gn1 � Œ0; 1�k2 � f0gn2�k2 . By Fubini’s
Theorem,

h˛; JV1K� JV2Ki D
ˆ

V1�V2

GK dxK � � �Hk.V1 �V2/ > 0;

which contradicts our main hypothesis. Thus GK D 0. This implies ˛j.O1�O2/nT D 0.
By Lemma 5.29 we deduce that ˛jO1�O2

D 0 and the proposition is proved.

Proposition 5.31 Let X1 and X2 be semi-algebraic sets. There is a degree-preserving
linear map

�W ��PA.X1/˝�
�
PA.X2/ �!��PA.X1 �X2/

characterized by the formula

(14) h˛1 �˛2; 1 � 2i D h˛1; 1i � h˛2; 2i

for ˛i 2�
�
PA.Xi/ and i 2 C�.Xi/, i D 1; 2. The Leibniz formula

ı.˛1 �˛2/D ı.˛1/�˛2C .�1/deg.˛1/˛1 � ı.˛2/

also holds. Further, let T W X2�X1!X1�X2 be the twisting map given by .x2;x1/ 7!

.x1;x2/. Then

˛2 �˛1 D .�1/deg.˛1/ deg.˛2/T �.˛1 �˛2/:
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Proof We can write ˛i D
ffl
ˆi
�i for some �i 2�

�
min.Yi/ and ˆi 2 Cstr.Yi ! Xi/,

i D 1; 2. Set

(15) ˛1 �˛2 D

 
ˆ1�ˆ2

�1 ��2:

It is straightforward to check that this PA form has the desired characterizing property.
The Leibniz formula is a consequence of Lemma 5.23 and of the Leibniz formulas
for minimal forms and continuous chains (Proposition 5.10 and Proposition 5.17.)
Similarly for the twisting formula. The right side of Equation (15) is independent of
the choice of the representatives of ˛i by Proposition 5.25, which also implies that
Equation (14) characterizes this cross product.

We define a multiplication on ��PA.X / by

˛1 �˛2 D�
�.˛1 �˛2/

where �W X!X�X is the diagonal map. It is immediate from the previous proposition
that this multiplication satisfies the Leibniz formula and is graded commutative.

In conclusion, we have:

Theorem 5.32 The above construction of PA forms defines a contravariant functor
��PAW SemiAlg! CDGA.

6 Equivalence between APL and ��PA

Recall that SemiAlg is the category of semi-algebraic sets. There is an obvious forgetful
functor uW SemiAlg! Top. Consider the contravariant functors

��PAW SemiAlg �! CDGA

APL.u.�/IR/W SemiAlg �! CDGA

where CDGA the category of commutative differential graded algebras and APL is
the Sullivan functor of piecewise polynomial forms as defined in [2] (see also [7]).
Abusing notation we will simply write X for u.X /. The aim of this section is to prove
our main theorem:

Theorem 6.1 There is a zigzag of natural transformations

��PA.X / �! � � �  � APL.X IR/

which is a weak equivalence when X is a compact semi-algebraic set.
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The explicit chain of quasi-isomorphisms will be given in Section 6.4, Equation (20)
before Proposition 6.11. The proof of this theorem will mimic the proof of [7, Sec-
tion 11(d)] which gives a weak equivalence between APL.�IR/ and the de Rham
functor ��C1 of smooth differential forms on a smooth manifold. From now on we
will also drop the field of coefficients R from the notation of APL .

Remark 6.2 The theorem is likely to be true without the compactness hypothesis. As
it stands, the statement is sufficient for the application we have in mind (formality of
the little cubes operad). Our proof would work also in the noncompact case if Poincaré
Lemma 6.3 below could be proved for noncompact collapsible polyhedra. In fact,
Kontsevich and Soibelman claim that the theorem is true for an even more general
class of spaces they call PA spaces [19, Definition 20].

In order to prove the weak equivalence ��PA ' APL , we first need to establish some
homotopy properties of ��PA , namely:

(1) a Poincaré lemma stating that ��PA.�
k/ is acyclic;

(2) a sheaf property, ie that ��PA satisfies a Mayer–Vietoris sequence;

(3) the fact that the simplicial sets �k
PA.�

�/ are “extendable”; this is used in es-
tablishing the Mayer–Vietoris property for the functor APA which is built from
the PA forms on the simplex �k in the same way as APL is built from the
polynomial forms on �k .

We establish these results in the next three sections.

6.1 Poincaré Lemma for ��
PA

Recall the notion of a collapsible polyhedron from Section 2.2. The version of the
“Poincaré lemma” that we need is the following.

Lemma 6.3 Let X be a compact semi-algebraic set that is semi-algebraically homeo-
morphic to a collapsible polyhedron. Then H0.��PA.X //Š R and Hi.��PA.X //D 0

for i > 0.

As in the classical proof of the Poincaré lemma, the strategy is to convert a geometric
homotopy into a cochain homotopy and to deduce that the cochain complex is acyclic.
But this approach is not as straightforward in our case because it is unclear whether
the cochain homotopy operator maps PA forms to PA forms (see Section 9.3).
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Set I D Œ0; 1� and let hW X � I !X be a semi-algebraic homotopy. Define a cochain
homotopy operator

‚hW Ck.X / �! Ck�1.X /

by, for � 2 Ck.X / and  2 Ck�1.X /,

h‚h.�/;  i D h�; h�. � JIK/i:

It is easy to check that

(16) ı‚h˙‚hı D .h.�; 1//
�
� .h.�; 0//�:

If � is a minimal form then ‚h.�/D
ffl
yI

h�.�/ is a PA form, but in general it is not a
minimal form as can be seen from an example analogous to that of Remark 5.12. We
do not know whether ‚h maps PA forms to PA forms but we will establish a weaker
result in that direction. To state it we need the following:

Definition 6.4 Let X be a semi-algebraic set and let A�X be a closed semi-algebraic
subset. We say that a semi-algebraic homotopy hW X � I !X is supported on A if
h.A� I/�A and h.x; t/D x for x 2X nA and t 2 I .

Lemma 6.5 Let X be a semi-algebraic set, let A � X be a closed semi-algebraic
subset and let hW X � I ! X be a semi-algebraic homotopy. If h is supported on A

and if ˛ 2��PA.X / is a trivial fiber integral over A, then ‚h.˛/ 2�
�
PA.X /.

Proof The general idea of the proof is that on the one hand ‚h.˛jX nA/D 0 because
the homotopy is trivial over X nA, and that on the other hand ˛jA D

´
yF
� so that

‚h.˛jA/D
´
yF�I
.h� idF /

��. So ‚h.˛/ can be obtained by gluing two PA forms.

In more detail, set X0 D X nA and A0 D A\X0 , so that X is the pushout of X0

and A over A0 . We have ˛ D
´
ˆ � where ˆ 2 Cstr

l .f W Y ! X /, � 2 �kCl
min .Y /,

and A is the closure of a stratum of a trivialization of ˆ. Thus there exists a map
gW A�F ! Y such that F is a compact oriented manifold of dimension l , fgD pr1 ,
and g�.Jfag �FK/Dˆ.a/ for a 2A. Set Y0 D f

�1.X0/. The map g restricts to a
map g0W A0 �F ! Y0 . Consider the pushout diagram

(17)

A0 �F
g0 //

� _

��
pushout

Y0

zj
��

A�F
zg

// zY

and the map qW zY ! Y induced by gW A�F ! Y and Y0 ,! Y .
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It is easy to construct a continuous chain ẑ 2Cstr
l .f qW zY !X / such that q�. ẑ .x//D

ˆ.x/ for x 2X , and hence
ffl
ˆ �D

ffl
ẑ q�.�/.

Now define a homotopy zhW zY � I ! zY using maps zg and zj from diagram (17) by(
zh.zg.a; f /; t/D zg.h.a; t/; f / for a 2A, f 2 F and t 2 I ,

zh.zj .y/; t/D zj .y/ for y 2 Y0 and t 2 I .

That zh is well-defined is a consequence of the support of h on A.

We will show that

(18) ‚h

� 
ˆ

�

�
D

 
ẑ�JI K

zh�.q��/

which implies the statement of the lemma.

When restricted to X0 , the right side of Equation (18) is 
. ẑ jX0

/�JI K
.zhj�Y0�I q�/�D

 
. ẑ jX0

/�JI K
pr�1 q��

which is 0 because the projection pr1 decreases the dimension of the chains, and for
the left side we have ‚hjX0�I D 0 because the homotopy is constant over X0 .

On the other hand, for  2 Ck�1.A/, we have�
‚h

� 
ˆ

�

�
; 

�
D

� 
ˆjA

.�jf �1.A//; h�. � JIK/
�

D h

 
yF

g�.�/; h�. � JIK/i

D hg��; h�. � JIK/� JFKi

D hg��; .h� idF /�. � JI �FK/i

D h.h� idF /
�.g��/;  � JI �FKi

D

� 
ẑ�JI K

zh�.q��/; 

�
and this proves Equation (18) when restricted to A.

Since C�.X /D C�.A/CC�.X0/, Equation (18) holds on C�.X / and the lemma is
proved.

We come to the proof of the Poincaré Lemma.
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Proof of Lemma 6.3 Since X is collapsible, it is semi-algebraically path-connected
and the only degree 0 ı–cocycles are the constant functions. So �0

PA.X /\ ker ı ŠR.

Let ˛ 2�k
PA.X /\ ker ı with k � 1. We will show that ˛ 2 ı.�k�1

PA .X //. We have
˛ D

ffl
ˆ � for some ˆ 2 Cstr

l .Y !X / and � 2�kCl
min .Y /. Take a triangulation of X

trivializing ˆ. By the semi-algebraic Hauptvermutung (Theorem 2.6 and Corollary 2.7),
the polyhedron associated to that triangulation is also collapsible, and it thus admits
a subdivided triangulation that simplicially collapses to some vertex �. This means
that the triangulation consists of closed simplices �1; : : : ; �N such that if we set Tp DSN

iDp �i for 1� p �N and TNC1 D �, then there exist semi-algebraic homotopies
hpW Tp�I!Tp supported on �p such that hp.�; 0/D idTp

and hp.Tp�f1g/�TpC1 .
Since ˛jTp

is a trivial fiber integral over �p , Lemma 6.5 implies that ‚hp
.˛jTp

/ 2

��PA.Tp/. Define gpW Tp!TpC1 by gp.x/Dhp.x; 1/ and Equation (16) then implies
that ı‚hp

.˛jTp
/D g�p.˛jTpC1

/�˛jTp
for 1� p �N .

Set

ˇ D‚h1
.˛jT1

/Cg�1 .‚h2
.˛jT2

//Cg�1g�2 .‚h3
.˛jT3

//

C � � �Cg�1g�2 � � �g
�
N�1.‚hN

.˛jTN
//:

This is an elements of �k�1
PA .X /. Most of the terms of ıˇ cancel in pairs and we are

left with

ıˇ D�˛Cg�1g�2 � � �g
�
N�1g�N .˛jTNC1

/:

The second term in this sum is 0 because TNC1 D � and ˛ is of positive degree. This
proves that ˛ D ı.�ˇ/ is a coboundary in ��PA.X /.

6.2 Sheaf propery of ��
PA

Definition 6.6 An excisive semi-algebraic pair is a pair fX1;X2g of semi-algebraic
sets in the same Rm such that there exist semi-algebraic functions �i W X1[X2! Œ0; 1�

with Xi � �
�1
i ..0; 1�/ for i D 1; 2 and �1C �2 D 1.

Lemma 6.7 Let fX1;X2g be an excisive semi-algebraic pair. There exists an exact
sequence

(19) 0 �!�k
PA.X1[X2/

r
�!�k

PA.X1/˚�
k
PA.X2/

�
�!�k

PA.X1\X2/ �! 0

with r.˛/D .˛jX1
; ˛jX2

/ and �.˛1; ˛2/D ˛1jX1\X2
�˛2jX1\X2

.
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Proof Set X DX1[X2 . It is clear that �r D 0. It is also not difficult to construct,
from the given partition of unity, another one that we will also denote by f�1; �2g

with smaller support and such that there exist semi-algebraic functions �i W X ! Œ0; 1�

with �i.x/ > 0 H) �i.x/ D 1 and ��1
i ..0; 1�/ � Xi . This can be done by taking a

semialgebraic function �W Œ0; 1�! Œ0; 1� such that �.Œ0; 1=4�/D f0g and �.1� t/D

1��.t/, and composing the given �i with � to get the new partition of unity. This
leaves enough room in Xi \ �

�1
i .0/ to build the desired functions �i . For the rest of

the proof we will assume that we are dealing with this better partition of unity.

Note X is the union of the closed sets ��1
i .Œ1=4; 1�/, iD1; 2. Since ��1

i .Œ1=4; 1�/�Xi

we deduce that Ck.X /D Ck.X1/CCk.X2/. Hence r is injective.

To prove the surjectivity of �, let ˛ 2�k
PA.X1\X2/ and let ji W X1\X2 ,! Xi be

the inclusion. Then ˛ D�.j �
1
.�2/˛;�j �

2
.�1/˛//.

It remains to prove that ker� � im r . Let ˛i 2 �
k
PA.Xi/ for i D 1; 2 be such that

�.˛1; ˛2/D0. Let ˆi W Cstr
l .pi W Yi!Xi/ and �i 2�

kCl
min .Yi/ be such that ˛iD

ffl
ˆi
�i

for iD1; 2. There is no loss of generality in assuming that l is positive and independent
of i as seen in the proof of Proposition 5.22. We can also assume that Yi �RN .

Consider the following semi-algebraic sets and maps

zYi D f.pi.y/; �i.pi.y//y/ W y 2 Yig �X �RN ;

zpi W
zYi!X given by .x; v/ 7! x;

qi W Yi!
zYi given by y 7! .pi.y/; �i.pi.y//y/:

Note the restriction of qi to p�1
i .��1

i ..0; 1�/ is a homeomorphism onto its image and
that qi maps the entire fiber of pi over a point x 2 ��1

i .0/ to a single point f.x; 0/g.

Define ẑ i by

ẑ
i.x/D

(
qi�.ˆi.x// if x 2Xi ;

0 if �i.x/D 0:

This defines a continuous chain ẑ i 2 Cstr
l .
zYi ! X /. It is also easy to build minimal

forms z�i 2�
kCl
min .
zYi/ such that q�i .z�i/D p�i .�i/�i in �kCl

min .Yi/.

Set zY D zY1 t
zY2 , zp D . zp1; zp2/W zY ! X , ẑ D ẑ 1 C

ẑ
2 2 Cstr

l .
zY ! X /, and

z�D z�1C z�2 2�
kCl
min .
zY /. This determines a PA form ˛ D

ffl
ẑ z� 2�

k
PA.X / and one

can easily check that ˛jXi
D ˛i , since the left side of this equation can be identified

(with abuse of notation) with .˛1 � �1jXi
C˛2 � �2jXi

/.
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6.3 Extendability of the simplicial set �PA.��/

Definition 6.8 [7, page 118] A simplicial set A� is extendable if, for each n � 0

and for each subset I � f0; : : : ; ng, given a collection ˇi 2An�1 for i 2 I such that
@i ǰ D @j�1ˇi for each i < j in I , there exists ˇ 2An such that ˇi D @i.ˇ/ for all
i 2 I .

This section’s goal is to prove the extendability of the simplicial vector spaces �k
PA.�

�/.

Fix an integer n. Consider the “corner”

X D

�
x D .x1; : : : ;xn/ 2Rn

W xi � 0 and
nX

iD1

xi � 1

�
whose codimension 1 faces containing the origin are given by

@iX D fx 2X W xi D 0g for 1� i � n:

Notice that @iX consists of all the faces of X except the “diagonal face” f
P

xi D 1g.
The space X is homeomorphic to the simplex �n . We next show that a family of
compatible PA forms given on the non-diagonal faces can be extended into a PA form
on X .

Lemma 6.9 Let ˛i 2�PA.@iX / for 1� i � n. If ˛i j@i X\@jX D j̨ j@i X\@jX for all
1� i; j � n then there exists ˛ 2�PA.X / such that ˛j@i X D ˛i for all 1� i � n.

Proof For I � n, define @I X D
T

i2I @iX . In particular @∅X D X , and define
prI W X ! @I X by prI .x1; : : : ;xn/D .x

0
1
; : : : ;x0n/ with x0i D 0 if i 2 I and x0i D xi

otherwise. For J � I consider also the inclusion maps j I
J
W @I X ! @J X .

Define
˛ D

X
∅6DI�n

.�1/jI j�1 pr�I j I�
fig .˛i/ 2�

�
PA.X /

where i is an arbitrary element of I . Using the hypothesis, one can easily check that
˛ is independent of the choices of i 2 I . Moreover,

˛j@i X D j
fig�
∅ ˛

D j
fig�
∅ pr�

fig j
fig�

fig
.˛i/

C

X
∅6DJ�.nnfig/

.�1/jJ j�1
fj
fig�
∅ pr�J j J �

fjg j̨ � j
fig�
∅ pr�J[fig j

J[fig�

fjg j̨ g
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where j is an arbitrary element in J . Since the diagram

@iX
j
fig
∅ //

j
fig
∅   

X
prJ // @J X

jJ
fig // @j X

X prJ[fig

// @J[figX
j

J[fig

fig

::

is commutative, it follows that all the terms in the brackets in the above sum vanish.
Therefore ˛j@i X D j

fig�
∅ pr�

fig
j
fig�

fig
.˛i/D ˛i .

Lemma 6.10 The simplicial vector space �k
PA.�

�/ is extendable.

Proof By an elementary induction, it is enough to check the extendability condition
of Definition 6.8 for I D f0; : : : ; ng.

Consider the standard n–simplex �nDft D .t0; : : : ; tn/2RnC1 W tp � 0;
Pn

pD0tpD 1g.
Its faces are @p�nDft 2�n W tp D 0g for 0�p� n. Suppose given p̌ 2�

k
PA.@p�

n/

for 0 � p � n such that p̌j@p�n\@q�n D ˇqj@p�n\@q�n for 0 � p; q � n. We want
to build ˇ 2�k

PA.�
n/ such that p̌ D ˇj@p�n for 0� p � n.

For 0� p � n we have a semi-algebraic homeomorphism

�pW �
n Š
�!X

.t0; : : : ; tn/ 7�! .x1 D t0; : : : ;xp D tp�1;xpC1 D tpC1 : : : ;xn D tn/

which corresponds to the orthogonal projection of the simplex onto the hyperplane
tp D 0. This homeomorphism sends the faces of the simplex to the faces of X with

�p.@i�
n/D

(
@iC1X if i < p;

@iX if i > p;

and �p.@p�
n/ is the “diagonal face” of X . We define PA forms ˛p

i 2�
l
PA.@iX / by

˛
p
i D

(
.��1

p /�.ˇi�1/ if 1� i < p;

.��1
p /�.ˇi/ if pC 1� i � n:

By Lemma 6.9, there exists ˛p 2�l
PA.X / such that ˛pj@iX D ˛

p
i . We deduce that

��p .˛
p/j@i�

n D ˇi if i 6D p . Define a map �pW �n! R by �p.t0; : : : ; tn/D tp and
set

ˇ D

nX
pD0

�p ��
�
p .˛

p/:

Since
P
�p D 1 and �pj@p�n D 0 it follows that ˇj@p�n D p̌ .

Algebraic & Geometric Topology, Volume 11 (2011)



Real homotopy theory of semi-algebraic sets 2523

6.4 The weak equivalence ��
PA ' APL

We are ready to prove our main theorem by following the scheme of the proof of
�C1 ' APL from [7, Section 11(d)].

The geometric simplices define a semi-algebraic cosimplicial space f�pgp�0 . There-
fore we can consider the simplicial CDGA

APA� D f�
�
PA.�

p/gp�0:

This should be compared with the simplicial CDGA .APL/� from [7, Section 10(c)]
where APLp consists of polynomial forms on the simplicial set �p

� . More precisely,
this is the CDGA

APLp D

^
.t0; : : : ; tp; dt0; : : : ; dtp/

.�
1�

pX
iD0

ti ;

pX
iD0

dti

�
:

Since a polynomial is a semi-algebraic function, there is also an obvious inclusion

APL� ,! APA�

sending the polynomial k –form
P

ID.i1;:::;ik/�Œn�Df0;:::;ng
PI .t0; : : : ; tn/dti1

^� � �^dtik

to the minimal form
P

I �.PI .t0; : : : ; tn/I ti1
; : : : ; tik

/ for PI 2RŒt0; : : : ; tn�.

Recall that, as explained in [7, Section 10 (b)], to any such simplicial CDGA A� one
associates a contravariant functor

A.�/W sSet �! CDGA

S� 7�!A.K�/D homsSet.K�;A�/:

An element of Ak.K�/ can be regarded as a family fˆ�g�2K� with ˆ� 2 Ak
deg.�/ ,

compatible with boundaries and degeneracies. In particular, we have the contravariant
functors APL and APA from simplicial sets to CDGAs.

For a semi-algebraic set X , define the simplicial set of semi-algebraic singular simplices
in X ,

SPA
� .X /D fS

PA
p .X /gp�0

SPA
p .X /D f� W �p

!X j � is a semi-algebraic mapg:where

We also have the classical simplicial set of singular simplices in X , Ssing
� .X /, as in [7,

Section 10(a) and Section 4 (a)] (where it is denoted by S�.X /.) Since a semi-algebraic
map � W �p!X is continuous, we have a natural inclusion

SPA
� .X / ,! Ssing

� .X /:
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Our equivalence between ��PA and APL goes through the following natural zigzag

(20) ��PA.X /
˛X // APA.SPA

� .X // APL.SPA
� .X //

ˇXoo APL.S
sing
� .X //DW APL.X /

Xoo

where, for ! 2�PA.X /, ˛X .!/D f�
�.!/gf�2SPA

� .X /g , ˇX is induced by the inclusion
APL� ,! APA� , and X by the inclusion SPA

� .X / ,! Ssing
� .X /.

The main idea for proving that these natural maps are weak equivalences is to use the
following “Eilenberg–Steenrod criterion”.

Proposition 6.11 Let A;BW SemiAlg! Ch�.R/ be two contravariant functors with
values in cochain complexes and let � W A! B be a natural transformation between
them. Suppose the following:

(1) If X is empty or if X is semi-algebraically homeomorphic to a collapsible
polyhedron, then �X is a quasi-isomorphism.

(2) If fX1;X2g is an excisive semi-algebraic pair and if �X1
, �X2

, and �X1\X2
are

quasi-isomorphisms, then so is �X1[X2
.

Then �X is a quasi-isomorphism for every compact semi-algebraic set X .

Proof As X is a compact semi-algebraic set, after triangulating we can assume
that it is a finite simplicial complex (by abuse of notation we will not distinguish a
simplicial complex from its geometric realization). Consider its second barycentric
subdivision X 00 . For each closed simplex � of X , we consider its second derived
neighborhood, N.�/, as defined in [16, page 50]. In more detail, N.�/ is constructed
as follows: If v is a vertex of X 00 then its star in X 00 is the smallest closed simplicial
subcomplex of X 00 that is a topological neighborhood of v in X 00 . In other words, the
star of v is obtained as the union of the closure of the simplices of X 00 whose v is
a vertex. Then N.�/ is defined to be the union of the stars of all the vertices of the
second subdivision of � , so it is also the smallest closed subcomplex of X 00 which is
a neighborhood of � in X . It is well known [16, Lemma 2.10, page 55] that N.�/

collapses onto � and, since � collapses to a point, the second derived neighborhood
N.�/ is collapsible.

It is easy to see that if � and � are two closed simplices of X then

N.�/\N.�/DN.� \ �/;

with the convention that N.∅/D∅.

Let † be a set of simplices of X and set N.†/D
S
�2† N.�/. We prove by induction

on the cardinality of † that �N.†/ is a quasi-isomorphism. If † is empty, then so
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is N.†/ and by hypothesis �∅ is a quasi-isomorphism. Suppose that �N.†0/ is a quasi-
isomorphism when j†0j < k and let † be of cardinality k . We write †D †0 [ f�g
with j†0j< k . Then

N.†0/\N.�/D
[
�2†0

N.� \ �/DN.†00/

for some †00 of cardinality < k . So by induction, �N.†0/\N.�/ is a quasi-isomorphism
as well as �N.†0/ . Also �N.�/ is a quasi-isomorphism because N.�/ collapses to a
point. Finally it is easy to see that the pair fN.†0/;N.�/g is excisive. By the “Mayer–
Vietoris condition” in the hypotheses we deduce that �N.†/ is quasi-isomorphism.

Taking for † the set of all simplices of X , we have N.†/ D X , and so �X is a
quasi-isomorphism.

For a simplicial set S� , we consider the cosimplicial vector space hom.S�;R/ and its
normalized cochain complex which we denote by N�.S�/ (in [7, Section 10 (d)], this
is denoted by C�.S�/, but we have already reserved this notation for semi-algebraic
cochains).

Lemma 6.12 Let X be a semi-algebraic set and let fX1;X2g be a pair of semi-
algebraic subsets of X .

(i) There is a short exact sequence

0! APA.SPA
� .X1/[SPA

� .X2//
r
! APA.SPA

� .X1//˚APA.SPA
� .X2//

�
! APA.SPA

� .X1\X2//! 0:

(ii) For any simplicial set S� there is a zigzag of natural quasi-isomorphisms of
cochain complexes

APA.S�/
' // � � � N�.S�/:

'oo

(iii) If fX1;X2g is semi-algebraically excisive, then there is a natural quasi-isomorph-
ism of cochain complexes

APA.SPA
� .X1[X2//

'
�! APA.SPA

� .X1/[SPA
� .X2//:

All of these properties remain true if APA is replaced by APL and/or SPA
� by Ssing

� .

Proof (i) The map r is defined by

r
�
fˆ�g�2SPA

� .X1/[SPA
� .X2/

�
D
�
fˆ�g�2SPA

� .X1/
; fˆ�g�2SPA

� .X2/

�
and � by

�
�
fˆ�g�2SPA

� .X1/
; f‰�g�2SPA

� .X2/

�
D fˆ� �‰�g�2SPA

� .X1\X2/
:
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The surjectivity of � is a consequence of the extendability of APA and APL (Lemma 6.10
and [7, Lemma 10.7 (iii)]) and of [7, Proposition 10.4 (ii)]. The other parts of exactness
are clear.

(ii) Theorem 10.9 of [7] connects APL.S�/ and N�.S�/ (denoted there by CPL.S�/)
by a zigzag of quasi-isomorphisms. Since APA� is extendable, exactly the same proof
gives a natural weak equivalence APA.S�/' N�.S�/.

(iii) When the pair fX1;X2g is excisive, the classical barycentric argument [13,
Proposition 2.21] implies that there is a quasi-isomorphism

N�.SPA
� .X1/[SPA

� .X2//D N�.SPA
� .X1//CN�.SPA

� .X2//
'
�! N�.SPA

� .X1[X2//

and similarly for Ssing
� . The map in (iii) is clear and the fact that it is a quasi-isomorphism

is a consequence of (ii).

Proof of Theorem 6.1 We prove that ˛X , ˇX , and X of Equation (20) are quasi-
isomorphisms for a compact semi-algebraic set X .

Since both the simplicial CDGAs APL� and APA� satisfy the Poincaré lemma and
are extendable (for APA this is Lemma 6.3 and Lemma 6.10, and for APL it is [7,
Lemma 10.7]), Proposition 10.5 of [7] implies that ˇX is a quasi-isomorphism.

By Lemma 6.12 (ii), to prove that X is a quasi-isomorphism, it suffices to prove that
the induced map

N�.Ssing
� .X // �! N�.SPA

� .X //

is a quasi-isomorphism. This natural transformation satisfies the hypotheses of Proposi-
tion 6.11. Indeed, if X is collapsible then we have a semi-algebraic homotopy between
the identity map on X and the constant map, which induces an algebraic nullhomotopy
on the cochain complexes N�.SPA

� .X // and N�.Ssing
� .X //, and the Mayer–Vietoris

condition comes from an analogous argument as in the proof of Lemma 6.12 (iii).
Therefore X is a weak equivalence for compact semi-algebraic sets.

For X collapsible, by Lemma 6.3 we have that zH�.��PA.X // D 0 and the same is
true for the reduced homology of APA.SPA.X // by Lemma 6.12 (ii). We deduce
easily that when X is collapsible or empty then ˛X is a quasi-isomorphism. Suppose
that fX1;X2g is excisive. We have the short exact sequences of Lemma 6.7 and
Lemma 6.12 (i) that yield long exact sequences in homology. Using Lemma 6.12 (iii),
the five lemma implies that ˛ satisfies the second hypothesis of Proposition 6.11.
Therefore ˛X is a quasi-isomorphism for all compact semi-algebraic sets X .
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7 Monoidal equivalences

One of the motivations for establishing the results in this paper is Kontsevich’s proof
of the formality of the little cubes operad in [18, Section 3]. In that proof, functors
such as C�.�/ and ��PA.�/ need to be extended from objects to operads, but this
can only be done if these functors are symmetric monoidal (a basic reference for
symmetric monoidal categories is Hovey [15]). In this section we thus study the
monoidal properties of various functors such as C�.�/ and ��PA.�/.

The categories of semi-algebraic sets and of topological spaces, equipped with the
cartesian product and the one-point space are symmetric monoidal categories. The
forgetful functor uW SemiAlg! Top is a strong symmetric monoidal functor, where
“strong” means that the natural map u.X /�u.Y /

Š
! u.X �Y / is an isomorphism [8,

Section 2.2.1].

The cross product constructed in Proposition 3.8,

�W C�.X /˝C�.Y /! C�.X �Y /

makes the functor C� of semi-algebraic chains from Definition 3.1 symmetric monoidal.
The classical functor of singular chains

Ssing
� W Top �! ChC.Z/

defined as the normalized chain complex of the singular simplicial set Ssing
� .X / is also

symmetric monoidal by the Eilenberg–Zilber map, and hence the same is true for the
composite Ssing

� u defined on semi-algebraic sets.

Let T be a symmetric monoidal category. For us, a contravariant functor

F W T �! CDGA

is symmetric monoidal if it is equipped with a natural map

(21) �W F.X /˝F.Y / �! F.X �Y /

satisfying the usual axioms and such that F.1T /DK.

Thus the functor ��PA is symmetric monoidal through the Künneth quasi-isomorphism

�W ��PA.X /˝�
�
PA.Y /

'
�!��PA.X �Y /

˛˝ˇ 7�! pr�X .˛/ pr�Y .ˇ/;

and the same is true for APL .
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A symmetric monoidal natural transformation is a natural transformation between two
(covariant or contravariant) functors that commutes with all the monoidal and symmetry
structure maps. It is a symmetric monoidal natural equivalence if it induces weak
equivalences in an obvious sense (for example quasi-isomorphism if the target category
is chain complexes or CDGA). Two symmetric monoidal functors are weakly equivalent
if they are connected by a chain of symmetric monoidal natural equivalences.

Theorem 7.1 On the category of compact semi-algebraic sets, the symmetric monoidal
contravariant functors �PA and APL.u.�/IR/ are weakly equivalent.

Proof It is easy to see that the weak equivalences from Equation (20) before Proposi-
tion 6.11 are all symmetric monoidal.

Proposition 7.2 Symmetric monoidal functors C� and Ssing
� u are weakly equivalent.

Proof We have the chain complex SPA
� .X / of semi-algebraic singular chains defined

as the normalized chain complex associated to the simplicial set SPA
� .X /, and we have

seen in the proof of Theorem 6.1 that there is a natural weak equivalence

SPA
� .X /

'
! Ssing

� .X /:

It is clear that this equivalence is symmetric monoidal.

We also have a natural map

SPA
� .X / �! C�.X /

.� W �k
!X / 7�! ��.J�kK/

which is also symmetric monoidal. It is a quasi-isomorphism by another application of
Proposition 6.11.

For a real vector space V , denote its dual by

V _ WD hom.V;R/:

Thus .�PA.X //
_ is a chain complex. There is an evaluation chain map

evW C�.X /˝R! .�PA.X //
_

defined by, for  2 Ck.X /,

ev. /W �k
PA.X / �!R; ˛ 7�! h˛;  i:

The proof of the following proposition is straightforward.
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Proposition 7.3 The evaluation map ev is a natural quasi-isomorphism and the fol-
lowing diagram commutes:

C�.X /˝C�.Y /˝R
ev˝ev
'
//

�

��

.�PA.X //
_˝ .�PA.Y //

_

'

��
.�PA.X /˝�PA.Y //

_

C�.X �Y /˝R
ev
'

// .�PA.X �Y //_:

' .�/_

OO

8 Oriented semi-algebraic bundles and integration along the
fiber

A natural occurrence of a strongly continuous chain ˆ 2Cstr
k .pW E!B/ is when p is

a semi-algebraic bundle with fiber a compact oriented k –dimensional semi-algebraic
manifold. The operation

ffl
ˆ is then a generalization of the classical integration along

the fiber. In this section we define and study this notion. Many properties here will be
useful in the proof of the formality of the little cubes operad [20].

First we define a locally trivial bundle in the category of semi-algebraic sets in an
obvious way.

Definition 8.1

� An SA bundle is a semi-algebraic map pW E! B such that there exists a semi-
algebraic set F , a covering of B by a finite family fU˛g˛2I of semi-algebraic
open sets, and semi-algebraic homeomorphisms h˛W U˛ �F

Š
! p�1.U˛/ such

that ph˛ D pr1 .

� The space F is called a generic fiber.

� An SA bundle is oriented if F is a compact oriented manifold and each
fiber p�1.b/ is oriented in such a way that the restriction of h˛ to the fiber
respects the orientation.

� The fiberwise boundary of an oriented SA bundle is the oriented SA bundle

p@WE@
�! B

E@
D
S

b2B @.p
�1.b//;where

and p@ is the restriction of p to E@ .
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Note that because we work in the category of semi-algebraic sets, asking that the
covering is finite is not a restriction.

It is clear that the fiberwise boundary of an oriented SA bundle of dimension k is an
oriented SA bundle of dimension k � 1.

Proposition 8.2 If pW E ! B is an oriented SA bundle then the formula ˆ.b/ D
Jp�1.b/K, for b 2 B , defines a strongly continuous chain ˆ 2 Cstr

l .E! B/ that we
call the continuous chain associated to the oriented SA bundle. Further, @ˆ is the
continuous chain associated to the fiberwise boundary p@W E@! B .

Proof Take an open semi-algebraic cover of X that trivializes the bundle and take
a stratification of B such that the closure of each stratum is contained in an open set
of the cover. It is straightforward to construct a trivialization of ˆ associated to this
stratification from the trivialization of the bundle. The statement about the boundary is
also straightforward.

Definition 8.3 Let pW E! B be an oriented SA bundle with fiber of dimension k .
The pushforward or integration along the fiber operation is the degree �k linear map

p�W �
�Ck
min .E/ �!��PA.B/

defined by p�.�/D
ffl
ˆ �, where ˆ is the continuous chain associated to the oriented

SA bundle p .

This operation is very important and we now develop some of its properties.

8.1 Properties of SA bundles

We first have the obvious:

Proposition 8.4 The pullback of an (oriented) SA bundle along a semi-algebraic map
is an (oriented) SA bundle with the same fibers.

Less obvious is:

Proposition 8.5 The composite of two SA bundles pW E! B and qW B!X is an
SA bundle. Moreover, if p and q are oriented then so is q ıp and

dim.fiber.q ıp//D dim.fiber.p//C dim.fiber.q//:
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Remark 8.6 Note that it is not true in general that the composite of two bundles is
a bundle. Here is a counterexample for coverings (topological bundles with discrete
fibers): Let X be the Hawaiian rings which is the union of circles �n in the plane
centered at .0; 1=n/ with radius 1=n for n� 1. For N � 1, let qN W EN !X � fN g

be a two-fold covering such that the restriction of qN to �N is the nontrivial covering
and its restriction to �k is trivial for k 6D N . Set q D

F
N�1 qN , E D

F
N�1 EN ,

and let
qW E �!

F
N�1 X ŠX �N0:

This map is clearly a covering. The projection pW X �N0!X is another covering.
But the composite p ı q is not a covering because it is not trivial on any neighborhood
of the origin.

To prove Proposition 8.5, we will first need two lemmas. Let J D Œ0; 1�a � Œ0; 1/b for
some integers a; b � 0 and let

pW E �! B �J

be an SA bundle. Our first task will be to prove that the composite of p with the
projection on the second factor J is an SA bundle.

Lemma 8.7 Let
r W B �J ! B �J

be the map defined by r.b;u/D .b; 0/. Then there exists a semi-algebraic map

yr W E!E

such that p ı yr D r ıp .

Proof Since the bundle is semi-algebraic, there exists a finite, and hence enumerable,
covering of B � J which trivializes p . The lemma is then proved by an argument
completely analogous to that of [17, Theorem 9.6 in Chapter 4, page 51].

Lemma 8.8 Let pW E! B �J be an SA bundle. Then the composite

E
p
�! B �J

pr2
�! J

is also an SA bundle.

Proof Consider the inclusion r0W B ! B � J defined by r0.b/ D .b; 0/ and the
projection on the first factor pr1W B�J!J . Then r0ıpr1 is the map r of Lemma 8.7.
Let E0 D p�1.B � f0g/ �E . This defines a bundle p0 D pjE0 over B Š B � f0g.
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The pullback of p0 along pr1W B �J !B is the bundle .p0� id/W E0�J !B �J .
By Lemma 8.7 and by universal property of the pullback we get a semi-algebraic
homeomorphism

hW E
Š
!E0 �J

such that pD .p0� id/ıh. Let pr2W B�J ! J be the projection on the second factor.
The composite pr2 ı.p0� id/ is a trivial SA bundle and, since h is a homeomorphism,
we deduce that pr2 ı .p0 � id/ ı hD pr2 ıp is also an SA bundle.

Proof of Proposition 8.5 Take a semi-algebraic covering of X trivializing q . By [12,
Theorem 2] this open covering can be refined into a semi-algebraic triangulation. Each
d –simplex � is the union of exactly d C 1 d –dimensional semi-open cubes whose
vertices are the barycenters of the various faces of � . This gives a finite covering fJ˛g
of X . By triviality of q over � , we have semi-algebraic homeomorphisms

g˛W J˛ �F
Š
! q�1.J˛/

such that q ı g˛ D pr1 . To prove that q ı p is an SA bundle, it is enough to prove
that its restriction over J˛ is one. Using the homeomorphism g˛ over J˛ , this is a
consequence of Lemma 8.8.

8.2 Properties of integration along the fiber

We first study naturality properties of integration along the fiber.

Proposition 8.9 Consider a pullback diagram

P
yf //

y�
��

pullback

E

�

��
X

f

// B

of semi-algebraic sets where � is an oriented SA bundle. For � 2�min.E/,

f �.��.�//D y��. yf
�.�//:

Proof It is clear that if ˆ is the continuous chain associated to the oriented SA
bundle � , then f �.ˆ/ is the continuous chain associated to y� (see Definition 5.19).
The formula is then straightforward.

The following is an extension of the naturality. It establishes that two SA bundles
over the same base with fibers defining the same semi-algebraic chain have the same
pushforward operation. This could occur for example when the two fibers are compact
manifolds that differ only by some codimension 1 subspace.
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Proposition 8.10 Let � W E!B be an oriented bundle of dimension k and �W E0!E

be a semi-algebraic map such that � 0 WD� ı� is also an oriented bundle of dimension k ,
as in the diagram

E0
� //

� 0   

E

�~~
B:

Suppose that there is a sign � D˙1 such that for each b 2 B ,

��.J� 0�1.b/K/D � � J��1.b/K:

Then for any minimal form � 2��min.E/,

(22) � 0�.�
�.�//D � ���.�/:

Proof We need to prove that for  2 Cl.B/, evaluation for two sides of Equation (22)
is the same. Take a triangulation of B that trivializes � 0 and that is compatible with  .
By linearity, we can restrict to a single simplex and can suppose that  D JBK and
� 0W E0 D F 0 �B! B is the projection. Then by the hypothesis,

�W F 0 �B �!E

is a representative of the continuous chain ˆ associated to the oriented SA bundle �
(up to the sign � ). The proposition now follows by unravelling definitions.

We have an additivity formula:

Proposition 8.11 Let � W E!B be an oriented SA bundle with k –dimensional fiber.
Suppose that

E D
[
�2ƒ

E�

where ƒ is a finite set, each E� is a semi-algebraic subset of E , and the restrictions

�� WD �jE�W E� �! B

are oriented SA bundles with k –dimensional fiber, the orientation being induced by
that of the fibers of � .

Suppose moreover that for �1; �2 distinct in ƒ and b 2 B ,

dim.��1
�1
.b/\��1

�2
.b// < k:

Then for any � 2�min.E/,

��.�/D
X
�2ƒ

���.�jE�/:
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Proof Let ��W E� ,!E be the inclusions and set

E0 WD
a
�2ƒ

E�

� WD .��/�2ƒW E
0
�!E

� 0 WD .��/�2ƒW E
0
�! B:

We then have a diagram as in Proposition 8.10. The hypotheses imply that � induces a
degree 1 map between the fibres. Proposition 8.10 implies that

��.�/D �
0
�.�
�.�//D

X
�2ƒ

���.�
�
�.�//:

We have also the following fiberwise Stokes’ formula.

Proposition 8.12 Let � W E!B be an oriented SA bundle with k –dimensional fiber
and let �@W E@! B be its fiberwise boundary. For � 2�min.E/,

d.��.�//D ��.d.�//C .�1/deg.�/�k�@�.�jE
@/:

Proof This is a direct consequence of Lemma 5.23.

The following is a formula for a double pushforward.

Proposition 8.13 Let � W E ! B be an oriented SA bundle. Let N be an oriented
compact semi-algebraic manifold, and consider the projection

pr1W E �N �!E:

For � 2�min.E/ and � 2�min.N /,

.� ı pr1/�.�� �/D ��.�/ � h�; JN Ki:

Proof By naturality it is enough to prove that the two forms we are comparing evaluate
to the same thing on JBK when B is an oriented compact semi-algebraic manifold. In
that case,

h.� ı pr1/�.�� �/; JBKi D h�� �; JE �N Ki

D h�; JEKi � h�; JN Ki by (5) in Proposition 5.10

D h��.�/; JBKi � h�; JN Ki:

The following is useful in showing that certain integrals along the fiber vanish.
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Proposition 8.14 Let � W E! B be an oriented SA bundle that factors as � D q ı �

with
E

�
�!Z

q
�! B:

Suppose that for all b 2 B ,

dim.q�1.b// < dim.��1.b//:

Then for all minimal forms � 2�min.Z/, we have ��.��.�//D 0.

Proof We need to prove that for  2 Cl.B/,

h��.�
�.�// ;  i D 0:

Passing to a suitable triangulation of B , by naturality it is enough to prove this when B

is a compact oriented semi-algebraic manifold,  D JBK, and � is trivial over B with
E D F �B for a compact oriented manifold F . >From the hypothesis we get that

dim.Z/� dim BC sup
b2B

.dim q�1.b// < dim.B �F /:

For degree reasons, ��.�/D 0 in �min.F �B/.

Our last proposition concerns multiplicative properties of the pushforward.

Proposition 8.15 Consider a pullback diagram

P
q2 //

q1

��
pullback

E2

�2

��
E1 �1

// B

of semi-algebraic sets. Assume that �1 and �2 are oriented SA bundles and set
� D �i ı qi . Let �i 2�min.Ei/ be a minimal form. Then � is an oriented SA bundle
and

�1�.�1/^�2�.�2/D ��.q
�
1 .�1/^ q�2 .�2//:

Proof By Proposition 8.5, � is an oriented SA bundle. We have a pullback

P
� //

y�
��

B

�
��

E1 �E2 �1��2

// B �B

with y�D .q1 � q2/ ı�P , where �P W P ! P �P is the diagonal map.
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Using Proposition 8.9, we have

�1�.�1/^�2�.�2/D�
�.�1�.�1/��2�.�2//

D��..�1 ��2/�.�1 ��2//

D ��.y�
�.�1 ��2//

D ��.�
�
P ..q1 � q2/

�.�1 ��2//

D ��.q
�
1 .�1/^ q�2 .�2//:

An interesting example of an oriented SA bundle which is not smooth is the projection
� W C ŒnC q�! C Œn� between Fulton–MacPherson compactifications of configurations
spaces in RN . See [20] for details.

9 Differences between this paper and [19, Appendix A]

The present paper is to a large extent a development of the ideas in [19, Appendix 8].
However, we have not succeeded in going as far as Kontsevich and Soibelmann suggest
might be possible. We discuss this in detail in the present section.

9.1 The scope of the equivalence ��
PA ' APL.�IR/

It is suggested in [19, Appendix 8] that the weak equivalence ��PA.X /' APL.X IR/
holds for all semi-algebraic sets, and even for a larger class of spaces called PA spaces
(this is why our forms are called PA forms, following the notation in [19, Appendix 8]).
Our proof, however, only holds for compact semi-algebraic sets. It seems reasonable
though that a modification of the proof of Proposition 7.2 might produce the desired
equivalence for noncompact sets as well. The problem is that we require polyhedra
to be collapsible in the Poincaré lemma, but such a notion does not seem to exist for
semi-open simplices.

9.2 Strongly and weakly continuous families of chains

The definition of a continuous family of chains in [19, Definition 22] is different
from ours (Definition 5.13). The definition in that paper is probably equivalent to the
following definition of weakly continuous family of chains (we say “probably” because
the condition (d) in [19, Definition 22] is somewhat informal and we have interpreted
it as the condition (wc) below).

Algebraic & Geometric Topology, Volume 11 (2011)



Real homotopy theory of semi-algebraic sets 2537

Definition 9.1 Let f W Y !X be a semi-algebraic map. A weakly continuous family
of chains or, shortly, a weakly continuous chain of dimension l over X along f is a map

ˆW X �! Cl.Y /

such that there exist:

(1) a finite semi-algebraic stratification fS˛g˛2I of X ; and, for each ˛ 2 I ,

(2) an oriented compact semi-algebraic manifold F˛ of dimension l ;

(3) a semi algebraic map g˛W S˛ �F˛! Y satisfying:
(a) the diagram

S˛ �F˛
g˛ //

pr
��

Y

f

��
S˛

� � // X

commutes;
(b) for each ˛ 2 I and x 2 S˛ , ˆ.x/D g˛�.Jfxg �F˛K/;

and such that

(wc) if xn! x in X then ˆ.xn/ * ˆ.x/ in Ck.Y /:

Notice that if ˆ is a strongly continuous chain then it is easy to show that for any
semi-algebraic curve � W Œ0; 1�!X and for any sequence �n in Œ0; 1� converging to 0,
we have ˆ.�.�n// * ˆ.�.0//. So if we had required that the sequence .xn/ live on
a semi-algebraic curve in the (wc) condition, then strongly continuous would imply
weakly continuous. But with the present definition, we do not know whether such an
implication is true, although this seems likely.

We now give two examples of weakly continuous chains that are not strongly continuous.

Example 9.2 Set X D f.u; v/ 2 R2W 0 � u � v � 1g, Y D X � Œ0; 1�2 , and let
f W Y !X be the projection on the first factor. Define ‰W X !C0.Y / by ‰.0; 0/D 0

and, for .u; v/ 2X with v > 0,

‰.u; v/D Jf.u; v;u=v/gK� .Jf0gK� JfuvgK/:

This parametrized family is trivialized under the stratification ff.0; 0/g;X n f.0; 0/gg.
Using the flat norm we have that F.‰.u; v//� uv and this implies (wc). Therefore ‰
is a weakly continuous chain. To see that it is not strongly continuous, consider the
limit set of the supports of ‰.u; v/ as .u; v/! .0; 0/, by which we mean the setT

�>0

�S
max.juj;jvj/<� spt‰.u; v/

�
:
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Indeed this limit set is f.0; 0/g � Œ0; 1� � f0g which is one-dimensional, and this is
impossible in the case of a strongly continuous 0–chain.

Example 9.3 Set X , Y , and f W Y !X to be the same as in the previous example.
Define ˆW X ! C1.Y / by ˆ.0; 0/D 0 and, for .u; v/ 2X with v > 0,

ˆ.u; v/D Jf.u; v/g � Œ0;u=v�K� .Jf0gK� JfuvgK/:

The trivializing set ff.0; 0/g;X nf.0; 0/gg, same as before. Similarly, F.ˆ.u; v//�3uv

which implies (wc). But ˆ is not strongly continuous since its boundary is not. Indeed,
@.ˆ/ is a sum of a strongly continuous chain and the chain ‰ from the previous
example.

As will appear later in the discussion, strongly continuous chains have certain disad-
vantages and the reader might wonder why we did not use weakly continuous chain
instead. The problem with weakly continuous chains was the proof of the Leibniz
formula

@. Ëˆ/D @. /Ëˆ˙  Ë @.ˆ/

which is needed in Lemma 5.23 (proving that ��PA is a cochain subcomplex). Another
problem with the condition (wc) is that, as demonstrated at the beginning of Section 4,
weak convergence in even the flat semi-norms is not well adapted in the study of
semi-algebraic chains. In Equation (13) of the proof of Lemma 5.29 (continuity
principle for PA forms), we used strong continuity property to deduce from n

SA
! 

that n Ëˆ SA
!  Ëˆ (in the special case of a constant continuous chain ˆD yF /. If we

had worked with weakly continuous chains, we would first have had to prove from (wc)
that n Ëˆ SA

!  Ëˆ, which seems nontrivial. Alternatively, we would have needed
to show that n Ëˆ*  Ëˆ and to deduce that h

ffl
ˆ �; ni ! h

ffl
ˆ �;  i without SA

convergence, and hence without using Proposition 5.6. This also seems quite difficult
because of the example at the beginning of Section 4.

Kontsevich suggested to us another possible definition of continuity which could perhaps
be used instead of (wc). First, it should be enough to check continuity by restricting the
parametrized family to any semi-algebraic curve in X (although the proof of Leibniz
formula could now be problematic), so we now restrict our attention to the case of semi-
algebraic maps f W Y ! Œ0; 1�. A family of k –chains in Y parametrized by Œ0; 1� gives
a .kC1/–dimensional smooth oriented submanifold M0 � Y , with multiplicities on
each connected component, such that f jM0

is a submersion over all but a finite number
of points Œ0; 1� and such that over a regular value t 2 Œ0; 1�, ˆ.t/D JM0\f

�1.t/K.
There is then a .kC1/–current T D JM0K 2 CkC1.Y /. A continuity condition could
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then be expressed as

8t 2 Œ0; 1� W dim.spt.T /\f �1.t//� k and dim.spt.@T /\f �1.t//� k � 1:

9.3 Complexity of the proof of the Poincaré lemma

The reader might be surprised by the complexity of our proof of the Poincaré Lemma 6.3
and in particular by our need for the Hauptvermutung for semi-algebraic spaces. Let
us explain why following an obvious and more natural line of proof does not work.
The simplest idea would be to convert a semi-algebraic homotopy hW X � I ! X ,
I D Œ0; 1�, into a homotopy operator

‚hW �
�
PA.X / �!���1

PA .X /

such that ı‚h˙‚hı D .h.�; 1//
�� .h.�; 0//� . To try to construct such a ‚h , first

notice that given a continuous chain ˆ 2 Cstr
l .Y !X / and any cochain � 2 CkCl.Y /

we can define a cochain
ffl
ˆ � 2 Ck.X / by� 

ˆ

�; 

�
D h�;  Ëˆi

(even if � is not a minimal form as in Equation (8).) For a PA form ˛D
ffl
ˆ �2�

k
PA.X /

with � 2�kCl
min .X /, we would like to define the cochain ‚h.˛/ through the equations�

‚h

� 
ˆ

�

�
; 

�
D

� 
ˆ

�; h�. � JIK/
�

(23)

D

�
h�
� 

ˆ

�

�
;  � JIK

�
D

� 
h�.ˆ/

h�.�/;  � JIK
�

D

� 
yI

� 
h�.ˆ/

h�.�/

�
; 

�
where yI is the constant chain in Cstr

1 .prW X � I !X /.

Suppose we knew that the operation Ë defined in Proposition 5.17 could be extended
to a natural operation

(24) ËW Cstr
p .X ! T /˝Cstr

l .Y !X / �! Cstr
pCl.Y ! T /

by the formula
.� Ëˆ/.t/D .�.t//Ëˆ;
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where � 2 Cstr
p .X ! T /, ˆ 2 Cstr

l .Y !X /, and t 2 T . In this case we could set

‚h

� 
ˆ

�

�
WD

 
yIËh�ˆ

h�.�/ 2�k�1
PA .X /

and Equations (23) would show that ‚h is an algebraic homotopy between h.�; 0//�

and .h.�; 1//� . This would of course imply the Poincaré lemma.

The problem is that the twisted product � Ëˆ is in general not a strongly continuous
chain, as we can see in the following.

Example 9.4 Let X be the convex hull of f.0; 0; 0/; .1; 0; 0/; .1; 1; 0/; .0; 0; 2/g in R3

(a closed 3–simplex) and let t1; t2; t3 be coordinates in R3 . Consider the surface

S D f.t1; t2; t3/ 2X W t2 D t1t3g;

and the subspace below it and lying in X ,

E D f.t1; t2; t3/ 2X W t2 � t1t3g:

Set Y D E � I and f W Y
pr
!E ,! X . For x 2 X consider the distance function

to S , d W X ! I , defined by d.x/ D dist.x;S/. Define a continuous 0–chain
ˆ 2 Cstr

0 .Y !X / by ˆ.x/D JfxgK� .Jf0gK� Jfd.x/gK/ if x 2E and ˆ.x/D 0 oth-
erwise. This is a strongly continuous chain trivialized by the stratification fE;X nEg.

Define H W X �I!X such that H.�; t/ is a dilation of center .0; 0; 2/ and coefficient
t 2 Œ0; 1�. Consider the pullback

yY
//

yf
��

pullback

Y

f

��
X � I

H
// X:

So we have the continuous chains H�.ˆ/2Cstr
0 .
yY!X�I/ and yI2Cstr

1 .pr1WX�I!X/.

However, yI Ë H�.ˆ/ does not define a strongly continuous chain. To see this, first
notice that the preimage of .t1; t2; 0/ 2 X with 0 < t2 � t1 � 1 under H ı yf is
homeomorphic to

(25)
�
.t1; t2; 0; t4; t5/

ˇ̌̌̌
1�

t2

2t1
� t4 � 1 and 0� t5 � 1

�
;
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where t4 is the last coordinate of X � I , and t5 is the last coordinate of Y DE � I .
The chain yI ËH�.ˆ/ at .t1; t2; 0/ is a difference I0�I1 where I0 and I1 are given by

I0; I1W

�
1�

t2

2t1
; 1

�
�! .H ı yf /�1.t1; t2; 0/(26)

I0W t4 7�! .t1; t2; 0; t4; 0/

I1W t4 7�! .t1; t2; 0; t4; d.t1t4; t2t4; 2� 2t4//

For a fixed � 2 .0; 1� it is easy to see that spt
�
.yI Ë H�.ˆ//.t1; � � t1; 0/

�
tends to the

limit set f.0; 0; 0/g � Œ1��=2; 1�� f0g as t1! 0C .

Now assume that yI Ë H�.ˆ/ is strongly trivialized by fS˛;F˛;g˛g˛2J . We will
say that a curve in X passing through .0; 0; 0/ is locally in S˛ if S˛ contains a
neighborhood of .0; 0; 0/ in that curve. Obviously any such curve should be locally in
at least one S˛ . Let us show that, for any 0<a<b<1, the curves f.t; at; 0/ j 0� t �1g

and f.t; bt; 0/ j 0� t � 1g cannot be locally in the same S˛ . This would then give a
necessary contradiction (since there are infinitely many such curves, two of them must
be locally in the same stratum). Applying (25) to the points from the first curve and
taking the limit set as t ! 0, we get

g˛
�
f.0; 0; 0/g �F˛

�
� f.0; 0; 0/g � Œ1� a=2; 1�� Œ0; 1�:

But applying (26) to the points from the second curve and again taking the limit set as
t ! 0 we get

g˛
�
f.0; 0; 0/g �F˛

�
� f.0; 0; 0/g � Œ1� b=2; 1�� f0g:

Since a< b these two conditions can not be satisfied simultaneously.

We do not know whether the operation Ë can be extended as in equation (24) using
weakly continuous chains.

9.4 Integration along the fiber of a PA form

At the end of [19, Appendix 8], Kontsevich and Soibelman claim that, given an oriented
SA bundle pW E! B with fiber of dimension l , there exists a pushforward operation

p�W �
�
PA.E/ �!���l

PA .B/

given by integration along the fiber. It is certainly true that there is a map

p�W �
�
min.E/ �!���l

PA .B/

� 7�!

 
ˆ

�
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defined on minimal forms, where ˆ 2 Cstr
l .E!B/ is the continuous chain associated

to this oriented SA bundle, as we have seen in Section 8. However, we were unable to
prove that there is an extension to all PA forms. A natural candidate for the pushforward´
‰ � 2�

k
PA.X /, where ‰ 2 Cstr

p .Y !E/ and � a PA form in �kCp
min .Y /, is

p�

�ˆ
‰

�

�
WD

ˆ
ˆ

ˆ
‰

�D

ˆ
ˆË‰

�;

but the problem as in the previous section is that it is unclear whether ˆ Ë‰ is a
continuous chain and therefore whether

´
ˆ

´
‰ � is a PA form.

One could try to avoid this problem by inductively defining ��PA.X / by

�PA
�
.0/
.X / WD��min.X /

�PA
�
.pC1/

.X / WD

� 
‰

�

ˇ̌̌̌
‰ 2 Cstr

� .Y !X /; � 2�PA
�
.p/
.Y /

�
�PA

�
.1/
.X / WD

1[
pD0

�PA
�
.p/
.X /:

In particular, ��PA.X /D�PA
�
.1/

. It is clear that one gets a well-defined pushforward
operation on �PA

�
.1/

this way and it can be proved exactly as for �PA that �PA
�
.1/

is
a cochain complex and satisfies the Poincaré lemma and the other properties which
makes it weakly equivalent to the cochain complex APL.X IR/. The problem is to
check that �PA

�
.1/

is a commutative algebra. For this we would need a generaliza-
tion of Proposition 5.25, whose proof was based on the integral representation of
Lemma 5.26. However, we were not able to adapt the proof of Lemma 5.26 to �PA

�
.p/

,
even though it seems likely that elements of �PA

�
.p/
.X / are smooth on the complement

of a codimension 1 subset.

9.5 Flat morphisms

Also at the end of [19], it is suggested that the pushforward operation exist for more gen-
eral maps than bundles. More precisely, given a proper semi-algebraic map f W Y !X

between oriented semi-algebraic manifolds such that, for each x 2X ,

dim.f �1
fxg/� k � j ; where j D dim X and k D dim Y ;

one could construct a pushforward along f as follows. The notion of slicing [6, 4.3;
9, 4.3; 11, 4.5] then gives a continuous chain ˆ 2 Cstr

k�j .f W Y ! X / such that, for
each point x in the open dense set of regular values, we have ˆ.x/ D Jf �1fxgK,
ie ˆ.x/ is the smooth fiber with the induced orientation. To see this, let JY K denote
the k dimensional semi-algebraic chain given by oriented integration over Y . Then
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the correspondingly oriented graph g#JY K, where g.y/ D .y; f .y//, is also a k

dimensional semi-algebraic chain. Using the projections p.x;y/D y and q.x;y/D x

for .y;x/ 2 Y �X , we have from [9, 4.3; 11, 4.5] that the slice

hJY K; f;xi D p#hg#JY K; q;xi

is a .k�j /–dimensional semi-algebraic chain. The map x 7! hJY K; f;xi is also seen
to be flat continuous, and hence weakly continuous (here we are implicitly using
the formula [6, 4.3.2 (6)] which shows that the slice is invariant under an oriented
diffeomorphism of the range and is thus well-defined as a map into the oriented
manifold X ).

While the slice hJY K; f;xi equals the naturally oriented fiber Jf �1fxgK for any regular
value x (by, for example, [6, 4.3.8 (2)]), one only knows in general that spthJY K; f;xi�
f �1fxg. For example, if Y is the counter-clockwise oriented unit circle, X DR, and
f .x;y/D x , then

hJY K; f;xi D

(
J.x;
p

1�x2/K� J.x;�
p

1�x2/K �1< x < 1;

0 otherwise,

which is consistent with the weak continuity of the slice even at x D ˙1. Another
elementary example is the formula

hJCK; h; 0i D
X

z2h�1f0g

n.h; z/JzK ;

valid for any holomorphic hW C ! C , where n.h; z/ is the multiplicity as a zero
of h.z/.

Applying the trivialization result of [12] to the semi-algebraic map f , one sees that
ˆ.x/DhJY K; f;xi actually defines a strongly continuous chain ˆ2Cstr

k�j .f W Y !X /.

Moreover, for any semi-algebraic chain T 2C`.X / we have a pullback chain f #.T /2

C`Ck�j .Y /. This may be defined by noting that T decomposes into a finite sum
of chains of the form Ti D hJXiK; fi ; 0i for some open semi-algebraic subsets Xi

of X and semi-algebraic maps fi W Xi ! Rj�` with dim.Xi \ f
�1

i f0g/ � ` and
dim.fr.Xi/\f

�1
i f0g/� `� 1. Then the pullback

f #T D
X

i

hJY \f �1.Xi/K; fi ıf; 0i 2 C`Ck�j .Y /

is well-defined, independent of the decomposition. Details and applications of this
construction will be discussed in a later paper.
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