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Studying uniform thickness II:
Transversely nonsimple iterated torus knots

DOUGLAS J LAFOUNTAIN

We prove that an iterated torus knot type in .S3; �std/ fails the uniform thickness
property (UTP) if and only if it is formed from repeated positive cablings, which is
precisely when an iterated torus knot supports the standard contact structure. This is
the first complete UTP classification for a large class of knots. We also show that all
iterated torus knots that fail the UTP support cabling knot types that are transversely
nonsimple.

57M25, 57R17; 57M50

1 Introduction

Let K be a knot type in S3 with the standard tight contact structure �std . The uniform
thickness property (UTP) is fundamental to understanding embeddings of solid tori
representing K in .S3; �std/; in brief, K satisfies the UTP if every such solid torus
thickens to one with convex boundary slope 1=tb.K/. If there exists a solid torus
representing K that does not exhibit thickening, K fails the UTP, and such a solid
torus is said to be nonthickenable. The UTP was first introduced by Etnyre and
Honda [6], who showed that the .2; 3/–torus knot fails the UTP by identifying such
nonthickenable tori. They then used this to show that the .2; 3/–torus knot supports
a transversely nonsimple cabling knot type. In joint work with Etnyre and Tosun [7],
we extended this study to show that all positive .p; q/–torus knots fail the UTP and
support nonsimple cablings; furthermore, we established a complete Legendrian and
transverse classification for cables of positive torus knots through the study of both
nonthickenable and partially thickenable tori. In [15], we also showed that the general
class of knot types K which both satisfy the UTP and are Legendrian simple is closed
under the operation of cabling. An application of this was the identification of large
classes of Legendrian simple iterated torus knot types.

In this paper we determine precisely which iterated torus knot types satisfy the UTP
and which fail the UTP; this is the first complete UTP classification for a large class
of knots. We also prove that any iterated torus knot type that fails the UTP supports
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transversely nonsimple cabling knot types. Specifically, we have the following theorems
and corollary:

Theorem 1.1 Let Kr D ..P1; q1/; : : : ; .Pi ; qi/; : : : ; .Pr ; qr // be an iterated torus
knot, where the iterated cablings .Pi ; qi/ are measured in the standard Seifert framing,
and qi > 1 for all i . Then Kr fails the UTP if and only if Pi > 0 for all i , where
1� i � r .

In the second theorem, �.K/ is the Euler characteristic of a minimal genus Seifert
surface for a knot K :

Theorem 1.2 If Kr is an iterated torus knot that fails the UTP, then it supports
infinitely many transversely nonsimple cablings KrC1 , specifically .��.Kr /; kC 1/–
cablings of Kr , where k ranges over an infinite subset of positive integers.

To state our corollary to Theorem 1.1, recall that if K is a fibered knot, then there
is an associated open book decomposition of S3 that supports a contact structure,
denoted �K (see Etnyre [4] and Thurston and Winkelnkemper [16]). Iterated torus
knots are fibered knots, and Hedden has shown that the subclass of iterated torus knots
where each iteration is a positive cabling, ie Pi > 0 for all i , is precisely the subclass
of iterated torus knots where �Kr

is isotopic to �std [11]. We thus obtain the following
corollary:

Corollary 1.3 An iterated torus knot Kr fails the UTP if and only if �Kr
Š �std .

We make a few remarks about these theorems. First, it will be shown that these
transversely nonsimple cablings all have two Legendrian isotopy classes at the same
rotation number and maximal Thurston–Bennequin number. Second, in the class of
iterated torus knots there are certainly more transversely nonsimple cablings than those
in Theorem 1.2, as seen in [6; 7]. However, we present just the class of nonsimple
cablings in Theorem 1.2, and leave a more complete classification as an open question.

We now present a conjectural generalization of the above two theorems and corollary. To
this end, recall that Hedden has shown that for general fibered knots K in S3 , �K Š �std

precisely when K is a fibered strongly quasipositive knot [12]; he also shows that for
knots K with �K Š �std , the maximal self-linking number is sl.K/ D ��.K/ [10].
Furthermore, from the work of Etnyre and Van Horn-Morris [8], we know that for
fibered knots K in S3 that support the standard contact structure there is a unique
transverse isotopy class with maximal self-linking number. In the present paper, all of
these ideas are brought to bear on the class of iterated torus knots, and this motivates
the following conjecture concerning general fibered knots:
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Conjecture 1.4 Let K be a fibered knot in S3 ; then K fails the UTP if and only if
�K Š �std , and hence if and only if K is fibered strongly quasipositive. Moreover, if a
topologically nontrivial fibered knot K fails the UTP, then it supports cablings that are
transversely nonsimple.

Our main tools will be convex surface theory and the classification of tight contact
structures on solid tori and thickened tori. Most of the results we use can be found
in Etnyre and Honda [6], Etnyre, LaFountain and Tosun [7], Honda [13; 14] and
LaFountain [15], and if we use a result from one of these works, it will be specifically
referenced. Moreover, Sections 2.2–2.4 of [7] provide a nice summary of much of the
needed background.

The plan of the paper is as follows. In Section 2 we recall definitions, notation and
identities used in [6; 7; 13; 14; 15]. In Section 3 we outline a strategy of proof of
Theorem 1.1 that yields the statement of two key lemmas, one of which is immediately
proved. In Section 4 we prove the second lemma and complete the proof of Theorem 1.1.
In Section 5 we prove Theorem 1.2.

Acknowledgements The author would like to thank William Menasco, John Etnyre
and Bülent Tosun for both their insight and interest. This work was partially supported
by QGM (Centre for Quantum Geometry of Moduli Spaces) funded by the Danish
National Research Foundation.

2 Definitions, notation and identities

2.1 Iterated torus knots

Iterated torus knots, as topological knot types, can be defined recursively. Let 1–iterated
torus knots be simply torus knots .p1; q1/ with p1 and q1 coprime nonzero integers,
and jp1j; q1 > 1. Here, as usual, p1 is the algebraic intersection with a longitude,
and q1 is the algebraic intersection with a meridian in the preferred Seifert framing
for a torus representing the unknot. Then for each .p1; q1/ torus knot, take a tubular
neighborhood N..p1; q1//; the boundary of this is a torus, and given a framing we
can describe simple closed curves on that torus as coprime pairs .p2; q2/, with q2 > 1.
In this way we obtain all 2–iterated torus knots, which we represent as ordered pairs,
..p1; q1/; .p2; q2//. Recursively, suppose the .r�1/–iterated torus knots are defined;
we can then take tubular neighborhoods of all of these, choose a framing, and form
the r –iterated torus knots as ordered r –tuples ..p1; q1/; : : : ; .pr�1; qr�1/; .pr ; qr //,
again with pr and qr coprime, and qr > 1.
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For ease of notation, if we are looking at a general r –iterated torus knot type, we will
refer to it as Kr ; a Legendrian representative will usually be written as Lr .

We will study iterated torus knots using two framings. The first is the standard Seifert
framing for a torus, where the meridian bounds a disc inside the solid torus, and we use
the preferred longitude which bounds a surface in the complement of the solid torus.
We will refer to this framing as C . The second framing is a nonstandard framing using
a different longitude that comes from the cabling torus. More precisely, to identify this
nonstandard longitude on @N.Kr /, we first look at Kr as it is embedded in @N.Kr�1/.
We take a small neighborhood N.Kr / such that @N.Kr / intersects @N.Kr�1/ in two
parallel simple closed curves. These curves are longitudes on @N.Kr / in this second
framing, which we will refer to as C0 . Note that this C0 framing is well-defined for any
cabled knot type. Moreover, for purpose of calculations there is an easy way to change
between the two framings, which will be reviewed below.

Given a fixed choice of meridian, m, and longitude, l , on a torus, we may express
simple closed curves as homology classes �Œm�C �Œl � on that torus, which we may
also denote as .�; �/. We will say such a curve has slope of �=�. Therefore we will
refer to the longitude in the C0 framing as 10 , and the longitude in the C framing
as 1. The meridian in both framings will have slope 0. These are the conventions
used in [5; 7; 15].

We will also use a convention that curves measured in the standard C framing will
typically be denoted as .P; q/, that is, the algebraic intersection with the 1–longitude
will be denoted by upper-case P ’s. On the other hand, curves in the nonstandard C0
framing will typically be denoted as .p; q/, that is, the algebraic intersection with
the 10–longitude will be denoted by lower-case p ’s. These are the conventions used
in [15]. Given a curve LD .P; q/ on a torus @N , there is then a relationship between
the framings C0 and C on @N.L/. In terms of a change of basis, we can represent
slopes �=� as column vectors and then get from a slope �=�0 , measured in C0 on
@N.L/, to a slope �=�, measured in C , by�

1 Pq

0 1

��
�0

�

�
D

�
�

�

�
:

In other words, �D �0CPq�.

Given an iterated torus knot type Kr D ..p1; q1/; : : : ; .pr ; qr // where the pi ’s are
measured in the C0 framing, we define two quantities. The two quantities are

Ar WD

rX
˛D1

p˛

rY
ˇD˛C1

qˇ

rY
ˇD˛

qˇ; Br WD

rX
˛D1

�
p˛

rY
ˇD˛C1

qˇ

�
C

rY
˛D1

q˛:
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Note here we use a convention that
Qr
ˇDrC1 qˇ WD 1. Also, if we restrict to the first i

iterations, that is, to Ki D ..p1; q1/; : : : ; .pi ; qi//, we have an associated Ai and Bi .
For example,

Ai WD

iX
˛D1

p˛

iY
ˇD˛C1

qˇ

iY
ˇD˛

qˇ:

From [15, Section 3] we obtain four useful identities which we will apply extensively
throughout this note:

(1) Ar Dq2
r Ar�1Cpr qr ; Br Dqr Br�1Cpr ; Pr Dqr Ar�1Cpr Ar DPr qr :

We conclude with a computation of the Euler characteristic for iterated torus knots
obtained through positive cablings (see also [15, Lemma 3.3]).

Lemma 2.1 Suppose Kr D ..P1; q1/; : : : ; .Pr ; qr // is an iterated torus knot where
Pi > 0 for all i . Then ��.Kr /DAr �Br .

Proof A formula for �.Kr / is given at the end of the proof of Corollary 3 in Birman
and Wrinkle [2]. In the notation used in that paper, the formula is �.Kr /D

Qr
iD1 pi �Pr

iD1 qi.pi�1/
Qr

jDiC1 pj , since in our case all the eiD1 as we are cabling positively
at each iteration. However, note that our .Pi ; qi/ corresponds to .qi ;pi/ in [2] for
i > 1. We thus obtain the equation

�.Kr /D P1

rY
iD2

qi � q1.P1� 1/

rY
iD2

qi �

rX
iD2

Pi.qi � 1/

rY
jDiC1

qj :

Examination of this formula for �.Kr / yields the following recursive expression using
our P ’s and q ’s:

�.Kr /D qr

�
P1

r�1Y
iD2

qi � q1.P1� 1/

r�1Y
iD2

qi �

r�1X
iD2

Pi.qi � 1/

r�1Y
jDiC1

qj

�
�Pr .qr � 1/

D qr�.Kr�1/�Pr qr CPr :

For a positive torus knot .P1; q1/, we have �D�P1q1CP1C q1 D�A1CB1 , so
we can assume the lemma holds for Kr�1 . Thus using the recursive expression we
have

�.Kr /D qr�.Kr�1/�Pr qr CPr

D qr .�Ar�1CBr�1/�Ar C qr Ar�1Cpr�1

D�Ar CBr :

This last equality uses Equation (1) above.
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2.2 Legendrian knots, convex tori and the UTP

Recall that for Legendrian knots embedded in S3 with the standard tight contact
structure, there are two classical invariants of Legendrian isotopy classes, namely the
Thurston–Bennequin number, tb, and the rotation number, r. For a given topological
knot type, if the ordered pair .r; tb/ completely determines the Legendrian isotopy
classes, then that knot type is said to be Legendrian simple. For transverse knots there
is one classical invariant, the self-linking number sl ; for a given topological knot type,
if the value of sl completely determines the transverse isotopy classes, then that knot
type is said to be transversely simple. For a given topological knot type, if we plot
Legendrian isotopy classes at points .r; tb/, we obtain a plot of points that takes the
form of a Legendrian mountain range for that knot type.

We will be examining Legendrian knots which are embedded in convex tori. Recall
that the characteristic foliation induced by the contact structure on a convex torus can
be assumed to have a standard form, where there are 2n parallel Legendrian divides
and a one-parameter family of Legendrian rulings. Parallel push-offs of the Legendrian
divides gives a family of 2n dividing curves, referred to as � . For a particular convex
torus, the slope of components of � is fixed and is called the boundary slope of any
solid torus which it bounds; however, the Legendrian rulings can take on any slope
other than that of the dividing curves by Giroux’s Flexibility Theorem [9]. A standard
neighborhood of a Legendrian knot L will have two dividing curves and a boundary
slope of 1= tb.L/.

We can now state the definition of the uniform thickness property as given by Etnyre
and Honda [6]. For a knot type K , define the contact width of K to be

w.K/D sup
1

slope.�@N /
:

In this equation the N are solid tori having representatives of K as their cores; slopes
are measured using the Seifert framing where the longitude has slope1; the supremum
is taken over all solid tori N representing K where @N is convex. Any knot type K

satisfies the inequality tb.K/�w.K/� tb.K/C1, where tb is the maximal Thurston–
Bennequin number for K . A knot type K then satisfies the uniform thickness property
(UTP) if the following hold:

1. tb.K/D w.K/.

2. Every solid torus N representing K can be thickened to a standard neighborhood
of a maximal tb Legendrian knot.
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A solid torus N fails to thicken if for all N 0�N , we have slope.�@N 0/D slope.�@N /.
Thus one of the ways a knot type K may fail the UTP is if it is represented by a solid
torus N which fails to thicken, and such that slope.�@N /¤ 1=tb.K/.

Given a Legendrian curve LD .P; q/ on a convex torus @N , we define t to be the
twisting of the contact planes along L with respect to the C0 framing on @N.L/; in
this case, [6, Equation 2.1] gives us

(2) tb.L/D PqC t.L/:

Observe that t.L/ is also the twisting of the contact planes with respect to the framing
given by @N , and so is equal to �1=2 times the geometric intersection number of L

with �@N . We denote by xt the maximal twisting number with respect to this framing.

We also had two definitions introduced in [15] that will be useful in this note.

Definition 2.2 Let N be a solid torus with convex boundary in standard form, and
with slope.�@N /D a=b in some framing. If j2bj is the geometric intersection number
of the dividing set � with a longitude ruling in that framing, then we will call a=b the
intersection boundary slope.

Note that when we have an intersection boundary slope a=b , then 2 gcd.a; jbj/ is the
number of dividing curves.

Definition 2.3 For r � 1 and positive integer k , define N k
r to be any solid torus rep-

resenting Kr with intersection boundary slope of �.kC1/=.Ar kCBr /, as measured
in the C0 framing. Also define the integer nk

r WD gcd..k C 1/; .Ar k CBr //. Note
that @N k

r has 2nk
r dividing curves. Note also that the above definition is only for

k � 1; however, we will also define N 0
r to be a standard neighborhood of a tb.Kr /

representative, and thus have this as the k D 0 case.

Remark 2.4 We will be particularly interested when Kr is an iterated torus knot ob-
tained from positive cablings; in this case, note that after doing a change of coordinates
from the C0 framing to the C framing, one obtains that the intersection boundary slope
of N k

r is .k C 1/=.Ar �Br /, or in other words, by Lemma 2.1, �.k C 1/=�.Kr /.
Thus �@N k

r
intersects the Seifert longitude exactly 2.��.Kr // times, regardless of

what k is; this will be vital for our arguments, in particular in Lemma 4.6 below.

Finally, recall that if A is a convex annulus with Legendrian boundary components,
then dividing curves are arcs with endpoints on either one or both of the boundary
components. Dividing curves that are boundary parallel are called bypasses; an annulus
with no bypasses is said to be standard convex.
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2.3 Twist number lemma and the Farey tessellation

The following lemma, due to Honda [13], will play a role in this work.

Lemma 2.5 (Twist number lemma, Honda) Let L be a Legendrian knot with twist-
ing n. Let r be the slope of a Legendrian ruling curve on @N.L/. If there exists
a bypass attached along this ruling curve, and 1=r � .nC 1/, then passing through
the bypass yields a Legendrian curve, with larger twisting, which is isotopic (but not
Legendrian isotopic) to L.

This lemma can be thought of as a corollary to the following proposition, also due to
Honda [13], which describes how slopes of dividing curves change due to bypasses
attached to convex tori. Recall that fractional slopes can be placed on the boundary of
the Poincaré disk D using the Farey tessellation, where two slopes with intersection
number one are connected by an arc in the Farey tessellation – see [7, Section 2.2.3]
for a complete discussion. In the following proposition, the torus T can be thought of
as inheriting an orientation from the solid torus which it bounds.

Proposition 2.6 (Honda) Let T be a convex torus in standard form with j�T j D 2;

dividing slope s and ruling slope r 6D s: Let D be a bypass for T attached to the
front of T along a ruling curve. Let T 0 be the torus obtained from T by attaching the
bypass D . Then j�T 0 j D 2 and the dividing slope s0 of �T 0 is determined as follows:
let Œr; s� be the arc on @D running from r counterclockwise to s; then s0 is the point in
Œr; s� closest to r with an edge to s: If the bypass is attached to the back of T then the
same algorithm works except one uses the interval Œs; r � on @D .

Since the boundary slope of 0 cannot be realized when the contact structure is tight, we
focus on .@D/ n f0g, and note that when thickening a solid torus N , boundary slopes
change in a clockwise manner on .@D/ n f0g; and when thinning N , slopes change
in a counterclockwise manner. However, given a tight solid torus N with boundary
slope s , and given s0 a rational slope somewhere in the interval .s; 0/ obtained by
going counterclockwise from s to 0, then there exists a solid torus N 0 � N with
boundary slope s0 (see [13]).

2.4 Imbalance Principle

As we see that bypasses are useful in changing dividing curves on a surface, we mention
a standard way to try to find them called the Imbalance Principle [13]. Suppose that
T and T 0 are two disjoint convex tori and A is a convex annulus whose interior is
disjoint from T and T 0 , but whose boundary is Legendrian with one component on
each surface. If j�T \ @Aj> j�T 0 \ @Aj then there will be a bypass on A along the
T –edge.
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2.5 Universally tight contact structures

Recall that a contact structure � on a 3–manifold M is said to be overtwisted if
there exists an overtwisted disc, and a contact structure is tight if it is not overtwisted.
Moreover, one can further analyze tight contact 3–manifolds .M; �/ by looking at
what happens to � when pulled back to the universal cover �M via the covering map
� W �M !M . In particular, if the pullback of � remains tight, then .M; �/ is said to
be universally tight.

The classification of universally tight contact structures on solid tori is known from the
work of Honda. Specifically, from [13, Proposition 5.1], we know there are exactly
two universally tight contact structures on S1 �D2 with boundary torus having two
dividing curves and slope s < �1 in some framing. These are such that a convex
meridional disc has boundary-parallel dividing curves that separate half-discs all of the
same sign, and thus the two contact structures differ by � id. (If s D�1, there is only
one tight contact structure, and it is universally tight.)

Also from the work of Honda, we know that if � is a contact structure which is
everywhere transverse to the fibers of a circle bundle M over a surface †, then � is
universally tight [14]. Such a contact structure is said to be horizontal.

2.6 Transverse push-offs of Legendrian knots

Given a Legendrian knot L, recall that there are well-defined positive and negative
transverse push-offs, denoted by TC.L/ and T�.L/, respectively (see, for example,
Epstein, Fuchs and Meyer [3]). Moreover, the self-linking numbers of these transverse
push-offs are given by the formula sl.T˙.L//D tb.L/� r.L/.

3 Strategy of proof for Theorem 1.1

In this section we present a strategy of proof for Theorem 1.1. We begin with a theorem
that in previous works has in effect been proved, but not stated. In this theorem K is a
knot type and K.P;q/ is the .P; q/–cabling of K .

Theorem 3.1 (Etnyre–Honda, L) If K satisfies the UTP, then K.P;q/ also satisfies
the UTP.

Proof The case where the cabling fraction P=q < w.K/ is the content of [6, The-
orem 1.3]. For the case where P=q > w.K/, we first note that by the proof of [6,
Theorem 3.2], we know that xt.K.P;q// < 0 and K.P;q/ achieves tb.K.P;q// as a
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Legendrian ruling curve on a convex torus with boundary slope 1=w.K/ and two
dividing curves – we observe that neither of these statements uses the Legendrian
simplicity hypothesis in the statement of [6, Theorem 3.2]. Then, we simply observe
that in the proof of [15, Section 2, Theorem 1.1], the Legendrian simplicity of K is
not needed to prove that K.P;q/ satisfies the UTP.

An immediate application for our current purposes is that if an iterated torus knot
Kr D ..P1; q1/; : : : ; .Pr ; qr // satisfies the UTP, then the iterated torus knot KrC1 D

..P1; q1/; : : : ; .Pr ; qr /; .PrC1; qrC1// also satisfies the UTP.

With this theorem in mind, we will prove Theorem 1.1 by way of three lemmas, two
of which combine in an induction argument. For this purpose we make the following
inductive hypothesis, which from here on we will refer to as the Inductive Hypothesis.

Inductive Hypothesis Let Kr D ..P1; q1/; : : : ; .Pr ; qr // be an iterated torus knot,
as measured in the standard C framing. The Inductive Hypothesis assumes that the
following hold:

(1) Pi > 0 for all i , where 1� i � r . (Thus Ai D Piqi > 0 for all i as well.)

(2) 0< tb.Kr /D w.Kr /�Ar . (Thus �Ar < xt.Kr /� 0 – see Equation (2).)

(3) Any solid torus Nr representing Kr thickens to some N k
r (including N 0

r which
is a standard neighborhood of a tb representative).

(4) If Nr fails to thicken then it is an N k
r , and it has at least 2nk

r dividing curves.

(5) The candidate nonthickenable N k
r exist and actually fail to thicken for k � Cr ,

where Cr is some positive integer that varies according to the knot type Kr .
Moreover, these N k

r that fail to thicken have contact structures that are universally
tight, with convex meridian discs D containing bypasses all of the same sign;
ie, the rotation number of meridian curves is r.@D/D˙k . Also, a Legendrian
ruling preferred longitude on these @N k

r has rotation number zero for k > 0.

Another way of stating items (3) and (4) is that every solid torus Nr is contained in
some N k

r , and if Nr fails to thicken, then boundary slopes do not change in passing
to the N k

r � Nr , although the number of dividing curves may decrease. Also, note
that, by item (5), any Kr which satisfies the Inductive Hypothesis fails the UTP.

We first observe that the Inductive Hypothesis is true for the base case of positive torus
knots, as established in [7; 15].

Lemma 3.2 The Inductive Hypothesis is true for positive torus knots K1 D .P; q/,
and thus positive torus knots fail the UTP.
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Proof Clearly item (1) of the Inductive Hypothesis holds. From [5] we know that
0< tb.K1/D Pq�P � q <A1 D Pq ; this proves part of item (2).

The remaining part of (2) follows from [15, Lemma 4.5], and items (3) and (4) hold
from [15, Lemma 4.3]. We briefly recall the sketch of the proof of that lemma below,
as we will be using similar ideas shortly in the induction step.

The idea in [15, Lemma 4.3] was the following: given a solid torus N1 representing the
positive torus knot K1 , take a neighborhood of a Legendrian Hopf link N.L1/tN.L2/

in its complement. Then, in the complement of N1[N.L1/[N.L2/, join a .P; q/–
curve on @N.L1/ to a .q;P /–curve on @N.L2/ with a standard convex annulus A
having no bypasses (this could be achieved after possibly destabilizing L1 tL2 ). One
could then calculate the intersection boundary slope of �@.N.L1/[N.L2/[N.A//
to be identical to one of the N k

1
. This established item (3). Then, in that same lemma,

item (4) was shown by observing that if N1 had the same boundary slope as an N k
1

,
but with less than 2nk

1
dividing curves, then N1 would in fact thicken.

Construction 3.2 and Lemmas 3.3 and 3.4 in [7] then combine to establish item (5),
using C1D 1. Again, we include the ideas in those results below, as we will use similar
arguments shortly in the induction step.

The idea in [7, Construction 3.2] was to take one of the universally tight N k
1

, with
convex meridian discs having bypasses all of the same sign, and build S3 with the
tight contact structure around it. Specifically, we joined two 10–longitudes on @N k

1

by a standard convex annulus A, so that if we then let RDN k
1
[N.A/, we had that

R was diffeomorphic to T 2� Œ0; 1�, with a Œ0; 1�–invariant contact structure on N.A/.
Thinking of R as fibering over an annulus with fibers representing the torus knot, the
contact structure on R could then be isotoped to be transverse to the fibers, hence a
horizontal contact structure, and therefore universally tight. With appropriate choice
of dividing curves on A, we could then assure that the two toric boundaries of R

represented those of standard neighborhoods of our desired Legendrian Hopf link, and
gluing in such neighborhoods gave us S3 with the tight contact structure. This showed
that the N k

1
exist.

The idea in [7, Lemma 3.3] was to show that the N k
1

are nonthickenable by examining
the complement M k

1
D S3 nN k

1
. Specifically, since the positive torus knot .P; q/ was

a fibered knot (with fiber †) with periodic monodromy, M k
1

had a Pq–fold cover�M k
1
ŠS1�†. We then showed that the S1 fibers in �M k

1
could all be made Legendrian

of the same (negative) twisting �.A1kCB1/. We then assumed, for contradiction, that
N k

1
thickened, and showed this resulted in a new Legendrian, topologically isotopic to

the S1 fibers, with twisting �t 0 > �.A1kCB1/. We then cut † into a polygon P to
obtain a solid torus S1 �P which we showed was in fact a standard neighborhood of
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a Legendrian of twisting �.A1k CB1/; crucial to this calculation was the fact that
on @N k

1
, the Seifert longitude intersected the dividing set exactly 2.��.K1// times.

Finally, we showed we could tile enough copies of S1 �P together to enclose the
Legendrian with twisting �t 0 inside a standard neighborhood of a Legendrian with
twisting �.A1kCB1/. This was a contradiction, and showed that the N k

1
failed to

thicken.

Finally, [7, Lemma 3.4] computed rotation numbers.

Our second key lemma used in proving Theorem 1.1 is the following induction step,
which, along with the base case of positive torus knots, will show that if the iterated
torus knot Kr D ..P1; q1/; :::; .Pr ; qr // is such that Pi > 0 for all i , then Kr fails
the UTP.

Lemma 3.3 Suppose Kr satisfies the Inductive Hypothesis, and KrC1 is a cabling
where PrC1 > 0; then KrC1 satisfies the Inductive Hypothesis, and thus fails the UTP.

The main idea in the argument used to prove this lemma will be that since Kr satisfies
the Inductive Hypothesis, there is an infinite collection of nonthickenable solid tori
whose boundary slopes form an increasing sequence converging to �1=Ar in the
C0 framing (which is 1 in the C framing). As a consequence, cabling slopes with
PrC1>0 in the C framing are clockwise from infinitely many nonthickenable boundary
slopes; we will use this to show that such cabling knot types with PrC1 > 0 have a
similar sequence of nonthickenable solid tori.

Our third key lemma is the following, which along with Theorem 3.1 and the fact
that negative torus knots satisfy the UTP (see [6]), will show that if at least one of the
Pi < 0, then Kr satisfies the UTP.

Lemma 3.4 Suppose Kr satisfies the Inductive Hypothesis, and KrC1 is a cabling
where PrC1 < 0; then KrC1 satisfies the UTP.

Proof This is the case where qrC1=prC1 2 .�1=Ar ; 0/ in the C0 framing, we know
Kr satisfies the Inductive Hypothesis, and we wish to show that KrC1 satisfies the
UTP. The proof is identical to that of Steps 1 and 2 in the proof of [15, Section 6,
Theorem 1.5], the key being that since �1=Ar < qrC1=prC1 < 0, this cabling slope is
shielded (in the Farey tessellation by an arc from �1=Ar to 0) from any N k

r that fail
to thicken.

In the following Section 4 we prove Lemma 3.3; this will then complete the proof of
Theorem 1.1.
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4 Positive cablings that fail the UTP

Now that we know that the base case holds for positive torus knots, we begin to
prove Lemma 3.3 – for the whole of this section we will thus have that PrC1 > 0,
Kr satisfies the Inductive Hypothesis, and we work to show that KrC1 satisfies
the Inductive Hypothesis. It will be convenient to break the proof of Lemma 3.3
into two cases, Case I being where PrC1=qrC1 > w.Kr /, and Case II being where
w.Kr / > PrC1=qrC1 > 0. However, we first note the following.

Lemma 4.1 Let Kr be an iterated torus knot with Pi > 0 for all i . If 0 � k1 < k2 ,
then �.k1C1/=.Ar k1CBr / is clockwise from �.k2C1/=.Ar k2CBr / in the Farey
tessellation.

Proof Following Lemma 2.1 and Remark 2.4, in the standard C framing we have that
.k1C 1/=.Ar �Br / < .k2C 1/=.Ar �Br /; changing coordinates to the C0 framing
yields the result.

We now directly address the two different cases in two different subsections.

4.1 Case I: PrC1=qrC1 > w.Kr/

We work through proving items (2)–(5) in the Inductive Hypothesis via a series of
lemmas. The following lemma begins to address item (2).

Lemma 4.2 If PrC1=qrC1 >w.Kr /, then

tb.KrC1/DArC1� .PrC1� qrC1w.Kr // > 0:

Proof The proof is similar to that of [6, Lemma 3.3] (note that our ArC1DPrC1qrC1 ).
We first claim that xt.KrC1/ < 0. If not, there exists a Legendrian LrC1 with
t.LrC1/ D 0 and a solid torus Nr with LrC1 as a Legendrian divide. But then
we would have a boundary slope of PrC1=qrC1 > w.Kr / in the C framing, which
cannot occur.

So since xt.KrC1/ < 0, any Legendrian LrC1 must be a ruling on a convex @Nr with
slope 0> s�1=xt.Kr / in the C0 framing. But then if sD��=�>1=xt.Kr /, we have that
t.Lr /D�.prC1�CqrC1�/<��.prC1�xt.Kr /qrC1/��.prC1�xt.Kr /qrC1/. This
shows that tb.KrC1/ is achieved by a Legendrian ruling on a convex torus having slope
1=w.Kr / in the standard C framing; thus tb.KrC1/DArC1� .PrC1�qrC1w.Kr //,
using Equation (2) and recalling that the twisting of the Legendrian ruling is �1=2

times the geometric intersection number of the ruling with the dividing set.
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Finally, note ArC1�.PrC1�qrC1w.Kr //DArC1�.qrC1.Ar �w.Kr //CprC1/ >

ArC1 � .q
2
rC1

Ar CprC1qrC1/D 0. For the first equality we use Equation (1), and
for the inequality we use the fact that w.Kr / > 0 via the Inductive Hypothesis.

With the following lemma we prove that items (3) and (4) of the Inductive Hypothesis
hold for KrC1 ; we refer the reader to the comment following the Inductive Hypothesis
for the precise meaning of the case when NrC1 both can be thickened, and fails to
thicken.

Lemma 4.3 If PrC1=qrC1 > w.Kr /, let NrC1 be a solid torus representing KrC1 ,
for r � 1. Then NrC1 can be thickened to an N k0

rC1
for some nonnegative integer k 0 .

Moreover, if NrC1 fails to thicken, then it has the same boundary slope as some N k0

rC1
,

as well as at least 2nk0

rC1
dividing curves.

Proof In this case, for the C0 framing, we have either prC1 > 0 or qrC1=prC1 <

1=xt.Kr / (the latter being relevant only if xt.Kr / < 0); in other words, qrC1=prC1 is
clockwise from 1=xt.Kr / in the Farey tessellation. The proof in this case is nearly
identical to the proof of [15, Lemma 4.4]; we will include the details, however, as certain
particular calculations differ. Moreover, we will use modifications of this argument in
Case II and thus will be able to refer to the details here.

Let NrC1 be a solid torus representing KrC1 . Let Lr be a Legendrian representative
of Kr in S3nNrC1 and such that we can join @N.Lr / to @NrC1 by a convex annulus
A.prC1;qrC1/ whose boundaries are .prC1; qrC1/ and 10 rulings on @N.Lr / and
@NrC1 , respectively. Then topologically isotop Lr in the complement of NrC1 so that
it maximizes tb over all such isotopies; this will induce an ambient topological isotopy
of A.prC1;qrC1/ , where we still can assume A.prC1;qrC1/ is convex. A picture is shown
in (a) in Figure 1. In the C0 framing we will have slope.�@N.Lr // D �1=m where
m � 0, since xt.Kr / � 0. Now if mD xt.Kr /, then there will be no bypasses on the
@N.Lr /–edge of A.prC1;qrC1/ , since the .prC1; qrC1/ ruling would be at maximal
twisting. On the other hand, if m< xt.Kr /, then there will still be no bypasses on the
@N.Lr /–edge of A.prC1;qrC1/ , since such a bypass would induce a destabilization
of Lr , thus increasing its tb by one – here we are using the twist number lemma,
Lemma 2.5 above. To satisfy the conditions of this lemma, we are using the fact
that either prC1 > 0 or qrC1=prC1 < 1=xt.Kr /. Furthermore, we can thicken NrC1

through any bypasses on the @NrC1 –edge, and thus assume A.prC1;qrC1/ is standard
convex.

Now let Nr WDNrC1[N.A.prC1;qrC1//[N.Lr /. By the Inductive Hypothesis we
can thicken Nr to an N k

r with intersection boundary slope �.k C 1/=.Ar k CBr /
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where k is minimized over all such thickenings (if we have k D 0, then we will have
NrC1 thickening to a standard neighborhood of a knot at maximal Thurston–Bennequin
number – see the proof of [15, Section 2, Theorem 1.1]; so we can assume k > 0). Then
consider a convex annulus zA from @N.Lr / to @N k

r , such that zA is in the complement
of Nr and @ zA consists of .prC1; qrC1/ rulings. A picture is shown in (b) in Figure 1.
By an argument identical to that used in [15, Lemma 4.4], zA is standard convex; we
briefly recall the details below for completeness.

NrC1

A.prC1;qrC1/

N.Lr /

zA

NrC1

N k
r

(a) (b)

Figure 1: NrC1 is the larger solid torus in gray; N.Lr / is the smaller solid
torus in gray.

Certainly there are no bypasses on the @N.Lr /–edge of zA; furthermore, any bypasses
on the @N k

r –edge must pair up via dividing curves on @N k
r and cancel each other

out as in part (a) of Figure 2, for otherwise a bypass on @N.Lr / would be induced
via the annulus zA as in part (b) of Figure 2. As a consequence, allowing N k

r to thin
inward through such bypasses does not change the boundary slope, but just reduces
the number of dividing curves to less than 2nk

r . But then by the Inductive Hypothesis
we can thicken this new N k

r to a smaller k –value, contradicting the minimality of k .
Thus zA is standard convex.

Now four annuli compose the boundary of a solid torus zNrC1 containing NrC1 : the two
sides of a thickened zA; @N k

r n@
zA; and @N.Lr /n@ zA. We can compute the intersection

boundary slope of this solid torus. To this end, recall that slope.�@N.Lr // D �1=m

where m > 0 (m D 0 would be the xt case which we have taken care of above). To
determine m we note that the geometric intersection number of .prC1; qrC1/ with �
on @N k

r and @N.Lr / must be equal, yielding the equality

(3) prC1CmqrC1 D prC1kCprC1C qrC1.Ar kCBr /:
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zA zA zA zA
@N k

r @N k
r

(a) (b)

Figure 2: Part (a) shows bypasses that cancel each other out after edge-
rounding. Part (b) shows a bypass induced on @N.Lr / via zA .

These equal quantities are greater than zero, since qrC1=prC1 is clockwise from �1=m

(and �.kC1/=.Ar kCBr /) in the Farey tessellation – we note here that this will yield
.ArC1k 0CBrC1/ > 0 for the calculations below. In the meantime, however, the above
equation gives

mD prC1

k

qrC1

CAr kCBr :

We define the integer k 0 WD k=qrC1 . We now choose .p0
rC1

; q0
rC1

/ to be a curve on
these two tori such that prC1q0

rC1
�p0

rC1
qrC1 D 1, and we change coordinates to a

framing C00 via the map ..prC1; qrC1/; .p
0
rC1

; q0
rC1

// 7! ..0; 1/; .�1; 0//. Under this
map we obtain

slope.�@N k
r
/D

q0
rC1

.Ar kCBr /Cp0
rC1

.qrC1k 0C 1/

ArC1k 0CBrC1

;

slope.�@N.Lr //D
q0

rC1
.prC1k 0CAr kCBr /Cp0

rC1

ArC1k 0CBrC1

:

We then obtain in the C0 framing, after edge-rounding (see [13, Section 3.3.2]), that
the intersection boundary slope of zNrC1 is

slope.�
@ zNrC1

/D slope.�@N k
r
/� slope.�@N.Lr //�

1

ArC1k 0CBrC1

D�
k 0C 1

ArC1k 0CBrC1

:

The first two summands in the equation have opposite signs since, to form @ zNrC1 ,
we use the same orientation coming from @N k

r for the annulus @N k
r n@
zA, and the

opposite orientation coming from @N.Lr / for the annulus @N.Lr /n@ zA. Also, the
third summand, �1=.ArC1k 0CBrC1/, comes from the fact that, after edge-rounding,
the two annuli coming from the two sides of a thickened zA each contribute one
intersection of �@ zNrC1

with the new meridian curve.
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This shows that any NrC1 representing KrC1 can be thickened to one of the N k0

rC1
,

and if NrC1 fails to thicken, then it has the same boundary slope as some N k0

rC1
. We

now show that if NrC1 fails to thicken, and if it has the minimum number of dividing
curves over all such NrC1 which fail to thicken and have the same boundary slope
as N k0

rC1
, then NrC1 is actually an N k0

rC1
.

To see this, as above we can choose a Legendrian Lr that maximizes tb in the comple-
ment of such a nonthickenable NrC1 , and such that we can join @N.Lr / to @NrC1 by
a convex annulus A.prC1;qrC1/ whose boundaries are .prC1; qrC1/ and10 rulings on
@N.Lr / and @NrC1 , respectively. Again we have no bypasses on the @N.Lr /–edge,
and in this case we have no bypasses on the @NrC1 –edge since Nr fails to thicken
and is at minimum number of dividing curves.

As above, let Nr WD NrC1 [N.A.prC1;qrC1//[N.Lr /. We claim this Nr fails to
thicken. To see this, take a convex annulus zA from @N.Lr / to @Nr , such that zA is in
the complement of NrC1 and @ zA consists of .prC1; qrC1/ rulings. We know zA is
standard convex since the twisting is the same on both edges and there are no bypasses
on the @N.Lr /–edge. A picture is shown in Figure 3.

NrC1

zA Nr

Figure 3: Shown is a meridional cross-section of Nr . The larger gray solid
torus represents NrC1 ; the smaller gray solid torus is N.Lr / .

Now four annuli compose the boundary of a solid torus containing NrC1 : the two
sides of the thickened zA, which we will call zAC and zA� ; @Nrn@ zA, which we will
call Ar ; and @N.Lr /n@ zA, which we will call ALr

. Any thickening of Nr will induce
a thickening of NrC1 to zNrC1 via these four annuli.

Suppose, for contradiction, that Nr thickens outward so that slope.�@Nr
/ changes.

Note that during the thickening, ALr
stays fixed. We examine the rest of the annuli by

breaking into two cases.

Case 1 After thickening, suppose zA is still standard convex; that means both zAC
and zA� are standard convex. Since we can assume that after thickening Ar is still
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standard convex, this means that in order for slope.�@Nr
/ to change, the holonomy

of �Ar
must have changed. But this will result in a change in slope.�@NrC1

/, since
ALr

stays fixed and any change in holonomy of � zAC and � zA� cancels each other out
and does not affect slope.�@NrC1

/. Thus we would have a slope-changing thickening
of NrC1 , which by hypothesis cannot occur.

Case 2 After thickening, suppose zA is no longer standard convex. Now note that
there are no bypasses on the @N.Lr /–edge of zA; furthermore, any bypass for zAC
on the @Nr –edge must be cancelled out by a corresponding bypass for zA� on the
@Nr –edge as in part (a) of Figure 2, so as not to induce a bypass on the @N.Lr /–edge
as in part (b) of the same figure. But then again, in order for slope.�@NrC1

/ to remain
constant, the holonomy of �Ar

must remain constant, and thus slope.�@Nr
/ must also

have remained constant, with just an increase in the number of dividing curves.

This proves the claim that Nr does not thicken, and we therefore know that its boundary
slope is �.kC 1/=.Ar kCBr /. Furthermore, we know the number of dividing curves
is 2n where n � nk

r . Suppose, for contradiction, that n > nk
r . Then we know we

can thicken Nr to an N k
r , and if we take a convex annulus from @Nr to @N k

r whose
boundaries are .prC1; qrC1/ rulings, by the Imbalance Principle there must be bypasses
on the @Nr –edge. But these would induce bypasses off of 10 rulings on NrC1 , which
by hypothesis cannot exist. Thus nD nk

r , and by a calculation as above we obtain that
the intersection boundary slope of NrC1 must be �.k 0C 1/=.ArC1k 0CBrC1/ for
the integer k 0 D k=qrC1 .

We now finish the proof of item (2) of the Inductive Hypothesis.

Lemma 4.4 If PrC1=qrC1 >w.Kr /, then w.KrC1/D tb.KrC1/.

Proof Using Lemma 4.3, we need to show 1=xt.KrC1/<�.k
0C1/=.ArC1k 0CBrC1/

for any candidate N k0

rC1
. But changing to standard C coordinates, this means we need

to show that 1=tb.KrC1/ < .k
0C 1/=.ArC1�BrC1/. So, to this end, take an N k0

rC1

with boundary slope .k 0 C 1/=.ArC1 �BrC1/; as in the proof of Lemma 4.3, this
N k0

rC1
sits inside an N k

r , and we know by the Inductive Hypothesis that 1=tb.Kr / <

.kC 1/=.Ar �Br /. Thus, since by the Inductive Hypothesis N k
r is universally tight,

we can embed N k
r contactomorphically into an abstract N 0

r ; so in this abstract tight
solid torus, N k

r thickens to a standard neighborhood of a Legendrian at tb.Kr /. But
then, just as in the proof of [15, Theorem 1.1], this induces a thickening of N k0

rC1
(in the

abstract tight solid torus) to a standard neighborhood of a Legendrian at tb.KrC1/; as in
that proof, this uses the fact that PrC1=qrC1 >w.Kr /. Thus, to prevent overtwisting,
we must have that 1=tb.KrC1/ < .k

0C 1/=.ArC1�BrC1/.
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We conclude this subsection by proving item (5) of the Inductive Hypothesis, using a
construction and two lemmas. We begin with the construction, which shows that the
candidate N k0

rC1
exist for k 0 � CrC1 , where CrC1 is some positive integer.

Construction 4.5 We know by the Inductive Hypothesis that there exists a Cr such
that if k � Cr , then the N k

r exist and fail to thicken, and have convex meridian discs
with bypasses all of the same sign. So suppose k=qrC1 2 N for some k � Cr . We
will show that N k0

rC1
exists for k 0 WD k=qrC1 . Then CrC1 will be the least such

k=qrC1 2N .

The idea is to build S3 . We first take one of the two universally tight candidate N k0

rC1
,

with intersection boundary slope �.k 0 C 1/=.ArC1k 0 C BrC1/, and with convex
meridian discs having bypasses all of the same sign; thus the two possible contact
structures on N k0

rC1
differ by � id. We then show that we can use such a N k0

rC1
to

build N k0qrC1
r , essentially running backwards the decomposition from Lemma 4.3

above – since the N k0qrC1
r inductively exists in S3 , we will then be done. To this end,

let A be a standard convex annulus joining two 10
rC1

–longitudes on @N k0

rC1
, so that

if we then let R D N k0

rC1
[N.A/, we have that R is diffeomorphic to T 2 � Œ0; 1�,

with a Œ0; 1�–invariant contact structure on N.A/. Furthermore, we can think of R as
containing a horizontal annulus joining T 2�f0g to T 2�f1g, and such that the original
10

rC1
–longitudes on @N k0

rC1
intersect this horizontal annulus qrC1 times; thus, with

an appropriate choice of 10r –longitude for T 2 � fig, the original 10
rC1

–longitudes
on @N k0

rC1
are now .prC1; qrC1/ curves on T 2 � fig.

We will thus think of R as fibering over the horizontal annulus with fiber circles
representing the knot type KrC1 . For either choice of the two universally tight contact
structures on N k0

rC1
, the contact structure on R can be isotoped to be transverse to

the fibers of R, while preserving the dividing set on R. Hence the contact struc-
ture is horizontal, and therefore universally tight. Furthermore, with appropriately
chosen dividing curves on A, we can obtain intersection boundary slopes (on the
two boundary tori T 2 � f0g and T 2 � f1g) of �.k 0qrC1C 1/=.Ar k 0qrC1CBr / and
�1=.prC1k 0CAr kCBr /; ie, the intersection boundary slopes of a N k0qrC1

r and a
Legendrian of twisting �.prC1k 0CAr kCBr /.

We now glue, onto the T 2�f1g side of R, a standard neighborhood of a Legendrian Lr

of twisting �.prC1k 0CAr kCBr /; we claim the resulting solid torus Nr is one of the
N k0qrC1

r . To see this, look at a qrC1 –fold cover of Nr , and examine its convex meridian
disc Dr (which is also the same convex meridian disc Dr for the Nr downstairs). The
disc Dr is formed by taking qrC1 meridian discs from the qrC1 copies of lifts of N k0

rC1
,

and first banding them together via bands coming from the Œ0; 1�–invariant N.A/, and
then finally gluing in the convex meridian disc for the standard neighborhood of a
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Legendrian. But now evaluating the relative Euler class (of � ) on Dr , we note that these
bands and the meridian disc for the standard neighborhood yield no obstruction, and
thus we obtain ˙k 0qrC1 , as each of the qrC1 meridian discs from N k0

rC1
yields ˙k 0 .

We then know inductively that this N k0qrC1
r (and hence N k0

rC1
) exists in S3 .

We now show that the N k0

rC1
coming from the above construction in fact fail to thicken.

Lemma 4.6 The N k0

rC1
from Construction 4.5 fail to thicken for k 0 � CrC1 .

Proof To show that N k0

rC1
fails to thicken, by Lemmas 4.1 and 4.3 it suffices to

show N k0

rC1
does not thicken to any N k00

rC1
, where k 00< k 0 . Inductively, we can assume

that N k
r fails to thicken for k � Cr ; in particular, the N k0qrC1

r that contains N k0

rC1

fails to thicken. So let k D k 0qrC1 . Then define M k
r D S3nN k

r , and define M k0

rC1
D

S3nN k0

rC1
.

We first make some purely topological observations, which in the rest of this proof we
will refer to as the topological observations. We begin by observing that KrC1 is a
fibered knot, and has periodic monodromy – see, for example, [1]. One way to see this
is as follows. We think of KrC1 embedded on @Nr , and let †rC1 be a Seifert surface
for KrC1 . Furthermore, we note that †rC1 can be formed by taking qrC1 copies of
the Seifert surface †r for the Seifert longitude on @Nr , and PrC1 copies of a meridian
disc Dr for Nr , and banding them together with PrC1qrC1 positive (half-twist) bands.
We then observe that if we take a slightly larger N 0r �Nr , there will be qrC1 separating
simple closed curves on †rC1 that are in fact preferred Seifert longitudes for @N 0r , and
thus bound Seifert surfaces †r for the knot Kr in the complement of N 0r (all qrC1

of which are subsurfaces of †rC1 ). In fact, the monodromy for †rC1 is reducible
along these qrC1 curves; that is, if we call �rC1 WD †rC1 \N 0r , the monodromy
will take �rC1 to itself, and sweep out the interior of N 0r . Moreover, the monodromy
will restrict to being periodic on �rC1 , of period PrC1qrC1 , as repeated application
of the monodromy cycles through the PrC1qrC1 bands. Then, since positive torus
knots have periodic monodromy, inductively we can assume that the exterior of N 0r
fibers periodically with the qrC1 copies of the †r ’s. As a result, there is a positive
integer mrC1 such that �mrC1 D id (where here � is the †rC1 –monodromy), and
such that PrC1qrC1 divides mrC1 .

We return to contact topology, and now we specifically let †rC1 be a Seifert surface for
a preferred longitude on @N k0

rC1
; so †rC1 is a surface of genus g0 with one boundary

component. As noted in the topological observations, there are qrC1 separating simple
closed curves on †rC1 that are in fact preferred longitudes for @N k

r , and thus bound
Seifert surfaces †r for the knot Kr . We will let g denote the genus of such a Seifert
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surface †r . Also we will call �rC1 WD†rC1\N k
r ; so †rC1 D �rC1[ .

SqrC1

jD1
†

j
r /;

see Figure 4.

†1
r

†2
r

†3
r

†rC1

�rC1

Figure 4: Shown is a Seifert surface †rC1 for a preferred longitude on
@N k0

rC1 . In the figure, qrC1 D 3 , and thus the three separating simple closed
curves, indicated by dashed gray lines, separate three Seifert surfaces for
preferred longitudes on @N k

r ; these Seifert surfaces are indicated as †1
r ; †

2
r

and †3
r . The complement of †1

r [†
2
r [†

3
r in †rC1 is �rC1 ; it is formed

by banding together (using PrC1qrC1 bands) PrC1 meridian discs for Nr

with qrC1 D 3 collar annuli of the @†j
r .

We now look at various finite covers of M k0

rC1
that are obtained by cutting M k0

rC1

along †rC1 and then cyclically stacking copies of these split-open M k0

rC1
. We first

look at a PrC1qrC1 –fold cover obtained in this fashion, and, due to the topological
observations above, focus in on the lift of the space N k

r nN k0

rC1
which contains �rC1 .

If we arrange that downstairs @N k
r has Legendrian rulings that are .PrC1; qrC1/

cables (which are 10
rC1

–rulings on @N k0

rC1
), then upstairs, in the PrC1qrC1 –fold

cover, the lift of N k
r nN k0

rC1
can be fibered by Legendrian fibers all with twisting

�.ArC1k 0CBrC1/. The reason for this is as follows. First of all, the 10
rC1

–rulings
have twisting �.ArC1k 0 C BrC1/ on @N k0

rC1
, and intersect the 1rC1 –longitude

positively PrC1qrC1 times; hence upstairs in the PrC1qrC1 –fold cover they will lift to
Legendrians of twisting �.ArC1k 0CBrC1/. As a result, the standard convex annulus A
from Construction 4.5 will be fibered by Legendrians of twisting �.ArC1k 0CBrC1/

upstairs in the cover as well. Moreover, the .PrC1; qrC1/ rulings on @N.Lr / in
Construction 4.5 also have twisting �.ArC1k 0CBrC1/, and in the cover will become
longitudinal .PrC1; 1/ rulings, but still with twisting �.ArC1k 0CBrC1/. Furthermore,
the lift of N.Lr / will have convex boundary with two longitudinal dividing curves (a
different longitude, of course). Thus we see that the contact structure on this lift of
N.Lr / is just a standard neighborhood of one of the ruling curves (pushed into the
interior of the solid torus), and thus the solid torus can be fibered by Legendrians of
twisting �.ArC1k 0CBrC1/.

Note that the rest of the cover (outside the lift of N k
r nN k0

rC1
) is fibered (horizontally)

by the copies of the †r ’s. We now make an inductive hypothesis, which one may think
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of as part of item (5) of the main Inductive Hypothesis, which specifies part of why
the candidate N k

r fail to thicken. Specifically, using the proof of [7, Lemma 3.3] for
the case of positive torus knots as our base case (see also the discussion in Lemma 3.2
above), inductively we may assume that the monodromy for the fibered space M k

r

is periodic, with period that divides a positive integer mr , and such that a resulting
mr –fold product cover can be fibered by Legendrian fibers that all have twisting
�sr .Ar kCBr /, where sr is again some positive integer (for the base case of positive
torus knots, m1 D P1q1 and s1 D 1). As we proceed with the current proof of the
present lemma, we will show that this inductive hypothesis holds for M k0

rC1
as well (for

appropriate mrC1 and srC1 ). It will be convenient for us, however, to take mr , and
multiply it by ��.Kr / to get a new mr ; in other words, we can assume that ��.Kr /

divides mr and sr , and we will still have the mr –fold product cover of M k
r being

fibered by Legendrians all having twisting �sr .Ar kCBr /.

As a consequence of this and the above topological observations, we can now pass
to another finite cover, and cyclically stack mr copies of our PrC1qrC1 –fold cover
of M k0

rC1
to obtain �M k0

rC1
D S1 �†rC1 . Furthermore, if we restrict to S1 � �rC1 �

S1 � †rC1 , the space S1 � �rC1 can be fibered by Legendrians all of twisting
�srC1.ArC1k 0CBrC1/, for some positive integer srC1 , with respect to the product
framing. However, at the moment all we know is that the qrC1 copies of S1�†r can
be fibered by topological copies of these Legendrian fibers in S1��rC1 ; what we will
show is that in fact S1 �†rC1 can be fibered by Legendrian copies of the fibers in
S1 � �rC1 . (The topological picture is shown in Figure 5.)

To this end, we first establish some notation; downstairs let T D @N k
r . As just

mentioned, we may assume that the rulings on T are copies of10
rC1

(ie, .PrC1; qrC1/

cables on T ), and assume the space N k
r nN k0

rC1
bounded by T lifts to S1 � �rC1 ,

where all the S1 fibers are Legendrian isotopic to lifts of 10
rC1

and have twisting
�srC1.ArC1k 0 C BrC1/ for some positive integer srC1 . We will call these S1

fibers S1
rC1

, and note that they are topologically isotopic to the S1 fibers in the
product space S1 �†rC1 . We also have that if we think of M k

r as bounded by T ,
then M k

r lifts to qrC1 copies of S1 �†r for a different S1 , where all the S1 fibers
are Legendrian isotopic to lifts of 10r , and have twisting �sr PrC1.Ar kCBr /. We
will call these S1 fibers S1

r , and emphasize that these are not the same as the S1
rC1

’s.
However, we will show that in fact, all of �M k0

rC1
can be fibered by Legendrian S1

rC1
’s.

On the Seifert surface †rC1 , recall that we have labelled the qrC1 †r ’s as †j
r .

Now let ˛i
rC1

be 2g0 disjoint arcs on †rC1 , each with endpoints on @†rC1 , and
such that if we cut along the ˛i

rC1
we obtain a polygon PrC1 . Also, let ˛i

r;j be
2g disjoint arcs on †j

r that, when we cut along them, yield polygons P
j
r . Thus we

have solid tori S1
r �P

j
r embedded in �M k0

rC1
. We can calculate the boundary slopes
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S1 � �rC1

qrC1 copies of S1 �†r

�M k0

rC1

Figure 5: Shown is �M k0

rC1
, with the qrC1 copies of S1 �†r indicated by

the gray dashed cylinders; the complement of the gray dashed cylinders is
S1 � �rC1 . The top and bottom of the figure are identified.

of these solid tori using the framing coming from the lifts of 10r ; this calculation
is similar to that in [7, Lemma 3.3]. Specifically, note that a longitude for this torus
intersects � , 2sr PrC1.Ar kCBr / times, and a meridian for this torus is composed
of 2 copies each of the associated 2g arcs ˛i

r;j , as well as 4g arcs ˇi from @†
j
r .

Now since @†j
r is a preferred longitude downstairs in M k

r , we know that � intersects
these ˇi , 2.��.Kr //D 2.2g� 1/ times positively; see Remark 2.4 above. But then
the edge-rounding that results at each intersection of an S1

r � ˇi with an S1
r � ˛

i
r;j

yields 4g negative intersections with � . Thus we obtain after edge-rounding that
the boundary slope is �1=.sr PrC1.Ar k CBr //; as a consequence, we see that the
solid torus S1

r �P
j
r is simply a standard neighborhood of a Legendrian of twisting

�.sr PrC1.Ar kCBr //. We will use this shortly.

Now we switch our attention to the S1
rC1

’s, and note that the arcs ˛i
rC1

that stay in �rC1

represent an interval’s worth of S1
rC1

fibers of twisting �srC1.ArC1k 0CBrC1/, and
hence represent standard convex annuli in the space �M k0

rC1
. The arcs ˛i

rC1
that

leave �rC1 represent convex annuli that are fibered by Legendrian S1
rC1

’s only when
restricted to their intersection with the lift of the space N k

r nN k0

rC1
bounded by T . So

what is of interest is a convex annulus Ai with boundary components on T that both
have twisting �srC1.ArC1k 0CBrC1/, and which is fibered by topological copies of
the S1

rC1
’s, but which is embedded in one of the qrC1 lifts of M k

r .
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So suppose, for contradiction, that there exists a bypass on one of the Ai ’s. We look
at what passing through this bypass will do on the lift of T to which Ai is attached;
we use the framing on the lift of T that comes from the lifts of 10r . First, recall
that we know that qrC1=prC1 is clockwise from �.kC 1/=.Ar kCBr / in the Farey
tessellation; as a result, we know that the bypass of interest is on a ruling with slope 1=t 0

that is clockwise (in the Farey tessellation) from the dividing slope s of the lift of T .
Moreover, we know what this dividing slope s is; it is ��.Kr /=.�sr PrC1.Ar kCBr //,
since the original preferred Seifert longitude on T lifts to the meridian on the lift of T .
But, since ��.Kr / divides sr , this means in lowest terms, s D �1=t for some t .
As a result, passing through the bypass would yield a new torus T 0 , on which is a
longitudinal curve  topologically isotopic to the S1

r ’s, but with twisting greater than
�sr PrC1.Ar k CBr /. But if we then split the S1

r �†
j
r that contains the Ai along

arcs ˛i
r;j to obtain S1

r � P
j
r , and then pass to a finite cover of the base by tiling

copies of S1
r �P

j
r (similar to what we did in [7, Lemma 3.3]), we will enclose  in a

standard neighborhood of a Legendrian of twisting �sr PrC1.Ar kCBr /, which is a
contradiction. Thus Ai must be standard convex.

By similar reasoning, if we look at the convex annuli inside one of the lifts of M k
r

that are in fact S1
rC1
� ˛i

r;j , they will be standard convex. Splitting the lift of M k
r

along these annuli then yields an S1
rC1
�P

j
r ; the resulting boundary torus will have a

characteristic foliation that matches that of the standard neighborhood of a Legendrian
with twisting �srC1.ArC1k 0CBrC1/, by a similar edge-rounding calculation as above.
Now since the contact structure on the lift of M k

r can be isotoped to be horizontal, and
hence tight, we thus know that the contact structure on S1

rC1
�P

j
r can be isotoped so

that all the S1
rC1

fibers are Legendrian with twisting �srC1.ArC1k 0CBrC1/. As a
result, the contact structure can be isotoped so that all of the S1

rC1
fibers in �M k0

rC1
are

Legendrian of twisting �srC1.ArC1k 0CBrC1/.

Thus the argument that N k0

rC1
fails to thicken proceeds exactly as in [7, Lemma

3.3]; specifically, if N k0

rC1
thickens, then there exists a curve  0 upstairs in �M k0

rC1

which is topologically isotopic to the S1
rC1

’s but has greater twisting. However, if
we then split the whole †rC1 along arcs ˛i

rC1
to obtain S1

rC1
�PrC1 , the resulting

boundary torus will have a characteristic foliation that matches that of the standard
neighborhood of a Legendrian with twisting �srC1.ArC1k 0CBrC1/, since the dividing
curves on the lift of @N k0

rC1
intersect @†rC1 exactly 2.��.KrC1// times and hence

a similar edge-rounding calculation applies as above. If we then pass to a finite
cover of the base by tiling copies of S1

rC1
� PrC1 (similar to what we did in [7,

Lemma 3.3]), we will enclose  0 in a standard neighborhood of a Legendrian of
twisting �srC1.ArC1k 0CBrC1/, which is a contradiction.
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We conclude with the following lemma that calculates rotation numbers; this will
complete the induction step for Case I.

Lemma 4.7 Any nonthickenable N k0

rC1
have contact structures that are universally

tight and have convex meridian discs D whose bypasses bound half-discs all of the
same sign; ie, r.@D/ D ˙k 0 . Also, the preferred longitude on @N k0

rC1
has rotation

number zero for k 0 > 0.

Proof We first prove that the contact structure on a candidate N k0

rC1
which fails

to thicken is universally tight. To see this note that from Lemma 4.3 above, and
the Inductive Hypothesis, such a candidate N k0

rC1
is embedded inside a N k

r with a
universally tight contact structure. Now there is a qrC1 –fold cover of N k

r that maps a
total of qrC1 lifts (say, zN k0

rC1
) to N k0

rC1
, the lifts themselves each being an S1 �D2 .

This cover in turn has a universal cover R�D2 that contains qrC1 copies of a universal
cover R�D2 of N k0

rC1
. Since, by the Inductive Hypothesis, the universal cover of N k

r

has a tight contact structure, a tight contact structure is thus induced on the universal
cover of N k0

rC1
.

Now recall that N k
r is formed from N k0

rC1
by first joining 10–longitudes on @N k0

rC1

with an annulus A to get a thickened torus R D T 2 � Œ0; 1�, and then gluing in a
standard neighborhood of a Legendrian knot. Thus, since N k

r has bypasses all of the
same sign, by similar reasoning as that in Construction 4.5, it follows that a horizontal
annulus in R has bypasses all of the same sign. We will thus have that N k0

rC1
must

have convex meridian discs all of the same sign. The computation of rotation numbers
for the meridian curve follows.

To show that the preferred longitude on @N k0

rC1
has rotation number zero, we use an

argument similar to that used in [7, Lemma 3.4]. We call the meridian disc Dr for N k
r

and the Seifert surface †r for the preferred longitude on @N k
r . If we then look at the

.PrC1; qrC1/ cable on @N k
r , we can calculate its rotation number as

r..PrC1; qrC1//D PrC1 r.@Dr /C qrC1 r.@†r /D PrC1.˙qrC1k 0/:

But then since this same knot is a .PrC1qrC1; 1/ cable on @N k0

rC1
, we have that

r..PrC1; qrC1// D PrC1qrC1.˙k 0/C qrC1 r.@†/, where † is a Seifert surface for
the preferred longitude on @N k0

rC1
. This implies that r.@†/D 0.

4.2 Case II: w.Kr/ > PrC1=qrC1 > 0

As in Case I, we work through proving items (2)–(5) in the Inductive Hypothesis via a
series of lemmas.

We begin by proving item (2) in the Inductive Hypothesis.
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Lemma 4.8 If w.Kr / > PrC1=qrC1 > 0, then tb.KrC1/D w.KrC1/DArC1 .

Proof The proof is almost identical to that of Step 1 in the proof of from [15, Section 6,
Theorem 1.5]; we will include the details, though, since certain aspects differ. We
first examine representatives of KrC1 at maximal Thurston–Bennequin number tb.
Since there exists a convex torus representing Kr with Legendrian divides that are
.prC1; qrC1/ cablings (inside of the solid torus representing Kr with slope.�/ D
1=xt.Kr /) we know that tb.KrC1/ � PrC1qrC1 D ArC1 . To show that tb.KrC1/D

ArC1 , we show that xt.KrC1/D 0 by showing that the contact width w.KrC1; C0/D 0,
since this will yield tb.KrC1/ � w.KrC1/ D ArC1 . So suppose, for contradiction,
that some NrC1 has convex boundary with slope.�@NrC1

/D s > 0, as measured in
the C0 framing, and two dividing curves. After shrinking NrC1 if necessary, we may
assume that s is a large positive integer. Then let A be a convex annulus from @NrC1

to itself having boundary curves with slope 10 . Taking a neighborhood of NrC1[A
yields a thickened torus R with boundary tori T1 and T2 , arranged so that T1 is inside
the solid torus Nr representing Kr bounded by T2 .

Now there are no boundary parallel dividing curves on A, for otherwise, we could pass
through the bypass and increase s to 10 , yielding excessive twisting inside NrC1 .
Hence A is in standard form, and consists of two parallel nonseparating arcs. We
now choose a new framing C00 for Nr where .prC1; qrC1/ 7! .0; 1/; then choose
.p00; q00/ 7! .1; 0/ so that p00qrC1� q00prC1 D 1 and such that slope.�T1

/D�s and
slope.�T2

/D 1. As mentioned in [6], this is possible since �T1
is obtained from �T2

by sC 1 right-handed Dehn twists. Then note that in the C0 framing, we have that
qrC1=prC1 > slope.�T2

/ D .q00 C qrC1/=.p
00 C prC1/ > q00=p00 , and qrC1=prC1

and q00=p00 are connected by an arc in the Farey tessellation of the hyperbolic disc (see
[7, Section 2.2.3]). Thus, since 1=xt.Kr / is connected by an arc to 0=1 in the Farey
tessellation, we must have that .q00C qrC1/=.p

00CprC1/ > 1=xt.Kr /. Thus we can
thicken Nr to one of the solid tori with slope.�/D�.kC1/=.Ar kCBr / which fails
to thicken. Then, just as in [6, Claim 4.2], we have the following:

(i) Inside R there exists a convex torus parallel to Ti with slope qrC1=prC1 .
(ii) R can thus be decomposed into two layered basic slices.

(iii) The tight contact structure on R must have mixing of sign in the Poincaré duals
of the relative half-Euler classes for the layered basic slices.

(iv) This mixing of sign cannot happen inside the universally tight solid torus which
fails to thicken.

This last statement is due to the proof of [13, Proposition 5.1], where it is shown that
mixing of sign will imply an overtwisted disc in the universal cover of the solid torus.
Thus we have contradicted s > 0. So tb.KrC1/D PrC1qrC1 DArC1 .
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With the following lemma we prove that items (3) and (4) of the Inductive Hypothesis
hold for KrC1 .

Lemma 4.9 If w.Kr / > PrC1=qrC1 > 0, let NrC1 be a solid torus representing
KrC1 , for r � 1. Then NrC1 can be thickened to an N k0

rC1
for some nonnegative

integer k 0 . Moreover, if NrC1 fails to thicken, then it has the same boundary slope as
some N k0

rC1
, as well as at least 2nk0

rC1
dividing curves.

Proof This is the case where prC1<0 but qrC1=prC12 .1=xt.Kr /;�1=Ar /; we have
that xt.KrC1/D 0. We begin as we did in Case I. If NrC1 is a solid torus representing
KrC1 , as before choose Lr in S3nNrC1 such that @N.Lr / is joined to @NrC1 by an
annulus A.prC1;qrC1/ , and with tb.Lr / maximized over topological isotopies in the
space S3nNrC1 . We will then have three cases to establish the first part of the lemma,
namely that NrC1 can be thickened to an N k0

rC1
for some nonnegative integer k 0 , and

if NrC1 fails to thicken, then it has the same boundary slope as some N k0

rC1
:

Case 1 Suppose slope.�@N.Lr // D �1=m where �1=m < qrC1=prC1 ; we know
m� 0. Then inside N.Lr / is an Nr with boundary slope qrC1=prC1 . But then we
can extend A.prC1;qrC1/ to an annulus that has no twisting on one edge, and we can
thus thicken NrC1 so it has boundary slope 10 . Moreover, since there is twisting
inside N.Lr /, we can assure there are two dividing curves on the thickened NrC1

(see [6, Claim 4.1]). So this situation yields no nontrivial solid tori NrC1 which fail to
thicken; in other words, NrC1 can be thickened to an N 0

rC1
.

Case 2 Alternatively, suppose �1=m> qrC1=prC1 ; note here we must have m> 0

– furthermore, in this case we further restrict to the situation where �1=.m� 1/ >

qrC1=prC1 . Then we can use the twist number lemma (Lemma 2.5 above) to conclude
that there are no bypasses on the @N.Lr /–edge of A.prC1;qrC1/ , and so we can
thicken NrC1 through bypasses so that A.prC1;qrC1/ is standard convex.

Then, as in Lemma 4.3, we let Nr WDNrC1[N.A.prC1;qrC1//[N.Lr /. We know that
w.KrC1; C0/D 0, and we know that the geometric intersection number of the 10

rC1
–

rulings on @NrC1 with �@NrC1
equals prC1 CmqrC1 > 0. As a result, we know

that 10
rC1

is clockwise from �@NrC1
in the Farey tessellation. Thus, we must have

that the .prC1; qrC1/–rulings intersect �@Nr
positively; ie, qrC1=prC1 is clockwise

from slope.�@Nr
/ in the Farey tessellation. As a result, when we thicken to N k

r as in
Lemma 4.3, we must also have qrC1=prC1 clockwise from �.kC1/=.Ar kCBr / in the
Farey tessellation, for otherwise we could destabilize Lr (in the complement of NrC1 )
via an annulus with .prC1; qrC1/–ruling boundary on @N.Lr /, and .prC1; qrC1/–
Legendrian divide boundary on a torus N 0r with boundary slope qrC1=prC1 in the
thickened torus cobounded by @Nr and @N k

r .
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Thus, since qrC1=prC1 is clockwise from both �1=m and �.kC 1/=.Ar kCBr / in
the Farey tessellation, the calculation of the boundary slope goes through as above
in Lemma 4.3 – see the comment after Equation (3) above, and note that such N k

r

exist since �.kC 1/=.Ar kCBr /!�1=Ar as k increases. We conclude that NrC1

thickens to some N k0

rC1
.

Case 3 For the remaining case, suppose �1=m > qrC1=prC1 and m is the least
positive integer satisfying this inequality. Thus �1=.m�1/ < qrC1=prC1 . Again look
at the @N.Lr /–edge of A.prC1;qrC1/ . We claim that this edge has no bypasses. So,
for contradiction, suppose it does. Then we can thicken N.Lr / to a solid torus where
the (efficient) geometric intersection number of .prC1; qrC1/ with dividing curves is
less than prC1CmqrC1 . Suppose the slope of this new solid torus is ��=�<�1=m,
where � > 1 since m is minimized in the complement of NrC1 .

We do some calculations. Note first that if m=� > 1, then m > �, which means
m�1��. This implies �1=.m�1/��1=�>��=�, which cannot happen, again since
m is minimized in the complement of NrC1 . Thus we must have m=�� 1. But then
the geometric intersection number of .prC1; qrC1/ with .��; �/ is �prC1C�qrC1>

.�=m/prC1C�qrC1 � .m=�/Œ.�=m/prC1C�qrC1�D prC1CmqrC1 . This is a
contradiction.

Thus there are no bypasses on the @N.Lr /–edge of A.prC1;qrC1/ , and we can thicken
NrC1 through any bypasses so that A.prC1;qrC1/ is standard convex. The calculations
that show NrC1 thickens to N k0

rC1
go through as above in Lemma 4.3; in particu-

lar, as above, the nonthickenable N k
r that is used will be such that qrC1=prC1 <

�.kC 1/=.Ar kCBr /.

This concludes the three cases, which together show that any NrC1 representing KrC1

can be thickened to one of the N k0

rC1
, and if NrC1 fails to thicken, then it has the same

boundary slope as some N k0

rC1
. We now show that if NrC1 fails to thicken, and if it

has the minimum number of dividing curves over all such NrC1 which fail to thicken
and have the same boundary slope as N k0

rC1
, then NrC1 is actually an N k0

rC1
.

To see this, as above we can choose a Legendrian Lr that maximizes tb in the
complement of NrC1 and such that we can join @N.Lr / to @NrC1 by a convex
annulus A.prC1;qrC1/ whose boundaries are .prC1; qrC1/ and 10 rulings on @N.Lr /

and @NrC1 , respectively. Now since NrC1 fails to thicken, we can assume that
qrC1=prC1 < �1=m and that there are no bypasses on the @N.Lr /–edge, and in this
case we have no bypasses on the @NrC1 –edge since NrC1 fails to thicken and is at
minimum number of dividing curves.
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As above, let Nr WD NrC1 [N.A.prC1;qrC1//[N.Lr /. We claim this Nr fails to
thicken – the proof proceeds identically as above in Lemma 4.3, as does the proof that
NrC1 is in fact an N k0

rC1
.

The following proof of item (5) of the Inductive Hypothesis is similar to that of Case I.

Lemma 4.10 If w.Kr / >PrC1=qrC1 > 0, the candidate N k0

rC1
exist and actually fail

to thicken for k 0 � CrC1 , where CrC1 is some positive integer. Moreover, these N k0

rC1

have contact structures that are universally tight and have convex meridian discs whose
bypasses bound half-discs all of the same sign. Also, the preferred longitude on @N k0

rC1

has rotation number zero for k 0 > 0.

Proof The proof that the contact structure on a candidate N k0

rC1
which fails to thicken

is universally tight is identical to the argument in Case I, as are the calculations of the
rotation numbers.

Now we know by the Inductive Hypothesis that there exists a Cr such that if k � Cr ,
then the N k

r exist and fail to thicken. So suppose k=qrC1 2 N for some k � Cr .
Also assume that qrC1=prC1 < �.k C 1/=.Ar k C Br /; we know such a k exists
since �.kC1/=.Ar kCBr /!�1=Ar as k increases. Then N k0

rC1
exists and fails to

thicken as in the argument for Case I for k 0 WD k=qrC1 , and CrC1 will be the least
such k=qrC1 2N .

This completes the induction step for Case II, and hence the proof of Theorem 1.1.

5 Transversely nonsimple iterated torus knots

We have completed the UTP classification of iterated torus knots; it now remains to
show that if an iterated torus knot fails the UTP, then it supports transversely nonsimple
cablings. To this end, in this section we prove Theorem 1.2; we do so by working
through two lemmas. The first lemma will give us information about just a piece of the
Legendrian mountain range for Kr D ..P1; q1/; : : : ; .Pr ; qr // where Pi > 0 for all i ;
in the second lemma, we will then use this information to obtain enough information
about the Legendrian mountain ranges of certain cables KrC1 to conclude that these
cables are transversely nonsimple. We will therefore not be completing the Legendrian
or transverse classification for these iterated torus knots. The particular cables KrC1

we focus in on will be knot types corresponding to boundary slopes of dividing curves
on certain nonthickenable tori representing Kr ; we will thus establish the transverse
nonsimplicity of KrC1 by examining dividing curves on tori that thicken, versus those
that fail to thicken.
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Lemma 5.1 Suppose Kr D ..P1; q1/; : : : ; .Pr ; qr // is an iterated torus knot where
Pi > 0 for all i . Then there exists Legendrian representatives L˙r with tb.L˙r /D 0

and r.L˙r /D˙.Ar �Br /; also, L˙r destabilizes.

Proof The lemma is true for positive torus knots [5], so we inductively assume it is
true for Kr�1 . Then look at Legendrian rulings zL˙r (representing Kr ) on standard
neighborhoods of the inductive L˙

r�1
. In the C0 framing the boundary slope of these

N.L˙
r�1

/ is �1=Ar�1 , and so t. zL˙r /D�.prCqr Ar�1/D�Pr , using Equation (1);
hence tb. zL˙r /DAr �Pr .

To calculate the rotation number of zL˙r , we use the following formula from [6,
Lemma 2.2], where D is a convex meridian disc for N.L˙

r�1
/ and † is a Seifert

surface for the preferred Seifert longitude on @N.L˙
r�1

/:

r. zL˙r /D Pr r.@D/C qr r.@†/

D˙qr .Ar�1�Br�1/

D˙.Pr �Br /;

where for the last equality we are using Equation (1). This gives us

sl.T�. zLCr //D .Ar �Pr /C .Pr �Br /DAr �Br ;

sl.TC. zL�r //D .Ar �Pr /� .�.Pr �Br //DAr �Br :

This, along with Lemma 2.1, shows us that zLCr is on the right-most slope of the
Legendrian mountain range of Kr , and zL�r is on the left-most edge. To the former we
can perform positive stabilizations to reach LCr at tbD 0 and rDAr �Br ; to the latter
we can perform negative stabilizations to reach L�r at tbD 0 and rD�.Ar �Br / –
we know such stabilizations can be performed since Ar �Pr D Pr qr �Pr > 0.

So suppose Kr is an iterated torus knot that fails the UTP (which is precisely when
Pi > 0 for all i ). Then we know that for k � Cr there exist nonthickenable solid
tori N k

r having intersection boundary slopes of �.kC 1/=.Ar kCBr /, where these
slopes are measured in the C0 framing. Switching to the standard C framing, these
intersection boundary slopes are .k C 1/=.Ar � Br / D �.k C 1/=�.Kr /. Now as
k!1, there are infinitely many values of kC 1 which are prime and greater than
Ar �Br . As a consequence, there are infinitely many N k

r with two dividing curves.
Based on this observation, we make the following definition:

Definition 5.2 Suppose Kr D ..P1; q1/; : : : ; .Pr ; qr // is an iterated torus knot where
Pi > 0 for all i , and let �.k C 1/=.Ar k C Br / be such that �1=.Ar � 1/ <

�.k C 1/=.Ar k CBr / < �1=Ar , and such that there exists an associated N k
r with
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two dividing curves that fails to thicken. We then define yKrC1 to be the knot type that
is a .��.Kr /; kC 1/–cabling of Kr .

So given Kr , there are infinitely many such cabling knot types yKrC1 , all of these being
cablings of slope �.kC 1/=.Ar kCBr / as measured in the nonstandard C0 framing
(for different values of k!1). The following lemma will then prove Theorem 1.2.

Lemma 5.3 yKrC1 is a transversely nonsimple knot type.

Proof We first calculate �. yKrC1/. Using the recursive expression from Lemma 2.1
we obtain

�. yKrC1/D qrC1�.Kr /�PrC1qrC1CPrC1

D .kC 1/.�Ar CBr /� .Ar �Br /.kC 1/C .Ar �Br /

D .2kC 1/.�Ar CBr /:

We now look at the two universally tight nonthickenable N k
r that have representa-

tives of yKrC1 as Legendrian divides. These Legendrian divides have tbD ArC1 D

qrC1PrC1D .kC1/.Ar�Br /. To calculate rotation numbers, we have two possibilities,
depending on which boundary of the two universally tight N k

r the Legendrian divides
reside. Using the formula from [6, Lemma 2.2], we obtain

r. yKrC1/D qrC1 r.@†/CPrC1 r.@D/

D PrC1.˙k/

D˙k.Ar �Br /:

We will call the two Legendrian divides corresponding to rD˙k.Ar �Br /, L˙
rC1

respectively. We can calculate the self-linking number for the negative transverse
pushoff of LC

rC1
to be sl D .2kC1/.Ar �Br /D��. yKrC1/. This shows that LC

rC1

is on the right-most edge of the Legendrian mountain range and is at maximal Thurston–
Bennequin number tb. Similarly, L�

rC1
is on the left-most edge of the Legendrian

mountain range and is at tb.

We now look at solid tori yNr with intersection boundary slope �.kC1/=.Ar kCBr /,
but which thicken to solid tori with intersection boundary slopes �1=.Ar � 1/. Such
tori @ yNr are embedded in universally tight basic slices bounded by tori with dividing
curves of slope �1=.Ar � 1/ and �1=Ar . Legendrian divides on such yNr have
tbD .kC 1/.Ar �Br /; to calculate possible rotation numbers for these Legendrian
divides, we recall the procedure used in the proof of [15, Section 6, Theorem 1.5]. There,

Algebraic & Geometric Topology, Volume 11 (2011)



2772 Douglas J LaFountain

in Equation (14), we used a formula for the rotation numbers from [6, Lemma 3.8],
where the range of rotation numbers was given by (substituting Ar � 1 for n)

r.LrC1/ 2
˚
˙.prC1C .Ar � 1/qrC1C qrC1 r.Lr //j tb.Lr /DAr � .Ar � 1/D 1

	
:

Now from Lemma 5.1 we know that there is an Lr with tb.Lr / D 1 and r.Lr / D

�.Ar �Br /C 1. Plugging this value of the rotation number into the expression above,
along with prC1D�.Ar kCBr / and qrC1D kC1, yields r.LrC1/D˙k.Ar �Br /.
We will call the Legendrian divides having these rotation numbers yL˙

rC1
, respectively.

Important for our purposes is that yL˙
rC1

have the same values of tb and r as L˙
rC1

.

We focus in on L�
rC1

and yL�
rC1

, and we show that T�.L
�
rC1

/ is not transversely
isotopic to T�. yL

�
rC1

/, despite having the same self-linking number. (Although it is
not needed, and we shall not present it here, we note that there is a similar symmetric
argument showing that TC.L

C

rC1
/ is not transversely isotopic to TC. yL

C

rC1
/.)

Consider first TC.L
�
rC1

/. Being a transverse push-off of a Legendrian divide, it is in
fact one of the dividing curves on @N k

r , and is also at maximal self-linking number
for yKrC1 . Similarly, TC. yL

�
rC1

/ is one of the dividing curves on @ yNr , and is also at
maximal self-linking number. Now from [11] we know that yKrC1 is a fibered knot
that supports the standard contact structure, since it is an iterated torus knot obtained
by cabling positively at each iteration. As a consequence, from [8], we also know that
yKrC1 has a unique transverse isotopy class at maximal self-linking number. Hence

we know that TC.L
�
rC1

/ and TC. yL
�
rC1

/ are transversely isotopic. Thus there is a
transverse isotopy (inducing an ambient contact isotopy) that takes these two dividing
curves on the two different tori to each other. Thus we may assume that @N k

r and @ yNr

intersect along one component of the two dividing curves; we call this component C .

Now suppose, for contradiction, that T�.L
�
rC1

/ is transversely isotopic to T�. yL
�
rC1

/.
These transverse knots are represented by the other two dividing curves on @N k

r and
@ yNr , respectively, and we are therefore assuming that there is a transverse isotopy
taking one to the other. This transverse isotopy will induce an ambient contact isotopy
of S3 , including a contact isotopy of the two tori @N k

r and @ yNr , with C sitting on
both of them. Since @N k

r and @ yNr are incompressible in S3nN.C/, we may assume
that after this contact isotopy of S3 , @N k

r and @ yNr intersect along their two dividing
curves, which we denote as C and � . We now observe that there is an isotopy
(although, a priori, not necessarily a contact isotopy) of @N k

r to @ yNr relative to C
and � . We claim that as a result yNr cannot thicken, thus obtaining our contradiction.
We do this by noting that the isotopy of @N k

r to @ yNr relative to C and � may
be accomplished by the attachment of successive bypasses, beginning with @N k

r and
ending at @ yNr ; thus @ yNr is fixed throughout the process. Since these bypasses are
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attached in the complement of the two dividing curves, none of these bypass attachments
can change the boundary slope. However, they may increase or decrease the number of
dividing curves. Starting with T D @N k

r , we make the following inductive hypothesis,
which we will prove is maintained after bypass attachments:

(1) T is a convex torus which contains C and � , and therefore has slope
�.kC 1/=.Ar kCBr /.

(2) T is a boundary-parallel torus in a Œ0; 1�–invariant T 2�Œ0; 1� with slope.�T0
/D

slope.�T1
/D�.kC1/=.Ar kCBr /, where the boundary tori have two dividing

curves.

(3) There is a contact diffeomorphism �W S3! S3 which takes T 2 � Œ0; 1� to a
standard I –invariant neighborhood of @N k

r and matches up their complements.

The argument that follows is similar to [6, Lemma 6.8]. First note that item (1) is
preserved after a bypass attachment, since such a bypass is in the complement of C
and � , and thus cannot change the slope of the dividing curves. To see that items (2)
and (3) are preserved, suppose that T 0 is obtained from T by a single bypass. Since
the slope was not changed, such a (nontrivial) bypass must either increase or decrease
the number of dividing curves by 2. We distinguish between two cases below.

Case 1 Suppose first that the bypass is attached from the inside, so that T 0 � N ,
where N is the solid torus bounded by T . For convenience, suppose T D T0:5 inside
the T 2 � Œ0; 1� satisfying items (2) and (3) of the inductive hypothesis. Then we form
the new T 2 � Œ0:5; 1� by taking the old T 2 � Œ0:5; 1� and adjoining the thickened torus
between T and T 0 . Now T 0 bounds a solid torus N 0 , and, by the classification of
tight contact structures on solid tori, we can factor a nonrotative layer which is the new
T 2 � Œ0; 0:5�.

Case 2 Alternatively, if T 0 � .S3nN /, then we know that N 0 thickens to an N k
r ,

and thus there exists a nonrotative outer layer T 2 � Œ0:5; 1� for S3nN 0 , where T1 has
two dividing curves. Thus the proof is done, for after enough bypass attachments we
will obtain T D @ yNr , with yNr nonthickenable. But this is a contradiction, since yNr

does thicken.

This completes the proof of Theorem 1.2.
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