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Delta-discrete G –spectra and iterated homotopy fixed points

DANIEL G DAVIS

Let G be a profinite group with finite virtual cohomological dimension and let X

be a discrete G –spectrum. If H and K are closed subgroups of G , with H C K ,
then, in general, the K=H –spectrum X hH is not known to be a continuous K=H –
spectrum, so that it is not known (in general) how to define the iterated homotopy
fixed point spectrum .X hH /hK=H . To address this situation, we define homotopy
fixed points for delta-discrete G –spectra and show that the setting of delta-discrete
G –spectra gives a good framework within which to work. In particular, we show
that by using delta-discrete K=H –spectra, there is always an iterated homotopy fixed
point spectrum, denoted .X hH /hıK=H , and it is just X hK .

Additionally, we show that for any delta-discrete G –spectrum Y , there is an equiv-
alence

�
Y hıH

�
hıK=H ' Y hıK . Furthermore, if G is an arbitrary profinite group,

there is a delta-discrete G –spectrum Xı that is equivalent to X and, though X hH

is not even known in general to have a K=H –action, there is always an equiva-
lence

�
.Xı/

hıH
�

hıK=H ' .Xı/
hıK : Therefore, delta-discrete L–spectra, by letting

L equal H;K; and K=H , give a way of resolving undesired deficiencies in our
understanding of homotopy fixed points for discrete G –spectra.

55P42, 55P91

1 Introduction

1.1 An overview of iterated homotopy fixed points and the problem we
consider in this paper

Let Spt be the stable model category of Bousfield–Friedlander spectra of simplicial sets.
Also, given a profinite group G , let SptG be the model category of discrete G –spectra,
in which a morphism f is a weak equivalence (cofibration) if and only if f is a weak
equivalence (cofibration) in Spt (as explained by the author in [5, Section 3]). Given a
fibrant replacement functor

.�/fG W SptG! SptG ; X 7!XfG ;
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so that there is a natural trivial cofibration X !XfG , with XfG fibrant, in SptG , the
G –homotopy fixed point spectrum X hG is defined by

X hG
D .XfG/

G :

Let H and K be closed subgroups of G , with H normal in K and, as above, let X

be a discrete G–spectrum. Then K=H is a profinite group, and it is reasonable to
expect that X hH is some kind of a continuous K=H –spectrum, so that the iterated
homotopy fixed point spectrum .X hH /hK=H can be formed. Additionally, one might
expect .X hH /hK=H to just be X hK : following Dwyer and Wilkerson [14, page 434],
when these two homotopy fixed point spectra are equivalent to each other, for all H ,
K and X , we say that homotopy fixed points for G have the transitivity property.

Under hypotheses on G and X that are different from those above, there are various
cases where the iterated homotopy fixed point spectrum is well-behaved along the
lines suggested above. For example, by [14, Lemma 10.5], when G is any discrete
group, with N C G and X any G–space, the iterated homotopy fixed point space
.X hN /hG=N is always defined and is just X hG . Similarly, by Rognes [27, Theorem
7.2.3], if E is an S –module and A! B is a faithful E–local G–Galois extension
of commutative S –algebras, where G is a stably dualizable group, then if N is an
allowable normal subgroup of G , .BhN /hG=N is defined and is equivalent to BhG .

Let k be a spectrum such that the Bousfield localization Lk.�/ is equivalent to
LM LT .�/; where M is a finite spectrum and T is smashing, and let A be a k –local
commutative S –algebra. If a spectrum E is a consistent profaithful k –local profinite
G–Galois extension of A of finite vcd (the meaning of these terms is explained by
Behrens and the author in [1]), then, by [1, Proposition 7.1.4, Theorem 7.1.6],

.EhkN /hkG=N
'EhkG ;

for any closed normal subgroup N of G , where, for example, .�/hkG denotes the
k –local homotopy fixed points (as defined in [1, Section 6.1]).

Finally, let G be any compact Hausdorff group, let R be an orthogonal ring spectrum
satisfying the assumptions of Fausk [15, Section 11.1, lines 1–3], and let MR be the
category of R–modules. Also, let M be any pro-G –R–module (so that, for example,
the pro-spectrum M is a pro-R–module and a pro-orthogonal G –spectrum). By [15,
Proposition 11.5], if N is any closed normal subgroup of G , there is an equivalence

.M hGN /hG=N
'M hG

of pro-spectra in the Postnikov model structure on the category of pro-objects in MR .
Here, M hGN is the N –G –homotopy fixed point pro-spectrum of [15, Definition 11.3]
and, as discussed in [15, page 165], there are cases when M hGN 'M hN .
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The above results show that when one works with the hypotheses of G is profinite and
X 2 SptG for the first time, it certainly is not unreasonable to hope that the expression
.X hH /hK=H makes sense and that it fits into an equivalence .X hH /hK=H ' X hK .
But it turns out that, in this setting, in general, these constructions are more subtle
than the above results might suggest. For example, as explained by the author in [6,
Section 5], X hH is not even known to be a K=H –spectrum. However, when G has
finite virtual cohomological dimension (finite vcd; that is, there exists an open subgroup
U and a positive integer m such that the continuous cohomology H s

c .U IM / D 0,
whenever s >m and M is a discrete U –module), then [6, Corollary 5.4] shows that
X hH is always weakly equivalent to a K=H –spectrum.

But, as explained by the author in detail in [7, Section 3], even when G has finite vcd,
it is not known, in general, how to view X hH as a continuous K=H –spectrum (in
the sense of [5; 1]), so that it is not known how to form .X hH /hK=H . For example,
when G DK D Z=p�Zq , where p and q are distinct primes, and H D Z=p , Ben
Wieland found an example of a discrete G –spectrum Y such that Y hH is not a discrete
K=H –spectrum (an exposition of this example is given by Wieland and the author in [7,
Appendix A]). More generally, it is not known if Y hH is a continuous K=H –spectrum
and there is no known construction of .Y hH /hK=H .

By [7, Section 4], if G is any profinite group and X is a hyperfibrant discrete G–
spectrum, then X hH is always a discrete K=H –spectrum, and hence, .X hH /hK=H is
always defined. However, it is not known if .X hH /hK=H must be equivalent to X hK .
Also, [7, Section 4] shows that if X is a totally hyperfibrant discrete G –spectrum, then
.X hH /hK=H is X hK . But, as implied by our remarks above regarding Y , it is not
known that all the objects in SptG are hyperfibrant, let alone totally hyperfibrant.

The above discussion makes it clear that there are nontrivial gaps in our understanding
of iterated homotopy fixed points in the world of SptG . To address these deficiencies,
in this paper we define and study homotopy fixed points for delta-discrete G –spectra,
.�/hıG , and within this framework, when G has finite vcd and X 2 SptG , we find
that the iterated homotopy fixed point spectrum .X hH /hıK=H is always defined and is
equivalent to X hK . In fact, when G has finite vcd, if Y is one of these delta-discrete
G –spectra, then there is an equivalence

.Y hıH /hıK=H
' Y hıK :

Before introducing this paper’s approach to iterated homotopy fixed points in SptG in
more detail, we quickly discuss some situations where the difficulties with iteration
that were described earlier vanish, since it is helpful to better understand where the
obstacles in “iteration theory” are.

Algebraic & Geometric Topology, Volume 11 (2011)



2778 Daniel G Davis

In general, for any profinite group G and X 2 SptG ,

.X hfeg/hK=feg
D
�
.XfG/

feg
�
hK
'X hK

and, if H is open in K , then XfK is fibrant in SptH and .XfK /
H is fibrant in SptK=H ,

so that

.X hH /hK=H
D ..XfK /

H /hK=H
' ..XfK /

H /K=H D .XfK /
K
DX hK

(see [1, Proposition 3.3.1] and [7, Theorem 3.4]). Thus, in general, the difficulties in
forming the iterated homotopy fixed point spectrum occur only when H is a nontrivial
non-open (closed normal) subgroup of K .

Now let N be any nontrivial closed normal subgroup of G . There are cases where,
thanks to a particular property that G has, the spectrum .X hN /hG=N is defined, with

(1) .X hN /hG=N
'X hG :

To explain this, we assume that G is infinite:

� if G has finite cohomological dimension (that is, there exists a positive integer m

such that H s
c .GIM /D0, whenever s>m and M is a discrete G –module), then,

by [1, Corollary 3.5.6], X hN is a discrete G=N –spectrum, so that .X hN /hG=N

is defined and, as hoped, the equivalence in (1) holds;

� the profinite group G is just infinite if N always has finite index in G (for more
details about such groups, see Wilson [31]; this interesting class of profinite
groups includes, for example, the finitely generated pro-p Nottingham group
over the finite field Fpn , where p is any prime and n� 1, and the just infinite
profinite branch groups (see Grigorchuk [18])), and thus, if G is just infinite,
then N is always open in G , so that, as explained above, (1) is valid; and

� if G has the property that every nontrivial closed subgroup is open, then, by Mor-
ris, Oates-Williams and Thompson [26, Corollary 1] (see also Dikranjan [10]),
G is topologically isomorphic to Zp , for some prime p , and, as before, (1)
holds.

In addition to the above cases, there is a family of examples in chromatic stable
homotopy theory where iteration works in the desired way. Let k be any finite field
containing Fpn , where p is any prime and n is any positive integer. Given any height
n formal group law � over k , let E.k; �/ be the Morava E–theory spectrum that
satisfies

��.E.k; �//DW .k/Ju1; :::;un�1KŒu˙1�;
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where W .k/ denotes the Witt vectors, the degree of u is �2 and the complete power
series ring W .k/Ju1; :::;un�1K � u0 is in degree zero (see Goerss and Hopkins [16,
Section 7]). Also, let G D Sn Ì Gal.k=Fp/, the extended Morava stabilizer group: G

is a compact p–adic analytic group, and hence, has finite vcd, and, by [16], G acts
on E.k; �/. Then, by using Devinatz and Hopkins [9], Devinatz [8], Rognes [27], the
work [1] by Behrens and the author, and the notion of total hyperfibrancy, [7] shows
that E.k; �/ is a continuous G –spectrum, with�

E.k; �/hH
�
hK=H

'E.k; �/hK

for all H and K (defined as usual). If F is any finite spectrum that is of type n,
then, as in [5, Corollary 6.5], E.k; �/^F is a discrete G –spectrum and, again by the
technique of [7], �

.E.k; �/^F /hH
�
hK=H

' .E.k; �/^F /hK :

We note that when E.k; �/DEn , the Lubin–Tate spectrum, the text [7, page 2883]
reviews some examples of how

�
E.k; �/hH

�
hK=H plays a useful role in chromatic

homotopy theory.

1.2 An introduction to the homotopical category of delta-discrete G –spec-
tra and their homotopy fixed points

Now we explain the approach of this paper to iterated homotopy fixed points in more
detail. Let G be an arbitrary profinite group and let X 2SptG . Also, let c.SptG/ be the
category of cosimplicial discrete G –spectra (that is, the category of cosimplicial objects
in SptG ). If Z is a spectrum (which, in this paper, always means Bousfield–Friedlander
spectrum), we let Zk;l denote the l –simplices of the k th simplicial set Zk of Z .
Then Mapc.G;X / is the discrete G –spectrum that is defined by

Mapc.G;X /k;l DMapc.G;Xk;l/;

the set of continuous functions G ! Xk;l . The G–action on Mapc.G;X / is given
by .g �f /.g0/D f .g0g/, for g;g0 2G and f 2Mapc.G;Xk;l/: As explained by the
author in [5, Definition 7.1], the functor

Mapc.G;�/WSptG! SptG ; X 7!Mapc.G;X /;

forms a triple and there is a cosimplicial discrete G –spectrum Mapc.G
�;X /; where,

for each Œn� 2�, the n–cosimplices satisfy the isomorphism

Mapc.G
�;X /n ŠMapc.G

nC1;X /:
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Following [5, Remark 7.5], with X a discrete G –spectrum as above, let�X D colimN CoG.X
N /f ;

a filtered colimit over the open normal subgroups of G . Here,

.�/f W Spt! Spt

denotes a fibrant replacement functor for the model category Spt. Notice that �X is a
discrete G –spectrum and a fibrant object in Spt. Now let

Xı D holim� Mapc.G
�; �X /:

(In the subscript of “Xı ,” instead of “�,” we use its less obtrusive and lowercase
counterpart.) In the definition of Xı and everywhere else in this paper, the homotopy
limit (as written in the definition) is formed in Spt (and not in SptG ) and is defined in
the explicit way of Hirschhorn [20, Definition 18.1.8]. As explained in Section 2.1,
there is a natural G –equivariant map

‰W X
'
�!Xı

that is a weak equivalence in Spt. Since �X is a fibrant spectrum, Mapc.G
�; �X /n is a

fibrant spectrum (by applying [5, Corollary 3.8, Lemma 3.10]), for each Œn� 2�.

The map ‰ and the properties (discussed above) possessed by its target Xı motivate
the following definition.

Definition 1.2 Let X � be a cosimplicial discrete G –spectrum such that X n is fibrant
in Spt, for each Œn� 2�. Then the G –spectrum

holim�X �

is a delta-discrete G –spectrum. Delta-discrete G –spectra are the objects of the categorycSpt�
G

of delta-discrete G –spectra (the “hat” in the notation cSpt�
G

is for the homotopy
limit – a “completion” – that helps to build the objects in the category). If holim�X �

and holim� Y � are arbitrary delta-discrete G –spectra and f �W X �! Y � is a map in
c.SptG/, then the induced map

f D holim�f �W holim�X �! holim�Y �

defines the notion of morphism in the category cSpt�
G

.

If f and h are morphisms in cSpt�
G

, with associated maps f �W X �!Y � and h�W Y �!

Z� , respectively, in c.SptG/ (thus, for example, hD holim� h� ), then

h ıf WD holim�.h� ıf �/D
�
holim�h�

�
ı
�
holim�f �

�
:
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We note that the objects and morphisms of cSpt�
G

are “formal constructions,” in the
sense that the objects holim�X � and holim� Y � are equal in cSpt�

G
if and only if

X �DY � in c.SptG/ and two morphisms holim� f � and holim� h� are equal in cSpt�
G

if and only if f � D h� in c.SptG/. Thus, cSpt�
G

is defined so that given a morphism k

in cSpt�
G

, there is only one morphism k� in c.SptG/ “behind” it, with k D holim� k� .

Remark 1.3 There are other possible ways to define “a category of delta-discrete
G –spectra,” but we use the above definition because (among other reasons) we think
of cSpt�

G
as a category of G –spectra (see Definition 1.4 below) that captures the “direct

image” of c.SptG/ in a homotopically meaningful way.

The weak equivalence ‰ gives a natural way of associating a delta-discrete G –spectrum
to every discrete G–spectrum. Also, we will see that Xı plays a useful role in our
work on iterated homotopy fixed points. In Corollary 2.4 and Remark 2.5, by using a
variation of ‰ , we show that every discrete G –spectrum X can be built out of “smaller”
delta-discrete G –spectra in a particularly nice and canonical way: for each N Co G ,
there is a “building block of X ” that is an object in cSpt�

G
, equivalent to the fixed points

X N , and is fibrant in SptG=N .

Definition 1.4 Let G–Spt denote the category of G –spectra and G –equivariant maps
of spectra: more precisely, G–Spt is the diagram category of (covariant) functors
f�Gg! Spt, where f�Gg is the groupoid associated to G (as an abstract group). Since
a delta-discrete G –spectrum can be regarded as a G –spectrum, there is the forgetful
functor

UG W
cSpt�G !G–Spt; .X �; holim�X �/ 7! holim�X �;

where, above, we are thinking of the objects in cSpt�
G

as being certain pairs in the
category c.SptG/�.G–Spt/.

Now we give several more useful definitions, including a definition of weak equivalence
for the category of delta-discrete G–spectra, and we make some observations about
this category that give it more homotopy-theoretic content.

Definition 1.5 Let c.Spt/ be the category of cosimplicial spectra. If Z 2 Spt, let
cc�.Z/ denote the constant cosimplicial object (in c.Spt/) on Z . Also, for X 2 SptG ,
let

ccG.X /D holim�cc�.�X /:
Notice that ccG.X / 2 cSpt�

G
.
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Definition 1.6 Let f D holim� f �W holim�X � ! holim� Y � be a morphism of
delta-discrete G –spectra. If the morphism f �W X �! Y � in c.SptG/ is an objectwise
weak equivalence (that is, f nW X n ! Y n is a weak equivalence in SptG , for each
Œn� 2�), then f is a weak equivalence of delta-discrete G–spectra. If f is a weak
equivalence in cSpt�

G
, then it is also a weak equivalence in Spt (since all the X n and

Y n are fibrant spectra).

The category c.SptG/ has an injective model structure where the weak equivalences
are the objectwise weak equivalences. (This model structure and the one described in
the next paragraph exist, for example, by the considerations of Section 3 and Lurie [24,
Proposition A.2.8.2].) Since a model category is automatically a homotopical category
(in the sense of Dwyer, Hirschhorn, Kan and Smith [12]), c.SptG/ is a homotopical
category, and this conclusion, coupled with the fact that f D holim� f � is a weak
equivalence in cSpt�

G
if and only if the map f � is a weak equivalence in c.SptG/,

implies that cSpt�
G

is a homotopical category.

We equip the diagram category G–Spt with the projective model structure so that a
morphism in G–Spt is a weak equivalence (fibration) exactly when its underlying map
in Spt is a weak equivalence (fibration). It follows that the functor UG W

cSpt�
G
!G–Spt

is a homotopical functor; that is, UG is a functor between homotopical categories
that preserves weak equivalences. Also, given any map f in cSpt�

G
, UG.f / is a map

between fibrant objects in G–Spt.

Now we define the key notion of homotopy fixed points for the category of delta-discrete
G –spectra.

Definition 1.7 Given a delta-discrete G–spectrum holim�X � , the homotopy fixed
point spectrum .holim�X �/hıG is given by

.holim�X �/hıG
D holimŒn�2�.X

n/hG ;

where .X n/hG is the homotopy fixed point spectrum of the discrete G–spectrum
X n . We use the phrase “delta-discrete homotopy fixed points” to refer to the general
operation of taking the homotopy fixed points of a delta-discrete G –spectrum. Since a
morphism X �! Y � in c.SptG/ induces a morphism f.X n/fG ! .Y n/fGgŒn�2� in
c.SptG/ and there is the functor holim�.�/W c.Spt/! Spt, delta-discrete homotopy
fixed points give the functor

.�/hıG
W cSpt�G ! Spt; .X �; holim�X �/ 7! .holim�X �/hıG :

Remark 1.8 We make a few comments to explain Remark 1.3 in more detail, by
considering two (in the end, undesirable) ways to revise Definitions 1.2 and 1.6. Let
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f be a G –equivariant map of spectra, such that the source and target of f are delta-
discrete G –spectra, and suppose that we define a morphism in cSpt�

G
to be such a map

f with the property that f D holim� f � for some f � in c.SptG/ (thus, the map in
c.SptG/ behind f need not be unique). If we define f to be a weak equivalence incSpt�

G
if and only if f D holim� h� for some weak equivalence h� in c.SptG/, then it

is not hard to see that cSpt�
G

is not a homotopical category. Or, if we define f to be a
weak equivalence in cSpt�

G
exactly when f is a weak equivalence in Spt, then cSpt�

G
is

a homotopical category (since Spt is a homotopical category). But in both cases, the
“functor” .�/hıG above is not even a well-defined function on the morphisms of cSpt�

G
.

1.3 A summary of the properties of the homotopy fixed points of delta-
discrete G –spectra

In this paper, we show that the homotopy fixed points functor .�/hıG W cSpt�
G
! Spt

has the following properties:

(a) when G is a finite group, the homotopy fixed points of a delta-discrete G–
spectrum agree with the usual notion of homotopy fixed points for a finite group;

(b) for any profinite group G , the homotopy fixed points of delta-discrete G –spectra
can be viewed as the total right derived functor of

lim�.�/G W c.SptG/! Spt;

where, as before, c.SptG/ has the injective model category structure (defined in
Section 3);

(c) the induced functor Ho
�
.�/hıG

�
W Ho

�cSpt�
G

�
!Ho.Spt/ on homotopy categories

is the total right derived functor of the fixed points functor

.�/G W cSpt�G ! Spt; holim�X � 7! .holim�X �/G I

(d) given X 2 SptG and the delta-discrete G –spectrum Xı associated to X , then,
if G has finite vcd, there is a weak equivalence

X hL '
�! .Xı/

hıL

in Spt, for every closed subgroup L of G ;

(e) more generally, if G is any profinite group and X 2 SptG , then there is a G–

equivariant map X
'
�! ccG.X / that is a weak equivalence of spectra and a

weak equivalence

X hG '
�! .ccG.X //

hıG
I
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(f) if f is a weak equivalence of delta-discrete G–spectra, then the induced map
.f /hıG D holimŒn�2�.f n/hG is a weak equivalence in Spt (since each .f n/hG

is a weak equivalence between fibrant spectra), so that .�/hıG W cSpt�
G
! Spt is

a homotopical functor; and

(g) if G has finite vcd, with closed subgroups H and K such that H C K , and if Y

is a delta-discrete G –spectrum, then Y hıH is a delta-discrete K=H –spectrum
and

.Y hıH /hıK=H
' Y hıK ;

so that G –homotopy fixed points of delta-discrete G –spectra have the transitivity
property.

In the above list of properties, (a) is Theorem 5.2, (b) is justified in Theorem 3.4,
(c) is proven in Section 4, (d) is Lemma 2.9, (e) is verified right after the proof of
Theorem 5.2, and (g) is obtained in Theorem 6.4 (and the three paragraphs that precede
it).

Notice that properties (b) and (c) above show that the homotopy fixed points of delta-
discrete G –spectra are the total right derived functor of fixed points in two different and
necessary senses. Also, (e) shows that, for any G and any X 2 SptG , the delta-discrete
G –spectrum ccG.X / is equivalent to X and their homotopy fixed points are the same.
Thus, the category of delta-discrete G –spectra and the homotopy fixed points .�/hıG

“include” and generalize the category of discrete G–spectra and the homotopy fixed
points .�/hG . Therefore, properties (a) – (g) show that the homotopy fixed points of
a delta-discrete G–spectrum are a good notion that does indeed deserve to be called
“homotopy fixed points.”

Now suppose that G has finite vcd and, as usual, let X 2 SptG . As above, let H and
K be closed subgroups of G , with H normal in K . In Lemma 2.10, we show that, by
making a canonical identification, X hH is a delta-discrete K=H –spectrum. Thus, it
is natural to form the iterated homotopy fixed point spectrum .X hH /hıK=H and, by
Theorem 2.11, there is a weak equivalence

X hK '
�! .X hH /hıK=H :

In this way, we show that when G has finite vcd, by using delta-discrete K=H –spectra,
there is a sense in which the iterated homotopy fixed point spectrum can always be
formed and the transitivity property holds.

More generally, in Theorem 7.3, we show that for any G , though it is not known if
X hH always has a K=H –action (as mentioned earlier), there is an equivalence

(9)
�
.Xı/

hıH
�
hıK=H

' .Xı/
hıK :
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Thus, for any G , by using .�/ı and .�/hıH , the delta-discrete homotopy fixed points
for discrete G –spectra are – in general – transitive. Also, there is a map

�.X /H W X
hH
! .Xı/

hıH

that relates the “discrete homotopy fixed points” X hH to .Xı/hıH , and this map is
a weak equivalence whenever the map colimU CoH ‰U is a weak equivalence (see
Theorem 7.2 and the discussion that precedes it).

For any G and X , since the G –equivariant map ‰W X !Xı is a weak equivalence,
X can always be regarded as a delta-discrete G –spectrum, and thus, X can be thought
of as having two types of homotopy fixed points, X hH and .Xı/hıH , and, though its
discrete homotopy fixed points X hH are not known to always be well-behaved with
respect to iteration, there is a reasonable alternative, the delta-discrete homotopy fixed
points .Xı/hıH , which, thanks to (9), are always well-behaved.

As the reader might have noticed, given the work of [7] (as discussed earlier) and that
of this paper, when G has finite vcd and X is a hyperfibrant discrete G–spectrum,
there are two different ways to define an iterated homotopy fixed point spectrum: as
.X hH /hK=H and as .X hH /hıK=H . Though we are not able to show that these two
objects are always equivalent, in Theorem 8.2, we show that if the canonical map
.XfK /

H ! ..XfK /fH /
H is a weak equivalence, then there is a weak equivalence

.X hH /hK=H '
�! .X hH /hıK=H :

In the last section of this paper, Section 9, we show in two different, but interrelated
ways that, for arbitrary G , the delta-discrete homotopy fixed point spectrum is always
equivalent to a discrete homotopy fixed point spectrum. In each case, the equivalence
is induced by a map between a discrete G –spectrum and a delta-discrete G –spectrum
that need not be a weak equivalence. In Remark 9.7, we note several consequences of
this observation for the categories c.SptG/ and c.Spt/, when each is equipped with
the injective model structure.

We close this section by mentioning that, given a discrete G –spectrum X , the cosim-
plicial discrete G –spectrum Mapc.G

�;X / (defined in Section 1.2) is an example of a
Godement resolution: this perspective on the diagram Mapc.G

�;X / and the relevant
sheaf theory is explained in more detail in Thomason [29, 1.31–1.33], Mitchell [25,
Section 3.2] and [5, pages 332–333, 340]. Thus, the useful G–spectrum Xı , the
“primordial delta-discrete G –spectrum,” is the homotopy limit of a Godement resolution,
so that this paper gives additional examples of the well-known utility of Godement
resolutions.
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2 The new framework for iterated homotopy fixed points
of discrete G –spectra

Let G be an arbitrary profinite group and X a discrete G–spectrum. In Section 2.1
below, we review the author’s construction in [6] of a natural G–equivariant map
‰W X ! Xı that is a weak equivalence in Spt, giving a natural way of associating
a delta-discrete G–spectrum to each object of SptG . Also, in Section 2.2, we show
that when G has finite vcd, then by using the framework of delta-discrete K=H –
spectra, there is a sense in which homotopy fixed points of discrete G –spectra satisfy
transitivity.

2.1 The canonical association of a certain delta-discrete G –spectrum
to a discrete G –spectrum

Let G be any profinite group and let X 2 SptG . There is a G –equivariant monomor-
phism

i W X !Mapc.G;X /

that is defined, on the level of sets, by i.x/.g/D g � x , where x 2 Xk;l and g 2 G .
Notice that i induces a G –equivariant map

ziX W holim�cc�.X /! holim� Mapc.G
�;X /:

There is a natural G –equivariant map

 W X Š colimN CoGX N
! colimN CoG.X

N /f D �X
to the discrete G –spectrum �X . We would like to know that  is a weak equivalence in
SptG ; however, the validity of this is not obvious, since fX N gN CoG is not known to
be a diagram of fibrant spectra, and hence, we cannot use the fact that filtered colimits
preserve weak equivalences between fibrant spectra. Nevertheless, the following lemma
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shows that it is still the case that  is a weak equivalence in SptG (the author stated
this without proof in [5, Remark 7.5] and [6, Definition 3.4]).

Lemma 2.1 If X is a discrete G–spectrum, then the map  W X ! �X is a weak
equivalence in SptG .

Proof Since X is a discrete G –spectrum,

HomG.�;X /W .G–Setsdf /
op
! Spt; C 7! HomG.C;X /

is a presheaf of spectra on the site G–Setsdf of finite discrete G –sets (for more detail,
we refer the reader to [5, Section 3] and Jardine [22, Sections 2.3, 6.2]). Here, the
l –simplices of the k th simplicial set HomG.C;X /k are given by HomG.C;Xk;l/.
Also, the composition

.�/f ıHomG.�;X /W .G–Setsdf /
op
! Spt; C 7! .HomG.C;X //f

is a presheaf of spectra and there is a map of presheaves

y W HomG.�;X /! .�/f ıHomG.�;X /

that comes from the natural transformation idSpt! .�/f .

Since the map y .C /W HomG.C;X /! .HomG.C;X //f is a weak equivalence for
every C 2G–Setsdf , the map �t

�
y 
�

of presheaves is an isomorphism for every integer
t . Therefore, for every integer t , e� t

�
y 
�
, the map of sheaves associated to �t

�
y 
�
, is

an isomorphism, so that the map y is a local stable equivalence, and hence, a stalkwise
weak equivalence. Thus, the map colimN CoG

y .G=N / is a weak equivalence of
spectra, and therefore, the map

colimN CoGX N
Š colimN CoGHomG.G=N;X /

'
�!

colimN CoG.HomG.G=N;X //f Š colimN CoG.X
N /f

is a weak equivalence, giving the desired conclusion.

The following definition is from [6, page 145].

Definition 2.2 Given any profinite group G and any X 2 SptG , the composition

X
 
�! �X Š

�! lim�cc�.�X / �
�! holim�cc�.�X / zi zX�! holim� Mapc.G

�; �X /DXı

of natural maps, where the map � is the usual one (for example, see Hirschhorn [20,
Example 18.3.8, (2)]), defines the natural G –equivariant map

‰W X !Xı
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of spectra.

The next result was obtained in [6, page 145]; however, we give the proof below for
completeness and because it is a key result.

Lemma 2.3 If G is any profinite group and X is a discrete G–spectrum, then the
natural map ‰W X

'
�!Xı is a weak equivalence of spectra.

Proof Following [6, page 145], there is a homotopy spectral sequence

E
s;t
2
D �s

�
�t .Mapc.G

�; �X //�) �t�s.Xı/:

Let �t .Mapc.G
�; �X // be the canonical cochain complex associated to the cosimplicial

abelian group �t .Mapc.G
�; �X //. As in [5, proof of Theorem 7.4], there is an exact

sequence
0! �t .�X /!Mapc.G

�; �t .�X //Š �t .Mapc.G
�; �X //;

so that E
0;t
2
Š �t .�X / Š �t .X /; where the last isomorphism is by Lemma 2.1, and

E
s;t
2
D 0, when s > 0: Thus, the above spectral sequence collapses, giving the desired

result.

If N Co G , then the canonical epimorphism G! G=N makes every delta-discrete
G=N –spectrum a delta-discrete G–spectrum. This observation, combined with the
next result, shows that every discrete G–spectrum X is a filtered colimit in Spt of
“smaller” delta-discrete G –spectra (more precisely, of a diagram of “smaller” objects in
the category cSpt�

G
) in a canonical way. (In the proof of Corollary 2.4, we show that each

term of the aforementioned colimit is equivalent, for some N Co G , to .X N /f , and
hence, to X N , justifying our use of the adjective “smaller” in the preceding sentence.)

Corollary 2.4 If G is any profinite group and X 2 SptG , then there is a map

�‰W X '
�! colimN CoGholim� Mapc

�
.G=N /�; .X N /f

�
that is a weak equivalence in SptG .

Proof Given any N Co G , then, by slightly modifying Definition 2.2 and applying
the argument in the proof of Lemma 2.3, there is a natural G=N –equivariant map

‰N W .X
N /f

Š
��! lim�cc�

�
.X N /f

�
�
��! holim�cc�

�
.X N /f

� zi.XN /f

�����! holim� Mapc

�
.G=N /�; .X N /f

�
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that is a weak equivalence in Spt. Notice that the target of ‰N is a delta-discrete
G=N –spectrum.

Now suppose that N <N 0 are open normal subgroups of G . Also, let YN and YN 0 be
a G=N –spectrum and a G=N 0–spectrum, respectively, and suppose that YN 0 ! YN

is a G=N –equivariant map of spectra, where YN 0 is a G=N –spectrum, thanks to the
canonical map G=N !G=N 0 . Then this input data yields the composition

Mapc.G=N
0;YN 0/!Mapc.G=N;YN 0/!Mapc.G=N;YN /

(the middle term can be formed because YN 0 is a G=N –spectrum): this composition
is again a G=N –equivariant map from a G=N 0–spectrum to a G=N –spectrum. Ap-
plying this conclusion iteratively to the G=N –equivariant map .X N 0/f ! .X N /f

(which is from the filtered diagram f.X N /f gN CoG that is used to form �X ) gives a
filtered diagram fMapc

�
.G=N /�; .X N /f

�
gN CoG of cosimplicial discrete G –spectra,

and hence, we can form the G –equivariant map

colimN CoG‰N W
�XDcolimNCoG.X

N/f ! colimNCoGholim�Mapc

�
.G=N /�;.X N/f

�
with target equal to a discrete G –spectrum.

Since each ‰N is a weak equivalence between fibrant spectra, the filtered colimit
colimN CoG ‰N is also a weak equivalence of spectra. Then the desired weak equiva-
lence �‰ is given by the composite

X
'
��!
 

�X '
����������!
colimN CoG ‰N

colimN CoGholim� Mapc

�
.G=N /�; .X N /f

�
of weak equivalences.

Remark 2.5 Let G and X be as in Corollary 2.4: we point out a nice property of
this result’s “colimit presentation” of X . Let N be any open normal subgroup of G .
There are isomorphisms

holim�Mapc

�
.G=N /�; .X N /f

�
Š colimLCoG=N

�
holim�Mapc

�
.G=N /�; .X N /f

��
L

Š holimG=N
�

Mapc

�
.G=N /�; .X N /f

�
of G=N –spectra, where the last term above is the homotopy limit in the simplicial
model category SptG=N , as defined in Hirschhorn [20, Definition 18.1.8]; the first
isomorphism is due to the fact that any G=N –spectrum automatically belongs to
SptG=N ; and the second isomorphism applies [6, Theorem 2.3]. By repeated application
of [5, Corollary 3.8, Lemma 3.10], Mapc

�
.G=N /�; .X N /f

�
is a fibrant discrete G=N –

spectrum in each codegree, so that by [20, Theorem 18.5.2, (2)], the last term above,
holimG=N

�
Mapc

�
.G=N /�; .X N /f

�
, is a fibrant discrete G=N –spectrum. Therefore,
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in the statement of Corollary 2.4, each spectrum holim� Mapc

�
.G=N /�; .X N /f

�
is a

fibrant discrete G=N –spectrum (which is stronger than being a fibrant object in the
model category G=N –Spt).

2.2 Iteration for SptG by using bSpt�
Q

, as Q D K=H varies

Now we consider the iterated homotopy fixed points of discrete G–spectra by using
the setting of delta-discrete K=H –spectra. Here, as in the Introduction, H and K are
closed subgroups of G , with H C K . We begin with a definition and some preliminary
observations.

Definition 2.6 If Y � is a cosimplicial discrete G–spectrum, such that Y n is fibrant
in SptG , for each Œn� 2�, then we call Y � a cosimplicial fibrant discrete G –spectrum.

The next result is from [6, proof of Theorem 3.5].

Lemma 2.7 If G is any profinite group and X 2 SptG , then the cosimplicial discrete
G–spectrum Mapc.G

�; �X / is a cosimplicial fibrant discrete L–spectrum, for every
closed subgroup L of G .

For the rest of this section, we assume that G has finite vcd and, as usual, X is a
discrete G–spectrum. As in Lemma 2.7, let L be any closed subgroup of G . Then,
by [5, Remark 7.13] and [6, Definition 5.1, Theorem 5.2] (the latter citation sets the
former on a stronger footing), there is an identification

(8) X hL
D holim� Mapc.G

�; �X /L:
(Notice that, under this identification, X hL Š .Xı/

L .)

Lemma 2.9 For each L, there is a weak equivalence X hL '
�! .Xı/

hıL .

Proof By Lemma 2.7, the fibrant replacement map

Mapc.G
�; �X /n '

�! .Mapc.G
�; �X /n/fL

is a weak equivalence between fibrant objects in SptL , for each Œn� 2�, so that

.Mapc.G
�; �X /n/L '

�! ..Mapc.G
�; �X /n/fL/

L
D .Mapc.G

�; �X /n/hL

is a weak equivalence between fibrant objects in Spt. Thus, there is a weak equivalence

X hL
D holim� Mapc.G

�; �X /L '
�! .holim� Mapc.G

�; �X //hıL
D .Xı/

hıL:
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Now we are ready for the task at hand. It will be useful to recall that in [7, Lemma
4.6], the author showed that the functor

.�/H W SptK ! SptK=H ; Y 7! Y H

preserves fibrant objects. Also, since Mapc.G
�; �X /H is a cosimplicial discrete K=H –

spectrum that is fibrant in Spt in each codegree, we can immediately conclude the
following.

Lemma 2.10 The spectrum X hH Dholim� Mapc.G
�; �X /H is a delta-discrete K=H –

spectrum.

The above result implies that

.X hH /hıK=H
D holimŒn�2�

�
.Mapc.G

�; �X /n/H �hK=H :

Theorem 2.11 There is a weak equivalence X hK '
�! .X hH /hıK=H :

Proof Since Mapc.G
�; �X / is a cosimplicial fibrant discrete K–spectrum, the diagram

Mapc.G
�; �X /H is a cosimplicial fibrant discrete K=H –spectrum. Hence, each fibrant

replacement map

.Mapc.G
�; �X /n/H '

�! ..Mapc.G
�; �X /n/H /fK=H

is a weak equivalence between fibrant objects in SptK=H , so that the induced map

(12) holimŒn�2�
�
.Mapc.G

�; �X /n/H �K=H '
�!

holimŒn�2�
�
..Mapc.G

�; �X /n/H /fK=H

�
K=H

is a weak equivalence. The weak equivalence in (12) is exactly the weak equivalence

X hK
D holimŒn�2�.Mapc.G

�; �X /n/K '
�!

holimŒn�2�
�
.Mapc.G

�; �X /n/H �hK=H
D .X hH /hıK=H :

This completes the proof.

Lemma 2.10 and Theorem 2.11 show that when G has finite vcd, the iterated homotopy
fixed point spectrum .X hH /hıK=H is always defined and it is just X hK .

Remark 2.13 Let Y be the discrete .Z=p�Zq/–spectrum discussed in Section 1.1
(and in more detail by Wieland and the author in [7, Appendix A]). Though the Zq –
spectrum Y hZ=p is not a discrete Zq –spectrum and there is no known construction
of
�
Y hZ=p

�
hZq , Y hZ=p is a delta-discrete Zq –spectrum, by Lemma 2.10, and hence,�

Y hZ=p
�
hıZq can be formed, and it is just Y h.Z=p�Zq/ , by Theorem 2.11.
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3 The homotopy fixed points of delta-discrete G –spectra as
a total right derived functor

Let G be any profinite group. In this section, we show that (the output of) the functor
.�/hıG W cSpt�

G
! Spt can be viewed as the total right derived functor of

lim�.�/G W c.SptG/! Spt; X � 7! limŒn�2�.X
n/G ;

where c.SptG/ has the injective model category structure (defined below). We will
obtain this result as a special case of a more general result. Thus, we let C denote any
small category and we use “Z

.” and “X
.” to denote C–shaped diagrams in Spt and

SptG , respectively, since we are especially interested in the case when C D�.

Recall that Spt is a combinatorial model category (for the definition of this notion,
we refer the reader to the helpful expositions in Dugger [11, Section 2] and Lurie [24,
Section A.2.6 (and Definition A.1.1.2)]); this well-known fact is stated explicitly
in Rosický [28, page 459]. Therefore, [24, Proposition A.2.8.2] implies that SptC ,
the category of functors C ! Spt, has an injective model category structure: more
precisely, SptC has a model structure in which a map f .

W Z
.
!W

. in SptC is a weak
equivalence (cofibration) if and only if, for each C 2 C; the map f C W ZC !W C is a
weak equivalence (cofibration) in Spt.

Similar comments apply to SptG . For example, in the proof of [1, Theorem 2.2.1],
Behrens and the author apply Hovey [21, Definition 3.3] to obtain the model structure
on SptG , and thus, SptG is a cellular model category. Hence, SptG is cofibrantly
generated. Also, the category SptG is equivalent to the category of sheaves of spectra
on the site G–Setsdf , as explained in [5, Section 3], and thus, SptG is a locally
presentable category, since standard arguments show that such a category of sheaves
is locally presentable. (For example, see the general comment about such categories
in Toën and Vezzosi [30, page 2]. The basic ideas are contained in the proof of the
fact that a Grothendieck topos is locally presentable (see, for example, Borceux [3,
Proposition 3.4.16]), and hence, the category of sheaves of sets on the aforementioned
site is locally presentable.)

From the above considerations, we conclude that SptG is a combinatorial model
category. Therefore, as before, [24, Proposition A.2.8.2] implies that the category
.SptG/

C of C–shaped diagrams in SptG has an injective model structure in which a
map h

. is a weak equivalence (cofibration) if and only if each map hC is a weak
equivalence (cofibration) in SptG .
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It will be useful to note that, by [24, Remark A.2.8.5], if f . is a fibration in SptC , then
f C is a fibration in Spt, for every C 2 C . Similarly, if h

. is a fibration in .SptG/
C ,

then each map hC is a fibration in SptG .

The functor
limC.�/

G
W .SptG/

C
! Spt; X

.
7! limC2C.X

C /G

is right adjoint to the functor tW Spt! .SptG/
C that sends an arbitrary spectrum Z

to the constant C–shaped diagram t.Z/ on the discrete G –spectrum t.Z/, where (as
in [5, Corollary 3.9])

t W Spt! SptG ; Z 7! t.Z/DZ

is the functor that equips Z with the trivial G–action. If f is a weak equivalence
(cofibration) in Spt, then t.f / is a weak equivalence (cofibration) in SptG , and hence,
t.f / is a weak equivalence (cofibration) in .SptG/

C . This observation immediately
gives the following result.

Lemma 3.1 The functors .t; limC.�/
G/ are a Quillen pair for .Spt; .SptG/

C/.

We let
.�/Fib W .SptG/

C
! .SptG/

C ; X
.
7! .X

.
/Fib

denote a fibrant replacement functor, such that there is a morphism X
.
! .X

.
/Fib in

.SptG/
C that is a natural trivial cofibration, with .X .

/Fib fibrant, in .SptG/
C . Then

Lemma 3.1 implies the existence of the total right derived functor

R
�
limC.�/

G
�
W Ho

�
.SptG/

C�
! Ho.Spt/; X

.
7! limC..X

.
/Fib/

G :

Now we prove the key result that will allow us to relate Definition 1.7 to the total right
derived functor R

�
lim�.�/G

�
.

Theorem 3.2 Given X
. in .SptG/

C , the canonical map�
R
�
limC.�/

G
���

X
.�
D limC..X

.
/Fib/

G '
�! holimC..X

.
/Fib/

G

is a weak equivalence of spectra.

Proof Let tC W SptC! .SptG/
C be the functor that sends Z

. to tC.Z
.
/DZ

. , where
each .tC.Z.

//.C /DZC is regarded as having the trivial G –action. Then tC preserves
weak equivalences and cofibrations, so that the right adjoint of tC , the fixed points func-
tor .�/G W .SptG/

C! SptC , preserves fibrant objects. Thus, the diagram ..X
.
/Fib/

G is
fibrant in SptC .
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Let Z
. be a fibrant object in SptC . Then, to complete the proof, it suffices to know

that the canonical map
�W limCZ

.
! holimCZ

.

is a weak equivalence: this conclusion follows from Theorem 3.5 below.

Given X
.
2 .SptG/

C , we let ..X .
/Fib/

C denote the value of .X .
/Fib W C ! SptG on

the object C 2 C .

Lemma 3.3 If X
. is an object in .SptG/

C , then there is a weak equivalence

holimC2C.X
C /hG '

�! holimC2C

�
..X

.
/Fib/

C
�
G :

Proof Let .X .
/fG be the object in .SptG/

C that is equal to the composition of functors

.�/fG ı .X
.
/W C! SptG ; C 7! .X C /fG :

Since X
.
! .X

.
/fG is a trivial cofibration in .SptG/

C , the fibrant object .X .
/Fib

induces a weak equivalence

`
.
W .X

.
/fG

'
�! .X

.
/Fib

in .SptG/
C . Therefore, since .X C /fG and ..X .

/Fib/
C are fibrant discrete G –spectra,

for each C 2 C , there is a weak equivalence

holimC2C .̀
C/G W holimC2C.X

C/hG
DholimC2C..X

C/fG/
G '
�!holimC2C

�
..X

.
/Fib/

C
�
G

as required.

By letting C D �, Theorem 3.2 and Lemma 3.3 immediately yield the next result,
which allows us to conclude that the homotopy fixed points functor for delta-discrete
G –spectra, .�/hıG , can indeed be regarded as the total right derived functor of fixed
points, in the appropriate sense.

Theorem 3.4 If holim�X � is a delta-discrete G –spectrum, then there is a zigzag

.holim�X �/hıG '
�! holim�..X �/Fib/

G '
 �

�
R
�
lim�.�/G

���
X �
�

of weak equivalences in Spt.

Now we give Theorem 3.5, which was used in the proof of Theorem 3.2 and will
also be helpful in the proof of Theorem 9.9. Though we are not able to point to a
place where Theorem 3.5 appears in the literature, it is well-known and the proof
below, which is not hard, uses a well-established special case and follows a script
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suggested by the “projective arguments” of Jardine [23, page 79: “hom. ;Y / satisfies
F3”] and Casacuberta and Chorny [4, Lemma 1.2]. Since the result is quite useful
(see Remark 3.6), we felt it was worthwhile to run through a proof. The argument
below that Map.N;M .

/ is fibrant in SC follows an argument in Lurie [24, proof of
Proposition A.3.3.12] (which is written in an enriched setting).

Theorem 3.5 Let C be a small category and let M be a simplicial model category
with all small limits and colimits. Suppose that the injective model structure exists
for the diagram category MC . If M

. is fibrant in MC (when it is equipped with the
injective model structure), then the canonical map

�W limCM
. '
�! holimCM

.

is a weak equivalence in M, where holimC M
. is defined as in Hirschhorn [20, Defini-

tion 18.1.8].

Proof Since the functor M ! MC that sends an object M to the constant C–
shaped diagram on M preserves weak equivalences and cofibrations, its right adjoint
limC.�/WMC!M is a right Quillen functor. Thus, limC M

. is fibrant in M.

Given C 2 C , the evaluation functor evC WMC!M that sends a diagram N
. to N C

has a left adjoint F C such that for each map f in M, evD.F
C .f // is a coproduct of

copies of f (indexed by the set C.C;D/), for each D 2 C , and hence, F C preserves
cofibrations and trivial cofibrations. Thus, evC is a right Quillen functor, implying that
M C is fibrant in M, for each C 2 C . Therefore, we can conclude that holimC M

. is
fibrant in M.

Because � is a map between fibrant objects, to show that it is a weak equivalence, it
suffices to show that in S , the model category of simplicial sets, the induced map

�N
W limC Map.N;M .

/ŠMap.N; limCM
.
/ �!

Map.N; holimCM
.
/Š holimC Map.N;M .

/

is a weak equivalence for every cofibrant object N in M. Given M and M 0 in M,
we are using Map.M;M 0/ to denote the usual mapping space in S .

By Goerss and Jardine [17, page 407: proof of Lemma 2.11], to show that �N is a
weak equivalence, we only need to show that Map.N;M .

/ is fibrant in SC , when it
is equipped with the injective model structure. Thus, it is enough to show that in SC

the diagram Map.N;M .
/ has the right lifting property with respect to every trivial

cofibration i W K
.
!L

. . Then by adjunction, we only need to verify that in MC the
diagram M

. has the right lifting property with respect to N ˝ i W N ˝K
.
!N ˝L

. ,
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where, for example, N ˝K
. is the C–shaped diagram fN ˝KC gC2C . Since N is

cofibrant and i is a trivial cofibration, N ˝ i is a trivial cofibration in MC , and hence,
M

. has the desired lifting property.

Remark 3.6 Suppose that all the hypotheses of Theorem 3.5 are satisfied. Then by
the opening observation in its proof, we can form the total right derived functor

R
�
limC.�/

�
W Ho

�
MC�

! Ho.M/; N
.
7! limC.N

.
/Fib ;

for some N
.
! .N

.
/Fib , a trivial cofibration to a fibrant target, in MC . Thus, there is

a weak equivalence�
R
�
limC.�/

���
N

.�
D limC.N

.
/Fib

'
�! holimC.N

.
/Fib ;

reprising the verification that two well-known models for the “homotopically sound
homotopy limit of N

.” – the source and target of the above weak equivalence – are
equivalent to each other. This observation is not original and we refer the interested
reader to Dwyer, Hirschhorn, Kan and Smith [12, Sections 20, 21, Chapter VIII] for a
more general perspective on homotopy limits.

4 Homotopy fixed points for delta-discrete G –spectra are
the right approximation of fixed points

In this section, we continue to let G be any profinite group and we let

.�/G W cSpt�G ! Spt; holim�X � 7!
�
holim�X �

�
G

be the fixed points functor. In the previous section, we showed that given a delta-discrete
G –spectrum, its homotopy fixed point spectrum is the output of the total right derived
functor R

�
lim�.�/G

�
, a functor out of the category Ho

�
c.SptG/

�
. But since the source

and target categories for the homotopy fixed points functor .�/hıG W cSpt�
G
! Spt are

homotopical categories and .�/hıG is a homotopical functor, there is something else
that we expect of .�/hıG : it ought to be a homotopical functor that is “closest to .�/G

from the right” in a homotopy-theoretic sense. In this section, we show that this is
indeed true in a precise sense: to do this, we freely use the language of homotopical
categories, as in Dwyer, Hirschhorn, Kan and Smith [12].

In this section only, due to its frequent usage, we sometimes use h
�
X �
�

to denote
the object holim�X � in cSpt�

G
. Also, it is helpful to recall that, as objects in cSpt�

G
,

h
�
X �
�
D h

�
Y �
�

if and only if X � D Y � in c.SptG/, so that it is sometimes useful
to think of h

�
X �
�

as the pair
�
X �; h

�
X �
��

. One can make a similar statement about
morphisms in cSpt�

G
.
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Since
�
holim�X �

�
GŠholim�.X �/G , we take the barely noticeable step of identifying

the fixed points functor .�/G W cSpt�
G
!Spt with the functor c.�/G W cSpt�

G
!Spt sending

holim�X � to holim� .X �/G . Thus, we henceforth use the notation

.�/G W cSpt�G ! Spt; holim�X � 7! holimŒn�2�.X
n/G

for the fixed points functor.

Let bidW cSpt�
G
! cSpt�

G
be the identity functor and notice that the functorc.�/fG W

cSpt�G ! cSpt�G ; h
�
X �
�
7! h

�
.X �/fG

�
D holimŒn�2�.X

n/fG

is a homotopical functor. (Above, each .X n/fG is a fibrant spectrum, by [5, Lemma
3.10], so that h

�
.X �/fG

�
is a delta-discrete G –spectrum, as required.) As mentioned

in Section 1.1, given X 2 SptG , there is a natural trivial cofibration X ! XfG in
SptG , and hence, there is a natural transformation

�.�/W bid! c.�/fG ; �h.X�/W holim�X �! holim�.X �/fG :

Since each map X n! .X n/fG is a weak equivalence in SptG , the map �h.X�/ is a
weak equivalence in cSpt�

G
, so that �.�/ is a natural weak equivalence (in the sense

of [12, 33.1, (iv)]). These observations show that the pair
�c.�/fG ; �.�/

�
is a right

deformation of cSpt�
G

.

Lemma 4.1 The pair
�c.�/fG ; �.�/

�
is a right .�/G–deformation of cSpt�

G
.

Proof Let h
�
.X �/fG

�
and h

�
.Y �/fG

�
be arbitrary objects in the image of the functorc.�/fG . Given a weak equivalence f �W .X �/fG ! .Y �/fG in c.SptG/ (we are not

assuming that f � is obtained by applying .�/fG to some map X �! Y � in c.SptG/),
the map �

.�/G
��

holim�f �
�
W holim�

�
.X �/fG

�
G '
�! holim�

�
.Y �/fG

�
G

is a weak equivalence of spectra. Therefore, the functor .�/G is homotopical on the full
subcategory spanned by the image of c.�/fG (it is automatic that this full subcategory
is a homotopical category), giving the desired conclusion.

The above result immediately implies that the functor .�/G W cSpt�
G
! Spt is right

deformable. Notice that there is the natural transformation�
�.�/

�
G
W .�/G!.�/hıG ; h

�
X �
�
7!
��
�

h.X�/

�
G
W holim�.X �/G!holim�

�
.X �/fG

�
G
�
:

Corollary 4.2 Let G be any profinite group. Then the pair
�
.�/hıG ;

�
�.�/

�
G
�

is a
right approximation of the functor .�/G W cSpt�

G
! Spt.
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Proof By [12, 41.2, (ii)], Lemma 4.1 implies that the pair
�
.�/G ı c.�/fG ;

�
�.�/

�
G
�

is a right approximation of .�/G , and this pair is identical to the desired pair.

Let y”G W
cSpt�

G
! Ho

�cSpt�
G

�
and ”W Spt! Ho.Spt/ be the usual localization functors

to the corresponding homotopy categories. Also, let

Ho
�
.�/hıG

�
W Ho

�cSpt�G
�
! Ho.Spt/

be the usual functor on the respective homotopy categories that is induced by the
homotopical functor .�/hıG and let

”
��
�.�/

�
G
�
W ” ı .�/G! ” ı .�/hıG

be the natural transformation induced by ” between the stated composite functors fromcSpt�
G

to Ho.Spt/. Then the above results and [12, 41.5] immediately give the following
result.

Theorem 4.3 For any profinite group G , the pair
�
Ho
�
.�/hıG

�
; ”
��
�.�/

�
G
��

is a total
right derived functor of .�/G W cSpt�

G
! Spt:

The above result gives the desired conclusion: in the context of homotopical categories,
delta-discrete homotopy fixed points (more precisely, the functor Ho

�
.�/hıG

�
/ are the

total right derived functor R
�
.�/G

�
W Ho

�cSpt�
G

�
! Ho.Spt/.

5 Several properties of the homotopy fixed points of
delta-discrete G –spectra

Suppose that P is a finite group and let Z be a P –spectrum. Recall (for example,
from [5, Section 5]) that if Z0 is a P –spectrum and a fibrant object in Spt, with a
map Z

'
�!Z0 that is P –equivariant and a weak equivalence in Spt, then Zh0P , the

usual homotopy fixed point spectrum MapP .EPC;Z
0/ in the case when P is a finite

discrete group, can also be defined as

(1) Zh0P
D holimP Z0:

Then the following result shows that the homotopy fixed points .�/hıG of Definition 1.7
agree with those of (1), when the profinite group G is finite and discrete.

Theorem 5.2 Let G be a finite discrete group and let holim�X � be a delta-discrete
G–spectrum (that is, X � is a cosimplicial G–spectrum, with each X n a fibrant spec-
trum). Then there is a weak equivalence

.holim�X �/hıG '
�! .holim�X �/h

0G :
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Proof Given Œn� 2�, by Jardine [22, Proposition 6.39], the canonical map

.X n/hG
D ..X n/fG/

G
Š limG.X

n/fG

'
�! holimG.X

n/fG

is a weak equivalence. Also, notice that the target (since .X n/fG is a fibrant spectrum,
by [5, Lemma 3.10]) and the source of this weak equivalence are fibrant spectra. Thus,
there is a weak equivalence

.holim�X �/hıG
D holimŒn�2�.X

n/hG '
�!

holimŒn�2�holimG.X
n/fG Š holimGholimŒn�2�.X

n/fG :

The proof is finished by noting that

holimGholimŒn�2�.X
n/fG D .holim�X �/h

0G
I

this equality, which is an application of (1), is due to the fact that the map

holim�X �
'
�! holimŒn�2�.X

n/fG

is G–equivariant and a weak equivalence (since each map X n! .X n/fG is a weak
equivalence between fibrant objects in Spt), with target a fibrant spectrum.

Now let G be any profinite group and let X be a discrete G –spectrum. We will show
that there is a G –equivariant map X ! ccG.X / that is a weak equivalence of spectra,
along with a weak equivalence X hG ! .ccG.X //

hıG . Since these weak equivalences
exist for any G and all X 2 SptG , we can think of the category of delta-discrete
G –spectra as being a generalization of the category SptG .

Given any spectrum Z , it is not hard to see that there is an isomorphism

Tot.cc�.Z//ŠZI

this was noted, for example, in the setting of simplicial sets, in Dwyer, Miller and
Neisendorfer [13, Section 1] and is verified for an arbitrary simplicial model category
in Hess [19, Remark B.16]. Since the Reedy category � has fibrant constants (see
Hirschhorn [20, Corollary 15.10.5]), the canonical map Tot.cc�.Z//! holim� cc�.Z/
is a weak equivalence, whenever Z is a fibrant spectrum, by [20, Theorem 18.7.4, (2)].
Thus, if Z is a fibrant spectrum, there is a weak equivalence

�Z W Z Š Tot.cc�.Z//
'
�! holim�cc�.Z/

in Spt. In particular, since the discrete G –spectrum �X is a fibrant spectrum, the map
� �X is a weak equivalence. Therefore, since the map  W X ! �X is a weak equivalence
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in SptG (by Lemma 2.1), the G –equivariant map

� �X ı W X '
�! �X '

�! holim�cc�.�X /D ccG.X /

and the map

�
. �X /hG ı . /

hG
W X hG '

�! .�X /hG '
�! holim�cc�

�
.�X /hG

�
D .ccG.X //

hıG

are weak equivalences (the map �
. �X /hG is a weak equivalence because .�X /hG is a

fibrant spectrum).

Remark 5.3 The weak equivalences �.X N /f
, for N Co G , combined with the argu-

ment for Corollary 2.4, show that there is a weak equivalence

X
'
�! colimN CoGholim�cc�

�
.X N /f

�
in SptG , and, as in Corollary 2.4, this “colimit presentation” of X comes from a
filtered diagram (the diagram fholim�cc�

�
.X N /f

�
gN CoG ) of smaller delta-discrete

G –spectra. However, this colimit presentation does not have one of the nice properties
that is possessed by the presentation of Corollary 2.4 (see Remark 2.5): in general,
.X N /f is not a fibrant discrete G=N –spectrum, so that, in general,

holim�cc�
�
.X N /f

�
Š holimG=N

�
cc�
�
.X N /f

�
need not be a fibrant discrete G=N –spectrum.

Remark 5.4 It may easily be seen that the weak equivalence ‰W X
'
�!Xı (from

Definition 2.2) has the canonical factorization

X
'
�! lim�cc�.�X / Š�! Tot.cc�.�X // '�! holim�cc�.�X / zi �X�!Xı;

and hence the map zi �X , a morphism in cSpt�
G

, is a weak equivalence in Spt, but
interestingly zi �X is in general not a weak equivalence in cSpt�

G
since, for example,

in codegree 0, �t .�/ applied to the map of diagrams “behind” the map zi �X can be
identified with the monomorphism i W �t .X / ! Mapc.G; �t .X //, so that the map
behind zi �X is not, in general, an objectwise weak equivalence in c.SptG/.

6 Iterated homotopy fixed points for delta-discrete G–spectra

Throughout this section (except in Convention 6.1), we assume that the profinite group
G has finite vcd. We will show that G–homotopy fixed points for delta-discrete G–
spectra have the transitivity property. To do this, we make use of the convention stated
below.
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Convention 6.1 Let P be a discrete group and let X be a space. By Dwyer and
Wilkerson [14, Remark 10.3], a proxy action of P on X is a space Y that is homotopy
equivalent to X and has an action of P . Then [14, Remark 10.3] establishes the
convention that X hP is equal to YhP and a proxy action is sometimes referred to as
an action. This convention is an important one: for example, in [14, Section 10], this
convention plays a role in Lemmas 10.4 and 10.6 and in the proof that P –homotopy
fixed points have the transitivity property (their Lemma 10.5). Thus, in this section, we
will make use of the related convention described below.

Let G be any profinite group and let X �;� be a bicosimplicial discrete G–spectrum
(that is, X �;� is a cosimplicial object in c.SptG/), such that, for all m; n� 0, X m;n is
a fibrant spectrum. Let fX n;ngŒn�2� be the cosimplicial discrete G–spectrum that is
the diagonal of X �;� : fX n;ngŒn�2� is defined to be the composition

�!���! SptG ; Œn� 7! .Œn�; Œn�/ 7!X n;n:

Then there is a natural G –equivariant map

(2) holim���X �;�
'
�! holimŒn�2�X n;n

that is a weak equivalence (see, for example, Thomason [29, Lemma 5.33] and
Hirschhorn [20, Remark 19.1.6; Theorem 19.6.7, (2)]). Notice that the target of (2),
holimŒn�2�X n;n , is a delta-discrete G –spectrum. Thus, we identify the source of (2),
the G –spectrum holim���X �;� , with the delta-discrete G –spectrum holimŒn�2�X n;n

so that

(3) .holim���X �;�/hıG
WD .holimŒn�2�X n;n/hıG :

Let holim���.X �;�/hG denote holim.Œm�;Œn�/2���.X m;n/hG . By Theorem 3.2 and
Lemma 3.3 there is a zigzag of weak equivalences

holim���.X �;�/hG '
�! holim���..X �;�/Fib/

G '
 �

�
R
�
lim���.�/G

���
X �;�

�
:

Hence, it is natural to define the homotopy fixed points of the “.���/–discrete
G –spectrum” holim���X �;� as

.holim���X �;�/hG
D holim���.X �;�/hG :

Since each .X m;n/hG is a fibrant spectrum, then, as in (2), there is a weak equivalence

.holim���X �;�/hG '
�! holimŒn�2�.X

n;n/hG
D .holim���X �;�/hıG ;

which further justifies the convention given in (3).
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As in the Introduction, let H and K be closed subgroups of G , with H normal in K .
Recall from (8) that, given X 2 SptG , there is an identification

X hH
D holim� Mapc.G

�; �X /H :
Since the map  W X! �X is natural, it is clear from [6, page 145; the proof of Theorem
5.2] that the above identification is natural in X .

Now let holim�X � be any delta-discrete G–spectrum. Using the naturality of the
above identification, we have

.holim�X �/hıH
DholimŒn�2�.X

n/hH
DholimŒn�2�holimŒm�2�.Mapc.G

�; �X n/m/H :

Because of the isomorphism

holimŒn�2�holimŒm�2�.Mapc.G
�; �X n/m/H Š holim��� Mapc.G

�; �X �/H
and because homotopy limits are ends, which are only unique up to isomorphism, we
can set

.holim�X �/hıH
D holim��� Mapc.G

�; �X �/H :
By Lemma 2.7, for each m; n� 0, Mapc.G

�; �X n/m is a fibrant discrete H –spectrum,
so .Mapc.G

�; �X n/m/H is a fibrant spectrum. Also, since the diagram Mapc.G
�; �X �/

is a bicosimplicial discrete K–spectrum, Mapc.G
�; �X �/H is a bicosimplicial discrete

K=H –spectrum. Thus, the discussion above in Convention 6.1 implies that there is a
K=H –equivariant map

.holim�X �/hıH
D holim��� Mapc.G

�; �X �/H '
�! holimŒn�2�.Mapc.G

�; �X n/n/H

that is a weak equivalence, and the target of this weak equivalence is a delta-discrete
K=H –spectrum. Therefore, by Convention 6.1, we can identify .holim�X �/hıH with
the delta-discrete K=H –spectrum holimŒn�2�.Mapc.G

�; �X n/n/H , and hence, by (3)
and as in the proof of Theorem 2.11, we have�

.holim�X �/hıH
�
hıK=H

D
�
holimŒn�2�.Mapc.G

�; �X n/n/H
�
hıK=H

D holimŒn�2�
��
.Mapc.G

�; �X n/n/H
�
fK=H

�
K=H

'
 � holimŒn�2�

�
.Mapc.G

�; �X n/n/H
�
K=H

D holimŒn�2�.Mapc.G
�; �X n/n/K

'
 � holimŒn�2�holimŒm�2�.Mapc.G

�; �X n/m/K

D holimŒn�2�.X n/hK

D .holim�X �/hıK :
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We summarize our work above in the following theorem.

Theorem 6.4 If G has finite vcd and holim�X � is a delta-discrete G –spectrum, then
there is a weak equivalence�

.holim�X �/hıH
�
hıK=H '

 � .holim�X �/hıK :

7 The relationship between XhH and .Xı/
hıH in general

Let G be an arbitrary profinite group and let X be any discrete G –spectrum. Also, as
usual, let H and K be closed subgroups of G , with H normal in K . As mentioned in
Section 1.1, it is not known, in general, that the “discrete homotopy fixed points” X hH

have a K=H –action. In this section, we consider this issue by using the framework of
delta-discrete G –spectra.

Given the initial data above, there is a commutative diagram

XfH

‰H

%%

X
f
H

'
oo

colimUCoH‰
U

��

‰

'
// Xı

colimU CoH .Xı/
U ;

99

where colimU CoH ‰U , a morphism in SptH whose label is a slight abuse of notation,
is defined to be the composition

X Š colimU CoH X U
! colimU CoH .Xı/

U ;

and ‰H , a morphism between fibrant objects in SptH , exists because, in SptH , f
H

is
a trivial cofibration and colimU CoH .Xı/

U is fibrant (by [6, Theorem 3.5]).

Definition 7.1 The map ‰H induces the map

X hH
D .XfH /

H .‰H /
H

�����!
�
colimU CoH .Xı/

U
�
H
Š holim� Mapc.G

�; �X /H
and (as in the proof of Lemma 2.9) there is a weak equivalence

holim� Mapc.G
�; �X /H '

�! holim� Mapc.G
�; �X /hH

D .Xı/
hıH :

The composition of these two maps defines the map

�.X /H W X
hH
! .Xı/

hıH :
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(The map �.X /H is not the same as the map of Lemma 2.9 (when L D H ), since
�.X /H does not use the identification of (8).)

Notice that if the map colimU CoH ‰U is a weak equivalence in Spt, then the map
‰H is a weak equivalence in SptH , and hence, .‰H /

H is a weak equivalence. Thus,
if colimU CoH ‰U is a weak equivalence in Spt, then �.X /H is a weak equivalence.
This observation, together with [6, proof of Theorem 4.2] and Mitchell [25, Proposition
3.3], immediately yields the following result.

Theorem 7.2 If G is any profinite group and X 2 SptG , then the map

�.X /H W X
hH '
�! .Xı/

hıH

is a weak equivalence, whenever any one of the following conditions holds:

(i) H has finite vcd;

(ii) G has finite vcd;

(iii) there exists a fixed integer p such that H s
c .U I�t .X // D 0, for all s > p , all

t 2 Z and all U Co H ;

(iv) there exists a fixed integer q such that H s
c .U I�t .X // D 0, for all t > q , all

s � 0 and all U Co H ; or

(v) there exists a fixed integer r such that �t .X /D 0, for all t > r:

In the statement of Theorem 7.2, note that (ii) implies (i) and (v) implies (iv). Also, it
is not known, in general, that colimU CoH ‰U is a weak equivalence, so that we do
not know, in general, that X hH and .Xı/hıH are equivalent.

As noted in Definition 7.1, .Xı/hıH is equivalent to the delta-discrete K=H –spectrum
holim� Mapc.G

�; �X /H , and hence, it is natural to identify them and to set�
.Xı/

hıH
�
hıK=H

D
�
holim� Mapc.G

�; �X /H �hıK=H :

Theorem 7.3 If G is any profinite group and X 2 SptG , then�
.Xı/

hıH
�
hıK=H

' .Xı/
hıK :

Proof As in the proof of Theorem 2.11, it is easy to see that there is a zigzag of weak
equivalences�

.Xı/
hıH

�
hıK=H '

 � holim� Mapc.G
�; �X /K '

�! .Xı/
hıK :

Given any profinite group G , Theorem 7.3 shows that by using .�/ı and .�/hıH ,
delta-discrete homotopy fixed points for discrete G –spectra are transitive.
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8 Comparing two different models for the iterated homotopy
fixed point spectrum

Let G be any profinite group and let X be a discrete G –spectrum. As defined by the
author in [7, Definition 4.1], X is a hyperfibrant discrete G –spectrum if the map

 .X /GL W .XfG/
L
! ..XfG/fL/

L

is a weak equivalence for every closed subgroup L of G . (We use “ ” in the notation
“ .X /G

L
” because we follow the notation of [7]; this use of “ ” is not related to the

map  of Lemma 2.1.)

Now suppose that X is a hyperfibrant discrete G –spectrum and, as usual, let H and
K be closed subgroups of G , with H normal in K . These hypotheses imply that

(a) the map  .X /G
H
W .XfG/

H '
�! ..XfG/fH /

H is a weak equivalence;

(b) the source of the map  .X /G
H

, the spectrum .XfG/
H , is a discrete K=H –

spectrum; and

(c) since the composition X ! XfG ! .XfG/fH is a trivial cofibration and the
target of the weak equivalence X !XfH is fibrant, in SptH , there is a weak
equivalence �W .XfG/fH !XfH between fibrant objects, and hence, there is a
weak equivalence

.XfG/
H '
�!X hH

that is defined by the composition

�H
ı .X /GH W .XfG/

H '
�! ..XfG/fH /

H '
�! .XfH /

H
DX hH :

Thus, following [7, Definition 4.5], it is natural to define

.X hH /hK=H
WD ..XfG/

H /hK=H :

Let G have finite vcd, so that, by Lemma 2.10, X hH D holim� Mapc.G
�; �X /H is a

delta-discrete K=H –spectrum. Thus,

.X hH /hıK=H
D holimŒn�2�

�
.Mapc.G

�; �X /n/H �hK=H ;

and, by Theorem 2.11, there is a weak equivalence

(1) holim� Mapc.G
�; �X /K '

�! .X hH /hıK=H :

The above discussion shows that when G has finite vcd and X is a hyperfibrant
discrete G–spectrum, there are two different models for the iterated homotopy fixed
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point spectrum, .X hH /hK=H and .X hH /hıK=H , and we would like to know when
they agree with each other. The following result gives a criterion for when .X hH /hK=H

and .X hH /hıK=H are equivalent.

Theorem 8.2 Let G have finite vcd and suppose that X is a hyperfibrant discrete
G–spectrum. If the map  .X /K

H
W .XfK /

H ! ..XfK /fH /
H is a weak equivalence,

then there is a weak equivalence

(3) .X hH /hK=H '
�! .X hH /hıK=H :

Remark 8.4 Let G and X be as in Theorem 8.2. By definition, if X is a hyperfibrant
discrete K–spectrum, then each map  .X /K

H
is a weak equivalence (here, as usual, H

is any closed subgroup of G that is normal in K ), giving the weak equivalence of (3).
We refer the reader to [7, Sections 3, 4] for further discussion about hyperfibrancy. The
spectral sequence considerations of [7, pages 2887–2888] are helpful for understanding
when X is a hyperfibrant discrete K–spectrum.

Proof of Theorem 8.2. It follows from Theorem 7.2, (ii) and Definition 7.1 that
.‰K /

K is a weak equivalence, so that, by composing with the weak equivalence of
(1), there is a weak equivalence

X hK '
�! holim� Mapc.G

�; �X /K '
�! .X hH /hıK=H :

Therefore, to obtain (3), it suffices to show that there is a weak equivalence

.X hH /hK=H
D ..XfG/

H /hK=H
!X hK :

It is useful for the argument below to recall from the proof of [7, Lemma 4.6] that the
functor .�/H W SptK ! SptK=H is a right Quillen functor.

Since X !XfG is a trivial cofibration in SptK and the map X !XfK has a fibrant
target, there is a weak equivalence

�W XfG

'
�!XfK

in SptK . Thus, there is a commutative diagram

..XfG/
H /fK=H

z�H

&&

.XfG/
H

'

�
oo

�H

��

 .X /G
H

'
// ..XfG/fH /

H

.�
fH
/H'

��

.XfK /
H

 .X /K
H

// ..XfK /fH /
H :
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The map z�H exists in SptK=H , because in SptK=H the map � is a trivial cofibration
and .XfK /

H is fibrant. Also, as noted in the diagram, the map  .X /G
H

is a weak
equivalence, since X is a hyperfibrant discrete G –spectrum, and the rightmost vertical
map, .�fH /

H D�hH , is a weak equivalence, since � is a weak equivalence in SptH .

Now suppose that  .X /K
H

is a weak equivalence. Then �H is a weak equivalence,
and hence, z�H is a weak equivalence between fibrant objects in SptK=H . Therefore,
there is a weak equivalence�
z�H

�
K=H
W
��

XfG

�
H
�
hK=H

D
���

XfG

�
H
�
fK=H

�
K=H '

�!
��

XfK

�
H
�
K=H

DX hK ;

completing the proof.

9 Delta-discrete homotopy fixed points are always discrete
homotopy fixed points

Let G be any profinite group. In this final section, we obtain in two different ways the
conclusion stated in the section title. Somewhat interestingly, the discrete homotopy
fixed points, in both cases, are those of a discrete G –spectrum that, in general, need not
be equivalent (in the sense of Definition 9.8) to the delta-discrete G –spectrum (whose
delta-discrete homotopy fixed points are under consideration).

Let holim�X � be any delta-discrete G –spectrum and define

C.X �/ WD colimN CoG

�
holimŒn�2�.X

n/fG

�
N :

Notice that C.X �/ is a discrete G –spectrum and

.holim�X �/hıG
Š
�
holimŒn�2�.X

n/fG

�
G
Š .C.X �//G

'
�! .C.X �//hG ;

where the justification for the second isomorphism above is as in [6, proof of Theorem
2.3] and the weak equivalence is due to the fact that the spectrum C.X �/ is a fibrant
discrete G –spectrum (by [6, Corollary 2.4]). Also, notice that the weak equivalence

(1) .holim�X �/hıG '
�! .C.X �//hG ;

defined above, is partly induced by the canonical map �
G

(defined by a colimit of
inclusions of fixed points) in the zigzag

(2) C.X �/
�
G
�! holimŒn�2�.X

n/fG

'
 � holim�X �

of G –equivariant maps. In (2), the second map, as indicated, is a weak equivalence of
delta-discrete G –spectra.
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Though (1) shows that the delta-discrete homotopy fixed points of any delta-discrete
G–spectrum can be realized as the discrete homotopy fixed points of a discrete G–
spectrum, there is a slight incongruity here: the map �

G
in (2) does not have to be a

weak equivalence. For example, if �
G

is a weak equivalence, then �0.holim�X �/ is
a discrete G–module (since �0.C.X

�// is a discrete G–module), but this is not the
case, for example, when holim�X � is the delta-discrete Zq –spectrum Y hZ=p (this
characterization of Y hZ=p is obtained by applying Lemma 2.10) that was referred to
in Section 1.1, since �0.Y

hZ=p/ is not a discrete Zq –module (as shown by Wieland
and the author in [7, Appendix A]).

Now we consider a second and more interesting way to realize .holim�X �/hıG as a
discrete homotopy fixed point spectrum. As in Section 3, let .X �/Fib denote the fibrant
replacement of X � in the model category c.SptG/. Then there is again a zigzag

(3) lim�.X �/Fib
�
�! holim�.X �/Fib

'
 ��


holim�X �

of canonical G –equivariant maps, where � is the usual map in Spt from the limit to the
homotopy limit and the map  is a weak equivalence of delta-discrete G –spectra. We
will show that, as in the case of zigzag (2), lim�.X �/Fib is a discrete G –spectrum and
its discrete homotopy fixed points are equivalent to .holim�X �/hıG , but, as before,
the map � need not be a weak equivalence.

Lemma 9.4 Let holim�X � be a delta-discrete G –spectrum. Then lim�.X �/Fib is a
discrete G –spectrum.

Proof Given two morphisms Œ Y 0
//
// Y 1 � in SptG , let equalŒ Y 0

//
// Y 1 � de-

note the equalizer in Spt. Also, let equalG Œ Y 0
//
// Y 1 � denote the equalizer in

SptG . Due to the fact that X � and .X �/Fib are cosimplicial discrete G–spectra, to
prove the lemma it suffices to show that lim�X � is a discrete G –spectrum.

It is a standard fact about limits of cosimplicial diagrams that the canonical G–
equivariant map

lim�X �
Š
�! equal

h
X 0

d0
//

d1

// X 1

i
is an isomorphism in Spt. Then the proof is completed by noting that for the diagram

h
X 0

//
// X 1

�
�

h
X 0

d0
//

d1

// X 1

i
;
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there are isomorphisms

equalG
�

X 0
//
// X 1

�
Š colimN CoG

�
equal

�
X 0

//
// X 1

��
N

Š equal
�
colimN CoG .X 0/N

//
// colimN CoG.X

1/N
�

Š equal
�

X 0
//
// X 1

�
Š lim�X �;

with each isomorphism G –equivariant. In this string of isomorphisms, the first one is
because of [5, Remark 4.2] and the third one follows from the fact that X 0 and X 1

are discrete G –spectra.

If C is a small category and Y
. is an object in .SptG/

C , we use limG
C Y

. to denote
the corresponding limit in SptG . By the opening lines in the proof of Theorem 3.5,
the functor limG

C .�/W .SptG/
C ! SptG is a right Quillen functor, where, as usual,

.SptG/
C is equipped with the injective model structure. Now we give an application of

Lemma 9.4.

Lemma 9.5 Let holim�X � be a delta-discrete G –spectrum. Then there is an equiva-
lence

.lim�.X �/Fib/
hG
' .holim�X �/hıG :

Proof Since the spectrum lim�.X �/Fib is in SptG , there are isomorphisms

(6) lim�.X �/Fib Š colimN CoG

�
lim�.X �/Fib

�
N
Š limG

�.X
�/Fib

in SptG and limG
�.X

�/Fib is a fibrant discrete G –spectrum. Thus, the canonical map�
limG

�.X
�/Fib

�
G '
�!

�
limG

�.X
�/Fib

�
hG
Š
�
lim�.X �/Fib

�
hG

is a weak equivalence.

The proof is completed by the zigzag of equivalences�
limG

�.X
�/Fib

�
G
Š lim�

�
.X �/Fib

�
G '
�! holim�

�
.X �/Fib

�
G '
 �

�
holim�X �

�
hıG ;

where the isomorphism uses (6), the first weak equivalence is by Theorem 3.2 and the
second weak equivalence applies Theorem 3.4.

The argument that was used earlier to show that �
G

in zigzag (2) does not have to be a
weak equivalence also applies to show that the map � in zigzag (3) does not have to be
a weak equivalence.
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Remark 9.7 Notice that if .X �/Fib is fibrant in c.Spt/ (equipped with the injective
model structure), then, as in the proof of Theorem 3.2, the map � is a weak equivalence.
Thus, interestingly, fibrations in c.SptG/ are not necessarily fibrations in c.Spt/ – even
though any fibration in SptG is a fibration in Spt, by [5, Lemma 3.10]. This observation
is closely related to the fact that the forgetful functor U W SptG ! Spt need not be a
right adjoint (a discussion of this fact is given by Behrens and the author in [1, Section
3.6]): if one supposes that U is a right adjoint, then U is also a right Quillen functor,
since U preserves fibrations and weak equivalences, and hence, by Lurie [24, Remark
A.2.8.6], the forgetful functor U ı .�/W c.SptG/! c.Spt/ preserves fibrations.

Let V be an open subgroup of G . By [7, proof of Lemma 3.1], the right adjoint
ResV

G W SptG ! SptV that regards a discrete G–spectrum as a discrete V –spectrum
is a right Quillen functor, and hence (again, by [24, Remark A.2.8.6]), the restriction
functor ResV

G ı .�/W c.SptG/! c.SptV / preserves fibrations. Thus,

.X �/Fib Š colimN CoG

�
.X �/Fib

�
N

is the filtered colimit of cosimplicial spectra ..X �/Fib/
N , each of which is fibrant in

c.Spt/, since ResN
G ı .X

�/Fib D .X
�/Fib is fibrant in c.SptN / and, as in the proof of

Theorem 3.2, the functor .�/N W c.SptN /! c.Spt/ preserves fibrant objects. As noted
above, when G is Zq , for any prime q , there are cases where .X �/Fib is not fibrant in
c.Spt/. In these cases, since Zq is countably based, the above filtered colimit can be
taken to be a sequential colimit indexed over the natural numbers. Therefore, we can
conclude, perhaps somewhat surprisingly, that, unlike in Spt, a sequential colimit of
fibrant objects in c.Spt/ does not have to be fibrant. This also shows that, though the
model category c.Spt/ is cofibrantly generated (by [24, Proposition A.2.8.2]), it is not
almost finitely generated (see Hovey [21, Definition 4.1, Lemma 4.3]).

To place our next result, Theorem 9.9, into context, Definition 9.8 below is helpful.
Simple examples of the notion captured by this definition, for which we have not needed
a name until now, include the map ‰ in Section 2.1, the map � �X ı considered at
the end of Section 5, and the map in (2).

Definition 9.8 Let holim�X � be a delta-discrete G–spectrum and let Y be a G–
spectrum (that is, Y is an object in G–Spt; Y can be in SptG ). We say that Y is
equivalent to holim�X � if there is a zigzag of weak equivalences between Y and
holim�X � in the model category G–Spt. For example, the following map and two
zigzags,

X
'G
�! Y; X

'G
 � Y1

'G
�! Y2; and X

'G
�! Y3

'G
 � Y4

'G
�! Y5;

Algebraic & Geometric Topology, Volume 11 (2011)



Delta-discrete G –spectra and iterated homotopy fixed points 2811

where X � holim�X � , “'G ” marks a weak equivalence in G–Spt, and each Yi is in
G–Spt, indicate that Y;Y2 and Y5 are each equivalent to holim�X � . It is clear from
this definition that any object in the essential image or the “weak essential image” (as
in Bergner [2, Example 3.3]) of the forgetful functor UG W

cSpt�
G
!G–Spt is equivalent

to a delta-discrete G –spectrum.

A priori, we do not expect a delta-discrete G–spectrum, in general, to be equivalent
to a discrete G–spectrum, and the fact that zigzags (2) and (3), which give natural
ways to realize an arbitrary delta-discrete homotopy fixed point spectrum as a discrete
homotopy fixed point spectrum, fail, in general, to be equivalences (in the sense of
Definition 9.8) is consistent with our expectation.

The next result shows that zigzags (2) and (3) are, in fact, directly related to each other
(beyond just having the “same general structure”). Given a small category C and a
diagram Y

.
2 .SptG/

C , we let holimG
� Y

. be the homotopy limit in SptG of Y
. , as

defined in Hirschhorn [20, Definition 18.1.8].

Theorem 9.9 Let holim�X � be any delta-discrete G –spectrum. Then the map �
G

in
(2) is a weak equivalence if and only if the map � in (3) is a weak equivalence.

Proof Let Y � be a cosimplicial discrete G –spectrum. Then, by [6, Theorem 2.3] and
because homotopy limits are ends and thereby only unique up to isomorphism, there is
the identity

holimG
�Y � D colimN CoG.holim�Y �/N ;

which implies that C.X �/D holimG
Œn�2�.X

n/fG . Similarly, there is the identity

limG
�.X

�/Fib D colimN CoG.lim�.X �/Fib/
N :

Also, since the map fX ngŒn�2�! f.X
n/fGgŒn�2� is a trivial cofibration in c.SptG/,

there is a weak equivalence

z W f.X n/fGgŒn�2�! .X �/Fib

in c.SptG/.

Given the above facts, there is the commutative diagram

lim�.X �/Fib
�

// holim�.X �/Fib holimŒn�2�.X n/fG
'��oo

limG
�.X

�/Fib

Š

OO

'

�0
G

// holimG
�.X

�/Fib

OO

holimG
Œn�2�.X

n/fG
'

.��/Goo

�
G

OO
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of canonical maps: each vertical map is induced by inclusions of fixed points; the
map �� is a weak equivalence (of delta-discrete G–spectra) because, in c.Spt/, � is
an objectwise weak equivalence between objectwise fibrant diagrams; the leftmost
vertical map is an isomorphism thanks to Lemma 9.4; Theorem 3.5 implies that �0

G
is

a weak equivalence; and, in c.SptG/, the map � is an objectwise weak equivalence
between objectwise fibrant diagrams, so that, by Hirschhorn [20, Theorem 18.5.3, (2)],
the induced map

��� �
G

is a weak equivalence.

The desired conclusion now follows immediately from the above diagram.
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