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On the derivation algebra
of the free Lie algebra and trace maps

NAOYA ENOMOTO

TAKAO SATOH

We mainly study the derivation algebra of the free Lie algebra and the Chen Lie
algebra generated by the abelianization H of a free group, and trace maps. To begin
with, we give the irreducible decomposition of the derivation algebra as a GL.n;Q/–
module via the Schur–Weyl duality and some tensor product theorems for GL.n;Q/ .
Using them, we calculate the irreducible decomposition of the images of the Johnson
homomorphisms of the automorphism group of a free group and a free metabelian
group.

Next, we consider some applications of trace maps: Morita’s trace map and the
trace map for the exterior product of H . First, we determine the abelianization of
the derivation algebra of the Chen Lie algebra as a Lie algebra, and show that the
abelianization is given by the degree one part and Morita’s trace maps. Second, we
consider twisted cohomology groups of the automorphism group of a free nilpotent
group. In particular, we show that the trace map for the exterior product of H defines
a nontrivial twisted second cohomology class of it.

17B40, 20C15; 20F28

1 Introduction

For a free group Fn with basis x1; : : : ;xn , set H WD F ab
n , the abelianization of Fn .

The kernel of the natural homomorphism �W Aut Fn!Aut H induced from the abelian-
ization of Fn!H is called the IA–automorphism group of Fn , and denoted by IAn .
Although IAn plays important roles in various studies of Aut Fn , the group structure
of IAn is quite complicated in general. For example, no presentation for IAn is known.
Furthermore, Krstić and McCool [24] showed that IA3 is not finitely presentable. For
n� 4, it is not known whether IAn is finitely presentable or not.

To study the deep group structure of IAn , it is sometimes useful to consider the Johnson
filtration. For the lower central series �n.k/ of Fn , the action of Aut Fn on the nilpotent
quotient Fn=�n.k/ induces a natural homomorphism Aut Fn!Aut .Fn=�n.kC1//.
Its kernel An.k/ then defines a descending central filtration IAnDAn.1/�An.2/�� � � .
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This filtration is called the Johnson filtration of Aut Fn . Each of the graded quotients
grk.An/ WD An.k/=An.k C 1/ naturally has a GL.n;Z/–module structure, and is
considered to be a sequence of approximations of IAn . To study grk.An/, the Johnson
homomorphisms

�k W grk.An/ ,!H�˝Z Ln.kC 1/

of Aut Fn are defined where H� WD HomZ.H;Z/. Historically, the Johnson filtration
was originally studied by Andreadakis [1] in 1960s, and the Johnson homomorphisms
by D Johnson [15] in 1980s who determined the abelianization of the Torelli subgroup of
the mapping class group of a surface in [16]. Now, there is a broad range of remarkable
results for the Johnson homomorphisms of the mapping class group. (For example,
see Hain [14] and Morita [28; 30; 31].) Since each of �k is GL.n;Z/–equivariant
injective, to clarify the structure of the image of �k is one of the most basic problems.
By pioneering work of Andreadakis [1], it is known that �1 is an isomorphism. It is
known that Coker.�2;Q/D S2HQ and Coker.�3;Q/D S3HQ˚ƒ3HQ by Pettet [33]
and Satoh [35] respectively. Here �k;Q WD �k ˝ idQ and HQ WDH ˝Z Q. In general,
however, it is quite a difficult problem to determine even the rank of the image of �k

for k � 4.

Now, let A0n.1/;A0n.2/; : : : be the lower central series of IAn . Since the Johnson
filtration is central, A0n.k/ �An.k/ for each k � 1. It is conjectured that A0n.k/D
An.k/ for each k � 1 by Andreadakis who showed A0

2
.k/ D A2.k/ and A0

3
.3/ D

A3.3/. It is known that A0n.2/DAn.2/ due to Bachmuth [3] and that A0n.3/ has at
most finite index in An.3/ due to Pettet [33]. Set grk.A0n/ WDA0n.k/=A0n.kC1/. Then
we can also define a GL.n;Z/–equivariant homomorphism

� 0k W grk.A0n/!H�˝Z Ln.kC 1/

in the same way as for �k . We also call � 0
k

the k –th Johnson homomorphism. (For the
definitions of �k and � 0

k
, see Section 2.6.) In [38], we determine the cokernel of the

stable rational Johnson homomorphism � 0
k;Q WD � 0k ˝ idQ . More precisely, we prove

that for any k � 2 and n� kC 2,

Coker.� 0k;Q/Š CQ
n .k/

where CQ
n .k/ WD Cn.k/˝Z Q, and Cn.k/ is the quotient module of H˝k by the action

of the cyclic group Cyck of order k on the components. Here the action Cyck on H˝k

means the restriction of the ordinary action of the symmetric group of Sk on H˝k on
the components to the cyclic group Cyck . Then we have

Cn.k/ŠH˝k
ıha1˝ a2˝ � � �˝ ak � a2˝ a3˝ � � �˝ ak ˝ a1 j ai 2H i:
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In general the target of �k is considered to be the degree k part of the derivation
algebra DerC.Ln/ of the free Lie algebra Ln generated by H . The first aim of
the paper is to give irreducible decompositions of GL.n;Q/–modules CQ

n .k/ and
DerC.Ln;Q/.k/D DerC.Ln/.k/˝Z Q. Our proof is based on the Schur–Weyl duality
for GL.n;Q/ and Sk .

Theorem 1 (Propositions 4.1 and 4.7 and Corollary 4.8) (1) The multiplicities of
irreducible GL.n;Q/–modules L� with highest weight � in CQ

n .k/ are given by

ŒL� W CQ
n .k/�D

(
Œtrivk W ResSk

Cyck
S�� if � is a partition of k;

0 otherwise;

where Sk is the symmetric group of degree k , S� is its irreducible module
associated to a partition � of k , Cyck is a cyclic subgroup of Sk generated by
a cyclic permutation of order k and trivk is the trivial representation of Cyck .

(2) For any k � 1 and n� kC 2, as a GL.n;Q/–module, we have a direct decom-
position

DerC.Ln;Q/.k/D .HQ/
˝k ˚

M
�I `.�/�n

ŒL� W Ln.k/�L
f�I.1/g;

where in the second term, the sum runs over all partitions � such that its
length `.�/ is smaller than or equal to n, and Lf�I.1/g is the irreducible
GL.n;Q/–module det�1˝L� .

We remark that, as a GL.n;Q/–module, CQ
n .k/ is isomorphic to the invariant part

an.k/ WD.H˝k
Q /Cyck of H˝k

Q by the action of Cyck . Namely, the cokernel Coker.� 0
k;Q/

is isomorphic to Kontsevich’s an.k/ as a GL.n;Q/–module. In our notation an.k/

is considered for any n � 2 in contrast to Kontsevich’s notation for even n D 2g .
(See Kontsevich [21; 22].) We also remark that the polynomial part .HQ/

˝k of
DerC.Ln;Q/.k/ is detected by a contraction map. (See Section 2.3 for the definition
of the contraction map.) Using this theorem, for given k � 1, we can calculate the
irreducible decomposition of Im.� 0n;Q/ and Coker.� 0n;Q/ for n� kC 2.

On the other hand, we also give the irreducible decompositions of the derivation algebras
of the Chen Lie algebra LM

n;Q and free abelian by polynilpotent Lie algebra LN
n;Q

generated by HQ . (See Sections 2.4 and 2.5 for the precise definition.) They were
studied in our previous papers [37; 40] in order to investigate the cokernel of the
Johnson homomorphisms � 0

k;Q . In this paper, after tensoring with Q, we determine
the irreducible decomposition of the image of the Johnson homomorphism �M

k
of the

automorphism group of a free metabelian group and of the image of the composition
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map � 0
k;N

of � 0
k

and a homomorphism H�˝ZLn.kC1/!H�˝ZLN
n .kC1/ induced

from the natural projection Ln.kC 1/! LN
n .kC 1/. That is:

Theorem 2 (Propositions 4.10 and 4.12) (1) For any k � 1 and n� kC 2,

Im.�M
k;Q/ŠLf.k;1/;.1/g˚Lf.k�1;1/;0g:

(2) For any k � 1 and n� kC 2,

Im..� 0k;N /Q/Š 3L.k�1;1/˚ 2L.k�2;2/˚ 2L.k�2;12/˚L.k�3;2;1/˚L.k�3;13/

˚Lf.k;1/I.1/g˚Lf.k�1;2/I.1/g˚Lf.k�1;12/I.1/g

˚Lf.k�2;2;1/I.1/g˚Lf.k�2;13/I.1/g;

where �M
k;Q WD �M

k
˝ idQ and .� 0

k;N
/Q WD � 0k;N ˝ idQ .

For any irreducible GL.n;Q/–module L� with highest weight �, we see

ŒL� W Im.�M
k;Q/�� ŒL� W Im..� 0k;N /Q/�� ŒL� W Im.� 0k;Q/�� ŒL� W Im.�k;Q/�:

So we can regard Im.�M
k;Q/ and Im..� 0

k;N
/Q/ as lower bounds on Im.� 0

k;Q/ and Im.�k;Q/.

In the rest of the paper, we consider some applications of trace maps. In general, the
trace maps are used to study the cokernel of the Johnson homomorphisms. One of the
most important trace maps is Morita’s trace map

TrŒk� WD fŒk� ıˆk
1 W H�˝ZLn.kC 1/! SkH:

Introducing this map, Morita showed that SkHQ appears in the irreducible decompo-
sition of Coker.�k;Q/. Using the part (1) of Theorem 1, we see that the multiplicity
of SkHQ in the irreducible decomposition of each of Coker.� 0n;Q/ and Coker.�n;Q/

is just one. In Section 5, we determine the abelianization of the derivation algebra
DerC.LM

n / of the Chen Lie algebra using Morita’s trace maps. That is:

Theorem 3 (Theorem 5.5) For n� 4, we have

.DerC.LM
n //ab Š .H�˝Zƒ

2H /˚
M
k�2

SkH:

More precisely, this isomorphism is given by the degree one part and Morita’s trace
maps TrŒk� .
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We should remark that this result is the Chen Lie algebra version of Morita’s conjecture:

.DerC.Ln//
ab Š .H�˝Zƒ

2H /˚
M
k�2

SkH

for the free Lie algebra Ln for any n� 3. (See also Morita [31].)

Next we consider another important trace map

TrŒ1k � WD fŒ1k � ıˆk
1 W H�˝ZLn.kC 1/!ƒkH;

called the trace map for the exterior product ƒkH . In [35], we show that ƒkHQ
appears in Coker.� 0

k;Q/ for odd k and 3 � k � n, and determine Coker.�3;Q/ using
TrŒ3� and TrŒ13� . In Section 6, we prove that the trace map TrŒ1k � defines a nontrivial
twisted second cohomology class of the automorphism group Aut Nn;k of a free
nilpotent group Nn;k WD Fn=�n.kC 1/ with coefficients in ƒkHQ for any k � 2 and
n� k . To show this, we prove that H 1.Aut Nn;k ; ƒ

kHQ/ is trivial. Then we consider
the cohomological five term exact sequence of a group extension

0! HomZ.H;Ln.kC 1//! Aut Nn;kC1! Aut Nn;k ! 1

introduced by Andreadakis [1]. (See also Morita [29, Proposition 2.3].)

On the other hand, let Tn;k be the image of the natural homomorphism Aut Fn !
Aut Nn;k induced from the projection Fn!Nn;k . The group Tn;k is called the tame
automorphism group of Nn;k . Similarly to Aut Nn;k , observing the cohomological
five term exact sequence of a group extension

0! grk.An/! Tn;kC1! Tn;k ! 1;

we show that the GL.n;Z/–equivariant homomorphism TrŒ1k � ı �k defines a nontrivial
twisted second cohomology class of Tn;k . Namely, the main purpose in Section 6 is to
show:

Theorem 4 (Propositions 6.6 and 6.8) (1) 0¤ tg.TrŒ1k �ı�k/2H 2.Tn;k ; ƒ
kHQ/

for even k and 2� k � n,

(2) 0¤ tg.TrŒ1k �/ 2H 2.Aut Nn;k ; ƒ
kHQ/ for k � 3 and n� k ,

where tg means the transgression map.

In Section 6, We also show that H 1.Tn;k ;H / D Z and it is generated by Morita’s
crossed homomorphism. (See Proposition 6.4.)
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2 Preliminaries

In this section, after fixing notation and conventions, we briefly recall some facts of the
automorphism group of a free group, the free Lie algebra, the Chen Lie algebra and
the automorphism group of a free nilpotent group.

2.1 Notation and conventions

Throughout the paper, we use the following notation and conventions. Let G be a
group and N a normal subgroup of G .
� The abelianization of G is denoted by Gab . Namely, GabDH1.G;Z/. Similarly,

for any Lie algebra G , we denote by Gab the abelianization of G as a Lie algebra.
� The automorphism group Aut G of G acts on G from the right unless otherwise

noted. For any � 2 Aut G and x 2G , the action of � on x is denoted by x� .
� For an element g 2G , we also denote the coset class of g by g 2G=N if there

is no confusion.
� For elements x and y of G , the commutator bracket Œx;y� of x and y is defined

to be Œx;y� WD xyx�1y�1 .
� For elements g1; : : : ;gk 2G , a commutator of weight k of the type

ŒŒ� � � ŒŒg1;g2�;g3�; : : :�;gk �

with all of its brackets to the left of all the elements occurring is called a simple
k –fold commutator, and is denoted by Œgi1

;gi2
; : : : ;gik

�.
� For any Z–module M and a commutative ring R, we denote M ˝Z R by

the symbol obtained by attaching subscript or superscript R to M , like MR

or M R . Similarly, for any Z–linear map f W A! B , the induced R–linear
map f ˝Z idRW AR! BR is denoted by fR or f R .

2.2 Automorphism group of a free group and its subgroups

Here we review some properties of the automorphism group of a free group. To begin
with, we recall the Nielsen’s finite presentation for Aut Fn . In this paper, we fix a basis
x1; : : : ;xn of a free group Fn of rank n. Let P , Q, S and U be automorphisms
of Fn defined as follows:

x1 x2 x3 � � � xn�1 xn

P x2 x1 x3 � � � xn�1 xn

Q x2 x3 x4 � � � xn x1

S x�1
1

x2 x3 � � � xn�1 xn

U x1x2 x2 x3 � � � xn�1 xn
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Namely, P is an automorphism induced from the permutation of x1 and x2 , Q is
induced from the cyclic permutation of the basis, and so on. Nielsen [32] obtained the
first finite presentation for Aut Fn in 1924.

Theorem 2.1 (Nielsen [32]) For n� 3, Aut Fn has a finite presentation with genera-
tors P , Q, S and U subject to relations

(R1) P2 D 1,

(R2) .QP /n�1 DQn D 1,

(R3) ŒP;Q�iPQi �D 1, .2� i � Œn=2�/,
(R4) S2 D 1,

(R5) ŒS;Q�1PQ�D ŒS;QP �D 1,

(R6) .PS/4 D .PSPU /2 D 1,

(R7) ŒU;Q�2PQ2�D ŒU;Q�2UQ2�D 1, .n� 4/,

(R8) ŒU;Q�2SQ2�D ŒU;SUS �D 1,

(R9) ŒU;QPQ�1PQ�D ŒU;PQ�1SUSQP �D 1,

(R10) ŒU;PQ�1PQPUPQ�1PQP �D 1,

(R11) PUPSU D USPS ,

(R12) .PQ�1UQ/2UQ�1U�1QU�1 D 1.

In Section 6, we use Nielsen’s presentation to compute twisted first cohomology groups
of Aut Fn . Let X˙1 WD fx˙1

1
;x˙1

2
; : : : ;x˙1

n g � Fn be the subset of all letters of Fn .
We denote by �n the subgroup of Aut Fn consisting of all � 2 Aut Fn that effect a
permutation on X˙1 . Then it is known that �n is a finite group of order 2nn! and is
generated by P , Q and S [32]. The subgroup �n is called the extended symmetric
group of degree n.

Next we consider the natural projection induced from the abelianization of Fn . Let
H WD F ab

n be the abelianization of Fn and � W Aut Fn! Aut H the natural homomor-
phism induced from the abelianization of Fn!H . Throughout the paper, we identify
Aut H with the general linear group GL.n;Z/ by fixing a basis of H induced from the
basis x1; : : : ;xn of Fn . Using Nielsen’s presentation, we easily see that � is surjective.
For any � 2 Aut Fn , we also denote �.�/ 2 GL.n;Z/ by � if there is no confusion.
With this notation, P , Q, S and U generate GL.n;Z/. In particular, it is known that

Theorem 2.2 (Magnus [26]; see also Coxeter–Moser [10, Section 7.3]) For n� 3,
the group GL.n;Z/ has a finite presentation with generators P , Q, S and U subject
to relations (R1), . . . , (R12) and

(R13) .SU /2 D 1.
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Now the kernel IAn of � is called the IA–automorphism group of Fn . Magnus [26]
showed that for any n� 3, IAn is finitely generated by automorphisms

Kij W xt 7!
(

xj
�1xixj t D i;

xt t ¤ i;

for distinct 1� i; j � n, and

Kijl W xt 7!
(

xi Œxj ;xl � t D i;

xt t ¤ i;

for distinct 1� i; j ; l �n and j < l . Recently, Cohen and Pakianathan [8; 9], Farb [11]
and Kawazumi [18] independently showed

(1) IAab
n ŠH�˝Zƒ

2H

as a GL.n;Z/–module where H� WDHomZ.H;Z/ is the Z–linear dual group of H . In
particular, from their result, we see that IAab

n is a free abelian group of rank 2n2.n�1/

with basis the coset classes of the Magnus generators Kij and Kijl .

We denote by S�n the image of �n by the natural projection �W Aut Fn ! Aut H .
Since IAn is torsion free, S�n is isomorphic to �n . Namely, S�n is a finite group of
order 2nn! generated by P , Q and S .

2.3 The free Lie algebra Ln and its derivations

In this subsection, we recall the free Lie algebra generated by H , and its derivation
algebra. Let �n.1/��n.2/� � � � be the lower central series of a free group Fn defined
by the rule

�n.1/ WD Fn; �n.k/ WD Œ�n.k � 1/;Fn�; k � 2:

We denote by Ln.k/ WD�n.k/=�n.kC1/ the k –th graded quotient of the lower central
series of Fn , and by Ln WD

L
k�1Ln.k/ the associated graded sum. It is classically

well known due to Witt [41] that each Ln.k/ is a free abelian group of rank

(2) rankZ.Ln.k//D 1

k

X
d jk

Möb.d/nk=d ;

where Möb is the Möbius function. The graded sum Ln naturally has a graded Lie
algebra structure induced from the commutator bracket on Fn , and called the free Lie
algebra generated by H . (See Reutenauer [34] for basic material concerning the free
Lie algebra.) For each k � 1, Aut Fn naturally acts on Ln.k/. Since the action of IAn

on Ln.k/ is trivial, that of GL.n;Z/D Aut Fn=IAn on Ln.k/ is well-defined.
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Next, we consider an embedding of the free Lie algebra into the tensor algebra. Let

T .H / WD Z˚H ˚H˝2˚ � � �
be the tensor algebra of H over Z. Then T .H / is the universal enveloping algebra of
the free Lie algebra Ln , and the natural map �W Ln! T .H / defined by

ŒX;Y � 7!X ˝Y �Y ˝X

for X , Y 2 Ln is an injective graded Lie algebra homomorphism. We denote by
�k W Ln.k/!H˝k the homomorphism of degree k part of �, and consider Ln.k/ as a
submodule H˝k through �k .

Here, we recall the derivation algebra of the free Lie algebra. Let Der.Ln/ be the
graded Lie algebra of derivations of Ln . Namely,

Der.Ln/ WD ff W Ln
Z�linear�����! Ln j f .Œa; b�/D Œf .a/; b�C Œa; f .b/�; a; b 2 Lng:

For k � 0, the degree k part of Der.Ln/ is defined to be

Der.Ln/.k/ WD ff 2 Der.Ln/ j f .a/ 2 Ln.kC 1/; a 2H g:
Then, we have

Der.Ln/D
M
k�0

Der.Ln/.k/;

and can consider Der.Ln/.k/ as

HomZ.H;Ln.kC 1//DH�˝ZLn.kC 1/

for each k � 1 by the universality of the free Lie algebra. Let DerC.Ln/ be a graded
Lie subalgebra of Der.Ln/.k/ with positive degree. (See Bourbaki [5, Section 8 of
Chapter II].) Similarly, we define a graded Lie algebra DerC.Ln;Q/ over Q. Then, we
have DerC.Ln;Q/D DerC.Ln/˝Z Q.

For k � 1, let 'k W H�˝ZH˝.kC1/!H˝k be the contraction map defined by

x�i ˝xj1
˝ � � �˝xjkC1

7! x�i .xj1
/ �xj2

˝ � � �˝ � � �˝xjkC1
:

For the natural embedding �kC1W Ln.k C 1/ ! H˝.kC1/ , we obtain a GL.n;Z/–
equivariant homomorphism

ˆk D 'k ı .idH � ˝ �kC1/W H�˝ZLn.kC 1/!H˝k :

We also call ˆk a contraction map. In Proposition 4.7, we study the irreducible
decomposition of DerC.Ln;Q/.k/ as a GL.n;Z/–module using the contraction map.
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Finally, we review the trace maps. For any k � 2, let fŒk�W H˝k ! SkH be the
natural projection defined by

xi1
˝ � � �˝xik

7! xi1
� � �xik

:

Then the composition map

TrŒk� WD fŒk� ıˆk W H�˝ZLn.kC 1/! SkH

is a GL.n;Z/–equivariant surjective homomorphism, and is called Morita’s trace map.
Morita studied the cokernel of the Johnson homomorphism of Aut Fn using Morita’s
trace map, and showed that SkHQ appears in the irreducible decomposition of it for
any k � 2.

Let fŒ1k �W H˝k !ƒkH be the natural projection defined by

xi1
˝ � � �˝xik

7! xi1
^ � � � ^xik

:

Then the composition map

TrŒ1k � WD fŒ1k � ıˆk W H�˝ZLn.kC 1/!ƒkH

is called the trace map for ƒkH . Using the trace map TrŒ1k � , we showed that ƒkHQ
appears in the cokernel of the Johnson homomorphism restricted to the lower central
series of IAn if 3�k �n and k is odd. (See the second author’s paper [35] for details.)
In Section 6, we show that TrŒ1k � defines a nontrivial twisted second cohomology class
of the automorphism group of a free nilpotent group.

2.4 Chen Lie algebra LM
n and its derivations

Here we recall the Chen Lie algebra generated by H , and its derivation algebra. Let
FM

n WD Fn=ŒŒFn;Fn�; ŒFn;Fn�� be a free metabelian group of rank n. Let �M
n .1/ �

�M
n .2/� � � � be the lower central series of a free group FM

n defined by the rule

�M
n .1/ WD FM

n ; �M
n .k/ WD Œ�M

n .k � 1/;FM
n �; k � 2:

We denote by LM
n .k/ WD �M

n .k/=�M
n .kC 1/ the k –th graded quotient of the lower

central series of FM
n , and by LM

n WD
L

k�1LM
n .k/ the associated graded sum. The

graded sum LM
n naturally has a graded Lie algebra structure induced from the com-

mutator bracket on FM
n by the same argument as the free Lie algebra Ln . The Lie

algebra LM
n is called the free metabelian Lie algebra or the Chen Lie algebra, generated

by H .

Since .FM
n /ab D H , Aut .FM

n /ab D Aut.H / D GL.n;Z/. By an argument similar
to the free Lie algebra, it turns out that each of the graded quotients LM

n .k/ is a
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GL.n;Z/–module. For 1 � k � 3, we have Ln.k/ D LM
n .k/. It is also classically

known due to Chen [7] that each LM
n .k/ is a free abelian group of rank

(3) rankZ.LM
n .k//D .k � 1/

�
nC k � 2

k

�
with basis

(4) fŒxi1
;xi2

; : : : ;xik
� j i1 > i2 � i3 � � � � � ikg:

Let DerC.LM
n / be the graded Lie algebra of derivations of LM

n with positive degree.
The degree k part of DerC.LM

n / is considered as

DerC.LM
n /.k/DH�˝ZLM

n .kC 1/:

Similarly, we define a graded Lie algebra DerC.LM
n;Q/ over Q. In Section 4.3, we give

the irreducible decomposition of DerC.LM
n;Q/.

Now, Morita’s trace map TrŒk� naturally factors through a surjective homomorphism
H� ˝Z Ln.k/ ! H� ˝Z LM

n .k/. Namely, TrŒk� induces a GL.n;Z/–equivariant
homomorphism

TrM
Œk�W H�˝ZLn.kC 1/! SkH:

(See [37, Section 3.2].) We also call it Morita’s trace map. In Section 5, we determine
the abelianization of DerC.LM

n / as a Lie algebra using Morita’s trace map TrM
Œk�

.

2.5 Lie algebra LN
n and its derivations

Let FN
n be the quotient group of Fn by Œ�n.3/; �n.3/�ŒŒ�n.2/; �n.2/�; �n.2/�. Let

�N
n .1/� �N

n .2/� � � � be the lower central series of a free group FN
n and LN

n .k/ WD
�N

n .k/=�
N
n .kC1/ its graded quotients. Similarly, the graded sum LN

n WD
L

k�1LN
n .k/

has a graded Lie algebra structure induced from the commutator bracket of FN
n .

In our paper [40], we have determined the Z–module structure of LN
n .k/, and showed

that its rank is given by

rankZ.LN
n .k//D .k � 1/

�
kC n� 2

k

�
C 1

2
n.n� 1/.k � 3/

�
nC k � 4

k � 2

�
;(5)

fŒxi1
;xi2

; : : : ;xik
� j i1 > i2 � i3 � � � � � ikgand

[fŒxi1
; : : : ;xik�2

; Œxik�1
;xik

�� j i1 > i2 � i3 � � � � � ik�2; ik�1 > ikg:(6)

is a basis of it.
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We [40] used these facts to investigate the cokernel of the Johnson homomorphism.
Let DerC.LN

n / be the graded Lie algebra of derivations of LN
n with positive degree.

The degree k part of DerC.LN
n / is considered as

DerC.LN
n /.k/DH�˝ZLN

n .kC 1/:

Similarly, we define a graded Lie algebra DerC.LN
n;Q/ over Q. In Section 4.4, we give

the irreducible decomposition of DerC.LN
n;Q/.

2.6 Johnson homomorphisms

For each k � 1, let Nn;k WDFn=�n.kC1/ of Fn be the free nilpotent group of class k

and rank n, and Aut Nn;k its automorphism group. Since the subgroup �n.kC 1/ is
characteristic in Fn , the group Aut Fn naturally acts on Nn;k . This action induces a
homomorphism

�k W Aut Fn! Aut Nn;k :

Let An.k/ be the kernel of �k . Then the groups An.k/ define a descending central
filtration

IAn DAn.1/�An.2/� � � � ;
called the Johnson filtration of AutFn . Set grk.An/ WDAn.k/=An.kC 1/. For each
k � 1, the group Aut Fn acts on grk.An/ by conjugation. This action induces that of
GL.n;Z/D Aut Fn=IAn on it.

In order to study the GL.n;Z/–module structure of grk.An/, the Johnson homomor-
phisms of Aut Fn are defined as follows. For each k � 1, define a homomorphism
z�k W An.k/! HomZ.H;Ln.kC 1// by

� 7! .x 7! x�1x� /; x 2H:

Then the kernel of z�k is just An.kC 1/. Hence it induces an injective homomorphism

�k W grk.An/ ,! HomZ.H;Ln.kC 1//DH�˝Z Ln.kC 1/:

The homomorphism �k is GL.n;Z/–equivariant, and is called the k –th Johnson
homomorphism of Aut Fn . Furthermore, we remark that the sum of the Johnson
homomorphisms forms a Lie algebra homomorphism as follows. Let gr.An/ WDL

k�1 grk.An/ be the graded sum of grk.An/. The graded sum gr.An/ has a graded
Lie algebra structure induced from the commutator bracket on IAn . Then the sum of
the Johnson homomorphisms

� WD
M
k�1

�k W gr.An/! DerC.Ln/

is a graded Lie algebra homomorphism.
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It is known that �1 gives the abelianization of IAn by an independent work of Cohen
and Pakianathan [8; 9], Farb [11] and Kawazumi [18] as mentioned above. Namely,
gr1.An/Š IAab

n . Furthermore, we have exact sequences

0! gr2.An/
�2�! HomZ.H;Ln.3//

TrŒ2����! S2H ! 0;

0! gr3
Q.An/

�3;Q��! HomQ.HQ;Ln;Q.3//
TrQ
Œ3�
˚TrQ

Œ13���������! S3HQ˚ƒ3HQ! 0:

as GL.n;Z/–modules. (See [35] for details.) In general, however, the GL.n;Z/–
module structure of grk

Q.An/ is not determined for k � 4.

To give a lower bound on the image of the Johnson homomorphisms �k , or equivalently
an upper bound on the cokernel of �k , it is sometimes useful to consider the restriction of
z�k to the lower central series of IAn . Let A0n.k/ be the lower central series of IAn with
A0n.1/D IAn . Since the Johnson filtration is central, A0n.k/�An.k/ for each k � 1.
Set grk.A0n/ WDA0n.k/=A0n.kC1/. Then GL.n;Z/ naturally acts on each of grk.A0n/,
and the restriction of z�k to A0n.k/ induces a GL.n;Z/–equivariant homomorphism

� 0k W grk.A0n/!H�˝Z Ln.kC 1/:

We also call � 0
k

the Johnson homomorphism of Aut Fn . We remark that if we denote
by ik W grk.A0n/! grk.An/ the homomorphism induced from the inclusion A0n.k/ ,!
An.k/, then � 0

k
D �k ı ik for each k � 1.

Let Cn.k/ be a quotient module of H˝k by the action of cyclic group Cyck of order k

on the components. Then we have

Cn.k/ŠH˝k
ıha1˝ a2˝ � � �˝ ak � a2˝ a3˝ � � �˝ ak ˝ a1 j ai 2H i:

In our paper [38], we showed that for any k � 2 and n� kC 2,

(7) Coker.� 0k;Q/Š CQ
n .k/:

Now, by the same argument as �k , we can define the Johnson homomorphisms �M
k

of Aut FM
n as follows. Let AM

n .k/ be the kernel of a natural homomorphism
Aut FM

n ! Aut .Fn=�
M
n .kC 1//, and grk.AM / WDAM

n .k/=AM
n .kC 1/ its graded

quotient. Then a GL.n;Z/–equivariant injective homomorphism

�M
k W grk.AM

n / ,!H�˝Z LM
n .kC 1/

is defined by � 7! .x 7! x�1x� /. In our paper [37], we showed that

0! grk.AM
n /

�M
k��! HomZ.H;LM

n .kC 1//
TrM
Œk����! SkH ! 0

is an exact sequence of GL.n;Z/–modules for each k � 2 and n� 4.
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2.7 Automorphism group of a free nilpotent group

In this section we recall some properties of the automorphism group Aut Nn;k of a free
nilpotent group Nn;k . First, we consider generators of Aut Nn;k . For any � 2 Aut Fn ,
we also denote �k.�/ 2 Aut Nn;k by � if there is no confusion. Andreadakis [1]
showed that �2 is surjective, and that �k is not surjective for k � 3. Hence Aut Nn;2

is generated by the Nielsen’s generators P , Q, S and U .

For k � 3, Goryaga [13] showed that Aut Nn;k is finitely generated for n� 3 �2k�2Ck

and k�2. In 1984, Andreadakis [2] showed that Aut Nn;k is generated by P , Q, S , U

and k � 2 other elements for n� k � 2. In this paper, we use the following result of
Bryant and Gupta. Let � be an automorphism of Nn;k , defined by

� W xt 7!
(
Œx1; Œx2;x1��x1 t D 1;

xt t ¤ 1:

Then Bryant and Gupta [6] showed that for k � 3 and n� k � 1, the group Aut Nn;k

is generated by P , Q, S , U and � . In Section 6, we use these generators to compute
the first cohomology group of Aut Nn;k . We remark that no presentation for Aut Nn;k

is known except for Aut N2;k for k D 1; 2 and 3 due to Lin [25].

Next, we consider a relation between Aut Nn;k and Aut Nn;kC1 . For k � 1, we have
a natural central group extension

0! Ln.kC 1/!Nn;kC1!Nn;k ! 1:

In this paper, we identify Ln.kC 1/ with its image in Nn;kC1 . Namely, Ln.kC 1/

is equal to the .kC1/–st term of the lower central series of Nn;kC1 . In particular,
Ln.kC1/ is a characteristic subgroup of Nn;kC1 . Hence the projection Nn;kC1!Nn;k

induces a homomorphism  k W Aut Nn;kC1 ! Aut Nn;k . In order to investigate the
kernel of  k , we consider the degree k part of the derivation algebra of the free Lie
algebra. For any f 2 HomZ.H;Ln.kC 1//, define a map zf W Nn;kC1!Nn;kC1 by

x
zf D .Œx�/f x

where Œx�2H is the image of x in H under the natural projection Nn;kC1!H . Then
zf is an automorphism of Nn;kC1 , and a map HomZ.H;Ln.k C 1//! Aut Nn;kC1

defined by f 7! zf is an injective homomorphism whose image coincides with the
kernel of  k . Namely, for k � 1, we have a group extension

(8) 0! HomZ.H;Ln.kC 1//! Aut Nn;kC1! Aut Nn;k ! 1

introduced by Andreadakis [1]. (For details, see also Morita [29, Proposition 2.3].)
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Let Tn;k be the image of the homomorphism �k W Aut Fn! Aut Nn;k for each k � 1.
Clearly, the group Tn;k is generated by P , Q, S and U , and is called the tame
automorphism group of Nn;k . The exact sequence (8) induces

(9) 0! grk.An/! Tn;kC1! Tn;k ! 1:

In Section 6, we use these two group extensions to study twisted cohomology groups
of Tn;k and Aut Nn;k .

3 Representation theory of GL.n; Q/ and the symmetric
group Sk

In this section, we prepare some results in representation theory for GL.n;Q/, namely
Cartan and Weyl’s highest weight theory, several tensor product theorems and the
Schur–Weyl duality for GL.n;Q/ and the symmetric group Sk . At the end of this
section, we briefly recall Kraśkiewicz and Weyman’s combinatorial description for the
branching rules of irreducible Sk –modules to a cyclic subgroup Cyck of order k .

3.1 Partitions and symmetric functions

A partition �D .�1; �2; : : :/ is a sequence of decreasing nonnegative integers �1 �
�2 � � � � � 0. We denote the set of partitions by P . Set j�j WD �1C �2C � � � . If a
partition satisfies j�j D m, then we call � a partition of m and write � ` m. The
conjugate partition of � is the partition �0D .�0

1
; �0

2
; : : :/ defined by �0i WD ]fj j�j � ig.

Put `.�/D ]fi j �i ¤ 0g, we call it the length of �.

We can see a partition � D .�1; �2; : : :/ as the set of points .i; j / 2 Z2 such that
1� j � �i . Usually it is convenient to replace nodes by boxes. We call such a diagram
the Young diagram of shape �. We also denote the diagram of a partition � by the same
symbol �. For two partitions � and � satisfying �� �, we say that � is obtained by
adding a vertical strip to � if the difference �n� does not contain more than one box
in each row. An vertical n–strip means a vertical strip consisting n boxes. If we can
obtain a partition � by adding a box x to a partition �, we call the box x an addable
box to �. We also call the box x a removable box from �.

For a partition � of m, a semistandard (resp. standard) tableaux of shape � is an array
T D .Tij / of positive integers 1; 2; : : : ;m of shape � that is weakly (resp. strictly)
increasing in every row and strictly increasing in every column.

Algebraic & Geometric Topology, Volume 11 (2011)



2876 Naoya Enomoto and Takao Satoh

For a partition �D .�1; �2; : : : ; �n/, we define a polynomial in n–variables by

s�.x1; : : : ;xn/ WD
det.x�jCn�j

i /1�i;j�n

det.xn�j
i /1�i;j�n

:

This is a homogeneous symmetric polynomial of degree j�j. We call it the Schur
polynomial associated to �. For two partitions �D .�1; : : : ; �n/ and �D .�1; : : : ; �n/,
we define the Littlewood–Richardson coefficients LR��� by

s�.x1; : : : ;xn/ � s�.x1; : : : ;xn/D
X
�

LR��� s�.x1; : : : ;xn/:

Then LR��� becomes a nonnegative integer. The following property is well known.

Proposition 3.1 Let �;�; � be partitions.

(1) LR��;� D LR��;� .

(2) LR�
.0/;�
D LR�

�;.0/
D ı�;� .

(3) LR��;� D 0 unless j�j D j�jC j�j.
(4) LR�

�;�
D LR�

�;�
D ı�;.0/ .

3.2 Highest weight theory for GL.n; Q/

Let Tn WD fdiag.t1; : : : ; tn/ j tj ¤ 0; 1 � j � ng be the maximal torus of GL.n;Q/.
We define one-dimensional representations "i of Tn by "i.diag.t1; : : : ; tn//D ti . Then

PGL.n;Q/ WD f�1"1C � � �C�n"n j �i 2 Z; 1� i � ng Š Zn;

PCGL.n;Q/ WD f�1"1C � � �C�n"n 2 PGL.n;Q/ j �1 � �2 � � � � � �ng
gives the weight lattice and the set of dominant integral weights of GL.n;Q/ re-
spectively. In the following, for simplicity, we often write G D GL.n;Q/, T D Tn ,
P DPGL.n;Q/ and PC DPCGL.n;Q/ . Furthermore, we write �D .�1; : : : ; �n/ 2 Zn for
�D �1"1C � � �C�n"n 2 P or PC if there is no confusion.

For a rational representation V of G , there exists an irreducible decomposition V DL
�2P V� as a T –module where V� WD fv 2 V j tv D t

�1

1
t
�2

2
� � � t�n

n v for any t 2 T g.
We call this decomposition a weight decomposition of V with respect to T . If V�¤f0g,
then we call � a weight of V . For a weight �, a nonzero vector v 2 V� is called a
weight vector of weight �.

Let U be the subgroup of G consisting of all upper unitriangular matrices in G . For
a rational representation V of G , we set V U WD fv 2 V j uv D v for all u 2 U g. We
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call a nonzero vector v 2 V U a maximal vector of V . This subspace V U is T –stable.
Thus, as a T –module, V U has an irreducible decomposition V U DL�2P V U

�
where

V U
�
WD V U \V� .

Theorem 3.2 (Cartan and Weyl’s highest weight theory) (1) Any rational repre-
sentation of V is completely reducible.

(2) Suppose V is an irreducible rational representation of G . Then V U is one-
dimensional, and the weight � of V U D V U

�
belongs to PC . We call this � the

highest weight of V , and any nonzero vector v 2 V U
�

is called a highest weight
vector of V .

(3) For any � 2 PC , there exists a unique (up to isomorphism) irreducible rational
representation L� of G with highest weight �. Moreover, for two �;� 2 PC ,
L� ŠL� if and only if �D �.

(4) The set of isomorphism classes of irreducible rational representations of G is
parameterized by the set PC of dominant integral weights.

(5) Let V be a rational representation of G and �V a character of V as a T –
module. Then for two rational representation V and W , they are isomorphic as
G –modules if and only if �V D �W .

Remark 3.3 We can parameterize the set of isomorphism classes of irreducible
rational representations of G by PC . On the other hand, we define the determi-
nant representation by detW GL.n;Q/ 3 X ! det X 2 Q� . Its highest weight is
.1; 1; : : : ; 1/ 2 PC . For an integer e , we denote by dete the irreducible GL.n;Q/–
representation of highest weight .e; e; : : : ; e/ 2 PC . This is the one dimensional
representation defined by GL.n;Q/ 3 X ! .det X /e 2 Q� . If � 2 PC satisfies
�n < 0, then L� Š det��n ˝L.�1��n;�2��n;:::;0/ . Therefore we can parameterize the
set of isomorphism classes of irreducible rational representations of G by the set
f.�; e/g where � is a partition such that `.�/� n and e 2 Z<0 . Moreover the set of
isomorphism classes of polynomial irreducible representations is parameterized by the
set of partitions � such that `.�/� n.

Note that the dual representation of L.�1;�2;:::;�n/ is isomorphic to L.��n;:::;��2;��1/ .
Especially, the natural representation HQ DQn of G and its dual representation H�Q
are irreducible with highest weight .1; 0; : : : ; 0/ and .0; : : : ; 0;�1/ respectively. We
also have H�Q Š det�1˝L.1;:::;1;0/ .

There is another parameterization of irreducible rational representations of G . For any
� 2 PC , we define two partitions �C and �� by

�C WD .max.�1; 0/; : : : ;max.�n; 0//;

�� WD .�min.�n; 0/; : : : ;�min.�1; 0//:
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Then there is a bijection

PC! f.�I �/ 2 P �P j `.�/C `.�/� ng:
defined by � 7! .�CI��/. Using this bijection, we can parameterize the isomorphism
classes of irreducible rational representations of G by the set fLf�CI��gg. Note that
under this notation, we have .Lf�I�g/� ŠLf�I�g .

Theorem 3.4 (Weyl’s character and dimension formula for GL.n;Q/)

(1) For a partition �, let �� be a character of an irreducible polynomial repre-
sentation L� . Then we have ��.t/ D s�.t1; : : : ; tn/ for a diagonal matrix
diag.t1; : : : ; tn/ 2 T .

(2) For a partition �, the dimension of the irreducible polynomial representation L�

coincides with the number of semistandard tableaux on �.

3.3 Decompositions of tensor products

In this subsection, we recall some decomposition formulae of tensor products.

Theorem 3.5 (Pieri’s formula) Let � be a partition such that `.�/� n. Then

L.1
k/˝L� Š

M
�

L�;

where � runs over the set of partitions obtained by adding a vertical k –strip to � such
that `.�/� n.

Theorem 3.6 (Koike [20, Theorem 2.4]) For four partitions �; �; � and � such that
`.�/C `.�/C `.�/C `.�/� n, we have

Lf�I�g˝Lf� I�g Š
M
�;�2P;

`.�/C`.�/�n

LRf�I�g
f�I�g;f� I�g

Lf�I�g:

Here the coefficient LRf�I�g
f�I�g;f� I�g

is defined to beX
˛;ˇ;
;ı2P

�X
�2P

LR��˛ LR��ˇ

��X
�2P

LR��
 LR��ı

�
LR�˛ı LR�

ˇ

:

Corollary 3.7 Assume that 1C `.�/� n. Then we have

Lf0I.1/g˝Lf� I0g ŠLf� I.1/g˚
M

�;`.�/�n

LR�.1/;�Lf�I0g:
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Proof Under the notation of Theorem 3.5, we suppose �D �D .0/. By Proposition 3.1,
we have LR��˛ LR�

�ˇ
D 0 unless � D ˛ D ˇ D .0/. Hence we obtain

LRf�I�g
f.0/I.1/g;f� I.0/g

D
X

;ı

�X
�

LR.1/�
 LR��;ı

�
LR�.0/ı LR�

.0/

:

Since LR�
.0/ı

LR�
.0/

D 0 unless ı D � and 
 D � by Proposition 3.1, we have

LRf�I�g
f.0/I.1/g;f� I.0/g

D
X
�

LR.1/�;� LR��� :

Since LR.1/�;� D 0 unless � D .1/ or .0/, we have

LRf�I�g
f.0/I.1/g;f� I.0/g

D LR.1/
.1/;�

LR�.1/�CLR.1/
.0/;�

LR�.0/� :

By Proposition 3.1, we have LR.1/
.1/;�

D ı�;.0/ , LR.1/
.0/;�

D ı�;.1/ and LR�
.0/�
D ı�;� .

Therefore we obtain

LRf�I�g
f.0/I.1/g;f� I.0/g

D ı�;.1/ı�;�CLR�.1/� ı�;.0/

and our claim.

Corollary 3.8 (Multiplicities of trivial representation) If `.�/C`.�/C`.�/C`.�/�n,
then ŒL.0/ WLf�I�g˝Lf� I�g�D ı�;�ı�;� where ıa;b is Kronecker’s delta.

Proof Under the notation of Theorem 3.5, we suppose �D�D .0/. By Proposition 3.1,
we have

LRf.0/I.0/g
f�I�g;f� I�g

D 0

unless ˛ D ˇ D 
 D ı D .0/. Thus we have

LRf.0/I.0/g
f�I�g;f� I�g

D
�X

�

LR�
�.0/

LR��.0/

��X
�

LR�
�.0/

LR��.0/

�
:

By Proposition 3.1, the righthand side is 0 unless � D � D � and � D �D � . Thus we
obtain

LRf.0/I.0/g
f�I�g;f� I�g

D ı�;�ı�;�
and our claim.
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3.4 Schur–Weyl duality

For the natural representation HQ Š L.1;0;:::;0/ of GL.n;Q/, we consider the m–th
tensor product representation GL.n;Q/!GL.H˝m/. The symmetric group Sm acts
on .HQ/

˝m by � � .v1˝ � � �˝ vm/D v�.1/˝ � � � v�.m/ for � 2Sm . Since these two
actions are commutative, we can decompose H˝m as a GL.n;Q/�Sm –module. Let
us recall this irreducible decomposition, called the Schur–Weyl duality for GL.n;Q/
and Sm .

Theorem 3.9 (Schur–Weyl duality for GL.n;Q/ and Sm )

(1) Let � be a partition of m such that `.�/ � n. There exists a nonzero maximal
vector v� with weight � satisfying the following three conditions:
(i) The Sm –invariant subspace S� WD P

�2Sm
Q�v� gives an irreducible

representation of Sm .
(ii) The subspace .H˝m

Q /U
�

of weight � coincides with the subspace S� .
(iii) The GL.n;Q/–module generated by v� is isomorphic to the irreducible

representation L� of GL.n;Q/ associated to �.

(2) We have the irreducible decomposition

H˝m
Q Š

M
�D.�1������n�0/`m

L�� S�

as GL.n;Q/ �Sm –modules. Here L� � S� is the external tensor product
representation of the GL.n;Q/–module L� and the Sm –module S� .

(3) Suppose n�m. Then fS� j � `mg gives a set of complete representatives of
irreducible representations of Sm .

3.5 Combinatorial description of branching laws from Sm to Cycm

Let Cycm be a cyclic group of order m. Take a generator �m of Cycm and a primitive
m–th root of unity �m 2 C. In this section, we consider representations of the cyclic
group Cycm over an intermediate field Q.�m/�K� C.

Define one-dimensional representations (or characters) �j
mW Cycm!K� by �j

m.�m/ WD
�

j
m for 0� j �m� 1. In particular, we denote the trivial representation �0

m by trivm .
The set of isomorphism classes of irreducible representations of Cycm is given by
f�j

m; 0� j �m� 1g.
Consider Cycm as a subgroup of Sm by the embedding � i

m 7! .1 2 � � � m/i for
0� i �m� 1. Let us recall Kraśkiewicz and Weyman’s combinatorial description for
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the branching rules of irreducible Sm –modules S� to the cyclic subgroup Cycm . To
do this, first we define a major index of a standard tableau. For a standard tableau T ,
we define the descent set of T to be the set of entries i in T such that iC1 is located
in a lower row than that which i is located. We denote by D.T / the descent set of T .
The major index of T is defined by

maj.T / WD
X

i2D.T /

i:

If D.T /D∅, we set maj.T /D 0.

Theorem 3.10 (Kraśkiewicz–Weyman [23]; Reutenauer [34, Theorem 8.8, 8.9];
Garsia [12, Theorem 8.4]) The multiplicity of �j

m in ResSm

Cycm
S� is equal to the

number of standard tableau with shape � satisfying maj.T /� j modulo m.

Example 3.11 For m� 2, Table 1 shows on the multiplicities of trivm D �0
j and �1

j .

4 Irreducible decomposition of the derivation algebras
over Q

In this section, we give the irreducible decompositions of each of the degree k parts of
the derivation algebras CQ

n , DerC.Ln;Q/, DerC.LM
n;Q/ and DerC.LN

n;Q/. For describ-
ing the multiplicity of L� , we will use a representation of Cycm over an intermediate
field Q.�m/ � K � C. But we should note that our irreducible decompositions of
CQ

n .k/, Ln;Q.k/, DerC.Ln;Q/.k/, DerC.LM
n;Q/.k/ and DerC.LN

n;Q/.k/ hold over Q.

4.1 Decomposition of CQ
n .k/

For the natural representation HQ ŠL.1;0;:::;0/ of GL.n;Q/, the module CQ
n .k/ can

be considered as a quotient module of H˝k
Q by the action of the cyclic subgroup Cyck

of Sk on the components:

CQ
n .k/ŠH˝k

Q
ı

Q- span
˝
v� � i

kv
ˇ̌
1� i � k � 1; 8v 2H˝k

Q
˛
;

where �k is a generator of Cyck . In this subsection, we give the irreducible decompo-
sition of CQ

n .k/.

Since the actions of GL.n;Q/ and Sk commute, the space CQ
n .k/ is a GL.n;Q/–

module. Let prW H˝k
Q � CQ

n .k/ be the natural projection. The map pr is a GL.n;Q/–
equivariant homomorphism.

Algebraic & Geometric Topology, Volume 11 (2011)



2882 Naoya Enomoto and Takao Satoh

� T major index mult. of trivm mult. of �1
m

.m/ 1 2 m� � � 0 1 0

.m� 1; 1/

1 m� � �2

p

.2� p �m/

p� 1 0 1

.1m/

1

m

:::

2

m.m� 1/

2

�
�

0 if m:odd
�m=2 if m:even

�
1 m W odd
0 m W even

�
1 mD 2

0 m¤ 2

.2; 1m�2/

1

m

:::

2

p

.2� p �m/

m.m� 1/

2
� .p� 1/

�
�

1�p if m:odd
1�p�m=2 if m:even

�
1 m W even
0 m W odd

�
1 m¤ 2

0 mD 2

Table 1: The multiplicities of trivm D �0
j and �1

j for m� 2

Proposition 4.1 (Irreducible decomposition of CQ
n .k/) For �D.�1; �2; : : : ; �n/2PC,

the multiplicity of L� in CQ
n .k/ as a GL.n;Q/–module is given by

ŒL� W CQ
n .k/�D

8<:Œtrivk W ResSk

Cyck
S��D 1

k

X
�2Cyck

��.�/ if � ` k;

0 otherwise:

Here, Œtrivk W ResSk

Cyck
S�� means the multiplicity of the trivial representation trivk of

Cyck in the restriction of the irreducible Sk –module S� .

Proof By the Schur–Weyl duality, complete reducibility and Schur’s lemma, the
subspace CQ

n .k/
U
�

coincides with pr.S�/. Therefore ŒL� W CQ
n .k/� D dimQ pr.S�/.

On the other hand, the restriction ResSk

Cyck
S� has a direct isotypic decomposition
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S�˝Q K DLk�1
jD0 Vj over K where Vj is a certain direct sum of the irreducible

representation �j of Cyck , namely Vj D fv 2 S� j �kv D �j

k
vg for 0� j � k � 1.

Then, Ker.pr/˝Q KDLj¤0 Vj . In fact, if 0¤ v 2 Vj for j ¤ 0, we have v��kvD
.1� �k/v 2 Ker.pr/. Since 1� �j

k
¤ 0 for 1 � j � k � 1, v 2 Ker.pr/˝Q K. Thus

we obtain Vj � Ker.pr/˝Q K for j ¤ 0. Conversely, for any v 2H˝k
K , there exists

v0 2 V0 and v0 2Lj¤0 Vj such that v D v0C v0 . Since
L

j¤0 Vj is Cyck –stable,
v � �v D .v0C v0/� .v0C �v0/ D v0 � �v0 2

L
j¤0 Vj for any � 2 Cyck . Hence

Ker.pr/˝Q K�Lj¤0 Vj .

Therefore we obtain pr.S�/ŠV0 as a vector space, and ŒL� WCQ
n .k/�DdimQ pr.S�/D

dimK V0 D Œtrivk W ResSk

Cyck
S��. The second equality of the claim follows from the

ordinary character theory of finite groups.

For the symmetric product V D SkHQ DL.k/ or the exterior product V DƒkHQ D
L.1

k/ , we calculate the multiplicity ŒV W CQ
n .k/� as follows:

Corollary 4.2 (Explicit results as a GL.n;Q/–module)

(1) ŒL.k/ W CQ
n .k/�D 1.

(2) ŒL.1
k/ W CQ

n .k/�D
(

1 k is odd and k � n,

0 otherwise:

(3) ŒL.2;1
k�2/ W CQ

n .k/�D
(

1 k is even and k � n,

0 otherwise:

Proof The claims follows from direct computation for irreducible decompositions of
ResSk

Cyck
S .k/ , ResSk

Cyck
S .1

k/ and ResSk

Cyck
S .2;1

k�2/ respectively. But the claim also
follows from Kraśkiewicz and Weyman’s combinatorial description. (See Theorem 3.10
and Example 3.11.)

4.2 Decomposition of DerC.Ln;Q/

In this subsection, we consider the irreducible decomposition of the derivation algebra
of the free Lie algebra Ln;Q . The degree m part Ln;Q.m/ of Ln;Q is a submodule
of H˝m

Q as a representation of GL.n;Q/. The irreducible decomposition of Ln;Q.m/

is obtained by the following theorem.

Theorem 4.3 (Kljačko [19]) (1) Let us consider a subspace Lm of H˝m
K gen-

erated by all elements v 2 H˝m
K such that �mv D �mv . Then Lm becomes

a GL.n;K/–submodule of H˝m
K . Moreover as GL.n;K/–module, we have

Lm Š Ln;Q.m/˝Q K.
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(2) For �D.�1; �2; : : : ; �n/2PC, the multiplicity of L� in Ln;Q.m/ as a GL.n;Q/–
module is given by

ŒL� W Ln;Q.m/�D
(
Œ�1 W ResSm

Cycm
S�� if �n � 0 .� is a partition/;

0 otherwise:

Remark 4.4 We can obtain a more explicit description of the right hand side by using
the Möbius function as follows:

Œ�1 W ResSm

Cycm
S��D 1

m

X
g2Cycm

�1.g/�
�.g/D 1

m

X
d jn

Möb.d/��.�n=d
m /:

Next, we consider the irreducible decomposition of H�Q˝Ln;Q.m/ as a GL.n;Q/–
module.

Proposition 4.5 (Irreducible decomposition of H�Q˝Ln;Q.m/) For any partition
�D .�1; �2; : : : ; �n/, the multiplicity of the irreducible polynomial representation L�

in H�Q˝Ln;Q.m/ is given by

ŒL� WH�Q˝Ln;Q.m/�D
X
�

ŒL� W Ln;Q.m/�;

where � runs over all partitions obtained by removing a vertical .n�1/–strip from
.�1C 1; : : : ; �nC 1/.

Proof Recall that H�QŠdet�1˝L.1
n�1;0/ . Since the highest weight of the irreducible

rational representation det�1 is .�1; : : : ;�1/, we have det�1˝L� ŠL��.1
n/ . Thus

we obtain

ŒL� WH�Q˝Ln;Q.m/�D ŒL.�1C1;:::;�nC1/ WL.1;1;:::;1;0/˝Ln;Q.m/�:

By the Pieri’s formula given by Theorem 3.5, we have L.1
n�1;0/ ˝L� DL

� L� ,
where � runs over all partitions obtained by adding a vertical .n�1/–strip to � such
that `.�/� n. Thus we conclude the claim.

Here we consider the multiplicities of the symmetric product and the exterior product
of HQ in H�Q˝Ln;Q.m/.

Corollary 4.6 (Explicit results as GL.n;Q/–modules)

(1) ŒL.m�1;0;:::;0/ WH�Q˝Ln;Q.m/�D 1.

(2) ŒL.1
m�1;0/ WH�Q˝Ln;Q.m/�D 1 for 1� 1Cm� n.
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Proof (1) By Proposition 4.5 and Theorem 4.3, we have

ŒL.m�1;0;:::;0/ WH�Q˝Ln;Q.m/�D ŒL.m;1;:::;1/ WL.1n�1;0/˝Ln;Q.m/�

D ŒL.m;0;:::;0/ WLn;Q.m/�C ŒL.m�1;1;0;:::;0/ WLn;Q.m/�

D Œ�1
m WResSm

Cycm
S .m/�C Œ�1

m WResSm

Cycm
S .m�1;1/�:

The claim follows from Example 3.11.

(2) By Proposition 4.5 and Theorem 4.3, we have

ŒL.1
m�1;0/ WH�Q˝Ln;Q.m/�D ŒL.2m�1;1n�mC1/ WL.1n�1;0/˝Ln;Q.m/�

D ŒL.1m;0/ W Ln;Q.m/�C ŒL.2;1m�2;0/ W Ln;Q.m/�

D Œ�1
m W ResSm

Cycm
S .1

m/�C Œ�1
m W ResSm

Cycm
S .2;1

m�2/�:

The claim also follows from Example 3.11.

From the corollary above, we verify that the multiplicities of SkH and ƒkH in
DerC.Ln;Q/.k/ D H�Q˝Ln;Q.kC 1/ are both one. We can write down each of a
maximal vector of SkHQ and ƒkHQ in DerC.Ln;Q/.k/. A maximal vector of SkHQ
is given by

v.k/ WD
nX

iD2

x�i ˝ Œxi ;x1; : : : ;x1� 2 DerC.Ln;Q/.k/

and that of ƒkHQ is given by

v.1k/ WD
X
�2S

X
l¤�.1/

sgn.�/x�l ˝ Œxl ;x�.1/;x�.2/; : : : ;x�.k/� 2 DerC.Ln;Q/.k/:

We leave the proof to the reader as exercises.

More generally, we show that the multiplicity of L� coincides with ŒL� WH˝k
Q � D

dim S� . In other words, the following theorem and corollary describes the kernel of
the contraction map ˆk

Q .

Proposition 4.7 As a GL.n;Q/–module, we have a direct decomposition

H�Q˝Ln;Q.kC 1/ŠH˝k
Q ˚W

for some subrepresentation W such that all irreducible components of W are non-
polynomial representations. In particular, the kernel of the contraction map ˆk

Q is
isomorphic to W .
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Proof We shall prove that

ŒL� WH�Q˝Ln;Q.kC 1/�D dim S� .D ŒL� WH˝k
Q �/

for any partition � of k . By Proposition 4.5, we have

ŒL� WH�Q˝Ln;Q.kC 1/�D
X
�

ŒL� W Ln;Q.kC 1/�;

where � runs over all elements in the set of partitions obtained by removing a vertical
.n�1/–strip from .�1C 1; : : : ; �nC 1/. But for a partition �, this set coincides with
the set of partitions obtained by adding one box to �. Thus, by Theorem 4.3, we have

ŒL� WH�Q˝Ln;Q.kC 1/�D
X

x

ŒL�tfxg W Ln;Q.kC 1/�

D
X

x

Œ�1 W ResSkC1

CyckC1
S�tfxg�

D
�
�1 W

M
x

ResSkC1

CyckC1
S�tfxg

�
;

where x runs over all addable boxes to �.

Recall that IndSkC1

Sk
S� ŠLx S�tfxg where x runs over the set of addable boxes

to �. Therefore we obtain

ŒL� WH�Q˝Ln;Q.kC 1/�D ��1 W ResSkC1

CyckC1
IndSkC1

Sk
S�
�

D �S� W ResSkC1

Sk
IndSkC1

CyckC1
�1

�
:

by the Frobenius reciprocity. We shall use Mackey’s decomposition theorem for
SkC1 , Sk and CyckC1 . But since Sk [ Cyck generates SkC1 , in this case the
.Sk ;CyckC1/–coset is trivial. Moreover Sk \ CyckC1 D f1g. Thus by Mackey’s
decomposition theorem, we have�

S� W ResSkC1

Sk
IndSkC1

CyckC1
��kC1

�D �S� W IndSk

f1g
Res

CyckC1

f1g
��kC1

�
:

Here IndSk

f1g
Res

CyckC1

f1g
��kC1

D IndSk

f1g
.triv/ is isomorphic to the regular representation

of Sk . Since the multiplicity of S� in the regular representation of Sk is equal to the
dimension of S� , we conclude ŒL� WH�Q˝Ln;Q.kC 1/�D dim S� .

Corollary 4.8 Under the notation above, we have

W Š
M

�I`.�/�n

ŒL� W Ln;Q.kC 1/�Lf�I.1/g:
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Proof This follows from Corollary 3.7.

In [38], we have obtained a GL.n;Q/–equivariant exact sequence

0! Im.� 0k;Q/! DerC.Ln;Q/.k/! CQ
n .k/! 0

for any n � k C 2. Hence if we fix an integer k � 2, for any n � k C 2 we can
calculate the irreducible decompositions of CQ

n .k/ and Im.� 0
k;Q/ using Proposition 4.1,

Theorem 4.3, Proposition 4.5, Proposition 4.7 and Corollary 4.8. We give tables of the
irreducible decompositions of CQ

n .k/ and Im.� 0
k;Q/ in Tables 2 and 3.

k CQ
n .k/D Coker.� 0

k;Q/, n� kC 2

1 0 Andreadakis [1]
2 .2/ Pettet [33]
3 .3/˚ .13/ Satoh [35]
4 .4/˚ .2; 2/˚ .2; 12/ Satoh [39]
5 .5/˚ .3; 2/˚ 2.3; 12/˚ .22; 1/˚ .15/

6 .6/˚ 2.4; 2/˚ 2.4; 12/˚ .32/˚ 2.3; 2; 1/

˚ .3; 13/˚ 2.23/˚ .22; 12/˚ .2; 14/

7 .7/˚ 2.5; 2/˚ 3.5; 12/˚ 2.4; 3/˚ 5.4; 2; 1/

˚ 2.4; 13/˚ 3.32; 1/˚ 3.3; 22/˚ 5.3; 2; 12/

˚ 3.3; 14/˚ 2.23; 1/˚ 2.22; 13/˚ .17/

Table 2: Decompositions of CQ
n .k/ . For simplicity, we write .�/ for an

irreducible polynomial representation L.�/ .

4.3 Decomposition of DerC.LM
n;Q/

We have a basis (4) of LM
n .k/ for each k � 1. Note that an element Œx2;x1; : : : ;x1�

is a maximal vector with weight .k � 1; 1/ in LM
n;Q.k/. The number of elements

satisfying i1 > i2 � i3 � � � � � ik coincides with the number of semistandard tableau of
shape .k � 1; 1/. Thus we see LM

n;Q.k/ is isomorphic to the irreducible representation
L.k�1;1/ as a GL.n;Q/–module by Theorem 3.4. Using Corollary 3.7, we have:

Proposition 4.9 For any k � 1 and n� kC 2,

DerC.LM
n;Q/.k/DH�Q˝LM

n;Q.kC 1/ŠLf.k;1/I.1/g˚Lf.k/I0g˚Lf.k�1;1/I0g:
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k polynomial part of Im.� 0
k;Q/ nonpolynomial part of Im.� 0

k;Q/

1 .1/ .1; 1/

2 .12/ .2; 1/

3 2.2; 1/ .3; 1/˚.2; 12/

4 3.3; 1/˚.22/˚2.2; 12/˚.14/ .4; 1/˚.3; 2/˚.3; 12/

˚.22; 1/˚.2; 13/

5 4.4; 1/˚4.3; 2/˚4.3; 12/ .5; 1/˚.4; 2/˚2.4; 12/˚.32/

˚4.22; 1/˚4.2; 13/ ˚3.3; 2; 1/˚.3; 13/

˚2.22; 12/˚.2; 14/

6 5.5; 1/˚7.4; 2/˚8.4; 12/˚4.32/ .6; 1/˚2.5; 2/˚2.5; 12/˚2.4; 3/

˚14.3; 2; 1/˚9.3; 13/˚3.23/ ˚5.4; 2; 1/˚3.4; 13/˚3.32; 1/

˚8.22; 12/˚4.2; 14/˚.16/ ˚3.3; 22/˚5.3; 2; 12/˚2.3; 14/

˚2.23; 1/˚2.22; 13/˚.2; 15/

7 6.6; 1/˚12.5; 2/˚12.5; 12/˚12.4; 3/ .7; 1/˚2.6; 2/˚3.6; 12/˚4.5; 3/

˚30.4; 2; 1/˚18.4; 13/˚18.32; 1/ ˚8.5; 2; 1/˚4.5; 13/˚.42/

˚18.3; 23/˚30.3; 2; 12/˚12.3; 14/ ˚9.4; 3; 1/˚6.4; 22/˚12.4; 2; 12/

˚12.23; 1/˚12.22; 13/˚6.2; 15/ ˚4.4; 14/˚6.32; 2/˚9.3; 22; 1/

˚8.3; 2; 13/˚3.3; 15/˚.24/

˚4.23; 12/˚2.22; 14/˚.2; 16/

Table 3: Decompositions of Im.� 0
k;Q/ . .�/ means an irreducible polynomial

representation L.�/ in the polynomial part, and .�/ means an irreducible
nonpolynomial representation Lf�I.1/g in the nonpolynomial part.

Note Lf.k/I0g is nothing but SkHQ . In [37], we showed that the cokernel of �M
k

is
isomorphic to SkH for any n� 4 and k � 2. So by Proposition 4.9, we obtain:

Proposition 4.10 For any k � 1 and n� kC 2,

Im.�M
k;Q/ŠLf.k;1/I.1/g˚Lf.k�1;1/I0g:

4.4 Decomposition of DerC.LN
n;Q/

We have a basis (6) in LN
n .k/ consisting of weight vectors. Using this basis, we see

the character of LN
n;Q.k/ coincides with that of L.k�1;1/˚ .L.k�3;1/˝L.1

2//. Thus,

LN
n;Q.k/ŠL.k�1;1/˚ .L.k�3;1/˝L.1

2//

ŠL.k�1;1/˚L.k�2;2/˚L.k�2;12/˚L.k�3;2;1/˚L.k�3;13/

by Theorem 3.4 and Pieri’s formula (see Theorem 3.5).
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Using Corollary 3.7, we have:

Proposition 4.11 Let W1 and W2 be the polynomial part and the nonpolynomial part
of the irreducible decomposition of DerC.LN

n;Q/.k/DH�Q˝LN
n;Q.kC 1/ respectively.

Then we have

W1 ŠL.k/˚ 3L.k�1;1/˚ 2L.k�2;2/˚ 3L.k�2;12/˚L.k�3;2;1/˚L.k�3;13/

W2 ŠLf.k;1/I.1/g˚Lf.k�1;2/I.1/g˚Lf.k�1;12/I.1/g

˚Lf.k�2;2;1/I.1/g˚Lf.k�2;13/I.1/g:

In our paper [40], we investigate the cokernel of the composition map

� 0k;N W grk.A0n/
� 0

k�!H�˝Z Ln.kC 1/!H�˝Z Ln.kC 1/;

where the second map is induced from the natural projection Ln.kC1/!LN
n .kC1/.

In particular, we showed that

Coker..� 0k;N /Q/ŠL.k/˚L.k�2;12/

as a GL.n;Q/–modules. Hence we see that:

Proposition 4.12 For any k � 1 and n� kC 2,

Im..� 0k;N /Q/Š 3L.k�1;1/˚2L.k�2;2/˚2L.k�2;12/˚L.k�3;2;1/˚L.k�3;13/˚W2:

Here we mention a relation between � 0
k;N

and the k –th Johnson homomorphism of
Aut FN

n . Let IAN
n be the IA–automorphism group of FN

n . Then we can define the
Johnson homomorphisms

�k;N W grk.AN
n /!H�˝Z LN

n .kC1/ and �0k;N W grk.A0Nn /!H�˝Z LN
n .kC1/

by an argument similar to �k and � 0
k

respectively. (See [37, Section 2.1.2] for details.)
Then we have

Im.� 0k;N /� Im.�0k;N /� Im.�k;N /�H�˝Z LN
n .kC 1/:

5 Abelianization of DerC.LM
n /

In this section, we determine the abelianization of the derivation algebra of the Chen
Lie algebra. To begin with, in order to give an lower bound on it, we consider Morita’s
trace map

TrŒk�W H�˝ZLn.kC 1/! SkH
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for k � 2 as mentioned in Section 2.3. Recently, using these trace maps Morita
constructed a surjective graded Lie algebra homomorphism

‚ WD id1˚
M
k�2

TrŒk� W DerC.Ln/! .H�˝Zƒ
2H /˚

M
k�2

SkH;

where id1 is the identity map on the degree one part H�˝Zƒ
2H of DerC.Ln/, and

the target is understood to be an abelian Lie algebra. In particular, Morita showed that
‚ gives the abelianization of DerC.Ln/ up to degree n.n� 1/, based on a theorem of
Kassabov in [17]. (See [31, Theorem 25] for details.)

On the other hand, ‚ naturally induces a surjective graded Lie algebra homomorphism

‚M WD id1˚
M
k�2

TrM
Œk� W DerC.LM

n /! .H�˝Zƒ
2H /˚

M
k�2

SkH;

and hence
DerC.LM

n /ab! .H�˝Zƒ
2H /˚

M
k�2

SkH:

In order to prove this is an isomorphism, it suffices to show that for any k � 2, the
degree k part of DerC.LM

n /ab is generated by�
nC k � 1

k

�
D rankZ SkH

elements as an abelian group.

Let .DerC.LM
n //ab.k/ be the degree k part of DerC.LM

n /ab . Then as a Z–module,
.DerC.LM

n //ab.k/ is generated by

E WD fx�i ˝ Œxi1
;xi2

; : : : ;xikC1
� j 1� i; ij � ng;

where x�
1
; : : : ;x�n is the dual basis of H� with respect to x1; : : : ;xn 2H . To reduce

the generators in E, we prepare some lemmas. The lemmas below essentially follow
from the facts obtained in our previous paper [37] (refer there for the proofs).

Lemma 5.1 Let l � 2 and n� 2. For any element Œxi1
;xi2

;xj1
; : : : ;xjl

�2LM
n .lC2/

and any � 2Sl ,

Œxi1
;xi2

;xj1
; : : : ;xjl

�D Œxi1
;xi2

;xj�.1/ : : : ;xj�.l/ �:

Lemma 5.2 Let k � 2 and n � 4. For any i and i1; i2; : : : ; ikC1 2 f1; 2 : : : ; ng, if
i1; i2 ¤ i ,

x�i ˝ Œxi1
;xi2

; : : : ;xikC1
�D 0 2 .DerC.LM

n //ab.k/:
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Lemma 5.3 Let k � 2 and n � 4. For any i and i1; i2; : : : ; ik 2 f1; 2 : : : ; ng such
that i1; i2 ¤ i , and any transposition �D .m mC 1/ 2Sk ,

x�i ˝ Œxi ;xi1
; : : : ;xik

�D x�i ˝ Œxi ;xi�.1/ ; : : : ;xi�.k/ � 2 .DerC.LM
n //ab.k/:

Lemma 5.4 Let k � 2 and n� 4. For any i2; : : : ; ikC1 2 f1; 2; : : : ; ng, we have

x�i ˝ Œxi ;xi2
; : : : ;xikC1

�D x�j ˝ Œxj ;xi2
; : : : ;xikC1

� 2 .DerC.LM
n //ab.k/

for any i ¤ i2 and j ¤ i2; ikC1 .

Using Lemmas 5.2 and 5.4, we see that .DerC.LM
n //ab.k/ is generated by

fx�i ˝ Œxi1
;xi2

; : : : ;xikC1
� j 1� i; ij � n; i ¤ i2; ikC1g:

Furthermore, by Lemma 5.4 again,

x�i ˝ Œxi1
;xi2

; : : : ;xikC1
�; i ¤ i2; ikC1

does not depend on the choice of i such that i ¤ i2; ikC1 . Hence we can set

s.i1; : : : ; ik/ WD x�i ˝ Œxi1
;xi2

; : : : ;xikC1
� 2 .DerC.LM

n //ab.k/

for i ¤ i1 , ik . On the other hand, take any transposition � D .m mC 1/ 2 Sk . If
2�m� k�2, we see s.i1; : : : ; ik/D s.i�.1/; : : : ; i�.k// by Lemma 5.1. If mD k�1,
there exists some 1� j � n such that j ¤ i1; ik�1; ik since n� 4. Then we have

s.i1; : : : ; ik/D x�j ˝ Œxj ;xi1
; : : : ;xik

�D x�j ˝ Œxj ;xi1
; : : : ;xik�1

;xik
�

D s.i1; : : : ; ik ; ik�1/D s.i�.1/; : : : ; i�.k//

by Lemma 5.3. Similarly, we verify that s.i1; : : : ; ik/D s.i�.1/; : : : ; i�.k// if mD 1.
Therefore we conclude that for n� 4 and k � 2, .DerC.LM

n //ab.k/ is generated by

fs.i1; : : : ; ik/ j 1� i1 � � � � � ik � ng:
Namely, we obtain:

Theorem 5.5 For n� 4, we have

.DerC.LM
n //ab Š .H�˝Zƒ

2H /˚
M
k�2

SkH:

More precisely, this isomorphism is given by the degree one part and Morita’s trace
maps TrŒk� .
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This theorem induces a Lie algebra exact sequence

0!
M
k�2

grk.AM
n /

˚k�2�
M
k������! DerC.LM

n /
‚M

���! .H�˝Zƒ
2H /˚

M
k�2

SkH ! 0:

6 Twisted cohomology groups with coefficients in ƒlHQ

In general, for any GL.n;Z/–module M , we can naturally regard M as an Aut Fn –
module and an Aut Nn;k –module through the surjective homomorphisms Aut Fn!
GL.n;Z/ and Aut Nn;k ! GL.n;Z/ respectively. Here we consider the case where
M DƒlHQ for l �1. In this section, we study the twisted first and second cohomology
groups of Tn;k and Aut Nn;k with coefficients in ƒlHQ . In particular, we show that the
trace map TrQ

Œ1k �
for ƒkHQ defines a nontrivial cohomology class in H 2.Tn;k ; ƒ

kHQ/

for even k and 2� k � n, and H 2.Aut Nn;k ; ƒ
kHQ/ for any 3� k � n.

In the following, for a group G and a G–module M , we write Z1.G;M / for the
abelian group of crossed homomorphisms from G to M . We denote by ı the cobound-
ary operator in group cohomology theory. We also remark that for any finite group G

and G –module M ,
H p.G;M ˝Z Q/D 0; p � 1:

6.1 Twisted first cohomologies of GL.n; Z/ and Aut Fn

Here we show that for n � 3 the first cohomologies of GL.n;Z/ and Aut Fn with
coefficients in ƒlHQ are trivial except for H 1.Aut Fn;HQ/DQ.

Proposition 6.1 For n� 3 and l � 1, H 1.GL.n;Z/;ƒlHQ/D 0.

Proof Take any crossed homomorphism f W GL.n;Z/ ! ƒlHQ and consider the
restriction of fS�n

to the subgroup S�n of GL.n;Z/. Since S�n is a finite group,
H 1.S�n; ƒ

lHQ/ D 0. Hence there exists some x 2 ƒlHQ such that fS�n
D ıx .

Consider a crossed homomorphism

f 0 WD f � ıxW GL.n;Z/!ƒlHQ:

Then we see that f 0.�/D0 for �DP , Q and S . Hence it suffices to show f 0.U /D0.

Set f 0.U / WD
X

1�i1<���<il�n

ai1;:::;il
ei1
^ � � � ^ eil

2ƒlHQ
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for ai1;:::;il
2 Q. Consider a relation U Q�.j�1/SQj�1 D Q�.j�1/SQj�1 U in

GL.n;Z/. Since f 0 is a crossed homomorphism, f 0 satisfies

(10) .Q�.j�1/SQj�1� 1/f 0.U /D .U � 1/f 0.Q�.j�1/SQj�1/D 0

since f 0.Q/D f 0.S/D 0.

Case 1 If l � 3, for any ai1;:::;il
, we see 3� il � n. By observing the coefficients of

ei1
^ � � � ^ eil

in (10) for j D il , we obtain 2ai1;:::;il
D 0, and hence ai1;:::;il

D 0.

Case 2 Assume l D 2. We can see ai1;i2
D 0 for any 1 � i1 < i2 � n, except for

.i1; i2/ D .1; 2/, by the same argument as above. To show a1;2 D 0, consider the
relation (R11): PUPSU DUSPS . Since f 0 is a crossed homomorphism, f 0 satisfies

f 0.P /CPf 0.U /CPUf 0.P /CPUPf 0.S/CPUPSf 0.U /

D f 0.U /CUf 0.S/CUSf 0.P /CUSPf 0.S/;

and hence

(11) Pf 0.U /CPUPSf 0.U /D f 0.U /
by f 0.P / D f 0.S/ D 0. Observing the coefficients of e1 ^ e2 , we have 3a1;2 D 0,
and hence a1;2 D 0.

Case 3 Finally, assume l D 1. Since ai D 0 for 3� i � n by the same argument as
above, it suffices to show a1 D a2 D 0. By observing the coefficients of e2 in (11),
we see a1 D 0. Similarly, from the relation (R13): .SU /2 D 1, we have

f 0.S/CSf 0.U /CSUf 0.S/CSUSf 0.U /D 0

f 0.U /CUSf 0.U /D 0and

by f 0.S/D 0. Observing the coefficients of e2 in this equation, we obtain a2 D 0.

This shows that f 0 � 0 as a crossed homomorphism for any case. Namely, f D ıx .
Hence we obtain the required results. This completes the proof of Proposition 6.1.

By the same argument as Proposition 6.1, we have:

Proposition 6.2 For n� 3 and l � 2, H 1.Aut Fn; ƒ
lHQ/D 0.

Here we should remark that H 1.Aut Fn;H /D Z for any n� 2. (See our paper [36].)
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6.2 Twisted cohomologies of Tn;k

Here we consider twisted cohomology groups of the tame automorphism group Tn;k

of Nn;k for k � 2. To begin with, from Proposition 6.2, we have:

Lemma 6.3 For any n� 3, k � 2 and l � 2, H 1.Tn;k ; ƒ
lHQ/D 0.

Proof It is clear from the fact that the induced homomorphism

H 1.Aut Nn;k ; ƒ
lHQ/!H 1.Aut Fn; ƒ

lHQ/D 0

from the natural projection Aut Fn! Tn;k is injective.

Similarly, for l D 1, we have an injective homomorphism

(12) H 1.Tn;k ;H /!H 1.Aut Fn;H /D Z

for n � 2. Hence, H 1.Tn;k ;H /D 0 or Z. In order to show H 1.Tn;k ;H /D Z, we
consider Morita’s crossed homomorphism. Let

@

@xj
W ZŒFn� �! ZŒFn�

be Fox’s free derivations for 1� j � n. (For a basic material concerning the Fox deriv-
ative, see Birman [4] for example.) Let aW ZŒFn�! ZŒH � be the ring homomorphism
induced from the abelianization Fn!H . For any matrix AD .aij / 2 GL.n;ZŒFn�/,
set Aa D .aa

ij / 2 GL.n;ZŒH �/. Then a map

rM W Aut Fn �! GL.n;ZŒH �/

� 7!
�
@x�i
@xj

�a

defined by

is called the Magnus representation of Aut Fn . We remark that rM is not a homomor-
phism but a crossed homomorphism. Namely, rM satisfies

rM .��/D rM .�/�� � rM .�/

for any � , � 2 Aut Fn where rM .�/�� denotes the matrix obtained from rM .�/ by
applying a ring homomorphism ��W ZŒH �! ZŒH � induced from � on each entry. (For
detail for the Magnus representation, see Morita [28].)

Observing the images of Nielsen’s generators by detı rM , we verify that Im.detı rM /

is contained in a multiplicative abelian subgroup ˙H of ZŒH �. In order to modify
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the image of det ı rM , we consider the signature of Aut Fn . For any � 2 Aut Fn , set
sgn.�/ WD det.�.�// 2 f˙1g, and define a map fM W Aut Fn �! ZŒH � by

� 7! sgn.�/ det.rM .�//:

Then the map fM is also a crossed homomorphism whose image is contained in a mul-
tiplicative abelian subgroup H in ZŒH �. In the following, we identify the multiplicative
abelian group structure of H with the additive one. Morita [27] showed that the twisted
first cohomology group of a mapping class group of a surface with coefficients in H is
the infinite cyclic group generated by fM restricted to the mapping class group. In
our previous paper [36], we showed that fM is a generator of H 1.Aut Fn;H /D Z
for any n� 2. We call fM Morita’s crossed homomorphism.

Now, we consider the restriction of fM to the IA–automorphism group IAn . It is
a group homomorphism whose target is an abelian group H . On the other hand,
An.2/ coincides with the commutator subgroup of IAn since gr1.An/ is the abelian-
ization of IAn as mentioned above. Hence we see that fM .An.2//D 0. This shows
that the crossed homomorphism fM W Aut Fn ! H extends to the quotient group
Aut Fn=An.k/ŠTn;k for any k�2. We also call this extended crossed homomorphism
Morita’s crossed homomorphism. Hence the homomorphism (12) is surjective, and in
fact is an isomorphism. Therefore we have:

Proposition 6.4 For any n� 2 and k � 2, H 1.Tn;k ;H /D Z which is generated by
Morita’s crossed homomorphism.

Furthermore, we see:

Lemma 6.5 For any n� 2, and k � 2, the natural projection Tn;kC1! Tn;k induces
an isomorphism

H 1.Tn;k ;H /ŠH 1.Tn;kC1;H /:

Proof Clearly, the induced homomorphism H 1.Tn;k ;H /! H 1.Tn;kC1;H / from
the natural projection Tn;kC1! Tn;k maps the cohomology class of Morita’s crossed
homomorphism in H 1.Tn;k ;H / to that in H 1.Tn;kC1;H /. Hence we see the required
results.

Now, from the cohomological five term exact sequence of the group extension (9), for
k � 2 and l � 1, we have

0!H 1.Tn;k ; ƒ
lHQ/!H 1.Tn;kC1; ƒ

lHQ/

!H 1.grk.An/;ƒ
lHQ/

GL.n;Z/!H 2.Tn;k ; ƒ
lHQ/!H 2.Tn;kC1; ƒ

lHQ/:
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From Lemmas 6.3 and 6.5, we see that

0!H 1.grk.An/;ƒ
lHQ/

GL.n;Z/!H 2.Tn;k ; ƒ
lHQ/!H 2.Tn;kC1; ƒ

lHQ/

is exact.

On the other hand, we have a GL.n;Z/–equivariant homomorphism TrŒ1k �ı�k , namely
TrŒ1k � ı �k 2 H 1.grk.An/;ƒ

lHQ/
GL.n;Z/ . In [35], we showed that TrŒ1k � ı �k is

surjective for even k and 2� k � n. In particular, we have:

Proposition 6.6 For even k and 2 � k � n, if tg is the transgression map, then
0¤ tg.TrŒ1k � ı �k/ 2H 2.Tn;k ; ƒ

kHQ/.

6.3 Twisted cohomologies of Aut Nn;k

In this subsection, for k � 3, we consider twisted cohomology groups of Aut Nn;k

with coefficients in ƒlHQ .

Proposition 6.7 For k � 3, n� k � 1 and l � 3, H 1.Aut Nn;k ; ƒ
lHQ/D 0.

Proof Take any crossed homomorphism f W Aut Nn;k !ƒlHQ . Let g be the image
of f under the homomorphism

Z1.Aut Nn;k ; ƒ
lHQ/!Z1.Aut Fn; ƒ

lHQ/

induced from the natural homomorphism Aut Fn ! Aut Nn;k . By Proposition 6.2,
H 1.Aut Fn; ƒ

lHQ/ D 0, so there exists some x 2 ƒlHQ such that g D ıx 2
Z1.Aut Fn; ƒ

lHQ/.

Set f 0 WD f � ıx 2Z1.Aut Nn;k ; ƒ
lHQ/. Then we have

f 0.�/D f .�/� ıx D g.�/� ıx D 0

for � D P , Q, S and U . Hence it suffices to show f 0.�/D 0. Set

f 0.�/ WD
X

1�i1<���<il�n

bi1;:::;il
ei1
^ � � � ^ eil

2ƒlHQ

for bi1;:::;il
2 Q. Consider the relation � Q�.j�1/SQj�1 D Q�.j�1/SQj�1 � in

Aut Nn;k . Since f 0 is a crossed homomorphism, f 0 satisfies

(13) .Q�.j�1/SQj�1� 1/f 0.�/D .� � 1/f 0.Q�.j�1/SQj�1/D 0

since f 0.Q/D f 0.S/D 0.
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Since l � 3, for any bi1;:::;il
, we see 3 � il � n. By observing the coefficients of

ei1
^ � � � ^ eil

in (13) for j D il , we obtain 2bi1;:::;il
D 0, and hence bi1;:::;il

D 0.

Thus f 0 � 0, and hence f D ıx . This completes the proof of Proposition 6.7.

By considering the cohomological five term exact sequence of the group extension (8),
we obtain

0!H 1.Aut Nn;k ; ƒ
lHQ/!H 1.Aut Nn;kC1; ƒ

lHQ/

!H 1.H�˝Z Ln.kC 1/;ƒlHQ/
GL.n;Z/

!H 2.Aut Nn;k ; ƒ
lHQ/!H 2.Aut Nn;kC1; ƒ

lHQ/

for k � 3, n� k � 1 and l � 3. From Proposition 6.7, we have an exact sequence

0!H 1.H�˝Z Ln.kC 1/;ƒkHQ/
GL.n;Z/

!H 2.Aut Nn;k ; ƒ
kHQ/!H 2.Aut Nn;kC1; ƒ

kHQ/

for k�3 and n�k�1. As the trace map TrŒ1k �2H 1.H�˝ZLn.kC1/;ƒkHQ/
GL.n;Z/

is surjective for any 3� k � n, we have:

Proposition 6.8 For k � 3 and n� k , we see 0¤ tg.TrŒ1k �/2H 2.Aut Nn;k ; ƒ
kHQ/

where tg is the transgression map.

Remark 6.9 Finally, we remark on the multiplicity of the GL.n;Q/–trivial part in
HomZ.H

�
Q˝Z Ln;Q.kC 1/;ƒkHQ/ and HomZ.grk

Q.An/;ƒ
kHQ/.

First of all, if n � k C 2 and an irreducible representation Lf�I�g appears in the
decomposition of .H�Q˝Z Ln;Q.kC 1//� , then `.�/C `.�/� kC 2 by Corollary 3.7.

Note that ƒkHQDL.1
k/ and the multiplicity of .ƒkHQ/

�DLf0I.1
k/g is exactly one

in .H�Q˝Z Ln;Q.kC 1//� by the part (2) of Corollary 4.6.

The multiplicity of the GL.n;Q/–trivial part L.0/ in .H�Q˝ZLn;Q.kC1//�˝ƒkHQ
is exactly one under the condition n� 2kC 2 by Corollary 3.8. Thus we obtain

HomZ.H
�
Q˝Z Ln;Q.kC 1/;ƒkHQ/

GL.n;Q/ ŠQ

for n � 2k C 2. Hence, HomZ.H
�
Q ˝Z Ln;Q.k C 1/;ƒkHQ/

GL.n;Q/ is generated
by TrQ

Œ1k �
for n� 2kC 2.

Recall that

Im.� 0k;Q/� Im.�k;Q/�H�Q˝Ln;Q.kC 1/ and Im.�k;Q/Š grk
Q.An/
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as GL.n;Q/–modules. Since we have a nonzero element

TrQ
Œ1k �
ı �k;Q 2 HomZ.grk

Q.An/;ƒ
lHQ/

GL.n;Q/;

we obtain
HomZ.grk

Q.An/;ƒ
kHQ/

GL.n;Q/ DQ

for even k and 2k C 2 � n. Hence HomZ.grk.An/;ƒ
kHQ/

GL.n;Q/ is generated by
the element TrQ

Œ1k �
ı �k;Q .

At the present stage, however, it seems to difficult to determine the precise structures of
H 1.H�˝Z Ln.kC 1/;ƒkHQ/

GL.n;Z/ and H 1.grk.An/;ƒ
kHQ/

GL.n;Z/ in general.
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