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Knotted Legendrian surfaces with few Reeb chords

GEORGIOS DIMITROGLOU RIZELL

For g > 0 , we construct gC 1 Legendrian embeddings of a surface of genus g into
J 1.R2/D R5 which lie in pairwise distinct Legendrian isotopy classes and which
all have gC 1 transverse Reeb chords (gC 1 is the conjecturally minimal number
of chords). Furthermore, for g of the gC 1 embeddings the Legendrian contact
homology DGA does not admit any augmentation over Z2 , and hence cannot be
linearized. We also investigate these surfaces from the point of view of the theory of
generating families. Finally, we consider Legendrian spheres and planes in J 1.S2/

from a similar perspective.

53D42; 53D12

1 Introduction

We will consider contact manifolds of the form J 1.M / D T �M � R, where M

is a 2–dimensional manifold, equipped with the contact form ˛ WD dz C � . Here
� D �

P
i pidqi denotes the canonical (or Liouville) form on T �M and z is the

coordinate of the R–factor.

An embedded surface L� J 1.M / is called Legendrian if L is everywhere tangent to
the contact distribution ker.˛/. The Reeb vector field, which is defined by

�Rd˛ D 0; ˛.R/D 1;

here becomes RD @z . A Reeb chord on L is an integral curve of R having positive
length and both endpoints on L. When considering immersed Legendrian submanifolds,
we say that self-intersections are zero-length Reeb chords.

We call the natural projections

…F W J
1.M /!M �R;

…LW J
1.M /! T �M;

the front projection and the Lagrangian projection, respectively. A Legendrian sub-
manifold L� J 1.M / projects to an exact immersed Lagrangian submanifold …L.L/
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2904 Georgios Dimitroglou Rizell

in the exact symplectic manifold .T �M; d�/. Reeb chords of L correspond to self-
intersections of its Lagrangian projection.

For a generic closed Legendrian submanifold L � J 1.M / there are only finitely
many Reeb chords, each projecting to a transverse double-point of …L.L/ under the
Lagrangian projection. We call a Legendrian satisfying this property chord generic.

c

z

x1

x2

Figure 1: The front projection of the standard sphere Lstd � J 1.R2/

Let Lstd � J 1.R2/ D R5 denote the Legendrian sphere whose front projection is
shown in Figure 1. Note that Lstd only has one Reeb chord, and that up to isotopy it is
the only known Legendrian sphere in J 1.R2/ with this property.

In Section 4 we construct, for each g>0, the Legendrian surfaces Lg;k�J 1.R2/DR5

of genus g by attaching k “knotted” and g�k “standard” Legendrian handles to Lstd ,
where k D 0; : : : ;g . Each surface has gC 1 transverse Reeb chords, which according
to a conjecture of Arnold is the minimal number of Reeb chords for a Legendrian
surface in J 1.R2/ of genus g . This conjecture is only known to be true for g � 1. It
follows from elementary properties of generic Lagrangian immersions when g D 0,
and from Gromov’s theorem of nonexistence of exact Lagrangian submanifolds in Cn

when g D 1.

We will study the Legendrian contact homology of Lg;k . This theory associates a
DGA (short for differential graded algebra) to a Legendrian submanifold. The DGA
is then invariant up to homotopy equivalence under Legendrian isotopy. Legendrian
contact homology was introduced by Eliashberg, Givental and Hofer in [9], and by
Chekanov in [2] for standard contact R3 . We will also study the Lg;k in terms of
generating families (see Definition 2.11). We show the following theorem.

Theorem 1.1 The gC1 Legendrian surfaces Lg;k � J 1.R2/ of genus g , where k D

0; : : : ;g , are pairwise non-Legendrian isotopic. Furthermore, Lg;k has a Legendrian
contact homology DGA admitting an augmentation with coefficients in Z2 if and only
if k D 0. Also, Lg;k admits a generating family if and only if k D 0.
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Remark There is a correspondence between generating families for a Legendrian
knot in J 1.R/ŠR3 and augmentations for its DGA with coefficients in Z2 . See eg
Fuchs and Rutherford [11]. It is not known whether a similar result holds in higher
dimensions.

When k > 0, the DGA of Lg;k with coefficients in Z2 has 1 in the image of the
boundary operator. Hence its homology vanishes, and thus it cannot be used to distin-
guish the different Lg;k . Moreover, it follows that its DGA has no augmentation with
coefficients in Z2 .

To distinguish the different Lg;k we consider DGAs with coefficients in group ring
ZŒH1.Lg;k IZ/� (one may also use coefficients in Z2ŒH1.Lg;k IZ/�). We will study
the augmentation varieties of these DGAs. This is a Legendrian isotopy invariant
introduced by L Ng in [13].

In Section 5 we study the following Legendrian planes. Let F0 WD T �p S2 � T �S2 be
a Lagrangian fiber and let Fk � T �S2 , where k 2 Z, be the image of F0 under k

iterations of a Dehn twist along the zero-section. The plane Fk coincides with F0

outside of a compact set.

Since H 1.Fk IR/ D 0, Fk is an exact embedded Lagrangian submanifold and we
may lift it to a Legendrian submanifold of J 1S2 . For the same reason, a Lagrangian
isotopy of Fk induces a Legendrian isotopy of the lift. Moreover, since Fk is a plane,
a compactly supported Lagrangian isotopy may be lifted to a compactly supported
Legendrian isotopy.

By computing the Legendrian contact homology of the Legendrian lift of the link
Fk [T �q S2 , we show the following.

Theorem 1.2 There is no compactly supported Legendrian isotopy taking Fk to Fl if
k ¤ l . Consequently, there is no compactly supported Lagrangian isotopy taking Fk

to Fl if k ¤ l . However, there are such compactly supported smooth isotopies if
k � l mod 2.

The effect of Dehn twists on Floer Homology was studied by P Seidel in [15], and our
argument is a version of it.

In Section 6 we construct a Legendrian sphere Lknot � J 1.S2/ with one Reeb chord
which is not Legendrian isotopic to Lstd . However, according to Proposition 6.2, Lknot

has a Lagrangian projection which is smoothly ambient isotopic to …L.Lstd/. Observe
that the unit disk bundle D�S2 with its canonical symplectic form is symplectomorphic
to a neighborhood of the antidiagonal in S2 �S2 . We show the following result.
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Theorem 1.3 Lstd and Lknot are not Legendrian isotopic. Furthermore, …L.Lknot/�

D�S2 � S2 �S2 cannot be mapped to …L.Lstd/�D�S2 by a symplectomorphism
of S2 �S2 which is Hamiltonian isotopic to the identity.

The first result is proved by computing the Legendrian contact homology of the link
Lknot[TqS2 . The second result follows by relating …L.Lknot/ to the nondisplaceable
Lagrangian tori treated by Fukaya, Oh, Ohta and Ono [12].

2 Background

In this section we recall the needed results and definitions. We give a review of
Legendrian contact homology, linearizations, and the augmentation variety. We also give
a description of gradient flow trees, which will be used for computing the differentials of
the DGAs. Finally, we briefly discuss the theory of generating families for Legendrian
submanifolds.

2.1 Legendrian contact homology

We now recall the results in Ekholm, Etnyre and Sullivan [5; 8; 7] in order to define
Legendrian contact homology for Legendrian submanifolds of J 1.M / with coefficients
in Z2 and Z. For our purposes we will only need the cases M DR2 and M D S2 ,
respectively.

The Legendrian contact homology algebra is a DGA associated to a Legendrian sub-
manifold L, assumed to be chord generic, which is generated by the Reeb chords of L.
The differential counts pseudoholomorphic disks. The homotopy type, and even the
stable isomorphism type (see below), of the DGA is then invariant under Legendrian
isotopy. The most obvious consequence is that the homology of the complex, the so
called Legendrian contact homology, is invariant under Legendrian isotopy.

2.1.1 The algebra For a chord generic Legendrian submanifold L� J 1.M / with
the set Q of Reeb chords, we consider the unital algebra Aƒ.L/ D ƒhQi freely
generated over the ring ƒ. We may always take ƒD Z2 , but in the case when L is
spin we may also take ƒ D Z;Q or C . In the latter case, the differential depends
on the choice of a spin structure on L. For details we refer to Ekholm, Etnyre and
Sullivan [7].

We will also consider the algebra ƒŒH1.LIZ/�˝ƒ Aƒ.L/ with coefficients in the
group ring ƒŒH1.LIZ/�.
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2.1.2 The grading For a Legendrian submanifold L� J 1.M /D T �M �R there
is an induced Maslov class

�W H1.LIZ/! Z;

which in our setting can be computed using the following formula. Let L be front
generic, and let � be a closed curve on L which intersects the singular set of the
front transversely at cusp edges. Recall that z is the coordinate of the R–factor of
J 1.M /DT �M �R. Let D.�/ and U.�/ denote the number of cusp edges transversed
by � in the downward and upward direction relative the z–coordinate, respectively.
Ekholm, Etnyre and Sullivan [6] prove that

(1) �.Œ��/DD.�/�U.�/:

We will only consider the case when the Maslov class vanishes. In this case the
algebra Aƒ.L/ is graded as follows. For each generator, ie Reeb chord c 2Q, we fix
a path 
c W I ! L with both ends on the Reeb chord such that 
c starts at the point
with the higher z–coordinate. Again, we assume that 
c intersects the singularities of
the front projection transversely at cusp edges. We call 
c a capping path for c . We
now grade the generator c by

jcj D �.
c/� 1;

where �.
c/ denotes the Conley–Zehnder index of 
c .

In our setting the Conley–Zehnder index may be computed as follows. Let fu and fl

be the local functions on M defining the z–coordinates of the upper and lower sheets
of L near the endpoints of c , respectively. We define hc WD fu� fl . Let p 2M be
the projection of c to M . Observe that the fact that c is a transverse Reeb chord is
equivalent to hc having a nondegenerate critical point at p . We then have the formula

(2) �.
c/DD.
c/�U.
c/C indexp.d
2hc/;

where D and U are defined as above and where indexp.d
2hc/ is the Morse index

of hc at p 2M . See [6] for a general definition of the Conley–Zehnder index and a
proof of the above formula.

If the Maslov class does not vanish, we must use coefficients in ƒŒH1.LIZ/� to have
a well-defined grading over Z. Elements A 2H1.LIZ/ are then graded by

jAj D ��.A/:

In our cases, since � vanishes, the coefficients have zero grading.

In the case when L has several connected components, Reeb chords between two
different components are called mixed, while Reeb chords between the same component
are called pure. Mixed Reeb chords can be graded in the following way. For each
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pair of components L0;L1 , select points p0 2L0 and p1 2L1 both projecting to the
same point on M , and such that neither lies on a singularity of the front projection.
Let c be a mixed Reeb chord starting on L0 and ending on L1 . A capping path is then
chosen as a path on L1 starting at c and ending on p1 , together with a path on L0

starting at p0 and ending on c . The grading of a mixed chord can then be defined
as before, where the Conley–Zehnder index is computed as in Formula (2) for this
(discontinuous) capping path.

Observe that the choice of points p0 and p1 may affect the grading of the mixed chords,
hence this grading is not invariant under Legendrian isotopy in general. However, the
difference in degree of two mixed chords between two fixed components is well-defined.

2.1.3 The differential Choose an almost complex structure J on T �M compatible
with the canonical symplectic form. We are interested in finite-energy pseudoholomor-
phic disks in T �M having boundary on …L.L/ and boundary punctures asymptotic
to the double points of …L.L/. A puncture of the disk will be called positive in case
the oriented boundary of the disk makes a jump to a sheet with higher z–coordinate at
the Reeb chord, and will otherwise be called negative. We assume that the chosen J is
regular, ie that the solution spaces of J –holomorphic disks with one positive puncture
are transversely cut out manifolds of the expected dimension. (See [8] for the existence
of such almost complex structures.)

Since …L.L/ is an exact immersed Lagrangian, one can easily show the following
formula for the (symplectic) area of a disk D � T �M with boundary on …L.L/,
having the positive punctures a1; : : : ; an and the negative punctures b1; : : : ; bn :

(3) Area.D/D `.a1/C � � �C `.an/� `.b1/� � � � � `.bn/;

where `.c/ denotes the action of a Reeb chord c , which is defined by

`.c/ WD

Z
c

˛ > 0:

One thus immediately concludes that a nonconstant pseudoholomorphic disk with
boundary on …L.L/ must have at least one positive puncture.

Let M.aI b1; : : : ; bnIA/ denote the moduli space of pseudoholomorphic disks having
boundary on L, a positive puncture at a 2Q and negative punctures at bi 2Q in the
above order relative the orientation of the boundary. We moreover require that when
closing up the boundary of the disk with the capping paths at the punctures (oriented
appropriately), the cycle obtained is contained in the class A 2H1.LIZ/. We define
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the differential on the generators by the formula

@aD
X

dimMD0

jM.aI b1; : : : ; bnIA/jAb1 � � � bn;

where jM.aI b1; : : : ; bnIA/j is the algebraic number of elements in the compact zero-
dimensional moduli space. The above count has to be performed modulo 2 unless the
moduli spaces are coherently oriented. When L is spin, a coherent orientation can be
given after making initial choices. If we are working with coefficients in ƒ instead
of ƒŒH1.LIZ/�, we simply project the group ring coefficient A to 1 in the above
formula.

For a generic almost complex structure J , the dimension of the above moduli space is
given by

dimM.aI b1; : : : ; bnIA/D jaj � jb1j � � � � � jbnjC�.A/� 1;

and it follows that @ is a map of degree �1.

The differential defined on the generators is extended to arbitrary elements in the
algebra by ƒŒH1.LIZ/�–linearity and by the Leibniz rule

@.ab/D @.a/bC .�1/jaja@.b/:

Since L is an exact Lagrangian immersion, no bubbling of disks without punctures
can occur, and a standard argument from Floer theory shows that @2 D 0. Observe that
the sum occurring in the differential always is finite because of Formula (3) and the
fact that there are only finitely many Reeb chords.

2.1.4 Invariance under Legendrian isotopy Let A D Rha1; : : : ; ami and A0 D
Rha0

1
; : : : ; a0mi be free unital algebras over the ring R. An isomorphism 'W A!A0

of semifree DGAs is tame if, after some identification of the generators of A and A0 ,
it can be written as a composition of elementary automorphisms, ie automorphisms
defined on the generators of A by

'.ai/D

(
ai i ¤ j ;

Aaj Cb i D j ;

for some fixed j , where A2R is invertible, and b is an element of the unital subalgebra
generated by fai I i ¤ j g.

The stabilization in degree j of .A; @/, denoted by Sj .A; @/, is the following operation.
Add two generators a and b with jaj D j and jbj D j � 1 to the generators of
ADRha1; : : : ; ami. The differential @0 of the stabilization is defined to be @ on old
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generators, while @0.a/D b and @0b D 0 for the new generators. It is a standard result
(see Chekanov [2]) that .A; @/ and Sj .A; @/ are homotopy equivalent.

Theorem 2.1 [7] Let L� J 1.M / be a Legendrian submanifold (which is assumed
to be spin and where a fixed spin-structure has been chosen in the case when ƒ has
characteristic different from 2). The stable tame isomorphism class of its associated
DGA ƒŒH1.LIZ/�˝Aƒ.L/ is preserved (after possibly shifting the degree of the
mixed chords) under Legendrian isotopy and independent of the choice of a generic
compatible almost complex structure. Hence, the homology

HC�.LIƒŒH1.LIZ/�/ WDH�.ƒŒH1.LIZ/�˝Aƒ.L/; @/

is invariant under Legendrian isotopy. In particular, the homology

HC�.LIZ2/ WDH�.AZ2
.L/; @/

with coefficients in Z2 is invariant under Legendrian isotopy.

Remark Different choices of capping paths give tame isomorphic DGAs. Chang-
ing the capping path of a Reeb chord c 2 Q amounts to adding a representative
of some class �c 2 H1.LIZ/ to the old capping path. This gives the new DGA
.ƒŒH1.LIZ/�˝ƒAƒ; '@'�1/, where

'W .ƒŒH1.LIZ/�˝ƒAƒ; @/! .ƒŒH1.LIZ/�˝ƒAƒ; '@'�1/

is the tame automorphism defined by mapping c 7! �cc , while acting by identity on
the rest of the generators.

Remark The choice of spin structure on L induces the following isomorphism of
the DGAs involved. Let s0 and s1 be two spin structures, and let si induce the
DGA

�
ŒH1.LIZ/�˝A; @si

�
. Then there is an isomorphism of DGAs (considered as

Z–algebras)

'W
�
ZŒH1.LIZ/�˝A; @s0

�
!
�
ZŒH1.LIZ/�˝A; @s1

�
'.A/D .�1/d.s0;s1/.A/Adefined by

for A2H1.LIZ/, while acting by identity on all generators coming from Reeb chords.
Here d.s0; s1/ 2H 1.LIZ2/ is the difference cochain of the two spin structures.
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2.1.5 Linearizations and augmentations Linearized contact homology was intro-
duced by Chekanov [2]. This is a stable tame isomorphism invariant of a DGA and
hence a Legendrian isotopy invariant.

Let Aƒ D
L1

iD0Ai
ƒ

be the module decomposition with respect to word-length. De-
compose @ D

L
i@i accordingly and note that if @0 D 0 on generators, it follows

that .@1/
2 D 0. We will call a DGA satisfying @0 D 0 good, and call the homology

H�.A1; @1/ its linearized contact homology.

An augmentation of .Aƒ; @/ is a unital DGA morphism

�W .Aƒ; @/! .ƒ; 0/:

It induces a tame automorphism ˆ� defined on the generators by c 7! cC �.c/. This
map ˆ� conjugates @ to

@� WDˆ�@.ˆ�/�1
Dˆ�@;

where .Aƒ; @�/ can be seen to be good. We denote the induced linearized contact
homology by

HLC� .LIƒ; �/ WDH�.A.L/1; .@�/1/:

Theorem 2.2 [2, 5.1] Let .A; @/ be a DGA. The set of isomorphism classes of the
graded vector spaces

H�.A1; .@�/1/

for all augmentations � is invariant under stable tame isomorphism. Hence, when
.A; @/ is the DGA associated to a Legendrian submanifold, this set is a Legendrian
isotopy invariant.

2.1.6 The augmentation variety Ng [13] introduced the augmentation variety. Let
F be an algebraically closed field. In the following we suppose that H1.LIZ/ is a free
Z–module and that the coefficient ring F ŒH1.LIZ/� consists of elements of degree
zero only (ie that the Maslov class vanishes).

The maximal ideal spectrum

Sp.F ŒH1.LIZ/�/' .F
�/rankH1.LIZ/

can be identified with the set of unital algebra morphisms

�W F ŒH1.LIZ/�! F :

Extending � by identity on the generators induces a unital DGA chain map

�W .F ŒH1.LIZ/�˝AF ; @/! .AF ; @
�
WD �@/:
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Definition 2.3 Let .F ŒH1.LIZ/�˝AF ; @/ be a DGA with coefficients in the group
ring. Its augmentation variety is the subvariety

AugVar.F ŒH1.LIZ/�˝AF ; @/� Sp.F ŒH1.LIZ/�/

defined as the Zariski closure of the set of points � 2 Sp.F ŒH1.LIZ/�/ for which the
chain complex .AF ; @

�/ has an augmentation.

This construction can be seen to be a contravariant functor from the category of finitely
generated semifree DGAs with coefficients in the group-ring F ŒH1.LIZ/� to the
category of algebraic subvarieties of Sp.F ŒH1.LIZ/�/. A unital DGA morphism will
induce an inclusion of the respective subvarieties.

Lemma 2.4 Consider a unital algebra map

�W F ŒH1.L;Z/�! F ;

ˆW .F ŒH1.L;Z/�˝AF ; @A/! .F ŒH1.L;Z/�˝BF ; @B/and let

be a unital DGA morphism. The existence of an augmentation of .BF ; @
�
B/ implies the

existence of an augmentation of .AF ; @
�
A/.

Proof Augmentations pull back with unital DGA morphisms. The proposition follows
from the fact that the induced map

�ˆW .AF ; @
�
A/! .BF ; @

�
B/

is a unital DGA morphism:

�ˆ@
�
A D �ˆ�@A D �ˆ@A D �@BˆD �@B�ˆD @

�
B�ˆ:

In particular, since stable tame isomorphic DGAs are chain homotopic, we have the
following corollary.

Corollary 2.5 The isomorphism class of the augmentation variety of the DGA associ-
ated to a Legendrian submanifold is invariant under Legendrian isotopy.

2.2 Flow trees

Our computations of the differentials of the Legendrian contact homology DGAs relies
on the technique of gradient flow trees developed by Ekholm [3]. We restrict ourselves
to the case dim M D 2.
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Definition 2.6 Given a metric g on M , a flow tree on L is a finite tree � immersed
by f W �!M , together with extra data, such that:

(a) On the interior of an edge ei , f is an injective parametrization of a flow line of

�r.h˛i � h
ˇ
i /;

where h˛i and h
ˇ
i are two local functions on M , each defining the z–coordinate

of a sheet of L. To the flow line corresponding to ei we associate its two 1–jet
lifts �˛i , �ˇi , parameterised by

�˛i .t/D
�
dh˛i .ei.t//; h

˛
i .ei.t//

�
2L� J 1.M /D T �M �R;

�
ˇ
i .t/D

�
dh

ˇ
i .ei.t//; h

ˇ
i .ei.t//

�
2L� J 1.M /D T �M �R;

and oriented by �r.h˛i � h
ˇ
i / and �r.hˇi � h˛i /, respectively.

(b) For every vertex n we fix a cyclic ordering of the edges feig. We denote the
unique 1–jet lift of the i –th edge which is oriented towards (away from) the
vertex n by �in;n

i (�out;n
i ).

(c) Consider the curves on L� J 1.M / given by the oriented 1–jet lifts of the flow
lines. Give the curves a cyclic order by declaring that for every vertex n and
edge i , the curve �in;n

i is succeeded by �out;n
iC1

. We require that the Lagrangian
projections of the oriented 1–jet lifts in this order form a closed curve on
…L.L/� T �.M /.

If the 1–jet lifts �in;n
i and �out;n

iC1
have different z–coordinates at the vertex n, we say

that this is a puncture at the vertex. The puncture is called positive if the oriented curve
jumps from a lower to a higher sheet relative the z–coordinate, and is otherwise called
negative.

We will also define a partial flow tree as above, but weakening condition (c) by allowing
1–valent vertices n for which …L ı �

in;n and …L ı �
out;n differ at n. We call such

vertices special punctures.

As for punctured holomorphic disks with boundary on …L.L/, an area argument gives
the following result.

Lemma 2.7 [3, Lemma 2.13] Every (partial) flow tree has at least one positive
(possibly special) puncture.

Lemma 2.8 Suppose that a gradient flow tree has only one positive puncture. If we
give each edge ei the orientation induced by its defining vector field �r.h˛i � h

ˇ
i /,
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where we for each edge have ordered the defining functions for the sheets such that
h˛i �h

ˇ
i > 0, then we obtain a directed tree (in particular, we claim that h˛i �h

ˇ
i ¤ 0 in

the interior of ei ) with the following properties:

� Each vertex has at most one incoming edge.

� For each vertex n different from the one containing the positive puncture, if ein

denotes the incoming edge, and eout;1; : : : ; eout;m denote the outgoing edges, we
have the inequality

mX
iD1

�
h˛out;i.n/� h

ˇ
out;i.n/

�
� h˛in.n/� h

ˇ
in.n/:

Proof To see that we get a well-defined directed tree, observe that if h˛i �h
ˇ
i D 0 for

an interior point of ei , splitting the tree at this point then produces two partial flow
trees, one of which has no positive punctures. This contradicts Lemma 2.7.

To prove the first of the two claims, assume that this is not the case, ie that some vertex
have at least two incoming edges. Split the tree somewhere at the incoming edge which
is furthest away from the positive puncture. This produces two partial flow trees, one
of which has no positive punctures. Again, this leads to a contradiction.

Finally, to prove the last claim, observe that if the inequality
mX

iD1

�
h˛out;i.n/� h

ˇ
out;i.n/

�
> h˛in.n/� h

ˇ
in.n/

holds at a vertex n, then property (c) above implies that there is a positive puncture at
the vertex.

See [3, Definitions 3.4 and 3.5] for the notion of dimension of a gradient flow tree.

Proposition 2.9 [3, Proposition 3.14] For a generic perturbation of L and g , the
flow trees with at most one positive puncture form a transversely cut out manifold of
the expected dimension.

Observe that since swallowtail singularities have codimension 2, a generic gradient flow
tree will not pass through such a singularity. Moreover, the assumption dim M D 2

excludes more complicated singularities of the front projection.

Lemma 3.7 of [3] implies that a generic, rigid, and transversely cut out gradient flow
tree has no vertices of valence higher than three, and that each vertex is one of the
six types depicted in Figure 2, of which the vertices .P1/ and .P2/ are the possible
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punctures. (Note that there exists both positive and negative punctures of type .P1/

and .P2/.)

The only picture in Figure 2 which is not self explanatory is the one for .S/. Observe
that the flow line at an .S/–vertex is tangent to the projection of the cusp edge. We
refer to [3, Remark 3.8] for details.

Because of the following result, we may use rigid flow trees to compute the Legendrian
Contact Homology.

Theorem 2.10 [3, Theorem 1.1] For a generic perturbation of L and the metric g

on M , there is a regular almost complex structure J on T �M compatible with the
canonical symplectic form, such that there is a bijective correspondence between rigid
J –holomorphic disks with one positive puncture having boundary on a perturbation zL
of L, and rigid flow trees on L with one positive puncture.

2.3 Generating families

Definition 2.11 A generating family for a Legendrian submanifold L� J 1.M / is a
function F W M �E!R, where E is a smooth manifold, such that

LD

�
.q;p; z/ 2 J 1.M /I 0D

@

@wi
F.q;w/; pi

D
@

@qi
F.q;w/; z D F.q;w/

�
:

We think of F as a family of functions FmW E!R parameterised by M , and require
this family to be versal. Since we are considering the case dim M D 2, versality implies
that critical points of Fm are isolated, nondegenerate outside a set of codimension 1
of M , possibly of A2 –type (birth/death type) above a codimension 1 subvariety of M ,
and possibly of A3 –type above isolated points of M .

We are interested in the case when E is either a closed manifold or of the form EDRN .
In the latter case we require that Fm is linear and nonzero outside of a compact set for
each m 2M .

In both cases, the Morse homology of a function Fm in the family is well-defined for
generic data. In the case when E is a closed manifold the Morse homology is equal to
H�.EIZ2/, while it vanishes in the case E DRN .

The set of generating families for L is invariant under Legendrian isotopy up to
stabilization of E by a factor RM and adding a nondegenerate quadratic form on RM

to Fm . (See Pushkar 0 and Chekanov [14].)
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Vertex Lagrangian
projection

Front
projection Flow tree

.P1/

.P2/

.E/

.S/

.Y0/

.Y1/

Figure 2: .P1/ and .P2/ depict the punctures in the generic case.
.E/ and .S/ depict the vertices corresponding to an end and a switch,
respectively, while .Y0/ and .Y1/ describes the generic 3–valent vertices.
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In the case M DR we have the following result. Consider the function

W W M �RN
�RN

!R; W .m;x;y/D F.m;x/�F.m;y/:

For sufficiently small ı > 0 we consider the graded vector space

GH�.F /DH�CNC1.W � ı;W D ıIZ2/:

In J 1.R/ there are connections between generating families and augmentations. For
example, we have the following result.

Theorem 2.12 [11, 5.3] Let F be a generic generating family for a Legendrian knot
L� J 1.R/. Then there exists an augmentation � of the DGA of L which satisfies

GH�.F /' HLC.LIZ2; �/:

3 The front cone

In this section we describe the behavior of gradient flow trees on a particular Legendrian
cylinder in J 1.R2/. We need this when investigating our Legendrian surfaces, since
some of them coincide with this cylinder above open subsets of M in the bundle
J 1.M /!M . We also prove that there is no quadratic at infinity generating family
for such a Legendrian surface.

3.1 The front cone and its front generic perturbation

We are interested in the Lagrangian cylinder embedded by

S1
�R! T �R2

'C2; .�; r/ 7! .r C i/.cos �; sin �/:

Since its Legendrian lift has a front projection given by the double cone

.�; r/ 7! .r cos �; r sin �; r/

in which all of S1 � f0g is mapped to a point, it is not front generic. We call this
Legendrian cylinder the front cone.

To make the cylinder front generic, we perturb it in the following way. Consider the
plane with coordinates q D .q1; q2/, and an ellipse in this plane parameterised by

 .�/, � 2 S1 . It can be shown that

F.q; �/ WD k
 .�/�qk
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is a generating family of a Legendrian cylinder for q in the domain bounded by the
ellipse, given that its semiaxes satisfy b � a<

p
2b . When b < a, the front projection

is generic and has four cusp edges. The projections of these correspond to points in
the plane being the envelope of inward normals of the ellipse, where each normal has
length equal to the curvature radius at its starting point.

Degenerating the ellipse to a circle, we obtain the Legendrian cylinder corresponding
to the front cone. When b < a<

p
2b , this ellipse is thus a generic perturbation of the

front cone. Its front is described in Figure 3.

1 2 3 4 5

x1

x2

1

A C

D

B D

A

2

A C

B D

3

A C

B D

4

A C

B D

5

A C

B D

C
B

z

x2

Figure 3: A generic perturbation of the front cone. The top picture depicts
the projection of the four cusp edges and the four swallowtail singularities;
the bottom picture depicts five slices of the front projection.
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3.2 The gradient flow trees near the front cone

The gradient flow outside the region in R2 bounded by the projection of the four cusp
edges behaves like the gradient flow of the unperturbed cone, ie �r.hu� hl/ points
inwards to the centre, where hu is the z–coordinate of the upper sheet and hl is the
z–coordinate of the lower sheet.

We now examine the behavior of flow trees on a Legendrian submanifold L� J 1.M /

which has a front cone above some subset U �M . More precisely, we assume that
after some diffeomorphism of U �M , L above U coincides with the front cone above
an open disk centered at the origin. Moreover, we will assume that the perturbation
making the front cone generic is performed in a much smaller disk.

Proposition 3.1 Let L�J 1.M / be a Legendrian submanifold which has a front cone
above U �M , and let T1; : : : ;Tn be finitely many rigid partial gradient flow trees
on L with one positive puncture and which live above M nU . Let e1

i ; : : : ; e
mi

i be the
edges of Ti which end at special punctures above @U . There is a generic resolution of
the front cone with the property that if the edges e1

i ; : : : ; e
mi

i for each partial tree Ti is
to be continued to produce a rigid gradient flow tree with one positive puncture, then
each edge has to be continued in one of the two ways shown in Figure 4.

T1 T2

Figure 4: The possibilities for a rigid gradient flow tree with one positive
puncture passing through the lower cusp edge. Inside the region bounded
by the cusp edges, T1 is a gradient flow of the height difference of sheets A

and B . For T2 , the top left edge corresponds to the height difference of
sheets A and D , while the top right edge corresponds to the height difference
of sheets B and C .

Proof Observe that a generic resolution as shown in Figure 3 cannot have the cusp
edges being tangent to �r.htop � hbot/ at the swallowtail singularities, where htop

and hbot define the z–coordinates of the top and bottom sheet, respectively. A small
perturbation out of the degenerate situation produces four such tangencies located
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arbitrarily close to each of four the swallowtail singularities. These are the four points
on M near the cone where .S/–vertices might occur.

We may however perform the resolution of the front cone in such a way that when
continuing each of the edges e

j
i with the flow of �r.htop�hbot/ into the cone region,

they all reach the cusp edges of the perturbed front cone at points where the difference
htop � hbot is strictly less than the absolute value of the difference in z–coordinate
where an .S/–vertex may occur.

Hence, by Lemma 2.8, if the completions of the Ti is to have only one positive puncture
it must satisfy that:
� Each completion of the edge e

j
i cannot leave the cone region.

� Each completion of the edge e
j
i must have no .S/–vertex.

By dimensional reasons, if the completed gradient flow tree is to be rigid, such a
completion may then neither have any .Y0/–vertex in the cone region.

Thus, since the only possibility of completing the e
j
i are by using .E/ and .Y1/–

vertices, we conclude that for each edge there are exactly the two possibilities analogous
to the ones shown Figure 4.

3.3 Generating families for the front cone

Proposition 3.2 A generating family for the front cone has the property that the Morse
homology of a generic function in the family is isomorphic to H�Ci.S

1IZ2/. In
particular, the front cone has no generating family with fiber RN being linear at infinity.
However, it has a generating family with fiber S1 .

Proof The dashed diagonal in Figure 3 corresponds to points where the z–coordinate
of sheet B is equal to that of sheet D . Above (below) the dashed diagonal the z–
coordinate of sheet B is greater (less) than that of sheet D . Similarly, the diagonal
orthogonal to it corresponds to points where the z–coordinate of sheet A is equal to
that of sheet C . Above (below) that diagonal, the z–coordinate of sheet C is greater
(less) than that of sheet A.

Suppose that F W R2 �E!R is a generating family for the front cone. We will use
A, B , C and D to denote the critical points of the function Fm in the family, where
each critical point has been named after the sheet to which it corresponds. Since the
pairs AB , AD , CB , CD all cancel at birth/death singularities at the cusp edges, as
seen in Figure 3, we conclude that the critical points are graded by

index.A/D index.C /D i C 1; index.B/D index.D/D i;

in the complex C�.FmIZ2/, for some i � 0.
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For each complex, consider the pairing

h � ; � iW C�.FmIZ2/�C�.FmIZ2/! Z2;

defined by hPi ;Pj i D ıij for the basis fPig of critical points.

Let c 2R2 denote the intersection point of the two diagonals shown in Figure 3, ie the
point where the z–coordinates of sheets A and C coincide as well as those of sheets B

and C .

Suppose that h@A;Bi D 0 holds for the complex C�.Fc IZ2/. Since A and B cancel
at a birth/death singularity at the top cusp edge, there must be a handle-slide moment
either from A to C or from D to B somewhere in the domain bounded by the top
cusp edge and the diagonals. However, for m in this domain, Fm.A/ < Fm.C / and
Fm.D/ < Fm.B/, so there can be no such handle slide. By contradiction, we have
shown that h@A;Bi D 1 must hold for C�.Fc IZ2/.

Continuing in this manner, one can show that C�.Fc IZ2/ must be the complex defined
by @.A/D BCD D @.C /. Since the homology of this complex does not vanish, L

has no generating family with fiber E DRN being linear at infinity. Assuming that
E is closed, we conclude that we must have E D S1 . Such a generating family is
described in the beginning of this section.

Remark The front cone also appears twice in the conormal lift of the unknot in R3

(see Ekholm and Etnyre [4]). More precisely, let

f W S1 ,!R3; f .�/D .cos �; sin �; 0/

be the unknot. Identify S2 with the unit sphere in R3 . The conormal lift of f is the
Legendrian torus in J 1.S2/ defined by the generating family

F W S2
�S1

!R; F.q; �/D hq; f .�/i:

It can be seen to have front cones above the north and south pole.

4 Knotted Legendrian surfaces in J 1.R2/ of genus g > 0

4.1 The standard Legendrian handle

Consider the Legendrian cylinder with one saddle-type Reeb chord whose front pro-
jection is shown in Figure 5. We will call this the standard Legendrian handle. As
described in [6], we may attach the handle to a Legendrian surface by gluing its ends
to cusp edges in the front projection. This amounts to performing “Legendrian surgery”
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in the case when the cusp edges are located on the same connected component, and
“Legendrian connected sum” when the cusp edges are located on different connected
components.

sz

x1

x2

Figure 5: A Legendrian handle with one saddle-type Reeb chord

4.2 Two Legendrian tori in J 1.R2/

Consider the tori Tstd and Tknot whose fronts are depicted in Figure 6 and 7, respec-
tively. For the rotational-symmetric front there is an S1 –family of Reeb chords. After

Tstd
cM cm

D1 D2

z

x1

x2

Figure 6: The standard rotational-symmetric Legendrian torus Tstd with the
flow trees D1 and D2

Tknot
cM cm

D1 D2

z

x1

x2

Figure 7: The knotted rotational-symmetric Legendrian torus Tknot with the
partial flow tree D1 and the flow tree D2

perturbing the top sheet of the front by adding a Morse function defined on S1 having
exactly two critical points, we obtain two nondegenerate Reeb chords from the circle
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of Reeb chords: cM of maximum type and cm of saddle type. Using Formula (1),
after making the front cone contained in Tknot front generic as in Section 3, one sees
that the Maslov class vanishes for both tori. Using the h-principle for Legendrian
immersions [10] one concludes that Tstd and Tknot are regularly homotopic through
Legendrian immersions.

Remark An ambient isotopy of C2 inducing a Lagrangian regular homotopy between
…LTstd and …LTknot can be constructed as follows. Observe that the rotational-
symmetric …LTstd and …LTknot can be seen as the exact immersed Lagrangian
counterparts of the Chekanov- and the Clifford torus, respectively. In the Lefschetz
fibration C2 ! C given by .z; w/ 7! z2 Cw2 , with the origin as the only critical
value, we get a representation of these tori as the vanishing cycle fiberd over a figure-
eight curve in the base. More precisely, …L.Tknot/ is a figure eight curve in the base
encircling the origin, while …L.Tstd/ is a figure eight curve not encircling the origin.
From this picture it is easily seen that …L.Tknot/ and …L.Tstd/ are ambient isotopic
through immersed Lagrangians. Namely, we may disjoin the circle in the fiber from
the vanishing cycle, and then pass the curve in the base through the critical value.

4.3 The Legendrian genus–g surfaces Lg;k , with 0� k� g

We construct the Legendrian surface Lg;k of genus g by taking the Legendrian direct
sum of the standard sphere Lstd and g� k copies of Tstd (or equivalently, attaching
g�k standard handles to Lstd ) and k copies of Tknot . In all cases, we attach one edge
of the handle to the unique cusp edge of the sphere, and the other to the outer cusp
edge of the tori. The attached knotted tori will be called knotted handles.

It is clear that we may cancel the Reeb chord of each standard handle connecting the
sphere and the torus, which is a saddle-type Reeb chord, with the maximum-type Reeb
chord cM on the corresponding torus. We have thus created a Legendrian surface
having one Reeb chord c coming from the sphere and Reeb chords ci , for i D 1; : : : ;g ,
coming from the saddle-type Reeb chords on the attached tori. Such a representative is
shown in Figure 8.

The surfaces Lg;0 will be called the standard Legendrian surface of genus g and they
were studied in [6]. Observe that Tstd is Legendrian isotopic to L1;0 and Tknot is
Legendrian isotopic to L1;1 .

Remark Both L1;0 and L1;1 have exactly two transverse Reeb chords. This is the
minimal number of transverse Reeb chords for a Legendrian torus in J 1.R2/, as
follows by the adjunction formula

��.L/C 2W .…C.L//D 0;
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c1 c c2

Tknot TstdL2;1

Figure 8: The flow of �r.fu�fl / , where fu and fl are z–coordinates of
the upper and lower sheet, respectively, of the surface L2;1'Lstd #Tknot #Tstd

where W denotes the Whitney self-intersection index. When L is a torus we get that
W .…C.L1;0//D 0 which, together with the fact that there are no exact Lagrangian
submanifolds in C2 , implies the statement.

More generally, Lg;k has gC 1 transverse Reeb chords. By a conjecture of Arnold,
g C 1 is the minimal number of transverse Reeb chords for a closed Legendrian
submanifold in J 1.R2/ of genus g .

4.4 Computation of HC�.Lg;kIZŒH1.LIZ/�/

We first choose the following basis f�i ; �ig for H1.Lg;k IZ/. We let �i 2H1.Lg;k IZ/
be the class which is represented by (a perturbation of) the outer cusp edge on the i –th
torus in the decomposition

Lg;k 'Lstd # Tknot # � � � # Tknot # Tstd # � � � # Tstd:

If the i –th torus is standard, let 
1 and 
2 denote the 1–jet lifts of the flow trees on
that torus corresponding to D1 and D2 shown in Figure 6, respectively. We let �i be
represented by the cycle 
1� 
2 .

If the i –th torus is knotted, D1 depicted in Figure 7 is a partial flow tree ending near
a front cone. We choose to extend it with the partial gradient flow tree T1 shown in
Figure 4 at the perturbed front cone. Again, denoting the 1–jet lifts of D1[T1 and
D2 by 
1 and 
2 , respectively, we let �i be represented by the cycle 
1� 
2 .

Lemma 4.1 The surface Lg;k has vanishing Maslov class, and the generators of
ZŒH1.Lg;k IZ/�˝A.L/ can, after an appropriate choice of capping paths, and spin
stricture, be made to satisfy

jcj D 2; @c D 0;

jci j D 1; @ci D 1C�i
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if the i –th handle is standard, and

jci j D 1; @ci D 1C�i C�i�i

if the i –th handle is knotted.

Proof Using Formula (1) one easily checks that the Maslov class of Lg;k vanishes,
since each closed curve on Lg;k must traverse the cusp edges in upward and downward
direction an equal number of times.

We choose the capping path for c lying on Lstd (avoiding the handles) and for ci we
take the 1–jet lift of D2 . Using Formula (2), we compute

jcj D 2; jci j D 1:

After choosing a suitable spin structure on L and orienting the capping operators, we
get the following differential on the Reeb chords. For ci coming from a standard torus,
we compute

@ci D 1C�i ;

where the two terms come from the gradient flow trees D2 and D1 , respectively. For
a Reeb chord ci coming from a knotted torus we get

@ci D 1C�i C�i�i ;

where the first term comes from the gradient flow tree D2 , and the last two terms
come from the partial flow tree D1 approaching the front cone of the i –th torus. By
Proposition 3.1, the edge D1 can be completed in exactly two ways to become a rigid
flow tree with one positive puncture: by adding the partial flow tree T1 (giving the
term �i ) and by adding the partial flow tree T2 (giving the term �i�i ).

For the Reeb chord c coming from the sphere we get, because of the degrees of the
generators, that @c is a linear combination of the ci . The relation @2 D 0, together
with the fact that the @ci form a linearly independent set, implies that

@c D 0:

Remark By changing the spin structure on Lg;k , we may give each term different
from 1 in the differential of a given generator an arbitrary sign.

Remark For the DGA with Z2 –coefficients, observe that 1 is in the image of @
for Lg;k when k > 0. Hence HC�.Lg;k IZ2/D 0 in these cases.
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We consider the Legendrian isotopy invariant given by the augmentation variety de-
fined in Section 2.1.6. (In this case, it contains exactly the information given by
HC0.Lg;k IZŒH1.LIZ/�/.)

Proposition 4.2 The augmentation variety for Lg;k over C is isomorphic to

.C n f0g/g�k
� .C n f1; 0g/k :

Proof After making the identification

CŒH1.Lg;k IZ/�'CŒZ�i
;Z�1

�i
;Z�i

;Z�1
�i
�;

the augmentation variety becomes˚
1CZ�i

D 0; k < i � g; 1CZ�j CZ�jZ�j D 0; 1� i � k
	
� .C�/2g;

where the handles have been ordered such that the handle corresponding to f�i ; �ig is
standard precisely when i > k . To see this, observe that a DGA having no generators
of degree 0 and coefficients in a field is good if and only if the differential vanishes for
elements of degree 1.

Proof of Theorem 1.1 The first part follows immediately from the above proposition,
together with Corollary 2.5.

Since Lg;k contains k front cones, Proposition 3.2 gives that there does not exist any
generating family for Lg;k with vanishing Morse homology when k > 0. Hence, there
can be no generating family for Lg;k when k > 0, since Lg;k � J 1.R2/ is closed
and a generating family for it necessarily would have vanishing Morse homology.

It can easily be checked that every Lg;0 has a linear at infinity generating families
with fiber R, since both the standard Legendrian handle and the standard Legendrian
sphere Lstd have such generating families.

Remark Theorem 1.1 also implies that the Lagrangian projections …LLg;k and
…LLg;l never are Hamiltonian isotopic when k ¤ l , even when their actions coincide.

5 Knotted Lagrangian planes in T �S 2

We will consider the properly embedded Lagrangian planes F2k being the image of the
fiber T �p S2 under the composition of 2k symplectic Dehn twist along the zero-section
of T �S2 .
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The square of a symplectic Dehn twist along the zero-section can be described by the
time–2� map of the Hamiltonian flow induced by the Hamiltonian

H.q;p/D '.kpk/kpk;

where we have used the round metric, and where ' is a nondecreasing function
satisfying '.t/ D 0 when jt j is small and '.t/ D 1 when t > 0 is large. Outside
of a compact set, this flow corresponds to the Reeb flow on the contact boundary
U �S2 D @.D�S2/ extended to a flow on the symplectization R�U �S2 Š T �S2 n 0

independently of the R–factor. Consider [15] for a treatment of the symplectic Dehn
twist.

Let q 2 S2 be a point different from p . We will study the Legendrian link consisting
of the Legendrian lift of F2k together with a Legendrian lift of a compactly supported
Hamiltonian perturbation of F WD T �q S2 as shown in Figure 9. By abuse of notation,
we will sometimes use Fk and F to denote their respective Legendrian lifts in J 1.S2/.
We will choose the Legendrian lift of F so that its z–coordinate is big enough to make
all Reeb-chords of F [F2k start on F2k .

The front projections of F2[F and F4[F are shown in Figures 9 and 10, respectively.

D b

a
F

F2

Figure 9: The front projection of a Legendrian lift of F2[F drawn over S2 ,
together with a partial flow tree D . F is the Legendrian lift of a generic
perturbation of T �q S2 . The innermost sphere depicts the zero-section
of T �S2 .

Since there are no pure Reeb chords, the DGA of the link is good, and since the Maslov
class vanishes for both F and F2k , we may grade the DGA over Z. Even though
the Legendrian surfaces involved are noncompact, the Legendrian contact homology
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F

F4

a1

a2

b1b2

Figure 10: The front projection of a Legendrian lift of F4[F drawn over S2

is well-defined since F2k and F are separated by a positive distance outside of a
compact set, and it is invariant under compactly supported Legendrian isotopies of F2k .
Observe that since H 1.R2IR/D 0, and since F2k is a plane, any compactly supported
Lagrangian isotopy of F2k lifts to a compactly supported Legendrian isotopy.

The Legendrian link consisting of the lift of F2k[F , where F is translated far enough
in the Reeb direction, has the mixed Reeb-chords a1; b1; : : : ; ak ; bk , where the Reeb
chords have been labelled such that

`.b1/ < `.a1/ < `.b2/ < `.a2/ < � � �< `.bk/ < `.ak/:

For F2[F in Figure 9, we have b1 D b and a1 D a.

Remark The linearized complex for the DGA of the link is the Floer complex
CF�.F2k ;F IZ2/.

Lemma 5.1 For a Legendrian lift of F2k [F , where the lift of F has been translated
so that all Reeb chords start on F2k and end on F , the differential of the corresponding
DGA vanishes. Consequently,

HLC�.F2k [F IZ2/'

kM
iD1

Z2ai ˚Z2bi ;

where the grading is given by

jbi j D 2i � 1; jai j D 2i;

and where we have chosen the unique isomorphism class of its linearized homology.
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Proof We choose capping paths for each Reeb chord c as follows: We fix a point
w 2 F close to some Reeb chord endpoint. By w0 2 F2k we denote the point on the
highest sheet of F2k whose projection to S2 � J 1.S2/ coincides with that of w . A
capping path for c will be a path on F starting on the endpoint of c and ending at w ,
followed by a path on F2k starting on w0 and ending on the starting point of c . Using
Formula (2) one computes

jbi j D 2.i � 1/C 2� 1; jai j D .2i � 1/C 2� 1;

since the Reeb-chords all are of maximum type, and since one has to pass 2.i � 1/

(respectively 2i�1) front cones in downward direction to go from w0 to bi (respectively
from w0 to ai ). After perturbing each front cone as in Section 3 to make it front generic,
we see that traversing a front cone in downward (upward) direction amounts to traversing
one cusp edge in downward (upward) direction.

By comparing indices, we immediately get that

@1bi Dmi�1ai�1; @1ai D nibi ; mi ; ni 2 Z2;

and that @b1 D 0. We want to show that mi D ni D 0 for all i . We show the case
@aD 0 for F2 and note that the general case is analogous.

Consider the front projection of the Legendrian lift of the link shown in Figure 9. We
will compute @a by counting rigid flow trees. We are interested in flow trees having a
positive puncture at a and a negative puncture at b .

Observe that since the puncture at b is negative with a maximum-type Reeb chord, it
must be of type .P2/. This vertex is 2–valent, with one of the edges connected to it
being a flow line for the height difference of the lowest sheet of F2 and a sheet of F ,
while the other edge is living on F2 .

Suppose that the first edge does not originate directly from a positive .P1/ puncture at
a. Thus, the edge has to end in a .Y0/–vertex. However, there can be no such vertex
on this edge, since this would contradict the rigidity of the flow tree.

The other edge adjacent to the .P2/ vertex is a flow line living on F2 approaching
the front cone. Hence, we are in the situation depicted by the partial front tree D in
Figure 9. Applying Proposition 3.1, we conclude that this edge can be completed to a
rigid flow tree with one positive puncture in exactly two ways. We have thus computed

@aD 0:

Proposition 5.2 The plane F2k is smoothly isotopic to F0 by an isotopy having
compact support.
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Proof This follows from the fact that the square of a Dehn twist is smoothly isotopic
to the identity by a compactly supported isotopy.

Proof of Theorem 1.2 Suppose that F2k and F2l are Legendrian isotopic by an
isotopy having compact support, where k; l � 0. After translating F far enough in the
z–direction, we get that F2k [F is Legendrian isotopic to F2l [F by a compactly
supported isotopy. Hence,

HLC�.F2k [F IZ2/' HLC�.F2l [F IZ2/

and we get that k D l by the previous lemma.

After applying a Dehn twist, we likewise conclude that if F2kC1 and F2lC1 , where
k; l � 0, are Legendrian isotopic by an isotopy having compact support, then k D l .
Observe that Fk and Fl cannot be isotopic when k 6� l mod 2 because of topological
reasons.

Similarly, one may define Fk for k < 0 by applying k inverses of Dehn twists. After
applying min.jkj; jl j/ Dehn twists to Fk and Fl , the above result gives that Fk and Fl

with k; l 2 Z are Legendrian isotopic by a compactly supported isotopy if and only if
k D l .

The above proposition similarly gives that Fk and Fl are smoothly isotopic by an
isotopy having compact support if and only if k � l mod 2.

The above computations are closely related to the result in [15], where the existence of
the following exact triangle for Floer homology is proved:

HF.L0;L1/ // HF.L0; �LL1/

zz
HF.L0;L/˝HF.L;L1/:

cc

Here L0;L1 are closed exact Lagrangians in a Liouville domain, L is a Lagrangian
sphere and � is the Dehn twist along L for some choice of an embedding of L.
The map . is given by the pair of pants coproduct composed with the isomorphism
HF.�LL; �LL1/' HF.L;L1/, while - is given by the pair of pants product.

6 A knotted Legendrian sphere in J 1.S 2/ which is smoothly
ambient isotopic to the unknot

Consider the front over S2 given in Figure 11. It represents a Legendrian link Lknot[F ,
where Lknot is a sphere with one maximum type Reeb chord c , having a rotational
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symmetric front, and where F is the Legendrian lift of a compactly supported pertur-
bation of a fiber T �q S2 . The Legendrian lift of the fiber has been chosen so that its
z–coordinate is strictly larger than maxz Lknot .

F

Lknot

c

b

a

Figure 11: The front projection of Lknot[F . The innermost sphere depicts
the zero-section of T �S2 .

Remark The Lagrangian projection …L.Lknot/ of the sphere may be seen as the La-
grangian sphere with one transversal double point obtained by performing a Lagrangian
surgery to the nondisplaceable Lagrangian torus discovered in [1], exchanging a handle
for a transverse double point. More precisely, the torus in T �S2 is given by the image
of the geodesic flow of a fiber of U �S2 . We may lift a neighborhood of the fiber in the
torus to a Legendrian submanifold in J 1.S2/. The front projection of this lift looks
like the front cone described in Section 3. …L.Lknot/ is obtained from the torus by
replacing the Lagrangian projection of the front cone with the Lagrangian projection
of the two-sheeted front consisting of the graphs of functions on the form

f1.x1;x2/D x2
1 Cx2

2 CC;

f2.x1;x2/D�x2
1 �x2

2 �C;

where C > 0. This produces the Reeb chord c as shown at the south pole in Figure 11.

Remark One can also obtain Lknot by the following construction, which involves a
Dehn twist. Consider the standard sphere Lstd shown in Figure 1, and suppose that
…L.Lstd/ � T �D2 � T �R2 . We may symplectically embed T �D2 � T �S2 such
that the zero-sections coincide. Perturb one of the sheets so that it coincides with a
fiber of T �S2 in a neighborhood of the double point. Removing a neighborhood of
this sheet and replacing it with its image under the square of a Dehn-twist along the
zero-section (see Section 5), such that the Dehn twist has support in a small enough
neighborhood, yields …LLknot .
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Since Lknot has a front cone above the north pole, Proposition 3.2 implies that the fiber
of a generating family must be S1 . However, the following holds.

Proposition 6.1 Lknot has no generating family

F W S2
�S1

!R:

Proof Suppose there is such a generating family. Then

…LLknot D �T �S2

�
dF \ .T �S2

� 0S1/
�
� T �S2;

where dF is considered as a section of T �S2 �T �S1 , �T �S2 is the projection onto
the T �S2 –factor and 0S1 � T �S1 is the zero-section. Hence

…LLknot\ 0S2 D �T �S2

�
dF \ .0S2 � 0S1/

�
;

which by the Morse inequalities consists of at least four points when the intersection is
transversal. However, one sees that Lknot intersects the zero-section transversely in
only two points, which leads to a contradiction.

Remark Lknot can be seen to have a generating family defined on an S1 –bundle
over S2 having Euler number 1.

Proposition 6.2 …L.Lknot/ and …L.Lstd/ are smoothly ambient isotopic.

Proof Consider Lknot given by the rotation symmetric front in Figure 11. We assume
that the Reeb chord c is above the south pole and that the front cone is above the north
pole. We endow S2 with the round metric.

The goal is to produce a filling of Lknot by an embedded S1 –family of disks in T �S2

with corners at c . More precisely, we want a map

'W S1
�D2

! T �S2;

such that:

� ' is a diffeomorphism on the complement of S1 � f1g.

� '�1.c/D S1 � f1g.

� 'jS1�@D2 is a foliation of …L.Lknot/ by embedded paths starting and ending
at the double point.

� On a neighborhood U � S1 � f1g, 'j.f�g�D2/\U maps into the plane given
by .s; t/ 7! t P
� .s/ 2 T
� .s/S

2 ' T �
� .s/S
2 (identified using the round metric),

where 
� is a geodesic on S2 starting at the south pole with angle � .
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The existence of such a filling by disks will prove the claim, since an isotopy then may
be taken as a contraction of …L.Lknot/ within the disks to a standard sphere contained
in the neighborhood of S1 � f1g. To that end, observe that such a neighborhood
contains a standard sphere intersecting each plane .s; t/ 7! t P
� .s/ 2 T
� .s/S

2 in a
figure eight curve, with the double point coinciding with that of Lknot .

We begin by considering the S1 –family f zD�g of embedded disks with boundary on
…L.Lknot/ and two corners at c , such that zD� is contained in the annulus

f t P
� .s/ 2 T
� .s/S
2
' T �
� .s/S

2
I t 2R; 0� s < 2�g;

and where 
� is the geodesic described above. (In some complex structure, these disks
may be considered as pseudoholomorphic disks with two positive punctures at c , or
alternatively, gradient flow trees on Lknot with two positive punctures.)

Let R� W C
2 ! C2 be the complexified rotation of R2 by angle � . We can take a

chart near the north pole of T �S2 which is symplectomorphic to a neighborhood of
the origin in C2 ' T �R2 such that:

� The image of Lknot in the chart is invariant under R� .
� The disk in the above family corresponding to the geodesic 
� is contained in

the plane R� .z; 0/.

The image of Lknot in such a chart is shown in Figure 12.

D T

Lknot

D0
T 0

x1

y1

T

s

t

�

�

Figure 12: A neighborhood of the north pole of T �S2 identified as a subset
of C2 where Lknot and T are invariant under R� . The curves .R�D/\T

can be completed to a foliation of T by closed curves as shown on the right.

The torus T invariant under R� shown in Figure 12 is symplectomorphic to a Clifford
torus S1 �S1 �C2 . It can be parameterised by

f W R=�Z�R=�Z!C2;

.s; t/ 7! f .s; t/D 
 .sC t/.cos.s� t/; sin.s� t//;

where 
 W R=2�Z!C is a parametrization of T\.C�f0g/ satisfying 
 .sC�/D�
 .s/.
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We now cut the disks in the family f zD�g along T . For each zD� we obtain three disks:
D� coinciding with R�D in Figure 12, �D� coinciding with R�C�D , and R�D0 .

Observe that fD�g is an S1 –family of embedded disks which has the right behaviour
near the double-point of …L.Lknot/. However, each disk in the family has a boundary
arc .R�D/\T which is not on …L.Lknot/. We will produce our filling ' by gluing
another family of embedded disks along these arcs.

As shown in Figure 12, each arc .R�D/ \ T can be extended by a curve inside
T \…L.Lknot/ to become a unique leaf in a foliation of T by closed curves. This
foliation extends to a filling of T by an embedded S1 –family of disks whose interiors
are disjoint from …L.Lknot/[

S
�2S1 D� . Gluing these disks to the disks in fD�g

will produce the required filling ' .

To see the filling of T one can argue as follows. The foliation of T is isotopic to a
foliation where all leaves are of the form t � C . Using this isotopy, we may create a
family of annuli with one boundary component being a leaf in the foliation of T , and
the other boundary component being the curve �ei.sCC /.cos.s�C /; sin.s�C // for
some C and � > 0. The latter curve is a leaf of a foliation of the torus parameterised by
�ei.sCt/.cos.s�t/; sin.s�t//. The smaller torus, which is depicted by T 0 in Figure 12,
is clearly isotopic to T by an isotopy preserving each R�D0 . Finally, the leaf in the
foliation on T 0 corresponding to t � C is bounded by a disk contained in the plane�

zC
�

2
ei2C ;�iz�

�

2i
ei2C

�
; z 2C:

We will now compute the linearized Legendrian contact homology of the link Lknot[F

with coefficients in Z2 . Observe that the DGA of each component is good since, as
we shall see, the differential vanishes. Observe that even though F is not compact,
the Legendrian contact homology is still well-defined under Legendrian isotopy of the
component Lknot .

Lemma 6.3 The differential vanishes on all generators of the DGA for the link
Lknot[F , and hence

HLC�.Lknot[F IZ2/' Z2c˚Z2a˚Z2b;

where we have chosen the unique isomorphism class of its linearized homology.

Proof Since both components have zero Maslov number, we may consider DGAs
graded over Z.

Formula (2) gives jcj D 2. We may assume that `.c/ <min.`.a/; `.b//. Thus, by the
area Formula (3), we immediately compute @.c/ D 0 for the only pure Reeb chord.
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Hence there is an unique augmentation of the DGA for each component, namely the
trivial one.

For the Reeb chords a and b , we grade them as in the proof of Lemma 5.1, ie jaj D 2,
jbj D 1. The same proof carries over to give @aD @b D 0.

Remark The above lemma shows that the subspace of HLC�.Lknot[F IZ2/ spanned
by the mixed chords is isomorphic to H�C1.S

1IZ2/. This graded vector space is, in
turn, is isomorphic to the Morse homology of a generic function in the generating
family considered above (with shifted degrees).

Corollary 6.4 For every isotopy class of Lknot , its link with F has a mixed Reeb
chord.

Proof If Lknot and F could be unlinked, ie if Lknot could be isotoped so that the link
carries no mixed Reeb chords, then we would have

HLC�.Lknot[F IZ2/' HLC�.LknotIZ2/˚HLC�.F IZ2/' Z2c;

where we again have chosen the unique (trivial) augmentations. This leads to a contra-
diction.

Proof of Theorem 1.3 Suppose that Lknot is Legendrian isotopic to Lstd . It would
then be possible to unlink Lknot and F , contradicting the previous corollary.

We now show that …L.Lknot/�D�S2 �S2�S2 , where D�S2 denotes the unit disk
bundle, cannot be Hamiltonian isotoped to …L.Lstd/ inside S2 �S2 . We use the fact
that the torus considered in [1], and fiber-wise rescalings of it, are nondisplaceable in
S2�S2 , as is shown in [12]. After Hamiltonian isotopy, such a torus can be placed in
an arbitrarily small neighborhood of …L.Lknot/.

A Hamiltonian isotopy of S2 � S2 mapping …L.Lknot/ to a small Darboux chart,
would do the same with a nondisplaceable torus sufficiently close to it, which leads to
a contradiction.
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