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Representation spaces of pretzel knots

RAPHAEL ZENTNER

We study the representation spaces R.KI i/ appearing in Kronheimer and Mrowka’s
instanton knot Floer homologies for a class of pretzel knots. In particular, for pretzel
knots P .p; q; r/ with p; q; r pairwise coprime, these appear to be nondegenerate
and comprise representations in SU.2/ that are not binary dihedral.

57M25, 57M27; 57R58

1 Introduction

Let K be a knot in the 3–sphere, and y0 a point in its complement. Let furthermore m

be a meridian of the knot. In the construction of framed instanton knot Floer homology
by Kronheimer and Mrowka [10] there appear at the chain group level representation
spaces

R.KI i/D f � 2 Hom.�1.S
3
nKIy0/;SU.2// j �.m/� i g

of knots with the meridian m (or links with each of their meridians) mapped to traceless
matrices, or, equivalently, to elements that are conjugate to i when SU.2/ is viewed as
the group of unit quaternions. In the construction of the slightly newer reduced singular
knot Floer homology also by Kronheimer and Mrowka [11; 12], there appears a very
related representation space.

Our intention is to study these representation spaces for a class of pretzel knots. In
Section 3, we describe the conjugacy classes of representations of P .p; q; r/ by
triangles on the 2–sphere, with two vertices fixed in order to fix the conjugacy class,
and with the length of each of the edges taken from a finite set. The binary dihedral
representations appear as degenerate triangles, where all three vertices lie on a great
circle. More generally, we show that for knots K D P .p1; : : : ;pn/ the conjugacy
classes of representations are described by (ordered) n–gons on the 2–sphere, again with
two vertices fixed for fixation of the conjugacy class, and with the lengths of the edges
taken from a discrete set. As a consequence, each conjugacy class of representation
of a 3–strand pretzel knot P .p; q; r/ is isolated in R.KI i/ WD R.KI i/=SU.2/, and
comes in general with an n � 3 dimensional family for the case of n strands. We
emphasise this result in Section 5, where we compute the Zariski tangent spaces of
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all representations of P .p; q; r/ provided some arithmetic conditions on p; q and r

hold. The required arithmetic conditions are studied in Section 4. In Section 6 we
summarise the results for the pretzel knot P .p; q; r/, we consider examples, and we
reobtain very easily the known result that a pretzel knot or link has bridge number 3 if
jpj; jqj; jr j> 1 under the assumption of pairwise coprimeness of these numbers.

1.1 Relation to Khovanov homology

There is an isomorphism of abelian groups

(1) Kh.K/ŠH�.R.KI i/IZ/ ;

where Kh.K/ denotes the Khovanov homology [8] of K , for certain knots. For
torus knots of type .2;p/ this was observed by Kronheimer and Mrowka [10, Ob-
servation 1.1]. For an arbitrary 2–bridge knot or 2–component link this was proved
by Lewallen [13] (in the current version by use of an unpublished result of Shu-
makovitch [19; 18]). More precisely, he shows that Khovanov homology of a one or
two component alternating link is isomorphic to the integer homology of Rbd.KI i/,
where Rbd.KI i/ � R.KI i/ is the subspace of binary dihedral representations. Our
explicit description in Proposition 6.1 allows us to draw the following conclusion:

Proposition 1.1 Let K be the alternating pretzel knot P .p; q; r/ for p; q; r pairwise
coprime such that jpj; jqj; jr j> 1. Then

(2) Kh.K/©H�.R.KI i/IZ/ ;

ie these two abelian groups are not isomorphic.

Proof In fact we have R.KI i/ŠRbd.KI i/t .
F

I 0 RP3/, where I 0 parametrises the
nonempty set of conjugacy classes of non–binary dihedral representations.

1.2 Relation to instanton knot Floer homology

Kronheimer and Mrowka [10] constructed an abelian group called the framed instanton
Floer homology FI�.K/ of knots K in the 3–sphere, and then later introduced an
equivalent theory I #.K/ in [12] that is there called “unreduced singular knot Floer
homology” of K , and a reduced version I \.K/. These are Morse homologies of
a Chern–Simons functional CS defined on a space of connections on an open 3–
manifold obtained Y from K . For the unreduced theory the 3–manifold Y is the knot
complement of K with in addition an unlinked Hopf link and an arc joining the two
components of the Hopf link removed. For the reduced version the 3–manifold Y is
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the knot complement with a meridian and an arc going from the knot to the meridian
removed. In the unreduced theory the critical space is just R.KI i/ in our notation,
and it is a related space xR.KI i/ for the reduced theory, where each conjugacy class
of an irreducible representation appears with a 1–sphere S1 , and where the reducible
representation appears as a point. To be more precise, the requirement that a meridian
is mapped to an element �.m/ that is conjugated to i is replaced with the requirement
that �.m/D i. The stabiliser S1 acts freely on irreducible representations and trivially
on abelian ones.

In both cases, the critical space is degenerate, and so the Chern–Simons functional CS
has to be perturbed. But if the critical space is nondegenerate in the Morse–Bott sense
one expects the following to happen: The filtration coming from the Floer grading
induces a spectral sequence starting at the homology of the critical manifold of CS and
that converges to the instanton Floer homology of a generically perturbed functional.
This attempt is chosen for instance by Fukaya [4], where the corresponding classical
result in Morse homology is proved and then modified so as to be applicable to the
instanton Floer homology of the connected sum of two manifolds, where the critical
space is necessarily degenerate. The author learned about this reference from Daniel
Ruberman.

Presumably our results of Section 5 imply that for the pretzel knots P .p; q; r/ with
p; q; r coprime the critical space

xR.P .p; q; r/I i/

is nondegenerate in the sense of [10] in the normal directions, and so nondegenerate
in the Morse–Bott sense for the setting of [10]. If this is the case then our results of
Proposition 6.1 indicate that this spectral sequence has nontrivial differentials at least
when all of p; q; r have the same sign (which corresponds to an alternating pretzel
knot). In fact, for alternating knots K the rank of I \.K/ is known [12, Corollary 1.6]
to equal j�K .�1/j, the absolute value of the knot determinant, whereas the rank of

H�. xR.P .p; q; r/I i/IZ/

is strictly bigger if jpj; jqj and jr j are all strictly bigger than 1. Therefore, a spectral
sequence as made allusion to would have to have nontrivial differentials.

For a 2–bridge knot, the ranks of the groups I \.K/ and H�. xR.KI i// are equal by
Klassen’s result [9], determining the number of irreducible binary dihedral representa-
tions (and there are only such for a 2–bridge knot) to be equal to .j�K .�1/j�1/=2, and
the above cited result [12, Corollary 1.6]. This suggests that after generic perturbation
of the Chern–Simons functional each S1 coming from an irreducible representation
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gives rise to two critical points, the reducible representation to one critical point, and
that the differentials are all trivial. For the alternating knots P .p; q; r/ this cannot
happen by the above rank argument. From the author’s naive point of view this is
surprising in the sense that it looks like the non–binary dihedral representations “do not
contribute” to I \.P .p; q; r/ for p; q; r of the same sign, at least regarding the rank.

Thinking further, it would be interesting to compute the differentials yielding I \.K/

or I #.K/ explicitly and to study [10, Question 1.2] explicitly on the class of pretzel
knots considered here.

1.3 Parallels with representation spaces of Brieskorn homology spheres

There appear to be parallels between the representation spaces R.KI i/ for K D

P .p1; : : : ;pn/ and the representation spaces R.Y /D Hom.�1.Y /ISU.2// for Y D

†.a1; : : : ; an/ a Seifert fibred homology sphere; see Fintushel and Stern [3]. In both
cases the representation space is nondegenerate for nD 3 and degenerate for n� 4,
with a similar growth in the dimensions of the Zariski tangent spaces. However, the
analogies between the two cases also have limitations: In the case of the Brieskorn
homology spheres the Floer gradings of the critical points all have the same parity,
so there are no nonzero differentials in the instanton Floer chain complex, and the
Floer homology is just isomorphic to the chain complex. As indicated above, a similar
statement doesn’t seem to be true for I \.P .p; q; r// for p; q and r pairwise coprime
and of the same sign.

The author was informed by Saveliev that the parallels on the critical space level can
be explained by results of Collin and Saveliev [2] and Saveliev [16; 17]. For knots the
representation spaces as considered here correspond to Z=2 equivariant representation
spaces of the manifold obtained as double branched cover of the knot complement,
branched along the knot [2, Proposition 3.3]. In the case one gets a Brieskorn homology
sphere (an integer homology sphere), all representations turn out to be equivariant [16],
explaining the analogy we have encountered, and there is a study of the equivariant
representations in the case one gets a more general Seifert fibred integer homology
sphere in [17]. Saveliev’s result is applicable to more general Montesinos knots than
just pretzel knots of which the branched cover is a Brieskorn homology sphere. The
double branched cover of a knot in S3 is an integer homology sphere if and only if
the determinant j�K .�1/j is one. Our result extends Saveliev’s in the sense that it
also yields an analogy in the case the double branched cover isn’t an integer homology
sphere, like for most pretzel knots.

In a former version of this article the consideration was restricted to alternating knots
P .p; q; r/ with all of p; q; r odd. When preparing a seminar talk on the topic the
author realised that this restriction was unnecessary.
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2 Presentations of pretzel knot groups

Consider the elementary “p–tangle” as Figure 1. This shall mean that we have a braid
with jpj crossings, that is a “left-hand screw” if p is positive, as in our figure, and that
is a “right-hand screw” for p negative. Let s and t be meridians at the top as indicated
(with the basepoint in front of the eye of the observer and straight lines going directly
to the starting point and end point of the indicated flash), and u and v at the bottom.

s
t

u
v

9>>>>>>>>>>>=>>>>>>>>>>>;
p many

Figure 1

In the situation of Figure 1, that is, for a left-handed p–tangle (with p positive) we get

uD .ts/�k s�1ts .ts/k ;

v D .ts/�k s .ts/k

for p D 2kC 1 odd, and

uD .ts/�k s .ts/k ;

v D .ts/�.k�1/ s�1ts .ts/k�1
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for p D 2k even. On the other hand, if p is negative, then we get

uD .ts/k t .ts/�k ;

v D .ts/k tst�1 .ts/�k

for p D�.2kC 1/ odd, and

uD .ts/k�1 tst�1 .ts/�.k�1/;

v D .ts/k t .ts/�k

for p D�.2k/ even.

With these formulae at hand we get the complement of any pretzel knot rather quickly.
Indeed, Figure 2 shows diagram of a general pretzel knot or link P .p1; : : : ;pn/, where
the boxes are to be filled in by the elementary tangles as in Figure 1, and as a concrete
example Figure 3 shows the knot P .�3; 5; 7/.

p1 p2 pn

Figure 2: A general pretzel
link P .p1; : : : ;pn/

Figure 3: The .�3; 5; 7/

pretzel knot

In this diagram it becomes obvious that it can be visualised as a knot or link with
n bridges or a 2n–plat. So there is an embedded 2–sphere (the “horizontal” one)
in the 3–sphere cutting the P .p1; : : : ;pn/ pretzel knot/link in 2n points such that
the resulting balls each contain 2n unknotted arcs with boundaries on the boundary
2–sphere. We therefore see that the knot or link complement has a decomposition into
two pieces which each are (or deformation retract onto) two handlebodies of genus n

with common intersection a two-sphere punctured in 2n discs, with these discs centered
at the intersection points of the knot or link with this 2–sphere. The fundamental group
of each handlebody is a free group on n generators given by the meridians of the
knot/link in the corresponding ball.

Now let s1; : : : ; sn be these meridians in the upper and u1; : : : ;un be the meridians in
the lower handlebody. We orient these meridians so that at each “elementary p–tangle”
at the position i we have si corresponding to s in the picture above, and s�1

iC1
corre-

sponding to t in the picture above.
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The Seifert–van Kampen theorem now gives a presentation of the knot/link complement
in a straight-forward manner.

Proposition 2.1 The fundamental group G.K/ WD �1.S
3 � P .p1; : : : ;pn/;y0/ of

the complement of the pretzel knot or link P .p1; : : : ;pn/ is given by

hs1; : : : ; sn j v1u2 D 1; v2u3 D 1; : : : ; vn�1un D 1; vnu1 D 1i;

where vk D u�1
kC1

for k D 1; : : : ; n� 1, where vn D u�1
1

, and where uk and vk are
the meridians at the bottom of the k –th elementary tangle, as indicated in the figure,
and as given in the formulae above in terms of sk and tk D s�1

kC1
. Each generator is a

meridian, and any relation is a consequence of all others, so (any) one relation may be
omitted.

Proof The relations that are added by the Seifert–van Kampen theorem are v1u2 D 1,
v2u3D 1, . . . , vn�1unD 1, vnu1D 1. Now as vnunvn�1un�1 : : : v1u1D 1 it is clear
that any of the n relations can be omitted.

3 The representation space

The space R.KI i/ consists of representations � 2 Hom.G.K/;SU.2// such that
�.m/ � i, where m is a preferred element (or a set of preferred elements in the
case of a link, and the condition of being conjugated to i is satisfied for each element of
the set). Any element in SU.2/ with zero trace has order 4 and square �1. Therefore,
any representation � 2R.K; i/ factors through the group

(3) G.K/m;i WD .G.K/�Z=2/=hm2.�1/i ;

where .�1/ denotes a generator of the group Z=2, and where hm2.�1/i denotes the
normal subgroup generated by m2.�1/. Notice that we have a group epimorphism
G.K/!G.K/m;i induced by the map that sends an element z 2G.K/ to the image
of .z; 1/ 2 G.K/ � Z=2 in the quotient .G.K/ � Z=2/=hm2.�1/i. In fact, if we
denote the equivalence classes by brackets, then we have Œ.m�2; 1/�D Œ.1;�1/�, and
so the image of the element .1;�1/ 2G.K/�Z=2 lies in the image of the above map
G.K/!G.K/m;i , and therefore the image of any generator of G.K/�Z=2 is in the
image of this map.

This observation simplifies the description of R.K; i/ considerably. We denote by
xR.G.K/m;i/ the representation space Hom.G.K/m;i;SU.2//. Suppose a representa-
tion � 2 Hom.G.K/m;i;SU.2// satisfies �..�1//D �.m2/DC1. This implies that
�.m/D˙1. As the knot group G.K/ is normally generated by a meridian m, this
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implies that � is one of the two possible central representations. These are clearly
both isolated in xR.G.K/m;i/. We define R.G.K/m;i/ to be the subspace of noncentral
representations.

Proposition 3.1 The canonical homomorphism � W G.K/!G.K/m;i induces a home-
omorphism

��W R.G.K/m;i/!R.KI i/ ;

with both representation spaces seen as subspaces of Map.G.K/m;i;SU.2//, respec-
tively Map.G.K/;SU.2//, and with these mapping spaces topologised by the compact-
open topology determined by the standard topology on SU.2/ and the discrete topology
on the groups.

Proof Any element in R.KI i/ is in the image of �� by construction of G.K/m;i ,
and as � is surjective the map �� is injective likewise. It is an easy matter to check
continuity and openness of the map �� directly from the definition of the compact-open
topology.

Remark 3.2 The group G.K/m;i is closely related to the orbifold fundamental group
O.K/DG.K/=hm2i of the 2–fold branched cover M2.K/ of the knot complement
branched along the knot, considered as a Z=2–orbifold. In fact, the group G.K/m;i
is a central extension of O.K/ by Z=2. On the other hand, the orbifold fundamental
group O.K/ contains the fundamental group of M2.K/ as a subgroup of index 2, see
for instance Kawauchi [7, Section 10.6]. This also explains the observations made in
Section 1.3.

After these general considerations we shall return out attention to pretzel knot or links.

Proposition 3.3 For the pretzel knot (or link) KDP .p1; : : : ;pn/, and for m denoting
the meridian (respectively a set consisting of one meridian per link component), we
have a presentation of G.K/m;i given by

hs1; : : : ; sn j s
4
1 D 1; s2

1 D s2
2 D � � � D s2

n ;

.s1s2/
p1 D .s2s3/

p2 D � � � D .sn�1sn/
pn�1 D .sns1/

pni:

Proof In the presentation of Proposition 2.1 any generator is a meridian m. We claim
that the group G.K/m;i has a presentation given by

(4)
hs1; : : : ; sn;�1 j Œ�1; si �D 1; .si/

2
D�1; i D 1; : : : ; n; .�1/2 D 1;

.s1s2/
p1 D .s2s3/

p2 D � � � D .sn�1sn/
pn�1 D .sns1/

pni :
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In fact, the relations in the first line follow directly from the definition of G.K/m;i as a
quotient of G.K/�Z=2. The remaining relations of the presentation in Proposition 2.1
simplify because any of the elements si now satisfies s�1

i D �si . Therefore, in the
above notation, the meridians u and v expressed in terms of s and t simplify to the
expressions

uD .st/ps�1

v D .st/pt�1

)
for p odd,

uD .st/p s;

v D .st/p t

)
for p even,

no matter of what the sign of p is. The relation v1u2 D 1 then becomes .s1s2/
p1 D

.s2s3/
p2 , independently of the sign and parity of p1 and p2 , and likewise for the

remaining ones. Furthermore, the generator .�1/ in the presentation (4) may be omitted,
yielding the claimed presentation.

The elements � 2 R.P .p1; : : : ;pn/I i/ fall into two classes, depending on whether
�..s1s2/

p1/D˙1 or not, or in other words, according to whether �..s1s2/
p1/ is central

in SU.2/ or not. As we shall see, if this is not the case, then the representation � is
binary dihedral, which by definition means that it factors through a subgroup of SU.2/
that is conjugated to

Pin.2/D S1
t j �S1 ;

where SU.2/ is seen as the unit quaternions, S1 �C D h1; i i �H the unit complex
numbers, and j �S1 � h j;k i �H the circle of unit complex numbers multiplied by j,
lying entirely in the space spanned by j and k.

Before we proceed, we shall note a useful formula: Let v D v1 iC v2 jC v3 k and
wD w1 iCw2 jCw3 k be purely imaginary quaternions. Then we have

v �wD�hv;wiC v�w ;(5)

v�wD .v2w3� v3w2/ iC .v3w1� v1w3/ jC .v1w2� v2w1/k ;where

and where h�;�i denotes the standard scalar product. As the notation suggests, this
corresponds to the usual “cross-product” in R3 . In particular, if v and w are linearly
independent the vector v�w is perpendicular to the plane spanned by v and w.

3.1 A conjugacy class fixing condition

The following Lemma is useful for fixing representatives of conjugacy classes of repre-
sentations. Recall also that the surjective map S.Im.H//� Œ0; ��! SU.2/, given by
.z; ˛/ 7! ez˛ via the exponential map is injective when restricted to S.Im.H//�.0; �/,
and maps S � f�g to �1 and S � f0g to C1.
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Lemma 3.4 Let G be a group, and let x and y be elements of G . Let �W G! SU.2/
be a representation such that �.x/ is not in the centraliser of �.y/ (in particular, � is
nonabelian). Then there are precisely two representations �0 , both conjugated to � ,
such that

�0.x/D ej˛ and �0.y/D ezˇ

with ˛; ˇ 2 .0; �/, and such that z 2 S.Im.H// lies in the plane h j;k i. The two are
distinguished according to the sign of the inner product hk; zi ¤ 0 with j. These two
are related by conjugation with j, or in other words, related by a rotation of z around
the axis j with angle � .

We notice for our further applications that if �.x/ and �.y/ are required to have
trace zero in SU.2/ then we have �0.x/ D j and �0.y/ D z may also be written as
�0.y/ D j ei˛0 with ˛0 2 .0; �/ if we require the inner product condition, or with
˛0 2 .0; 2�/ n f�g without the inner product condition.

Proof The action of SU.2/ on itself by conjugation consists precisely in the adjoint
action on its Lie algebra when seen through the exponential map, and as such it factors
through SO.su.2// D SO.3/. Up to conjugation we may assume that �.x/ D ej˛

because the action of SU.2/ on the 2–sphere S.Im.H// is clearly transitive. This
assumption does not yet fix � up to conjugation. In fact, we have c j c�1 D j if and
only if c 2 SU.2/ is of the form cDwCy j with w;y 2R and w2Cy2D 1. The set
of these elements is a 1–dimensional circle, and conjugating with an element c of this
circle yields a rotation around the axis j in h i; j;ki ŠR3 . Therefore, we may assume
that �.y/D ezˇ is such that z lies in the h j;ki–plane. Our assumption implies z¤ j,
and so there are two possible choices of rotations around j with this requirement on z,
according to whether hk; z i< 0 or hk; z i> 0.

3.2 The case �..s1s2/
p1/D �..s2s3/

p2/D � � � D �..sns1/
pn/DC1

This class may have binary dihedral representations and may and usually does contain
representations that are not binary dihedral.

Lemma 3.5 Let x; y; z 2 S2 � hi; j;ki, and suppose yD x � ez˛ for some ˛ 2 Œ0; 2��.
Suppose x¤˙y, or equivalently ˛ 6� 0 .mod �/, or equivalently sin.˛/¤ 0. Then z
must be perpendicular to x.

Proof As usually one proves that ez˛ D cos.˛/C z sin.˛/. Therefore we see that

(6) x � ez˛
D x cos.˛/C x � z sin.˛/ :
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As we were assuming x¤˙y the angle ˛ cannot be 0 or � , and so sin.˛/¤ 0. By
the above formula (5) we see that this is purely imaginary if and only if x and z are
perpendicular.

We are now able to describe the space of all representations up to conjugacy of the
pretzel knots or links P .p1; : : : ;pn/. A connection component is reminiscent of the
possible configuration space of a mechanical linkage on S2 D S.Im.H//: It’s the
space of ordered subsets of points .z1; : : : ; zn/ on S2 with (usually) the first two of
them fixed by the conjugacy fixing condition, and with the distances of two consecutive
points fixed, but with the liberty of “moving around” otherwise. For n� 4 this yields
positive dimensional families in this representation space up to conjugacy.

Proposition 3.6 The set of conjugacy classes of representations � 2 R.KI i/ such
that �..s1s2/

p1/D �..s2s3/
p2/D � � � D �..sns1/

pn/DC1 is bijective to the ordered
subsets .z1; : : : ; zn/ of points z1; : : : ; zn 2 S.Im.H//, z1 D �.s1/; : : : ; zn D �.sn/,
such that

(1) the distance between zi and ziC1 is given by ˛i;iC1 2 Œ0; �� satisfying the
congruence

pi ˛i;iC1 � pi � .mod 2�/ ;

for i D 1; : : : ; n, with nC 1D 1 understood, and

(2) these points satisfy the following “conjugacy class fixing condition”:

z1 D j ; zjC1 D zj � e
i j̨ ;jC1 ;

for j D 1; : : : ; l , where l is the smallest integer such that ˛l;lC1 62 f0; �g, if it
exists, or l D n if not.

Furthermore, a representation � determined by an n–tuple .˛12; ˛23; : : : ; ˛n1/ is
nonabelian unless all angles ˛i;iC1 are equal to 0 or � . It is binary dihedral if and only
if all points zi lie on the great circle lying in the h j;k i–plane. Reflection on this plane
induces an involution on the space of conjugacy classes of representations with fixed
point set precisely the binary dihedral representations. In particular, conjugacy classes
of nonabelian representations that are not binary dihedral come in pairs.

Proof The conjugacy fixing condition follows immediately from Lemma 3.4 above
applied to x D s1 and y D slC1 if � is non abelian. Also by that Lemma we may
assume that �.s1/D j, and �.s2/D j � ei˛12 , with angle ˛12 2 Œ0; ��. Notice that ˛12

is the distance between �.s1/ and �.s2/ on the 2–sphere S.Im.H// with its standard
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metric. Because �..s1s2//
p1 D .�1/p1ei˛12p1 must be equal to .C1/, we have the

condition that

(7) p1 ˛12 � p1� .mod 2�/ :

We assume for simplicity that ˛12 62 f0; �g, so that the conjugacy class is already
fixed. Next we may write �.s3/D �.s2/ � e

z23 ˛23 , where z23 2 S.Im.H// is a purely
imaginary quaternion of unit norm. It must be perpendicular to z2D �.s2/2S.Im.H//
if ˛23 62 f0; �g by the above Lemma 3.5. Similarly to above, the angle ˛23 2 Œ0; ��

must satisfy the congruence

p2 ˛23 � p2� .mod 2�/ :

We notice that for given angle ˛23 there is a circle of possibilities for the choice of
�.s3/, parametrised by the circle of elements z23 which are perpendicular to z2D�.s2/,
as long as ˛23 is different from 0 and � .

This process continues inductively, and the last congruence to satisfy is

pn ˛n1 � pn� .mod 2�/ ;

with ˛n1 2 Œ0; �� and zn1 2 S.Im.H// now such that �.s1/ D �.sn/ � e
zn1 ˛n1 . In

particular, having �.sn/ fixed there is only one possibility of choosing zn1 2S.Im.H//
(instead of a whole circle) as we must “come back” to �.s1/ that was already fixed.

Remark 3.7 As the author learned from the referee’s report, the observation that
there is an involution on the representation space modulo conjugation, with the bi-
nary dihedral representations as fixed points, is a general phenomenon. In fact, the
group H 1.GIZ=2/Š Hom.GIZ=2/ can be interpreted as the central representations
G! SU.2/, and this space acts on the representation space Hom.G;SU.2// and so on
its quotient by conjugation. This action is so that a central representation �W G! Z=2
maps a representation � 2 Hom.G;SU.2// to the product � �� . With a little effort one
can check that a representation � is a fixed point of this action if and only if � is binary
dihedral.

3.3 The case �..s1s2/
p1/D �..s2s3/

p2/D � � � D �..sns1/
pn/D�1

This case is entirely analogous to the preceding one, and the corresponding statement
is given by:

Proposition 3.8 The set of conjugacy classes of representations � 2 R.KI i/ such
that �..s1s2/

p1/D �..s2s3/
p2/D � � � D �..sns1/

pn/D�1 is bijective to the ordered
subsets .z1; : : : ; zn/ of points z1; : : : ; zn 2 S.Im.H// such that
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(1) the distance between zi and ziC1 is given by ˛i;iC1 2 Œ0; �� satisfying the
congruence

pi ˛i;iC1 � .pi C 1/� .mod 2�/ ;

for i D 1; : : : ; n with nC 1D 1 understood, and
(2) these points satisfy the following “conjugacy class fixing condition”:

z1 D j ; zjC1 D zj � e
i j̨ ;jC1 ;

for j D 1; : : : ; l where l is the smallest integer such that ˛l;lC1 ¤ 0, if it exists,
or l D n if not.

Furthermore, a representation � determined by an n–tuple .˛12; ˛23; : : : ; ˛n1/ is
nonabelian unless all angles ˛i;iC1 are equal to 0 (the case ˛i;iC1 D � is excluded by
the congruences to satisfy). It is binary dihedral if and only if all points zi lie on the
great circle lying in the h j;k i–plane. Reflection on this plane induces an involution
on the space of conjugacy classes of representations with fixed point set precisely
the binary dihedral representations. In particular, conjugacy classes of nonabelian
representations that are not binary dihedral come in pairs.

Proof The difference to the preceding situation is that now we must have �1 D

�..s1s2//
p1 D .�1/p1ei˛12p1 so instead of the condition (7) above, we now have

(8) p1 ˛12 � .p1C 1/� .mod 2�/ ;

and so on.

3.4 The case �..s1s2/
p1/D �..s2s3/

p2/D � � � D �..sns1/
pn/¤˙1

As we will see, all representations in this class are binary dihedral: The fact that the
distinguished element .s1s2/

p1 D � � � D .sns1/
pn is not central in SU.2/ forces the

images �.s1/; : : : ; �.sn/ of the meridional generators to lie on a great circle.

Proposition 3.9 The set of conjugacy classes of representations � 2R.KI i/ such that
�..s1s2/

p1/D�..s2s3/
p2/D� � �D�..sns1/

pn/ is conjugate to eiˇ with ˇ…f0; �g is in
one-to-two correspondence with the ordered subsets .z1; : : : ; zn/ of points z1; : : : ; zn 2

S.Im.H// such that
z1 D j ; ziC1 D zi � e

i˛i;iC1 ;

with the angle ˛i;iC1 2 Œ0; 2�� satisfying the congruence

pi ˛i;iC1 � ˇ .mod 2�/ ;

for i D 1; : : : ; n with nC 1D 1 understood.

All these representations are binary dihedral and nonabelian.
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Proof Under the assumption we have �.si/¤˙�.siC1/ modulo n. Up to conjugation
we may assume �.s1/D j and �.s2/D j ei˛ , with ˛ ¤ 0 .mod�/.

We therefore have �.s1s2/D .�1/ ei˛ . The image of this element under SU.2/!SO.3/
is given by rotation by 2˛ around the i axis, where we consider R3 as the span of
i; j;k inside H . By assumption, eiˇ WD �..s1s2/

p1/¤˙1, so �..s2s3//
p2 must be a

nontrivial rotation around the same axis, the one spanned by i. By the formula (5) we
therefore see that �.s3/ must lie in the plane h j;k i as well, and so may be written as
�.s3/D �.s2/ ei˛0 . Inductively, we see that all elements �.si/ are of the form j ei˛ for
some angle ˛ 2 Œ0; 2��.

By the methods of Section 4 below we can see explicitly that there are only finitely
many possible values for ˇ in the formula eiˇ D �..s1s2/

p1/ D � � � D �..sns1/
pn/.

However, this also follows from [9, Theorem 10].

Proposition 3.10 If the number of strands of the pretzel knot is n D 3 then the
representation space modulo conjugation R.KI i/ WDR.KI i/=SU.2/ only consists of
isolated points.

If the number of strands of the pretzel knot is n � 4, and if R.KI i/ contains a
representation that is not binary dihedral, then it contains connection components of
strictly positive dimension.

Sketch of proof For the claim regarding n D 3 strands notice that a non–binary
dihedral representation is determined by a triangle on the 2–sphere with the lengths
of its sides and two edge points fixed and with the lengths satisfying the arithmetic
conditions given above. There are only finitely many such representations for each
knot. There are only finitely many binary dihedral representations by Klassen’s result.

For n� 4 the conjugacy classes in R.KI i/ will in general come in positive dimensional
families – because one may “move” the n–gon even if two consecutive points of it are
fixed.

Remark 3.11 We will compute the Zariski tangent spaces to R.KI i/ for a large class
of pretzel knots or links K below, and our results will be coherent with the preceding
observation. We expect that “generically” R.P .p1; : : : ;pnI i/ contains components of
dimension n� 3 for n � 3. For nD 4 the 1–dimensional components are given by
1–spheres, and for higher n the author expects the n� 3 dimensional components to
be spheres of that dimension.
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3.5 Orbits of the conjugacy action

A representation � 2 Hom.G;SU.2// is called irreducible if there is no proper sub-
space V of C2 that is invariant under � , in the sense that �.g/V D V for all g 2G .
Otherwise it is called reducible. It is not hard to see that a representation into SU.2/ is
irreducible if and only if it is nonabelian.

Let us consider the action of SU.2/ on Hom.G;SU.2// given by conjugation. A
representation � is irreducible if and only if its stabiliser �� � SU.2/ is equal to the
centre Z=2. The trivial representation and representations with image inside the centre
of SU.2/ have stabiliser SU.2/, and a reducible representation that acts nontrivially
on a proper subspace has stabiliser isomorphic to U.1/. Therefore, the orbit Œ�� of
an irreducible representation is isomorphic to SU.2/=Z=2ŠRP3 , and the orbit of a
reducible representation that acts nontrivially on a proper subspace is homeomorphic
to SU.2/=U.1/Š S2 . In the situation of the representation spaces R.KI i/ that we
consider the reducible representations with stabiliser SU.2/ do not appear.

3.6 Abelian representations

The reducible/abelian representations inside the space R.KI i/ are quite easily described
for a general knot.

Proposition 3.12 Let K D be a knot or link. Then there are, up to conjugation,
precisely 2jK j abelian representations in R.KI i/ with jKj denoting the number of
components of K .

Proof Any abelian representation �W �1.S
3nK/!SU.2/ factors through the abeliani-

sation H 1.S3nKIZ/ŠZjK j , where jKj denotes the number of components of K , and
each meridian represents a generator. For a knot there is therefore just one representation
up to conjugacy such that the meridian is mapped to an element conjugate to i. In the
case of a link the requirement that �.m1/ D i, where m1 denotes a meridian to the
first component of K , implies that �.mi/D˙i for meridians to the other components
m2; : : : ;mjK j . The claim follows.

It is easy to see that in the case of a pretzel knot or link P .p1; : : : ;pn/ we have the
following: If all pi are odd then our result is a knot in the case that n is odd and is a
2–component link in the case that n is even. Otherwise the number of components is
equal to the number of pi ’s that are even.
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4 Arithmetic properties

We show that under a simple arithmetic condition on the numbers p1; : : : ;pn irreducible
representations with certain “degenerate properties” may be avoided, with the best
possible situation for nD 3.

Proposition 4.1 Suppose the numbers p1; : : : ;pn are pairwise coprime. Then there
is no representation � determined by angles

.˛1;2; : : : ; ˛n;1/

with only one or two of the angles ˛i;iC1 not in the set f0; �g. In particular, if
n D 3, then any � that is nonabelian must have angles ˛12; ˛23; ˛31 none of which
lies in f0; �g.

Proof We only show that there is no representation with only two of the angles not in
the set f0; �g, leaving the easier other case as an exercise to the reader.

Notice that if � is not such that �..s1s2/
p1/D � � � D �..sns1/

pn/D˙1 then none of
the angles ˛i;iC1 may be in the set f0; �g. So we may assume � to be such that this
equation holds, and therefore in the situation of Propositions 3.6 or 3.8 above.

Suppose ˛i;iC1; j̨ ;jC1 with i ¤ j are such that they both do not lie in f0; �g, and
all others do. These two angles must satisfy

pi
˛i;iC1

�
�pi � pj

j̨ ;jC1

�
�pj � 0 .mod 2Z/

pi
˛i;iC1

�
�pi � pj

j̨ ;jC1

�
�pj � 1 .mod 2Z/ ;or

depending on whether we have �..s1s2/
p1/ D ˙1. Therefore we may assume that

˛i;iC1=� D ki=pi , and j̨ ;jC1=� D kj=pj with numbers ki ; kj 2 Z (the parity of
these numbers depends on the case in which we are, and on the parity of pi and pj ,
but this is not important in the following argument). On the other hand it is easy to see
that the points zi D �.si/ map to precisely two points under S.Im.H//D S2!RP2 ,
and in particular lie on a geodesic circle joining two nonantipodal points on S2 , of
length 2� . Therefore we must have the congruence

˛i;iC1

�
C

j̨ ;jC1

�
� 0 .mod Z/:

This implies that there is an integer n 2 Z such that

kipj C kj pi D n pipj ;

and so pj divides kj pi . As pi and pj are assumed to be coprime, pj must divide kj .
But this contradicts that j̨ D �.kj=pj / does not lie in f0; �g.
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Our next arithmetic result concerns binary dihedral representations.

Proposition 4.2 Suppose the numbers p1; : : : ;pn are pairwise coprime, and suppose
� is a binary dihedral representation. Then either � is abelian or we must have (up to
conjugation)

�..s1s2/
p1/D � � � D �..sns1/

pn/D eiˇ

with ˇ … f0; �g. In other words, the situation in Section 3.4 above is the one that must
occur for all nonabelian binary dihedral representations under this assumption.

Proof Suppose � is binary dihedral and ˇ=� is an integer. We may suppose that
�.s1/D j and

�.siC1/D �.si/ ei˛i;iC1 ;

with angle ˛i;iC1 2 Œ0; 2��, for i D 1; : : : ; n and nC 1D 1 understood. This implies
that the sum of the angles must be a multiple of 2� ,

(9)
˛1;2

�
C � � �C

˛n�1;n

�
C
˛n;1

�
� 0 .mod 2Z/:

In addition, we must have the congruences

pi
˛i;iC1

�
� 0 .mod Z/

for i D 1; : : : ; n. Putting ˛i;iC1=� D ki=pi with ki 2 Z, i D 1; : : : ; n, inserting this
in Equation (9), and multiplying this equation by p1 � � �pn we see that pj divides
kj p1 � � � ypj � � �pn , with the hat on ypj indicating that this factor is omitted. By the
condition on pairwise coprimeness we see that pj must in fact divide kj , and this
for j D 1; : : : ; n. As a consequence, each angle ˛i;iC1 must be 0 or � , and so the
representation � is abelian.

5 Nondegeneracy conditions

The local structure of the representation variety Hom.G;SU.2// of a discrete group G

was first studied by Weil [20; 21]. A presentation hg1; : : : ;gn j r1; : : : ; rmi of G ,
identifies the space Hom.G;SU.2// with F�1.1; : : : ; 1/, where F W SU.2/n!SU.2/m

is given by the polynomials determined by the relations that the generators have to
satisfy.

Definition 5.1 Let � 2 Hom.G;SU.2//. A map �W G ! su.2/ is called a cocycle
at � if

(10) �.gh/D �.g/CAd�.g/ �.h/
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for any g; h 2 G . An element � 2 su.2/ defines a coboundary �#W G ! su.2/ at a
representation � by the formula

(11) �#.g/D � �Ad�.g/ �

for g 2G .

To motivate this definition, let � be a representation. A deformation into nearby
representations �t may be written as �t .g/D �.g/C t �.g/�.g/Co.t/. It is then easy
to check that the requirement of �t to be a group homomorphism implies for � to be a
cocycle.

Coboundaries are cocycles. They are infinitesimal deformations of � that are induced
by conjugating � by elements of SU.2/. In fact, the coboundary �# associated to
� 2 su.2/ is obtained as the derivative of t 7! et��.g/e�t� at 0.

The space of cocycles at � is denoted by Z1.GI su.2/�/, the space of coboundaries
by B1.GI su.2/�/, and the quotient is denoted by H 1.GI su.2/�/. As the notation
suggests, this is isomorphic to the first cohomology group of K.GI 1/ with twisted
coefficients in su.2/ defined by the adjoint action of G on su.2/ determined by � [21].
Weil proves that if the space H 1.GI su.2/�/ vanishes, then the representation � has
a neighbourhood in Hom.G;SU.2// (with the compact open topology) all of which
elements are conjugated to � . In other words, the conjugacy class of � is isolated
in Hom.G;SU.2//=SU.2/. This suggests to call a representation nondegenerate if
H 1.GI su.2/�/D 0, and this is the definition we will take for our purpose.

This definition is not always suitable: For instance, if G is a knot group, then one has
dim H 1.GI su.2/�/� 1 for cohomological reasons, and it can be shown that in the case
that this dimension is precisely 1, the space Hom.G;SU.2//=SU.2/ has the structure
of a 1–dimensional smooth manifold in a neighbourhood of an irreducible representa-
tion � ; see for instance Heusener and Klassen [5, Lemma 2 and Proposition 1].

In general, the space H 1.GI su.2/�/ is referred to as the Zariski tangent space of
Hom.G;SU.2//=SU.2/ at � . However, it can appear that a representation � is isolated
in Hom.G;SU.2//=SU.2/ but that its Zariski tangent space is nontrivial. This is well-
known, but in the cases we consider examples will even appear below.

In this section we shall study the local structure of R.KI i/, seen as R.G.K/m;i/D

Hom.G.K/m;i;SU.2// by Proposition 3.1 above. In particular, a nondegenerate repre-
sentation �2R.KI i/ may well have deformations not coming from the action by conju-
gation when seen as an element of the bigger representation space Hom.G.K/;SU.2//
(without the assumption that meridians are mapped onto trace-free matrices).
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Lemma 5.2 If � is a nonabelian representation then a coboundary � at � necessarily
satisfies �..�1//D 0.

Proof In fact, by the cocycle condition we must have

�.g .�1//D �.g/CAd�.g/ �..�1//D �..�1//CAd�..�1// �.g/D �..�1/g/

for all g 2 G.K/m;i as .�1/ commutes with all elements in G.K/m;i . Clearly the
endomorphism Ad�..�1// is the identity. Therefore Ad�.g/ �..�1//D �..�1// for all
g 2G.K/m;i . If � is nonabelian this implies �..�1//D 0.

Lemma 5.3 If � is a cocycle at � then for any element h that is (conjugated to) a
meridional element m the element �.h/ 2 su.2/ must be perpendicular to �.h/ 2 S2 �

h i; j;k i D su.2/DR3 .

Proof Indeed, as we have the relation h2 D �1 in G.K/m;i the cocycle condition
together with the preceding Observation implies

0D �.h2/D .1CAd�.h// �.h/ :

By assumption Ad�.h/ is a rotation by � around the axis �.h/. Consequently �.h/
must lie in the plane annihilated by .1C Ad�.h// which is precisely the plane of
elements perpendicular to �.h/.

Proposition 5.4 Let K D P .p1; : : : ;pn/ be a pretzel knot or link with nonzero deter-
minant j�K .�1/j (without any arithmetic assumption on the pi ’s). Let � 2R.KI i/ be
a nonabelian representation which is binary dihedral, and which satisfies �..s1s2/

p1/D

� � � D �..sns1/
pn/¤˙1. Then the cohomology group H 1.GK Ii; su.2/�/ vanishes.

Proof Up to conjugation we may assume that �.s1/D j and �.siC1/D �.si/ ei˛i;iC1

with angles ˛i;iC1 2 Œ0; 2�� for i D 1; : : : ; n and nC 1 D 1 understood. The as-
sumption implies that there is an angle ˇ 2 Œ0; 2��, different from 0 and � , such that
pi ˛i;iC1� ˇ .mod 2�Z/ and �..s1s2/

p1/D � � � D �..sns1/
pn/D .�1/ eiˇ . Suppose

� is a cocycle at � . Notice that we have

(12) �..si siC1/
pi /D .1CAd�.si siC1/C � � �CAdpi�1

�.si siC1/
/„ ƒ‚ …

DWBi;iC1

�.si siC1/ ;

with Ad denoting the adjoint action of SU.2/ on the Lie algebra su.2/.

Lemma 5.5 The endomorphism Bi;iC1 of su.2/ is an automorphism.
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Proof of the Lemma For any i D 1; : : : ; n, we have

1�Adeiˇ D Bi;iC1.1�Ad�.si siC1// :

Now Adeiˇ is rotation by angle 2ˇ … f0; 2�g around the i–axis. Therefore .1�Adeiˇ /

has the subspace spanned by i 2 su.2/ŠR3 as its kernel and maps the whole space
onto the plane perpendicular to i. Therefore Bi;iC1 must have rank at least 2. Likewise,
Ad�.si siC1/ is a nontrivial rotation around the i–axis, and so .1�Ad�.si siC1// maps the
plane perpendicular to i onto itself. Therefore Bi;iC1 must map the plane perpendicular
to i onto itself. On the other hand, Bi;iC1 restricted to the subspace spanned by i is
just multiplication by the number pi , and so Bi;iC1 is an automorphism.

For an element � 2 su.2/D h i; j;k i we denote by �ki its projection onto the subspace
generated by i. We will prove the Proposition by showing that the space of cocycles
Z1
�.GK ;iI su.2// is equal to the space of coboundaries Z1

�.GK ;iI su.2//.

Let us first observe that if � and � 0 are two coboundaries at � such that �.s1/D �
0.s1/

and �.s2/D �
0.s2/ then in fact � D � 0 . To see this, note that .s1s2/

p1 D .s2s3/
p2 and

the assumption that � and � 0 coincide on s1 and s2 implies that

�..s2s3/
p2/D � 0..s2s3/

p2/ ;

or equivalently, by the above formula (12) and the Lemma 5.5,

�.s2s3/D �
0.s2s3/ :

By the cocycle formula this implies Ad�.s2/ �.s3/DAd�.s2/ �
0.s3/, so �.s3/D �

0.s3/.
Inductively, we show in the same way that �.s4/D �

0.s4/; : : : ; �.sn/D �
0.sn/.

Therefore it is enough to show that for any cocycle � there is an element � of the Lie
algebra su.2/, and so a coboundary �# , such that �.s1/D �

#.s1/ and �.s2/D �
#.s2/.

To show this, we characterise the possible values of .�#.s1/; �
#.s2// more precisely.

Consider the map

su.2/! �.s1/
?
˚ �.s2/

?

� 7! ..1�Ad�.s1//.�/; .1�Ad�.s2//.�//D .�
#.s1/; �

#.s2// :

We will show now that this map has rank 3 and an element .�; �/ 2 �.s1/
?˚ �.s2/

?

is in the image of this map if and only if

h�; ii D h�; ii ;

or equivalently, if and only if � and � have identical i–component. For this notice
first that z1 D �.s1/ and z2 D �.s2/ have been assumed to lie perpendicular to i. We
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decompose su.2/ as h i i ˚ h i i? , writing an element � D �kC �? correspondingly.
We find that

h .1�Adz1
/.�/� .1�Adz2

/.�/; i i D hAdz2
�CAdz1

�; i i
D hAdz2

�?CAdz1
�?; i i D 0 ;

because Adz1
and Adz2

certainly preserve the subspace h i i? . This implies that we do
indeed have h���; i i D 0 for any element .�; �/ in the image of the above map. It
is injective because the assumption implies that �.s1/¤˙�.s2/. As the image space
�.s1/

?˚�.s2/
? has rank 4, we therefore see that an element .�; �/ of this space that

satisfies h���; i i D 0 must lie in the image.

We finish the proof by showing that a cocycle � at � satisfies h �.s1/� �.s2/; i i D 0

and therefore is a coboundary by the above. Recall that the automorphisms Bi;iC1

introduced above respects the splitting h i i˚h i i? of su.2/, and that Bi;iC1 restricted
to the span of i is just multiplication by pi . Now expressing the cocycle � at the
element .s1s2/

p1 D � � � D .sns1/
pn in the i–direction and using this fact we just obtain

p1.�.s1/ki � �.s2/ki/D p2.�.s2/ki � �.s3/ki/D � � � D pn.�.sn/ki � �.s1/ki/ :

Let c 2R be this number. We only have to show that c D 0. However, the sum
nX

iD1

.�.si/ki � �.siC1/ki/

is just 0, as this is a cyclic sum because snC1 D s1 was understood. Multiplying this
sum with the product p1 : : :pn , we therefore find

0D p1 � � �pn

� nX
iD1

.�.si/ki � �.siC1/ki/

�

D

� nX
iD1

p1 � � � ypi � � �pn

�
� c

D˙�K .�1/ � c ;

where �K .�1/ is just the determinant of our Pretzel knot or link K . By assumption
this number is nonzero, so c D 0, and so that � is a coboundary.

Proposition 5.6 Let K D P .p; q; r/ be a pretzel knot and let � 2 R.KI i/ be a
nonabelian representation with �..s1s2/

p1/ D � � � D �..sns1/
pn/ D ˙1, and which

is not binary dihedral. Then the cohomology group H 1
� .GK Ii; su.2// vanishes: The

Zariski tangent space of R.KI i/ at � is equal to the space of coboundaries determined
by � .
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Proof Up to conjugation we may assume that �.s1/ D j and �.s2/ D j ei˛12 with
angle ˛12 2 Œ0; 2��. Suppose � is a cocycle at � . The conclusions of Lemmas 5.2
and 5.3 remain valid in this situation. Therefore, the dimension of the space of cocycles
at � is at most 6. However, instead of Lemma 5.5 we now have:

Lemma 5.7 Suppose that we have �..sisiC1/
pi /D˙1 and that �.si/¤˙�.siC1/.

Then the endomorphism Bi;iC1 of su.2/ defined in Equation (12) above has rank 1.
More precisely, we have Bi;iC1 D pi …�.si /��.siC1/ , where …�.si /��.siC1/ is the
projection onto the space spanned by �.si/� �.siC1/ 2 su.2/.

Proof As we now have Ad�..si siC1/
pi D idsu.2/ we can conclude that

0D Bi;iC1.1�Ad�..si siC1/// :

As by assumption �.si/¤˙�.siC1/ we know that Ad�..si siC1/// is a nontrivial element
in SO.su.2//. Therefore the image of .1�Ad�..si siC1/// must have rank 2, and so
the kernel of Bi;iC1 must at least contain the 2–dimensional subspace of su.2/ that
is perpendicular to the rotation axis h �.si/� �.siC1/ i of Ad�.si siC1/ . On the other
hand, it is immediate from the definition of Bi;iC1 that it is given by multiplication
by pi when restricted to the 1–dimensional subspace h �.si/� �.siC1/ i.

Because of .s1s2/
p D .s2s3/

q D .s3s1/
r the cocycle must satisfy

B12 �.s1s2/�B23 �.s2s3/D 0 ;

B23 �.s2s3/�B31 �.s3s1/D 0 :

By assumption the representation � is not binary dihedral, and so the three axes
�.s1/ � �.s2/; �.s2/ � �.s3/ and �.s3/ � �.s1/ are pairwise linearly independent.
Therefore, the last equations are equivalent to

B12 �.s1s2/D 0 ;

B23 �.s2s3/D 0 ;

B31 �.s3s1/D 0 :

Equivalently, the element .�.s1/; �.s2/; �.s3// lies in the kernel of the linear map
LW su.2/3! su.2/3 given by

.�1; �2; �3/ 7!

0@B12 0 0

0 B23 0

0 0 B31

1A
„ ƒ‚ …

WDB

0@ 1 Ad�.s1/ 0

0 1 Ad�.s2/

Ad�.s3/ 0 1

1A
„ ƒ‚ …

WDC

0@�1�2
�3

1A :

Algebraic & Geometric Topology, Volume 11 (2011)



Representation spaces of pretzel knots 2963

The linear map defined by B has rank 3 by the preceding Lemma. On the other hand
the map C is an automorphism. In fact, elementary line operations show that the
determinant of C is just equal to the determinant of the endomorphism

1CAd�.s3/ ıAd�.s1/ ıAd�.s3/ D 1CAd�.s3/�.s1/�.s2/

of su.2/. For this it is enough to show that �1 is not an eigenvalue of Ad�.s3/�.s1/�.s2/2

SO.su.2//, so cannot be a rotation by angle � , and this itself is equivalent to showing
that �.s3/�.s1/�.s2/ can not be a purely imaginary quaternion. By the above assump-
tion �.s1/�.s2/D�ei˛12 . Let �.s3/DW z 2 S.Im.H//. We now compute, using the
above formula (5),

�.s3/�.s1/�.s2/D z � .�ei˛12/D�h z; i i sin.˛12/C z� i sin.˛12/C z cos.˛12/ :

This is purely imaginary if and only if h z; i i D 0, which is true if and only if � is
binary dihedral. As this was excluded by assumption, we conclude that �1 is not an
eigenvalue of Ad�.s3/�.s1/�.s2/ , and so C indeed is an automorphism. Consequently,
the homomorphism L has rank 3.

Let Hi � su.2/ be the subspace in which the cocycle �.si/ must lie according to
Lemma 5.3. Now let’s consider the restriction of L to the subspace H1˚H2˚H3 .
We claim that this restriction still has rank 3.

Indeed, let �12 2 im.B12/ be an element in the 1–dimensional image of B12 . We
claim that there is an element �1 2H1 such that

(13) .�12; 0; 0/DL .�1; 0; 0/ :

To see this, notice that for any �1 2H1 one has

L .�1; 0; 0/D .B12 �1; 0;B31 Ad�.s3/ �1/ :

The endomorphism Ad�.s3/ preserves the kernel of B31 . Thus (13) has solutions for
nontrivial �12 if there is an element �1 2H1 which is in the kernel of B31 , and which
projects nontrivially onto im.B12/, or equivalently, that does not lie in the kernel
of B12 either. But the kernels of B12 and B31 only coincide if �.s1/; �.s2/ and �.s3/

all lie in the same plane in Im.H/. This can only occur if � is binary dihedral which
is excluded by assumption. Finally we have to convince ourselves, that we can pick
an element in the kernel of B31 which is not in the kernel of B12 and which also lies
in H1 . But this follows because the intersection of the kernel of B12 and the kernel
of B31 is precisely the span of �.s1/. But H1 D h�.s1/i

? is precisely the orthogonal
complement. So H1 and ker.B31/ intersect in a 1–dimensional subspace that does
not lie in the kernel of B12 .
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Likewise one shows that for an arbitrary �23 2 im.B23/ and for an arbitrary �31 2

im.B31/ the element .0; �23; 0/ respectively .0; 0; �31/ is in the image of L restricted
to H1˚H2˚H3 . Therefore, this restriction LjH1˚H2˚H3

has rank 3, and its kernel
is also of rank 3.

So the fact that .�.s1/; �.s2/; �.s3// lies in the kernel of L then implies that the space
of cocycles at � is 3–dimensional, and so is equal to the space of coboundaries.

Remark 5.8 The method of the above proof applies to the situation of pretzel knots
or links with n� 4 strands as well. Generically, the equivalent of the map L above,
restricted to H1˚ � � � ˚Hn , will have rank n. Therefore, we expect the dimension
of the Zariski tangent space H 1.P .p1; : : : ;pn/I su.2/�/ to be equal to n� 3 for a
generic non–binary dihedral representation � .

Theorem 5.9 Let K D P .p; q; r/ be a pretzel knot with p; q; r pairwise coprime.
Then the twisted cohomology group H 1.G.K/m;iI su.2/�/ vanishes at any representa-
tion � 2R.KI i/.

Proof As we are in the case of a knot, the claim is true at the (conjugacy class)
of the unique abelian representation in R.KI i/. At any representation � which is
not binary dihedral the preceding Proposition applies. At any nonabelian binary
dihedral representation � the arithmetic assumption implies that �..s1s2/

p1/ ¤ ˙1

by Proposition 4.2 above. Therefore, Proposition 5.4 comes to bare with the desired
conclusion.

Remark 5.10 If the pretzel knot P .p; q; r/ admits a binary dihedral representation �
with �..s1s2/

p1/ D � � � D �..s3s1/
p3/ D ˙1 then this representation is degenerate

in the sense that the associated cohomology group H 1.G.P .p; q; r//m;iI su.2/�/ is
nonvanishing. For instance, the pretzel knot P .3; 3; 3/ is such a knot. Nonethe-
less, these representations are isolated in the representation space modulo conjugacy
R.P .p; q; r/I i/.

Sketch of proof In this case the maps B12;B23 and B31 with the terminology from
above all have equal 2–dimensional kernels M . Again, with the above terminology, the
space M \Hi is 1–dimensional for i D 1; : : : ; 3. Any element � with �.si/2M \Hi

chosen arbitrarily for each i defines a cocycle at � , so the space of all � with this
property is 3–dimensional. However, only a 1–dimensional subspace of cocycles with
this property is given by coboundaries.

The claim about isolatedness of the points in R.P .p; q; r/I i/ follows from the results
in Section 3 above.
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Remark 5.11 It is interesting to notice that instead of computing the Zariski tangent
space explicitly one may also get nondegeneracy results by studying the topology of
the 3–manifold one gets from taking the double branched cover of S3 , branched along
the knot. See the corresponding results of Heusener and Klassen [5].

6 The pretzel knots P.p; q; r/

We get a complete picture of the representation spaces R.KI i/ of the pretzel knots
or links K D P .p; q; r/. First of all, notice a few pathologies: A pretzel knot or link
P .0; q; r/ is a sum of a .2; q/ torus knot or link and a .2; r/ torus knot or link. If one
of jpj; jqj; jr j is 1 then we are left with a knot or link with bridge number at most 2,
as is easy to see. A 2–bridge knot or link only has binary dihedral representations in
R.KI i/ . We do not have in mind these pathological knots or links. For simplicity, the
following Proposition is only stated for knots, but a corresponding statement for links
is self-suggesting.

Proposition 6.1 Let K be the pretzel knot P .p; q; r/ with all of p; q; r different from
0 or ˙1, and such that these numbers are pairwise coprime . Then the representation
space R.KI i/ is isomorphic to the disjoint union

S2
t

�G
I

RP3

�
;

where the finite index set I parametrises the conjugacy classes of all nonabelian repre-
sentations. Among these there are .j�P.p;q;r/.�1/j � 1/=2 many binary dihedral ones,
as well as I � .j�P.p;q;r/.�1/j � 1/=2> 0 many non–binary dihedral representations
that are described in Propositions 3.6 and 3.8 above.

Proof The fact that there is a single orbit homeomorphic to S2 follows from Propo-
sition 3.12 above. That there are only finitely many isolated orbits homeomorphic
to RP3 follows from the results of the preceding sections. The number of nonabelian
binary dihedral conjugacy classes was determined by Klassen [9]. So we only have to
show that there are non–binary dihedral representations.

We may without loss of generality assume that jr j � jqj � jpj. We show that there
is a nonabelian representation � as in Proposition 3.6. To do so, we will fix the
first two angles p̨q and ˛qr satisfying the congruence p p̨q � p� .mod 2�/ and
q ˛qr � q� .mod 2�/. It will remain to show that we can find a distance ˛rp 2 .0; �/

which satisfies the congruence r ˛rp � r� .mod 2�/, and such that the following
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triangle inequality holds:

(14) j p̨q �˛qr j � ˛rp � p̨qC˛qr

There are three cases to consider. First, we assume p and q are both odd. We just pick
p̨q D �=jpj and ˛qr D �=jqj, both satisfying the required congruences for p̨q and
˛qr in this case. The triangle inequality (14) is then equivalent to

jqj � jpj

jpqj
�
˛rp

�
�
jqjC jpj

jpqj
:

The interval �
jqj � jpj

jpqj
;
jqjC jpj

jpqj

�
has length 2=jqj. But as we have assumed jr j � jqj, there certainly are at least two
integer multiples of �=jr j inside this interval, and the choice of one of them for the
number ˛rp=� will satisfy the congruence r ˛rp � r � .mod 2�/.

Next, assume that p is even and q is odd. We choose p̨q D 2�=jpj and ˛qr D �=jqj.
The triangle inequality (14) is then equivalent to

2jqj � jpj

jpqj
�
˛rp

�
�

2jqjC jpj

jpqj
:

Again, the interval �
2jqj � jpj

jpqj
;
2jqjC jpj

jpqj

�
has length 2=jqj, and again one may pick a multiple of �=jr j inside this interval for
the number ˛rp=� , so that it satisfies the required congruence.

If finally q is even and p is odd, we choose p̨q D �=jpj and ˛qr D 2�=jqj. The
triangle inequality (14) is then equivalent to

j jqj � 2jpj j

jpqj
�
˛rp

�
�
jqjC 2jpj

jpqj
:

The interval �
j jqj � 2jpj j

jpqj
;
jqjC 2jpj

jpqj

�
now has length 4=jqj or 2=jpj. In both cases, one may pick a multiple of �=jr j as
˛rp=� inside this interval, and this satisfies the required congruence.

In each situation, it follows from Proposition 4.1 above that the corresponding repre-
sentation is not binary dihedral.

It is interesting that we get the following Corollary. The result is not new; see Boileau
and Zieschang [1].
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Corollary 6.2 Let K be the pretzel knot P .p; q; r/ with the numbers p; q and r

pairwise coprime and nonzero. Then P .p; q; r/ has bridge number 3 if and only if all
of jpj; jqj; jr j are strictly bigger than 1.

Proof Inspection of the diagram shows that the bridge number can at most be 3. If
any of jpj; jqj; jr j is equal to 1 then it is easy to see that the knot is 2–bridge. If non of
these number is 1, then the preceding Proposition implies the existence of non–binary
dihedral representations. However, a 2–bridge knot K only has representations in
R.KI i/ that are binary dihedral.

Remark 6.3 It seems that the Proposition 6.1 and its Corollary are true without the
arithmetic assumption of the numbers p; q and r being pairwise coprime. However,
without this assumption, it looks like the proof would require a little more work in
order to sort out solutions where the above inequalities (14) are both strict.

As an example, we shall now compute the nonabelian representations of any of the knots
P .3; 5; 7/;P .�3; 5; 7/;P .�3;�5; 7/;P .3;�5; 7/; : : : (all combinations of signs may
occur) that are not binary dihedral. As a matter of notation, we shall write x̨i;iC1 WD

˛i;iC1=� for the angles occurring in Propositions 3.6 and 3.8 above. These have to
satisfy the congruences in these Propositions, and as distances between the points
z1 D �.s1/; z2 D �.s2/, and z3 D �.s3/, they have to satisfy the triangle inequality.

The representations � with �..s1s2/
3/ D �..s2s3/

5 D � � � D �..s3s1/
7/ D C1 are

determined in Table 1, first listing all possible combinations of angles satisfying the
congruencies, and then checking the triangle inequality on each.

x̨12 x̨23 x̨31 jx̨23� x̨31j x̨23C x̨31 � inequality

1=3 1=5 1=7 2=35 12=35 no
3=7 8=35 22=35 yes
5=7 18=35 32=35 no

3=5 1=7 16=35 26=35 no
3=7 6=35 36=35 yes
5=7 4=35 46=35 yes

Table 1

Likewise, the representations � with �..s1s2/
3/D �..s2s3/

5D � � � D �..s3s1/
7/D�1

are determined in Table 2. Each combination of angles that gives rise to a nonabelian
representation that is not binary dihedral yields precisely two different conjugacy classes
of representations. Therefore, there are in total 18 such conjugacy classes for any of
the knots P .3; 5; 7/;P .�3; 5; 7/;P .�3;�5; 7/;P .3;�5; 7/; : : : .

Algebraic & Geometric Topology, Volume 11 (2011)



2968 Raphael Zentner

x̨12 x̨23 x̨31 jx̨23� x̨31j x̨23C x̨31 � inequality

2=3 2=5 2=7 4=35 24=35 yes
4=7 6=35 34=35 yes
6=7 16=35 44=35 yes

4=5 2=7 18=35 38=35 yes
4=7 8=35 48=35 yes
6=7 2=35 58=35 yes

Table 2

7 Relation to Lin’s knot invariant and Heusener and Kroll’s
generalisation

Lin [15] has defined a knot invariant, that he denotes h.K/, from the representation
space R.KI i/ D R.KI i/=SU.2/ considered here. In the case that all irreducible
representations are nondegenerate, and so these are isolated points in R.KI i/, the num-
ber h.K/ is just a signed count of these conjugacy classes of irreducible representations.
Surprisingly, this is related to the signature of K in the following way [15]:

h.K/D
1

2
sign.K/ :

The signature of a knot is just the signature of the symmetric bilinear form given by
the matrix V CV t , with V denoting a Seifert matrix of the knot.

For the pretzel knots P .p; q; r/ with p; q; r odd the signature is easily computed.
Indeed, a Seifert matrix for these genus–1 knots is given by

V D
1

2

�
pC q qC 1

q� 1 qC r

�
(see for instance Lickorish [14, Example 6.9]). Depending on the numbers p; q; r the
signature is just 2,0 or -2, and so Lin’s invariant h.K/ equals 1,0 or �1. If all of
p; q; r are in addition of the same sign, then the signature is 1 or �1, and in particular
Lin’s invariant is odd. As the nonabelian non–binary dihedral representations come in
pairs, there must be an odd number of binary dihedral representations of which there
are 1

2
.j�K .�1/j � 1/ by Klassen’s result, thus reflecting the fact that the determinant

�P .�1/D pqCpr C qr is congruent to 3 modulo 4 in this case.

The knot P .�3; 5; 7/ with trivial Alexander polynomial, and therefore no binary
dihedral representations at all, has 0 signature. Lin’s result then reflects the fact again
that the non–binary dihedral representations come in pairs.
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The pretzel knots with one strand with an even number of crossings have higher
genus in general and also higher signature. For instance, the Fintushel–Stern knot
P .�2; 3; 7/ has genus 5 and signature 8. It has determinant 1 and so no binary dihedral
representations at all.

In [6], Heusener and Kroll extend Lin’s result to the situation of studying spaces R˛.K/

of representations � modulo conjugation, such that �.m/� ei˛ 2 SU.2/. They define
an invariant h˛.K/ as a count of R˛.K/DR˛.K/=SU.2/, and establish h˛.K/D
1
2

signK .e
i2˛/, thereby extending Lin’s result. Here signK W S

1 n f1g ! Z is the
Levine–Tristram signature function, ie signK .!/ is the signature of the Hermitian form
.1�!/V C .1� x!/V t , where ! 2 S1 n f1g �C , and V is a Seifert matrix of K .

Our notion of nondegeneracy for representation � 2 R.KI i/ was based on repre-
sentations of the group G.K/m;i . In particular, it implied that its conjugacy class
Œ�� 2 R.KI i/ isolated. Of course, without the restriction that � maps the meridian
to an element conjugated to i in SU.2/ this doesn’t need to be true. In fact, when
seen as an element of the representation space R.K/ of all representations of the knot
group in SU.2/, up to conjugation, this ceases to be true, as follows for instance from
Heusener and Kroll’s result [6, Corollary 3.9], where it is proved from Lin’s result and
a continuity property for their extension of Lin’s invariant that a knot with nonzero
signature must have irreducible representations � that have a 1–parameter family of
deformations .�t / inside the full space R.K/ coming with a nontrivial family of
deformations tr.�t .m//, and so deform out of R.KI i/�R.K/.

The method of introducing the group G.K/m;i in order to study more easily the
representation space R.KI i/ might be applied to the study of R˛.K/ with ei˛ another
root of unity. However, the simplification is probably largest for the case of a fourth
root of unity as considered in this article.
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