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Representation stability for the cohomology of the moduli
space Mn

g

RITA JIMENEZ ROLLAND

Let Mn
g be the moduli space of Riemann surfaces of genus g with n labeled marked

points. We prove that, for g � 2 , the cohomology groups fH i.Mn
gIQ/g

1
nD1

form
a sequence of Sn –representations which is representation stable in the sense of
Church–Farb [7]. In particular this result applied to the trivial Sn –representation
implies rational “puncture homological stability” for the mapping class group Modn

g .
We obtain representation stability for sequences fH i.PModn.M /IQ/g1nD1 , where
PModn.M / is the mapping class group of many connected orientable manifolds
M of dimension d � 3 with centerless fundamental group; and for sequences
fH i

�
BPDiffn.M /IQ

�
g1

nD1
, where BPDiffn.M / is the classifying space of the sub-

group PDiffn.M / of diffeomorphisms of M that fix pointwise n distinguished points
in M .

55T05; 57S05

1 Introduction

Notation Let †g;r be a compact orientable surface of genus g � 0 with r � 0

boundary components and let p1; : : : ;pn be distinct points in the interior of †g;r . The
mapping class group Modn

g;r is the group of isotopy classes of orientation-preserving
self-diffeomorphisms of †n

g;r WD†g;r �fp1; : : : ;png that restrict to the identity on the
boundary components. The pure mapping class group PModn

g;r is defined analogously
by asking that the punctures remain fixed pointwise. If r D 0 or n D 0, we omit it
from the notation.

The homology groups of the pure mapping class group PModn
g are of interest (among

other reasons) due to their relation with the topology of the moduli space Mn
g of genus

g Riemann surfaces with n labeled marked points (that is, n–pointed non-singular
projective curves of genus g ). The space Mn

g is a rational model for the classifying
space B PModn

g for g � 2. Hence

(1) H�.Mn
gIQ/�H�.PModn

gIQ/:
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We refer the reader to Farb–Margalit [8], Hain–Looijenga [10], Kirwan [19] and
Harer [15] for more about the relation between Mn

g and PModn
g .

One basic question is to understand how, for a fixed i � 0, the cohomology groups
H i.PModn

g;r IQ/ change as we vary the parameters g , r and n, in particular when
the parameters are very large with respect to i . It is a classical result by Harer [13]
that the group H i.PModn

g;r IZ/ depends only on n provided that g is large enough.
The major goal of this paper is to understand how the cohomology H i.PModn

g;r IQ/
changes as we vary the number of punctures n.

1.1 Genus and puncture homological stability

It is known that the groups PModn
g;r and Modn

g;r satisfy “genus homological stability”:

For fixed i; n� 0 the groups Hi.PModn
g;r IZ/ and Hi.Modn

g;r IZ/ do not
depend on the parameters g and r , for g� i .

This was first proved in the 1980’s by Harer [13] and the stable ranges have been
improved since then by the work of several people (see Wahl’s survey [23]).

An additional stabilization map can be defined by increasing the number of punctures.
In the case of surfaces with non-empty boundary, we can consider a map †n

g;r!†nC1
g;r

by gluing a punctured cylinder to one of the boundary components of †n
g;r . This map

gives a homomorphism
�nW Modn

g;r !ModnC1
g;r :

In [18, Proposition 1.5], Hatcher and Wahl proved that the map �n induces an isomor-
phism in Hi.�IZ/ if n � 2i C 1 (for fixed g � 0 and r > 0). Puncture stability for
closed surfaces follows, as it is known that

Hi.Modn
g;1IZ/�Hi.Modn

gIZ/ for g � 3
2
i

(see Wahl [23, Theorem 1.2]). Hanbury proved this “puncture homological stability”
for non-orientable surfaces in [11] with techniques that can also be applied to the
orientable case. When the surface is a punctured disk this is Arnold’s classical stability
theorem for the cohomology of braid groups Bn [1]. Together, puncture and genus
stability imply that the homology of the mapping class group of an orientable surface
stabilizes with respect to connected sum with any surface.

On the other hand, for the pure mapping class groups, attaching a punctured cylinder
to †n

g;r also induces homomorphisms

�nW PModn
g;r ! PModnC1

g;r ;
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when r > 0. Hence we can ask whether PModn
g;r satisfies or not puncture homological

stability.

The homology groups of PModn
g;r are largely unknown, apart from some low dimen-

sional cases such as:
H1.PModn

g;r IZ/D 0 for g � 3

(see Farb–Margalit [8, Theorem 5.2] for a proof). Furthermore,

H2.PModn
g;r IZ/�H2.Modg;rCnIZ/˚Zn for g � 3

(this is Korkmaz–Stipsicz [20, Corollary 4.5], but the original computation for g � 5

is due to Harer [12]).

Even if the case of the first homology group is not representative, we notice that the
rank of H2.PModn

g;r IZ/ blows up as n! C1. Moreover, the pure braid groups
Pn � PModn

0;1 fail in each dimension i � 1 to satisfy homological stability (see
Church–Farb [7, Section 4]). This suggests to us the failure of puncture homological
stability in the general case.

For large g , Bödigheimer and Tillmann’s results in [4], combined with Madsen–Weiss,
give explicit calculations, although we do not discuss them in this paper.

1.2 Main result

We want to compare H i.PModn
g;r IQ/ as the number of punctures n varies. The

natural inclusion †nC1
g;r ,!†n

g;r induces the forgetful map

fnW PModnC1
g;r ! PModn

g;r :

Notice that fn is a left inverse for the map �n above, when r > 0, but can be defined
even for surfaces without boundary. This map allows us to relate the corresponding
cohomology groups:

f �n W H
�.PModn

g;r IQ/!H�.PModnC1
g;r IQ/:

Observe that f �n is also induced by the forgetful morphism between moduli spaces
MnC1

g !Mn
g .

The key idea is to consider the natural action of the symmetric group Sn on Mn
g given

by permuting the n labeled marked points. Thus we can regard H i.Mn
gIQ/ as rational

Sn –representations and compare them through the maps f i
n . Moreover, we notice

that the map f i
n is equivariant with respect to the standard inclusion Sn ,! SnC1 . In

Section 3 below we explicitly compute the Sn –representation H 2.PModn
gIQ/ and its

decomposition into irreducibles.
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Roughly speaking, we say that a sequence of Sn –representations fVng with linear
maps �nW Vn! VnC1 equivariant with respect to Sn ,! SnC1 is representation stable
if for sufficiently large n the following conditions hold: the maps �n are injective;
the image �n.Vn/ generates VnC1 as an SnC1 –module, and the decomposition of Vn

into irreducibles can be described independently of n. This notion was introduced
by Church–Farb in [7]. The precise definition of representation stability is stated in
Section 2.1 below.

Hence, instead of asking if f i
n is an isomorphism or not (puncture cohomological

stability), we consider the question of whether the cohomology groups of the pure
mapping class group satisfy representation stability. In [7, Theorem 4.2] Church–Farb
prove that the sequence fH i.PnIQ/; f i

n g
1
nD1

is representation stable. Our main result
shows that this is also the case for the pure mapping class group.

Theorem 1.1 For any i � 0 and g � 2 the sequence of cohomology groups˚
H i
�

PModn
gIQ

�	1
nD1

is monotone and uniformly representation stable with stable range

n�minf4i C 2.4g� 6/.4g� 5/; 2i2
C 6ig:

Our arguments work for hyperbolic non-closed surfaces (Theorem 5.9). Hence Harer’s
homological stability and our main theorem imply that, as an Sn –representation,
H i.PModn

g;r IQ/ is independent of g , r and n, provided n and g are large enough.

By (1), Theorem 1.1 can be restated as follows.

Corollary 1.2 (Representation stability for the cohomology of the moduli space Mn
g )

For any i � 0 and g � 2 the sequence of cohomology groups fH i.Mn
gIQ/g

1
nD1

is
monotone and uniformly representation stable with stable range

n�minf4i C 2.4g� 6/.4g� 5/; 2i2
C 6ig:

Remark In [4, Theorem 1.1] Bödigheimer and Tillmann proved that

B.PModn
1;r /

C
' B ModC1 �.CP1/n:

Together with Harer’s homological stability theorem this implies that, in dimensions
� � g=2,

H�.PModn
g;r IQ/�H�.PModg;r IQ/˝

�
H�.CP1IQ/

�˝n

�H�.PModg;r IQ/˝QŒx1; : : : ;xn�;
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where each xi has degree 2. The action of the symmetric group Sn on the left
hand side corresponds to permuting the n factors CP1 . In other words, it is given
by the action of Sn on the polynomial ring in n variables by permutation of the
variables xi . On the other hand, Church and Farb proved in [7, Section 7] that
representation stability holds for the Sn –action on the polynomial ring in n variables.
Hence Bödigheimer and Tillmann result implies that for i �g=2 representation stability
holds for

˚
H i
�

PModn
g;r IQ

�	1
nD1

. Notice that this only holds for large g with respect
to i . In contrast, our Theorem 1.1 and Theorem 5.9 give uniform representation stability
and monotonicity for arbitrary g � 0 such that 2gC r C s > 2 and large n.

1.3 Puncture (co)homological stability for Modn
g

Our main result, Theorem 1.1, implies cohomological stability for Modn
g with twisted

rational coefficients (see Section 5.3). For any partition �, we denote the corresponding
irreducible Sn –representation by V .�/n , as we explain in Section 2.1 below. A transfer
argument gives the proof of the following corollary of Theorem 1.1.

Corollary 1.3 For any partition �, the sequence
˚
H i
�

Modn
gIV .�/n

�	1
nD1

of twisted
cohomology groups satisfies classical cohomological stability: for fixed i � 0 and
g � 2, there is an isomorphism

H i.Modn
gIV .�/n/�H i

�
ModnC1

g IV .�/nC1

�
;

if n�minf4i C 2.4g� 6/.4g� 5/; 2i2C 6ig.

In [18, Proposition 1.5], Hatcher–Wahl obtained integral puncture homological stability
for the mapping class group of surfaces with non-empty boundary and established a
stable range linear in i . Plugging in the trivial representation V .0/n into Corollary 1.3,
we recover rational puncture homological stability for Modn

g . The stable range that
we obtain either depends on the genus g of the surface or is quadratic in i (see
Corollary 5.8). Nonetheless, our approach by representation stability is completely
different from the classical techniques used in the proofs of homological stability.
Furthermore, we believe that our proof gives yet another example of how the notion of
representation stability can give meaningful answers where classical stability fails.

1.4 Pure mapping class groups for higher dimensional manifolds

Notation Let M be a connected, smooth manifold and let p1; : : : ;pn be distinct
points in the interior of M . We define the mapping class group to be the group

Modn.M / WD �0.Diffn.M //
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3016 Rita Jimenez Rolland

where Diffn.M / is the subgroup of diffeomorphisms in Diff.M rel @M / that leave
invariant the set of points fp1; : : : ;png. Similarly, we let PDiffn.M / be the subgroup
of diffeomorphims in Diff.M rel @M / that fix the points p1; : : : ;pn pointwise and
the pure mapping class group is the group

PModn.M / WD �0.PDiffn.M //:

In this paper, the manifolds M are always orientable.

In Section 6.2 we give a proof of representation stability for the sequence˚
H i
�
Gn
IQ
�	1

nD1

for any group G . This is Proposition 6.5 below. We show how to use this result and the
ideas developed in this paper to establish the analogue of Theorem 1.1 and Corollary 1.3
for the pure mapping class groups of some connected manifolds of higher dimension.

Theorem 1.4 Let M be a smooth connected manifold of dimension d � 3 such that
�1.M / is of type FP1 (for example, M compact). Suppose that �1.M / has trivial
center or that Diff.M / is simply connected. If Mod.M / is a group of type FP1 ,
then for any i � 0 the sequence of cohomology groups

˚
H i.PModn.M /IQ/

	1
nD1

is
monotone and uniformly representation stable with stable range n� 2i2C 4i .

Corollary 1.5 Let M be as in Theorem 1.4. For any partition �, the sequence of
twisted cohomology groups

˚
H i.Modn.M /IV .�/n/

	1
nD1

satisfies classical homologi-
cal stability: for fixed i � 0, there is an isomorphism

H i.Modn.M /IV .�/n/�H i.ModnC1.M /IV .�/nC1/ if n� 2i2
C 4i:

Hatcher–Wahl proved integral puncture homological stability for mapping class group
of connected manifolds with boundary of dimension d � 2 in [18, Proposition 1.5]. Our
Corollary 1.5, applied to the trivial representation, gives rational puncture homological
stability for Modn.M / for manifolds M that satisfy the hypothesis of Theorem 1.4,
even if the manifold has empty boundary.

1.5 Classifying spaces for diffeomorphism groups

Ezra Getzler and Oscar Randal-Williams pointed out to me that the same ideas also
give representation stability for the rational cohomology groups of the classifying space
B PDiffn.M / of the group PDiffn.M / defined above.
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Theorem 1.6 Let M be a smooth, compact and connected manifold of dimension
d � 3 such that B Diff.M rel @M / has the homotopy type of CW-complex with finitely
many cells in each dimension. Then for any i � 0 the sequence of cohomology groups˚
H i.B PDiffn.M /IQ/

	1
nD1

is monotone and uniformly representation stable with
stable range n� 2i2C 4i .

The details are described at the end of the paper in Section 7.

1.6 Outline of the proof of Theorem 1.1

The proof of Theorem 1.1 is presented in Section 5 and relies on the existence of the
Birman exact sequence which realizes �1.Cn.†g// as a subgroup of PModn

g . Here
Cn.†g;r / denotes the configuration space of n distinct ordered points in the interior
of †g;r . Then for each n we can consider the associated Hochschild–Serre spectral
sequence E�.n/, which allows us to relate H�.PModn

gIQ/ with H�.�1.Cn.†g//IQ/.
Following ideas of Church in [6], we use an inductive argument to show that the terms
in each page of the spectral sequence are uniformly representation stable and thus we
conclude the result in Theorem 1.1 from the E1–page.

The notion of monotonicity for a sequence of Sn –representations introduced in [6] is
key in our inductive argument on the pages of the spectral sequence. The base of the
induction is monotonicity and representation stability for the terms in the E2 –page
of the Hochschild–Serre spectral sequence. In order to prove this, we introduce, in
Section 4 below, the notion of a consistent sequence of rational Sn –representations
compatible with G –actions and prove the following general result which we hope will
be useful in future computations.

Theorem 1.7 (Representation stability with changing coefficients) Let G be a group
of type FP1 . Consider a consistent sequence fVn; �ng

1
nD1

of finite dimensional
rational representations of Sn compatible with G –actions. If the sequence fVn; �ng

1
nD1

is monotone and uniformly representation stable with stable range n � N , then for
any integer p � 0, the sequence fH p.GIVn/; �

�
n g
1
nD1

is monotone and uniformly
representation stable with the same stable range.

Monotonicity and uniform representation stability for the E2 –page both follow from
Theorem 1.7, as a consequence of the following result by Church [6, Theorem 1].

Theorem 1.8 (Church) For any connected orientable manifold M of finite type and
any q � 0, the cohomology groups fH q.Cn.M /IQ/g of the ordered configuration
space Cn.M / are monotone and uniformly representation stable, with stable range
n� 2q if dim M � 3 and stable range n� 4q if dim M D 2.
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2 Preliminaries

The precise definition of representation stability and monotonicity are stated below.
We also recall some useful facts about group extensions and cohomology of groups.

2.1 Representation stability and monotonicity

Recall that a rational Sn –representation is a Q–vector space equipped with a linear
Sn –action. The irreducible representations of Sn are classified by partitions �D .�1 �

� � � � �l/ of n ( with �1C � � � C �l D n). We denote the corresponding irreducible
Sn –representation by V� . Every V� is defined over Q and any Sn –representation
decomposes over Q into a direct sum of irreducibles (Fulton–Harris [9] is a standard
reference).

If � is any partition of k , then for any n� kC�1 the padded partition �Œn� of n is
given by �Œn�D .n� k; �1; � � � ; �l/. Keeping the notation from Church–Farb [7] we
set V .�/n D V�Œn� for any n� kC�1 . Every irreducible Sn –representation is of the
form V .�/n for a unique partition �.

The notion of representation stability for different families of groups was first defined
in Church–Farb [7]. We recall this notion for the case of Sn –representations.

Definition 2.1 A sequence fVng
1
nD1

of finite dimensional rational Sn –representations
with linear maps �nW Vn! VnC1 is said to be uniformly representation stable with
stable range n�N if the following conditions are satisfied for all n�N :

0 Consistent sequence The maps �nW Vn! VnC1 are equivariant with respect
to the natural inclusion Sn ,! SnC1 .

I Injectivity The maps �nW Vn! VnC1 are injective.

II Surjectivity The SnC1 –span of �n.Vn/ equals VnC1 .
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III Uniformly multiplicity stable with range n � N For each partition �, the
multiplicities c�.Vn/ of V .�/n in Vn are constant for all n�N .

The notion of monotonicity introduced by Church [6] will be key in our argument.

Definition 2.2 A consistent sequence fVng
1
nD1

of Sn –representations with injective
maps �nW Vn ,!VnC1 is monotone for n�N if for each subspace W <Vn isomorphic
to V .�/˚k

n , the SnC1 –span of �n.W / contains V .�/˚k
nC1

as a subrepresentation for
n�N .

Now we point out the properties of monotone sequences that are useful for our purpose.
These results are proven in [6, Sections 2.1 and 2.2].

Proposition 2.3 Given fWng < fVng, if the sequence fVng is monotone then so is
fWng. If fVng and fWng are monotone and uniformly representation stable with
stable range n�N , then fVn=Wng is monotone and representation stable for n�N .
Conversely, if fWng and fVn=Wng are monotone and uniformly representation stable
with stable range n�N , then fVng is monotone and uniformly representation stable
for n�N .

Proposition 2.4 Let fVng and fWng be monotone sequences for n�N , and assume
that fVng is uniformly representation stable for n � N . Then for any consistent
sequence of maps fnW Vn!Wn that makes the following diagram commutative

Vn

fn //

�n

��

Wn

 n

��
VnC1

fnC1 // WnC1;

the sequences fkerfng and fimfng are monotone and uniformly representation stable
for n�N .

The previous propositions apply also to V .�/n for a single partition �. In particular to
the case of the trivial representation V .0/n .

Proposition 2.5 For a fixed partition �, assuming monotonicity just for V .�/˝k
n ,

Propositions 2.3 and 2.4 hold if we replace “uniform representation stability” by “the
multiplicity of V .�/n is stable”.

Algebraic & Geometric Topology, Volume 11 (2011)



3020 Rita Jimenez Rolland

2.2 On the cohomology of group extensions

A group extension of a group Q by a group H is a short exact sequence of groups

(2) 1!H !G!Q! 1:

Given a G–module M , the conjugation action .h;m/ 7! .ghg�1;g �m/ of G on
.H;M / induces an action of G=H ŠQ on H�.H IM / as follows. Let F ! Z be a
projective resolution of Z over ZG and consider the diagonal action of G in the cochain
complex Hom.F;M / given by f 7! Œx 7! g � f .g�1 �x/�, for f 2Hom.F;M / and
g 2G . This action restricts to the subcomplex HomH .F;M / where H acts trivially
by definition, hence we get an induced action of QŠ G=H on HomH .F;M /. But
the cohomology of this complex is H�.H IM /, giving the desired action of Q on
H�.H IM /.

The cohomology Hochschild–Serre spectral sequence for the group extension (2) is a
first quadrant spectral sequence converging to H�.GIM / whose E2 page is of the
form

E
p;q
2
DH p.QIH q.H IM //:

Furthermore, from the construction of the Hochschild–Serre spectral sequence it can
be shown that this spectral sequence is natural in the following sense. Assume we
have group extensions (I) and (II) and group homomorphisms fH and fG making the
following diagram commute

1 // H1
//

fH

��

G1
//

fG

��

Q //

id

1 (I)

1 // H2
// G2

// Q // 1 (II)

Then the induced map

f �H W H
�.H2IQ/!H�.H1IQ/

is Q–equivariant. Moreover, if 0E� and 00E� denote the Hochschild–Serre spectral
sequences corresponding to the extensions (I) and (II), we have

(1) Induced maps .fH /
�
r W
00E

p;q
r ! 0E

p;q
r that commute with the differentials.

(2) The map .fG/
�W H�.G2IQ/!H�.G1IQ/ preserves the natural filtrations of

H�.G1IQ/ and H�.G2IQ/ inducing a map on the succesive quotients of the
filtrations which is the map

.fH /
�
1W
00E

p;q
1 !

0E
p;q
1 :
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(3) The map .fH /
�
2
W 00E

p;q
2
! 0E

p;q
2

is the one induced by the group homomor-
phisms idW Q!Q and fH W H1!H2 .

For an explicit description of the Hochschild–Serre spectral sequence we refer the reader
to Brown [5] and Mac Lane [21] (where it is called the Lyndon spectral sequence).

3 The second cohomology H 2.Mn
gIQ/

In this section we understand the consistent sequence of Sn –representations˚
H 2

�
PModn

gIQ
�
; f 2

n

	
to give an explicit discussion of the phenomenon of representation stability proved on
Theorem 1.1.

The second cohomology group is given by:

(3) H 2.Mg;nIQ/�H 2
�

PModn
gIQ

�
�H 2.Modg;nIQ/˚Qn; for g � 3:

We want to compare H 2.PModn
gIQ/ through the forgetful maps

f 2
n W H

2
�

PModn
gIQ

�
!H 2

�
PModnC1

g IQ
�
:

We already know that f 2
n is never an isomorphism (failure of homological stability).

Instead, we consider H 2
�

PModn
gIQ

�
as an Sn –representation and we investigate how

those representations depend on the parameter n. When g � 4, H 2.Modg;nIQ/�Q
(see Harer [12]) and the Sn –action on this summand is trivial. On the other hand, the
summand Qn is generated by classes �i 2H 2.PModn

gIQ/ (iD1; : : : ; n) corresponding
to the central extensions PMod.Xi/:

1! Z! PMod.Xi/! PModn
g! 1:

The right map above is induced from the inclusion Xi WD†g �N�.pi/ ,!†n
g , where

N�.pi/ D
˚
x 2 †n

g W d.x;pi/ < �
	

for a small � > 0. Notice that Xi ' †
n�1
g;1

. The
kernel is generated by a Dehn twist around the boundary component, which is the
simple loop @N�.pi/ around the puncture pi in †n

g . Observe that a permutation of the
punctures induces a corresponding permutation of the surfaces fX1; : : : ;Xng, hence
of the classes �i in H 2

�
PModn

gIQ
�
.

We can also think of �i as the first Chern class of the line bundle Li over Mn
g defined

as follows: at a point in Mn
g , that is, a Riemann surface X with marked points

p1; : : : ;pn , the fiber of Li is the cotangent space to X at pi . In fact, the � –classes
are the image of the  –classes under the surjective homomorphism H 2. SMn

gIQ/!

Algebraic & Geometric Topology, Volume 11 (2011)



3022 Rita Jimenez Rolland

H 2.Mn
gIQ/, where SMn

g is the Deligne–Mumford compactification of Mn
g (see Hain–

Looijenga [10]). A permutation of the marked points induces the same permutation
of the classes �i in H 2.Mn

gIQ/. Therefore, Sn acts on the summand Qn in (3) by
permuting the generators.

Thus, for g � 4 and n� 3, the decomposition of (3) into irreducibles is given by

H 2
�

PModn
gIQ

�
� V .0/n˚V .0/n˚V .1/n;

where, following our notation from Section 2.1, V .0/n is the trivial Sn –representation
and V .1/n is the standard Sn –representation. Notice that, even though the dimension of
H 2

�
PModn

gIQ
�

blows up as n increases, the decomposition into irreducibles stabilizes.
In terms of definition of representation stability stated in Section 2.1, we have shown
that the sequence of Sn –representations

˚
H 2

�
PModn

gIQ
�	

is uniformly multiplicity
stable with stable range n� 3. This indicates to us that representation stability of the
cohomology groups of PModn

g may be the phenomena to expect.

4 Representation stability for H �.G IVn/

We discuss here when representation stability for a sequence fVng of G –modules will
imply representation stability for the cohomology of a group G with coefficients Vn .
This is Theorem 1.7 below and it is a key ingredient for the base of the induction in the
proof of Theorem 1.1.

Definition 4.1 Let G be a group. We will say that a sequence of rational vector spaces
Vn with given maps �nW Vn! VnC1 is consistent and compatible with G –actions if it
satisfies the following:

Consistent sequence Each Vn is a rational Sn –representation and the map
�nW Vn! VnC1 is equivariant with respect to the inclusion Sn ,! SnC1 .

Compatible with G –actions Each Vn is a G –module and the maps �nW Vn!

VnC1 are G –maps. The G –action commutes with the Sn –action.

Notice that for a sequence as in the previous definition and p � 0, we have that
fH p.GIVn/I�

�
n g is a consistent sequence of rational Sn –representations. Here

��n W H
p.GIVn/!H p.GIVnC1/

denotes the map induced by �nW Vn! VnC1 .
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Theorem 1.7 (Representation stability with changing coefficients) Let G be a group
of type FP1 . Consider a consistent sequence fVn; �ng

1
nD1

of finite dimensional
rational representations of Sn compatible with G –actions. If the sequence fVn; �ng

1
nD1

is monotone and uniformly representation stable with stable range n�N , then for any
non-negative integer p , the sequence fH p.GIVn/; �

�
n g
1
nD1

is monotone and uniformly
representation stable with the same stable range.

Proof Take E ! Z a free resolution of Z over ZG of finite type. This means
that each Ep is a free G–module of finite rank, say Ep � .ZG/dp generated by
x1; : : : ;xdp

.

There is an Sn –action on the chain complex Hom.E;Vn/ given by � �hW x 7! � �h.x/

for any h 2Hom.E;Vn/ and � 2 Sn . Since the Sn –action and the G–action on Vn

commute, this action restricts to a well-defined Sn –action on HomG.E;Vn/ which
makes each HomG.E;Vn/

p WD HomG.Ep;Vn/ into a rational Sn –representation.

Observe that any G–homomorphism hW Ep ! Vn is completely determined by the
dp –tuple .h.x1/; : : : ; h.xdp

//. Then the assignment h 7! .h.x1/; : : : ; h.xdp
// gives

us an isomorphism

HomG.E;Vn/
p
� V

˚dp

n

not just of rational vector spaces, but of Sn –representations. Notice that since Vn is
finite dimensional, HomG.E;Vn/

p also has finite dimension. Moreover, under this
isomorphism the map

�p
n WDHomG.E; �n/

p
W HomG.E;Vn/

p
!HomG.E;VnC1/

p

is just .�n/
˚dp W V

˚dp

n ! V
˚dp

nC1
. From Proposition 2.3, it follows that the sequence

fHomG.E;Vn/
pI�

p
n g is monotone and uniformly representation stable for n�N .

The differentials ın
p of the cochain complex HomG.E;Vn/ are a consistent sequence

of maps, meaning that the following diagram commutes:

HomG.E;Vn/
p

ın
p

��

�
p
n // HomG.E;VnC1/

p

ı
nC1
p

��
HomG.E;Vn/

pC1
�

pC1
n // HomG.E;VnC1/

pC1

From Proposition 2.4 the subsequences fker ın
pg and fim ın

pg are monotone and uni-
formly representation stable for n�N . Finally Proposition 2.3 gives the desired result
for H p.GIVn/ WD ker ın

p= im ın
pC1

.
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Since H 0.GIVn/ is equal to the G –invariants V G
n , as a particular case of Theorem 1.7,

we get the following.

Corollary 4.2 The sequence of G–invariants fV G
n ; �ng is monotone and uniformly

representation stable with the same stable range as fVn; �ng.

5 Representation stability for H �.PModn
gIQ/

In this section we prove our main result Theorem 1.1 and some consequences of it. We
will focus on the sequence of pure mapping class groups PModn

g and its cohomology
with rational coefficients. We consider the case g � 2.

5.1 The ingredients for the proof of the main theorem

Here we describe three of the four main ingredients needed in our proof of Theorem 1.1
in Section 5.2. The ingredient (iv) is Theorem 1.8 (see Church [6, Theorem 1]).

5.1.1 The Birman exact sequence Our approach relies on the existence of a nice
short exact sequence, introduced by Birman in 1969, that relates the pure mapping class
group with the pure braid group of the surface: the Birman exact sequence (Bir1n ).

Let Cn.†g/ be the configuration space of †g and p D .p1; � � � ;pn/ 2 Cn.†g/ the
punctures or marked points in †n

g . The map in (Bir1n ) that realizes �1.Cn.†g/; p/ as a
subgroup of PModn

g is the point-pushing map Push. For an element 
 2�1.Cn.†g/; p/,
consider the isotopy defined by “pushing” the n–tuple .p1; � � � ;pn/ along 
 . Then
Push.
 / is represented by the diffeomorphism at the end of the isotopy. The map f in
.Bir1n/ is a forgetful morphism induced by the inclusion †n

g ,!†g .

Taking the quotient .Bir1n/ by the Sn –action there, we obtain the Birman exact
sequence .Bir2n/. The relation between these two sequences is illustrated in the
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following diagram.

(4) 1

��

1

��

1 // �1.Cn.†g//

q

��

Push // PModn
g

q

��

f // Modg

id

// 1 (Bir1n)

1 // �1.Bn.†g//

��

Push // Modn
g

��

f // Modg // 1 (Bir2n)

Sn

��

id
Sn

��
1 1

The columns in this diagram relate the groups �1.Cn.†g// and PModn
g with the groups

�1.Bn.†g// and Modn
g , respectively, in the same way as the pure braid group Pn is

related to the braid group Bn by the short exact sequence

1! Pn! Bn! Sn! 1:

Proofs of the exactness of the sequences in diagram (4) can be found in Birman [3]
and Farb–Margalit [8]. The exactness of .Bir11/ and .Bir2n/ requires g � 2.

Observe that from the short exact sequence (Bir1n ) we get an action of Modg on
H�.�1.Cn.†g//IQ/. The second column in diagram (4) defines an Sn –action on
H�.PModn

gIQ/ which restricts to the Sn –action on H�.�1.Cn.†g//IQ/ defined by
the short exact sequence in the first column. The induced map

Push�W H�
�

PModn
gIQ

�
!H�.�1.Cn.†g//IQ/

is a Sn –map between rational Sn –representations. Moreover, from the commutativity
of diagram (4) we have the following.

Proposition 5.1 The actions of Sn and Modg on H�.�1.Cn.†g//IQ/ commute.

5.1.2 The Hochschild–Serre spectral sequence We denote the Hochschild–Serre
spectral sequence associated to the short exact sequence (Bir1n ) by E�.n/, where the
E2 –page is given by:

E
p;q
2
.n/DH p.ModgIH

q.�1.Cn.†g//IQ//;
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and the spectral sequence converges to H pCq
�

PModn
gIQ

�
. This spectral sequence

gives a natural filtration of H i
�

PModn
gIQ

�
:

(5) 0� F i
i .n/� F i

i�1.n/� � � � � F i
1.n/� F i

0.n/DH i
�

PModn
gIQ

�
;

where the successive quotients are F i
p.n/=F

i
pC1

.n/ŠE
p;i�p
1 .n/.

The following lemma is due to Harer [14, Theorem 4.1] and establishes that Modg

satisfies the finiteness conditions that our argument requires.

Lemma 5.2 For 2gC sC r > 2, the mapping class group Mods
g;r is a virtual duality

group with virtual cohomological dimension d.g; r; s/, where d.g; 0; 0/ D 4g � 5,
d.g; r; s/ D 4gC 2r C s � 4, g > 0 and r C s > 0, and d.0; r; s/ D 2r C s � 3. In
particular, Mods

g;r is a group of type FP1 , and for any rational Mods
g;r –module M ,

we have H p
�

Mods
g;r IM

�
D 0 for p > d.g; r; s/.

We now see that the terms of the spectral sequence E�.n/ are finite dimensional
Sn –representations.

Proposition 5.3 For 2 � r �1, each E
p;q
r .n/ is a finite dimensional rational Sn –

representation and the differentials

dp;q
r .n/W Ep;q

r .n/!EpCr;q�rC1
r .n/

are Sn –maps.

Proof Let � 2 Sn and take z� 2 Push.�1.Bn.†g// <Modn
g (see (Bir2n )). Denote by

c.z�/ the conjugation by z� . Diagram (4) then gives

1 // �1.Cn.†g//

c.z�/

��

// PModn
g

c.z�/

��

// Modg

id

// 1

1 // �1.Cn.†g// // PModn
g

// Modg // 1

The induced maps c.z�/�r W E
p;q
r .n/! E

p;q
r .n/ do not depend on the lift of � 2 Sn

and, by naturality of the Hochschild–Serre spectral sequence, they commute with
the differentials. Hence we get an Sn –action on each E

p;q
r .n/ for 2 � r �1 that

commutes with the differentials. Moreover, naturality also implies that the Sn –action
on H�.PModn

gIQ/ induces the corresponding Sn –action on E
p;q
1 .n/.

By Lemma 5.2, the group Modg is of type FP1 . Totaro showed in [22, Theorem 4]
that the cohomology ring H�.�1.Cn.†g//IQ/ is generated by cohomology classes
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from the rings H�.†gIQ/ and H�.PnIQ/. In particular, his result implies that
H q.�1.Cn.†g//IQ/ is a finite dimensional Q–vector space for q � 0. It follows that

E
p;q
2
.n/DH p.ModgIH

q.�1.Cn.†g//IQ//

is a finite dimensional Q–vector space, and likewise for the subquotients E
p;q
r .n/.

5.1.3 The forgetful map For the pure braid group, there is a natural map fnW PnC1!

Pn given by “forgetting” the last strand. Similarly, the inclusion †nC1
g ,!†n

g induces
a homomorphism

fnW PModnC1
g ! PModn

g

that we call the forgetful map. We can also think of this map as the one induced by “for-
getting a marked point” in †n

g . When restricted to the subgroup Push.�1.CnC1.†g///

it corresponds to the homomorphism in fundamental groups induced by the map
CnC1.†g/! Cn.†g/ given by “forgetting the last coordinate”. This gives rise to the
commutative diagram (3) that relates the exact sequences .Bir1nC1/ and .Bir1n/.
(6)

1

��

1

��
�1.†

n
g/

��

id
�1.†

n
g/

��

1 // �1.CnC1.†g//

fn

��

// PModnC1
g

fn

��

// Modg

id

// 1 (BirnC1)

1 // �1.Cn.†g//

��

// PModn
g

��

// Modg // 1 (Bir1n)

1 1

Diagram (6) and our remarks in Section 2.2 imply the following.

Proposition 5.4 The induced maps

f �n W H
�.�1.Cn.†g//IQ/!H�.�1.CnC1.†g/IQ/

are Modg –maps.

Moreover, diagram (6) and naturality of the Hochschild–Serre spectral sequence give
us:
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(1) Induced maps .fn/
�
r W E

p;q
r .n/!E

p;q
r .nC 1/ that commute with the differen-

tials. This means that the differentials d
p;q
r .n/ are consistent maps in the sense

of Proposition 2.4.

(2) The map .fn/
�W H�.PModn

gIQ/!H�.PModnC1
g IQ/ preserves the filtrations

(5) inducing a map on the succesive quotients E
p;q
1 .n/ which is the map

.fn/
�
1W E

p;q
1 .n/!E

p;q
1 .nC 1/.

(3) The map .fn/
�
2
W E

p;q
2
.n/ ! E

p;q
2
.n C 1/ is the one induced by the group

homomorphisms idW Modg!Modg and fnW �1.CnC1.†g//! �1.Cn.†g//.

5.2 The proof of the main theorem (Theorem 1.1)

In order to prove Theorem 1.1 we use an inductive argument on the pages of the spectral
sequence described in Section 5.1 (ii). The following lemma gives us the base of the
induction.

Lemma 5.5 For each p � 0 and q � 0, the consistent sequence of rational Sn –
representations ˚

E
p;q
2
.n/DH p.ModgIH

q.�1.Cn.†g//IQ//
	

is monotone and uniformly representation stable with stable range n� 4q .

Proof Let q� 0. Since Cn.†g/ is aspherical, by Theorem 1.8 of Church we have that
the consistent sequence of rational Sn –representations fH q.�1.Cn.†g//IQ/g with
the forgetful maps

fnW H
q.�1.Cn.†g//IQ/!H q.�1.CnC1.†g//IQ/

is monotone and uniformly representation stable with stable range n� 4q . Moreover,
Propositions 5.1 and 5.4 imply that the sequence is compatible with the Modg –action.
The group Modg is FP1 (Lemma 5.2). Hence we can apply Theorem 1.7.

From Lemma 5.5, we follow the same type of inductive argument from [6, Section
3] that Church uses in order to prove his main result [6, Theorem 1]. Here we get
monotonicity and uniform representation stability for all the pages of the spectral
sequence E�.n/. We include the proofs here for completeness.

Lemma 5.6 The sequence fEp;q
r .n/g is monotone and uniformly representation stable

with stable range n� 4qC 2.r � 1/.r � 2/.
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Proof The proof is done by induction on r where the base case r D 2 is given by
Lemma 5.5. Assume that fEp;q

r .n/g is monotone and uniformly representation stable
for n� 4

�
qC

Pr�2
kD1 k

�
.

As noted before, the differentials

dp;q
r .n/W Ep;q

r .n/!EpCr;q�rC1
r .n/

are a consistent sequence of maps in the sense of Proposition 2.4. Then fker d
p;q
r .n/g

is monotone and uniformly representation stable for n� 4
�
qC

Pr�2
kD1 k

�
. Moreover

fim d
p�r;qCr�1
r .n/g is monotone and uniformly representation stable for n� 4

�
qC

.r�1/C
Pr�2

kD1 k
�
. Therefore by Proposition 2.3 the next page in the spectral sequence

Ep;q
r .n/Š ker dp;q

r .n/= im dp�r;qCr�1
r

is monotone and uniformly representation stable for n� 4
�
qC

Pr�1
kD1 k

�
.

Lemma 5.7 For every p; q � 0 and every n� 2, we have E
p;q
1 .n/DE

p;q
R
.n/, where

RD 4g� 4D vcd.Modg/C 1:

Proof The Hochschild–Serre spectral sequence E�.n/ is a first-quadrant spectral
sequence. Moreover, from Lemma 5.2 it follows that for every p > 4g� 5

0DH p.ModgIH
q.�1.Cn.†g//DE

p;q
2
.n/DEp;q

r .n/:

Therefore for RD 4g� 4, q � 0 and 0� p � 4g� 5, we have that

E
p�R;qCR�1
R

.n/D 0

since p�R< 0, and
E

pCR;q�RC1
R

.n/D 0

since pCR > 4g � 5. Then the differentials d
p;q
R

and d
p�R;qCR�1
R

are zero and
hence

E
p;q
RC1

.n/D ker d
p;q
R
= im d

p�R;qCR�1
R

DE
p;q
R
.n/:

Having built up, we are now able to prove our main result: uniform representation
stability of

˚
H i
�

PModn
g;r IQ

�	1
nD1

.

Theorem 1.1 For any i � 0 and g � 2 the sequence of cohomology groups˚
H i
�

PModn
gIQ

�	1
nD1

is monotone and uniformly representation stable with stable range

n�minf4i C 2.4g� 6/.4g� 5/; 2i2
C 6ig:
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Proof Each of the successive quotients of the natural filtration (5) of H i
�

PModn
gIQ

�
give us a sequence ˚

F i
p.n/=F

i
pC1.n/�E

p;i�p
1 .n/

	
which, by Lemmas 5.6 and 5.7, is monotone and uniformly representation stable
with stable range n � 4.i � p/C 2.4g � 6/.4g � 5/. This is the case, in particular,
for F i

i�1
.n/=F i

i .n/ and F i
i .n/ � E

i;0
1 .n/. Then by Proposition 2.3 we have that

F i
i�1
.n/ is monotone and uniformly representation stable. Reverse induction and

Proposition 2.3 imply that the sequences
˚
F i

p.n/
	

(0 � p � i ) are monotone and
uniformly representation stable with the same stable range. In particular this is true for
F i

0
.n/DH i

�
PModn

gIQ
�
.

Observe that

4.i �p/C 2.4g� 6/.4g� 5/C 4p � 4.i �p/C 2.4g� 6/.4g� 5/

for all 0� p � i , which give us the desired stable range.

Finally, we notice that for a fixed i � 0, the group H i
�
PModn

gIQ
�

only depends on
the terms E

p;i�p
1 .n/DE

p;i�p
iC2

.n/, i �p� 0. Hence from Lemma 5.6 we get a stable
range that does not depend on the genus g . However, this stable range is quadratic on
i : the sequence

˚
H i
�
PModn

gIQ
�	

is monotone and uniformly representation stable
for n� 4i C 2.i C 1/.i/D .2i/.i C 3/.

5.3 Rational homological stability for Modn
g

From the short exact sequence in the second column of diagram (1), we have that
any rational Sn –representation can be regarded as a representation of Modn

g by com-
posing with the projection Modn

g ! Sn . As a consequence of Theorem 1.1 we get
cohomological stability for Modn

g with twisted coefficients.

Corollary 1.3 For any partition �, the sequence
˚
H i
�

Modn
gIV .�/n

�	
1
nD1

of twisted
cohomology groups satisfies classical cohomological stability: for fixed i � 0 and
g � 2, there is an isomorphism

H i
�

Modn
gIV .�/n

�
�H i

�
ModnC1

g IV .�/nC1

�
;

if n�minf4i C 2.4g� 6/.4g� 5/; n� 2i2C 6ig.

Proof This is just the argument by Church–Farb in [7, Corollary 4.4]. The group
PModn

g is a finite index subgroup of Modn
g and the coefficients V .�/n are rational

vector spaces, therefore the transfer map (see Brown [5]) give us an isomorphism

H i
�

Modn
gIV .�/n

�
�H i

�
PModn

gIV .�/n
�Sn :
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Moreover, V .�/n is a trivial PModn
g –representation, since the action of Modn

g on
V .�/n factors through Sn . Hence, from the universal coefficient theorem, we have

(7) H i
�

PModn
gIV .�/n/

�Sn
�
�
H i
�

PModn
gIQ

�
˝V .�/n

�Sn :

For two partitions � and � of n the representation V .�/˝ V .�/ contains the triv-
ial representation if and only if � D �, in which case it has multiplicity 1 (see
Fulton–Harris [9]). Therefore the dimension of (7) is the multiplicity of V .�/n in
H i
�

PModn
gIQ

�
which is constant for n � 4i C 2.4g � 6/.4g � 5/ by Theorem 1.1.

This completes the proof.

In particular, the multiplicity of the trivial representation in H i
�

PModn
gIQ

�
, which

equals H i
�

Modn
gIQ

�
, is constant for n� 4i C 2.4g� 6/.4g� 5/. In fact, the stable

range in this case can be slightly improved.

Corollary 5.8 For any i � 0 and a fixed g � 2, the sequence of mapping class groups˚
Modn

g

	1
nD1

satisfies rational cohomological stability:

H i
�

Modn
gIQ

�
�H i

�
ModnC1

g IQ
�
;

if n�maxfi C .2g� 3/.4g� 5/; 2i2C 4ig.

Proof For any n the Sn –invariants of the spectral sequence
�
E

p:q
2

�
Sn form a spectral

sequence that converges to H pCq
�

PModn
gIQ

�
Sn . In fact,

�
E

p:q
2

�
Sn is just the .p; q/–

term of the E2 –page of the Hochschild–Serre spectral sequence of the group extension
.Bir2n/ converging to H pCq

�
Modn

gIQ
�
. In Church [6, Corollary 3] a better stable

range than the one in Theorem 1.8 is obtained when restricted to the Sn –invariants:
the dimension of Hq.Cn.†g/IQ/Sn is constant for n > q . As a consequence the
dimension of .Ep:q

2
/Sn is constant for n� q . Proposition 2.5 allows us to repeat the

general argument for this spectral sequence of Sn –invariants in order to get the desired
stable range.

5.4 Non-closed surfaces

Our main result is also true if we consider a non-closed surface †s
g;r of genus g , with

r boundary components and s punctures with 2gC r C s > 2.

Let p1; : : : ;pn be distinct points in the interior of †s
g;r . We define the mapping

class group Modn
�
†s

g;r

�
as the group of isotopy classes of orientation-preserving

self-diffeomorphisms of †s
g;r that permute the distinguished points p1; : : : ;pn and

that restrict to the identity on the boundary components. The pure mapping class group

Algebraic & Geometric Topology, Volume 11 (2011)



3032 Rita Jimenez Rolland

PModn
g;r is defined analogously by asking that the distinguished points p1; : : : ;pn

remain fixed pointwise.

When 2gC r C s > 2 we have again a Birman exact sequence (see Farb–Margalit [8]):

1! �1

�
Cn

�
†rCs

g

��
! PModn

�
†s

g;r

�
!Mods

g;r ! 1:

In particular, this includes the three punctured sphere †3
0

and the punctured torus †1
1

.

Using this short exact sequence and Theorem 1.8 we can use the previous arguments to
get representation stability for the cohomology of PModn

�
†s

g;r

�
, when 2gCsCr > 2.

Theorem 5.9 For any i � 0 and 2gC sC r > 2 the sequence˚
H i
�

PModn.†s
g;r /IQ

�	1
nD1

is monotone and uniformly representation stable with stable range

n�minf4i C 2
�
d.g; r; s/

��
d.g; r; s/� 1

�
; 2i2
C 6ig:

Furthermore for any partition � and any fixed i � 0 and 2gC sC r > 2, there is an
isomorphism

H i
�

Modn.†s
g;r /IV .�/n

�
�H i

�
ModnC1

�
†s

g;r

�
IV .�/nC1

�
;

if n�minf4i C 2.d.g; r; s//.d.g; r; s/� 1/; 2i2C 6ig.

Here d.g;r;s/ denotes the virtual cohomological dimension of Mods
g;r as in Lemma 5.2.

In the case of trivial coefficients V .0/n D Q we recover puncture stability for the
rational cohomology groups of Modn.†s

g;r / for 2gC sC r > 2.

6 Pure mapping class groups of higher dimensional mani-
folds

We now explain how the key ideas from before can be applied to obtain representation
stability for the cohomology of pure mapping class groups of higher dimensional
manifolds.

6.1 Representation stability for H �.PModn.M /IQ/

Let M be a connected, smooth manifold and consider the mapping class group
Modn.M / and the pure mapping class group PModn.M / as defined in the introduction.
We now show how, in some cases, the previous techniques and Proposition 6.5 from
Section 6.2 can be used to prove representation stability for

˚
H i.PModn.M /IQ/; f i

n

	
.
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Notation We denote by Cn.M / (resp. Bn.M /) the configuration space of n distinct
ordered (resp. unordered) points in the interior of any manifold M . We refer to
p1; : : : ;pn as the “punctures” or the “marked points”. We will usually take the n–tuple
pD .p1; : : : ;pn/2Cn.M / as the base point of �1.Cn.M // (resp. �1.Bn.M //). The
group Pn WD �1.Cn.R2/; p/� PModn

0;1 is the pure braid group and the braid group
is Bn WD �1.Bn.R2/; p/�Modn

0;1 .

The inclusion �
M �fp1; : : : ;pn;pnC1g

�
,!

�
M �fp1; : : : ;png

�
induces the forgetful homomorphism

fnW PModnC1.M /! PModn.M /:

Recall that one of the main ingredients needed in our proof of Theorem 1.1 is the
existence of a Birman exact sequence that allows us to relate �1.Cn.M /; p/ with
PModn.M /. First we notice that, when the dimension of M is d � 3, the group
�1.Cn.M // can be completely understood in terms of �1.M /.

Lemma 6.1 Let M be a smooth connected manifold of dimension d � 3. Then for
any n� 1 the inclusion map Cn.M / ,!M n induces an isomorphism �1.Cn.M /; p/�

�1.M
n; p/�

Qn
iD1 �1.M;pi/.

The case for closed manifolds is due to Birman [2, Theorem 1]. As Allen Hatcher
explained to me, there are many manifolds for which there is a Birman exact sequence.

Lemma 6.2 (Existence of a Birman Exact Sequence) Let M be a smooth connected
manifold of dimension d � 3. If the fundamental group �1.M / has trivial center or
Diff.M / is simply connected, then there exists a Birman exact sequence

(8) 1 �! �1.Cn.M // �! PModn.M / �!Mod.M / �! 1:

Proof The evaluation map

evW Diff.M /! Cn.M /;

given by f 7! .f .p1/; : : : ; f .pn// is a fibration with fiber PDiffn.M /. Consider the
associated long exact sequence in homotopy groups

� � � �! �1.Diff.M // �! �1.Cn.M //
ı
�! �0.PDiffn.M // �! �0.Diff.M // �! 1:
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If Diff.M / is simply connected, then the existence of the short exact sequence (8)
follows. On the other hand, we may consider the map

 W �0.PDiffn.M //! AutŒ�1.Cn.M //�

given by Œf � 7! Œ
 7! f ı 
 �.

The composition

�1.Cn.M //
ı
�! �0.PDiffn.M //

 
�! AutŒ�1.Cn.M //�

sends � 2 �1.Cn.M // to the inner automorphism c.�/ given by conjugation by � .
If the dimension d � 3 and �1.M / has trivial center, then so does �1.Cn.M // by
Lemma 6.1. In this case, the boundary map ı is injective and we get the desired Birman
exact sequence (8).

The E2 –page of the Hochschild–Serre spectral sequence associated to (8) is then

E
p;q
2
.n/DH p.Mod.M /IH q.�1.Cn.M //IQ//:

By Lemma 6.1
H q.�1.Cn.M //IQ//DH q.�1.M /nIQ/:

Moreover, by Proposition 6.5 below, if the group �1.M / is of type FP1 , the consistent
sequence

˚
H q.�1.M /nIQ/

	1
nD1

is monotone and uniformly representation stable,
with stable range n� 2q . Hence when Mod.M / is also of type FP1 (for example,
M is compact), Theorem 1.7 and the same inductive argument on the successive pages
of spectral sequence yield the following:

Lemma 6.3 For every i � 0 and every n � 2, the consistent sequence of rational
Sn –representations˚

E
i�q;q
2

.n/DH i�q.Mod.M /IH q.�1.Cn.M //IQ//
	1

nD1

is monotone and uniformly representation stable with stable range n� 2q . Furthermore
E

i�q;q
1 .n/DE

i�q;q
iC2

.n/, which is monotone and uniformly representation stable with
stable range

n� 2qC 2.i C 1/.i/:

Observe that now we have all the ingredients needed in order to reproduce our arguments
from Section 5.2 and prove Theorem 1.4 and Corollary 1.5.
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6.2 Representation stability of H �.G nIQ/

Given a group G , we may consider the sequence of groups
˚
Gn D

Qn
iD1 G

	
with the

corresponding Sn –action given by permuting the factors. The natural homomorphism
GnC1!Gn by forgetting the last coordinate is equivariant with respect to the inclusion
Sn ,! SnC1 . For a fixed q � 0 the induced maps

�nW H
q.Gn

IQ/!H q.GnC1
IQ/

give us a consistent sequence of Sn –representations. If G is of type FP1 , we have
finite dimensional representations. Monotonicity and uniform representation stability
of this sequence are a particular case of Church [6, Proposition 3.1] (corresponding
to the first row in the spectral sequence). Since this result gives us the inductive
hypothesis for the proof of Theorem 1.4, we present here a complete proof for the
reader’s convenience.

For a fixed Sl –representation V and each n� l , we denote by V˛�Q the corresponding
.Sl �Sn�l/–representation, where the factor Sn�l acts trivially. We can then consider
the sequence of Sn –representation

˚
IndSn

Sl�Sn�l
V˛ � Q

	
with the natural inclusions

�nW IndSn

Sl�Sn�l
V˛ � Q ,! IndSnC1

Sl�SnC1�l
V˛ � Q:

This sequence is monotone and uniform representation stable as proved in [6, Theorem
2.11]:

Lemma 6.4 Let V be a finite dimensional Sl –representation, then the sequence of
induced representations

˚
IndSn

Sl�Sn�l
V �Q

	1
nD1

is monotone and uniformly represen-
tation stable for n� 2l .

This lemma and the Künneth formula give us the following result.

Proposition 6.5 Let G be any group of type FP1 and q�0. The consistent sequence
of Sn –representations fH q.GnIQ/; �ng

1
nD1

is monotone and uniformly representation
stable for n� 2q .

Proof By the Künneth formula we have

H q.Gn
IQ/�

M
a

H a.Gn/

where the sum is over all tuples aD .a1; : : : ; an/ such that aj � 0 and
P

aj D q and
H a.Gn/ denotes H a1.GIQ/˝ � � �˝H an.GIQ/.
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Let xa D ˛ where ˛ D .˛1 � ˛2 � : : : � ˛l/ is a partition of q and the j̨ are the
positive values of a arranged in decreasing order. We define supp.a/ as the subset of
f1; 2; : : : ; ng for which ai ¤ 0. Observe that the length of ˛ is l D j supp.a/j � q .
Therefore we have

H q.Gn
IQ/D

M
˛

H˛.Gn/

where now the sum is over all partitions ˛ of q of length l � q and H˛.Gn/ DL
xaD˛ H a.Gn/.

The natural Sn –action on Gn induces an Sn –action on H q.GnIQ/. More precisely,
the group Sn acts on n–tuples a by permuting the coordinates. This induces an
action on

L
xaD˛ H a.Gn/ by permuting the summands accordingly (with a sign, since

cohomology is graded commutative). Hence, under this action, each H˛.Gn/ is
Sn –invariant. We now describe H˛.Gn/ as an induced representation.

For a given ˛ , take b D .˛1; : : : ; ˛l ; 0; � � � ; 0/. Observe that we can identify the
Sn –translates of H b.Gn/ with the cosets Sn=Stab.b/ by an orbit-stabilizer argument.
Thus

H˛.Gn/D IndSn

Stab.b/H b.Gn/:

Moreover, Sn�l < Stab.b/ < Sl � Sn�l , where Sl permutes coordinates f1; : : : ; lg
and Sn�l permutes coordinates fl C 1; : : : ; ng. Therefore Stab.b/D H �Sn�l , for
some subgroup H < Sl .

Notice that

H b.Gn/DH b1.GIQ/˝ � � �˝H bl .GIQ/˝ � � �˝H 0.GIQ/

�H b1.GIQ/˝ � � �˝H bl .GIQ/

can be regarded as an H –representation.

Let V˛ WD IndSl

H
H b.Gn/ and let V˛ � Q denote the corresponding .Sl � Sn�l/–

representation. Then

H˛.Gn/D IndSn

Stab.b/H b.Gn/

D IndSn

H�Sn�l
.H b.Gn/� Q/

D IndSn

Sl�Sn�l

�
IndSl�Sn�l

H�Sn�l
.H b.Gn/� Q/

�
D IndSn

Sl�Sn�l

��
IndSl

H
H b.Gn/

�
� Q

�
D IndSn

Sl�Sn�l
V˛ � Q:
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Moreover, we notice that the forgetful map �n restricted to the summand H˛.Gn/

corresponds to the inclusion

IndSn

Sl�Sn�l
V˛ � Q ,! IndSnC1

Sl�SnC1�l
V˛ � Q:

Therefore, by Lemma 6.4, the consistent sequence fH˛.Gn/g is monotone and uni-
formly representation stable with stable range n� 2l , where l is the length of ˛ and
l � q . The result for fH q.GnIQ/; �ng then follows from Proposition 2.3.

We illustrate the notation in the previous proof with the concrete case of G D Z.

By the Künneth formula we have

H q.Zn
IQ/�

M
P

aiDq

H a1.ZIQ/˝ � � �˝H an.ZIQ/:

Following our previous notation we take the n–tuple b D .1; : : : ; 1; 0; : : : ; 0/ with
j supp.b/j D q and ˛ WD xb. Since H q.ZIQ/DQ for q D 0; 1 and zero otherwise, we
have that

H q.Zn
IQ/D

M
xaD˛

H a.Zn/D IndSn

Stab.b/H b.Zn/:

Notice that Stab.b/D Sq �Sn�q . The corresponding .Sq �Sn�q/–representation is

H b.Zn/DH 1.ZIQ/˝ � � �˝H 1.ZIQ/˝ � � �˝H 0.ZIQ/� V˛ � Q

where
V˛ WDH 1.ZIQ/˝ � � �˝H 1.ZIQ/�H b.Zn/

is regarded as an Sq –representation. Then, as an induced representation,

H q.Zn
IQ/D IndSn

Sq�Sn�q
V˛ � Q:

Moreover, if Qn denotes the permutation Sn –representation, then

IndSn

Sq�Sn�q
V˛ � QD

^q
.Qn/D

^q�
V .0/n˚V .1/n

�
D

�^q
V .1/n

�
˚

�^q�1
V .1/n

�
D V .1; : : : ; 1„ ƒ‚ …

q

/n˚V .1; : : : ; 1„ ƒ‚ …
q�1

/n

Hence, we see explicitly how uniform multiplicity stability holds for this particular
case.
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7 Classifying spaces for diffeomorphism groups

In this last section we see how the same ideas also imply representation stability for
the cohomology of classifying spaces for diffeomorphism groups.

Let M be a connected and compact smooth manifold of dimension d � 3. We
denote by E.M;R1/ the space of smooth embeddings M ! R1 . It is a con-
tractible space and Diff.M rel @M / acts freely by pre-composition. The quotient space
E.M;R1/=Diff.M rel @M / is a classifying space B Diff.M rel @M // for the group
Diff.M rel @M //. Similarly we can consider the action of the subgroup PDiffn.M /

of Diff.M rel @M / (defined in the Introduction) on E.M;R1/. The quotient space is
a classifying space B PDiffn.M / for PDiffn.M / and we have a fiber bundle

(9) B PDiffn.M /! B Diff.M rel @M /

where the fiber is given by Diff.M rel @M /=PDiffn.M /� Cn.M /, the configuration
space of n ordered points in M .

On the other hand we can consider the forgetful homomorphism PDiffnC1.M /!

PDiffn.M /, which induces a corresponding map between classifying spaces

fnW B PDiffnC1.M /! B PDiffn.M /:

There is a Leray–Serre spectral sequence associated to the fiber bundle (9) that converges
to the cohomology H�.B PDiffn.M /IQ/ with E2 –page given by

(10) E
p;q
2
.n/DH p.B Diff.M rel @M /IH q.Cn.M /IQ//:

Here, we regard (10) as the p th cohomology group of B Diff.M rel @M / with local
coefficients in the G–module H q.Cn.M /IQ/, where G D �1.B Diff.M rel @M //

(see Hatcher [16, Section 3.H]). Notice that the actions of Sn and G on H q.Cn.M /IQ/
commute. Therefore fH q.Cn.M /IQ/g1

nD1
is a consistent sequence compatible with

G–actions. Moreover, by Theorem 1.8, it is monotone and uniformly representation
stable, with stable range n � 2q . Monotonicity and uniform representation stability
for the terms in the E2 –page will be a consequence of the following result, which is
essentially Theorem 1.7 from before.

Theorem 7.1 (Representation stability with changing coefficients 2) Let G be the
fundamental group of a connected CW complex X with finitely many cells in each
dimension. Consider a consistent sequence fVn; �ng

1
nD1

of finite dimensional rational
representations of Sn compatible with G–actions. If the sequence fVn; �ng

1
nD1

is
monotone and uniformly representation stable with stable range n�N , then for any
non-negative integer p , the sequence of cohomology groups with local coefficients
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fH p.X IVn/; �
�
n g
1
nD1

is monotone and uniformly representation stable with the same
stable range.

Proof Since G D �1.X /, the universal cover zX of X has a G –equivariant cellular
chain complex. Given that X has finitely many cells in each dimension, for each p

the group Cp. zX / is a free G–module of finite rank, where a preferred G–basis can
be provided by selecting a p–cell in zX over each p–cell in X . Hence, the proof
of Theorem 7.1 is the same as the one for Theorem 1.7, by replacing the notions of
cohomology of groups by cohomology of a space with local coefficients.

Hence when B Diff.M rel @M / has the homotopy type of a CW-complex with finitely
many cells in each dimension, we can apply the inductive argument from Section 5.2
on the successive pages of the Leray–Serre spectral sequence from above and obtain
the following result.

Lemma 7.2 For every i � 0 and every n � 2, the consistent sequence of rational
Sn –representations˚

E
i�q;q
2

.n/DH i�q
�
B Diff.M rel @M /IH q.Cn.M /IQ/

�	1
nD1

is monotone and uniformly representation stable with stable range n� 2q . Furthermore
E

i�q;q
1 .n/DE

i�q;q
iC2

.n/, which is monotone and uniformly representation stable with
stable range

n� 2qC 2.i C 1/.i/:

As a consequence we get Theorem 1.6 for the cohomology of the classifying space of
a group of diffeomorphisms.

Since the manifold M is orientable, we can replace Diff.M rel @M / by the group of
orientation-preserving diffeomorphims DiffC.M rel @M / in the above argument. In
particular, Hatcher and McCullough proved in [17] that if M is an irreducible, compact
connected orientable 3–manifold with nonempty boundary, then B DiffC.M rel @M / is
a finite K.�; 1/–space for the mapping class group Mod.M /. Therefore, Theorem 1.6
is true for this type of manifold. Moreover, if M satisfies conditions (i)–(iv) in [17,
Section 3], then �1.M / is centerless and we can apply Theorem 1.4 to get uniform
representation stability for the cohomology of PModn.M /.
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