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The Fox property for codimension one embeddings of
products of three spheres into spheres

LAÉRCIO APARECIDO LUCAS

OSAMU SAEKI

Fox has shown that for every closed connected surface smoothly embedded in S3 ,
the closure of each component of its complement is diffeomorphic to the closure of
the complement of a handlebody embedded in S3 . In this paper, we study a similar
“Fox property” for smooth embeddings of Sp �Sq �S r in SpCqCrC1 .

57R40; 57Q45

1 Introduction

For positive integers p , q and r , let †p;q � SpCqC1 be the boundary of a tubular
neighborhood of Sp standardly embedded in SpCqC1 . Note that †p;q Š Sp �Sq .
Consider SpCqC1 to be standardly embedded in SpCqCrC1 . Let N

p;q;r
C .Š Sp �

Sq �DrC1/ be a tubular neighborhood of †p;q in SpCqCrC1 , and N p;q;r
� be the

closure of SpCqCrC1 XN
p;q;r
C . The main result of this paper is the following.

Theorem 1.1 If 1 � q � r , 3 � q C r , and either r ¤ q C 1 or r D q C 1 is
even, then for each smooth embedding f W S1 � Sq � Sr ! SqCrC2 , there exist a
pair of smooth embeddings fCW N

p0;q0;r 0

C ! SqCrC2 and f�W N p0;q0;r 0

� ! SqCrC2

for some permutation .p0; q0; r 0/ of .1; q; r/ such that the closures of the connected
components of SqCrC2 X Imf are diffeomorphic to the closures of SqCrC2 X ImfC
and SqCrC2 X Imf� .

Theorem 1.1 can be considered as an analogue of the following classical result of Fox.
Let F be a closed connected orientable surface. The image of a standard embedding
F ! S3 splits S3 into two handlebodies. Fox [3] has shown that for every smooth
embedding f W F ! S3 , the closure of each of the two components of S3 Xf .F / is
diffeomorphic to the closure of the complement of a handlebody embedded in S3 .

Katanaga and the second author [5] have formulated a “Fox property” for dimension four
and we now extend this to higher dimensions. Using the notation that we shall use in
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Section 1, let M be a smooth closed connected .n�1/–dimensional manifold for which
a set of “standard embeddings” f� W M !Sn , � 2S , is given. Furthermore, denote by
N �
C and N �

� the closures of the two components of SnXf� .M /. (It is often the case
that N �

˙
are regular neighborhoods of some lower-dimensional polyhedra embedded in

Sn with their boundaries smoothed.) Then a smooth embedding f W M ! Sn is said
to have the Fox property if, for some � 2 S , there exist a pair of smooth embeddings
fCW N

�
C! Sn and f�W N �

� ! Sn such that the closures of the two components of
Sn X f .M / are diffeomorphic to the closures of Sn X ImfC and Sn X Imf� . We
can define the same concept in the TOP and the PL categories as well, where we
always impose the condition that the embeddings should be locally flat. Note that in
the literature, some examples of manifolds whose codimension one embeddings always
have the Fox property are known. Embeddings of spheres Sn�1 in Sn have the Fox
property according to the generalized Schönflies theorem (Alexander [1], Brown [2]
and Smale [14]), where in the case nD 4 we work in the TOP category because of
the still-unsolved smooth and PL Schönflies problems. Embeddings of products of
two spheres Sp �Sq in SpCqC1 (Alexander [1], Goldstein [4], Kosiński [8], Neto
and the authors [9], Rubinstein [13] and Wall [17]), embeddings of the quaternion
space in S4 (Katanaga and the second author [5]) and also of the 3–dimensional torus
S1�S1�S1 in S4 (the authors [12]) all have the Fox property, where again we need
to work in the TOP category for nD 4 because of the unsolved Schönflies problems.

In view of Theorem 1.1, we can say that every smooth embedding of S1 �Sq �Sr

into SqCrC2 , 1 � q � r , 3 � q C r , has the Fox property, provided r ¤ q C 1 or
r D qC 1 is even.

We can also define a stronger property as follows. The Alexander torus theorem [1]
states that every smoothly embedded torus in S3 bounds a solid torus. Generalizing
this result, we say that a smooth embedding f W M ! Sn has the Alexander property
if the closure of one of the two components of SnXf .M / is diffeomorphic to N �

C or
N �
� for some � 2 S . Embeddings of spheres and products of two spheres all in fact

have the Alexander property (with the usual proviso about dimension 4).

Note that the Alexander property implies the Fox property. This can be seen as follows.
Suppose that the closure C of a component of Sn X f .M / is diffeomorphic to N �

C .
Then, let f�W N �

� ! Sn be the standard embedding, while we set fCW N �
C! Sn to

be the composition of a diffeomorphism N �
C Š C and the inclusion C ,! Sn . Then,

we see that the closures of the components of Sn X f .M / are diffeomorphic to the
closures of Sn X ImfC and Sn X Imf� .
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In the case of Sp�Sq�Sr , an embedding Sp�Sq�Sr !SpCqCrC1 is standard1

if its image coincides with the boundary of a tubular neighborhood of a product of two
spheres standardly embedded in SpCqCrC1 , or more precisely, if its image is isotopic
to @N p0;q0;r 0

C D @N p0;q0;r 0

� .Š Sp0 �Sq0 �Sr 0/ for some permutation .p0; q0; r 0/ of
.p; q; r/. In [11], the authors have shown that if 2�p� q � r and either pCq¤ r or
pCqD r is even, then every smooth embedding f W Sp�Sq�Sr ! SpCqCrC1 has
the Alexander property. Furthermore, for 1� p � q � r with r D pC q odd, we have
constructed infinitely many smooth embeddings fnW S

p � Sq � Sr ! SpCqCrC1 ,
n 2 ZX f0g, which do not have the Alexander property. In this paper we will show
that in fact, they do not have the Fox property, provided n¤ 0;�1 (see Theorem 3.2
in Section 3). This means that the embeddings fn , n¤ 0;�1, constructed in [11] are
highly knotted. This answers the question posed at the end of [12]. This also shows
that Theorem 1.1 does not hold if r D qC 1 is odd.

We warn the reader that in the literature, the terminology “Fox’s property” has been
used in different contexts (for example Kinoshita [7] and Suzuki [15]). In this paper,
we always use the terminology “Fox property” in the sense defined above.

The paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3,
we recall the construction of the embeddings fn mentioned above which do not have
the Alexander property, and state Theorem 3.2. In Section 4, we prepare a lemma
concerning diffeomorphisms of Sp �Sq �SpCq , which we will use in Section 5 to
show that in fact the embeddings fn do not have the Fox property. In Section 6, we
summarize the results obtained so far and pose some questions. Note that Theorems 1.1
and 3.2 are almost independent of each other, so that if the reader is interested only in
Theorem 3.2, Section 2 may safely be skipped.

Throughout the paper all homology and cohomology groups are with coefficients in Z.
The symbol “ Œ��” denotes the homology class represented by �. For a space X , “idX ”
denotes the identity map of X . The exterior of an embedding (or of its image) is the
closure of the complement to the regular (or tubular) neighborhood of the image of the
embedding.

2 Proof of Theorem 1.1

Let f W S1 �Sq �Sr ! SqCrC2 be an embedding. Let C1 and C2 be the closures
of the two components of SqCrC2 X Imf . Our strategy for the proof of Theorem 1.1
is to show that f has the Alexander property, or to proceed as follows.

1Unfortunately, the explanation given by the authors in [11, Definition 8.1] needs to be corrected.
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(1) Construct closed manifolds Xj DCj [N
p0;q0;r 0

˙
; j D 1; 2, for some permutation

.p0; q0; r 0/ of .1; q; r/.

(2) Show that Xj are homotopy spheres.

(3) Then, show that Xj may be assumed to be diffeomorphic to the standard sphere
SqCrC2 .

We can then conclude that Cj are as required. Note that the above Step (2) is nontrivial,
although the proof only uses standard homology calculations and the van Kampen
theorem.

Proof of Theorem 1.1 In the following, f W S1�Sq �Sr ! SqCrC2 is an arbitrary
smooth embedding with 1� q� r , .q; r/¤ .1; 1/, and either r ¤ qC1 or r D qC1 is
even. We denote by C1 and C2 the closures of the two components of SqCrC2XImf .
We identify @C1 D @C2 with S1 � Sq � Sr by f , and ij W S

1 � Sq � Sr ! Cj ,
j D 1; 2, denote the inclusion maps.

We divide the proof into 5 cases according to the values of q and r , and we subdivide
these into a total of 10 subcases according to the homologies of C1 and C2 . In Case
(1-1), f has the Alexander property. In Cases (1-2), (2-1), (4-1), (5-1) and (5-2), we
will use standard diffeomorphisms for attaching Ci and N˙ . In Cases (2-2), (3-1),
(3-2) and (4-2), we need to choose particular diffeomorphisms for the attachment. The
key cases are, therefore, (1-1), (1-2) and (2-2), in which the reader can find the main
ideas of proof.

Case 1 1< q < r and r ¤ qC 1

By Alexander duality, we can show that either C1 or C2 has the same homology as
S1 �Sq , S1 �Sr or Sq �Sr (for details, see the argument in [11, Section 2]). In
the following, we assume that C1 has such a homology.

(1-1) If H�.C1/ŠH�.S
q�Sr /, then by [12, Proposition 1.2 (i)], C1 is diffeomorphic

to D2 � Sq � Sr . Consequently f has the Alexander property and hence the Fox
property.

(1-2) Suppose H�.C1/ Š H�.S
1 � Sq/ or H�.S

1 � Sr /. In the following, we
assume H�.C1/ŠH�.S

1�Sq/ (the other case can be treated similarly). By the same
argument as in [11, Section 2], we see that the natural inclusion

i 01W S
1
�Sq

� f�g! S1
�Sq

�Sr
D @C1

i1
�! C1
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induces a homology equivalence.

Let �1W @C2 D S1�Sq �Sr ! @.S1�Sq �DrC1/ be the diffeomorphism obtained
by the natural identification. Let us first show that X1 D .S

1 �Sq �DrC1/[�1
C2 ,

obtained by gluing S1�Sq�DrC1 and C2 by �1 along the boundaries, is a homotopy
.qC r C 2/–sphere.

By an argument using the van Kampen theorem similar to that in the proof of [12, The-
orem 1.3], we can show that X1 is simply connected. (The Hurewicz homomorphism
�1.C1/!H1.C1/Š�1.S

1�Sq�DrC1/ and the identity �1.C2/!�1.C2/ induce
an epimorphism �1.S

qCrC2/! �1.X1/.)

Let us consider the following commutative diagram

H�.S
1 �Sq �Sr /

.i1�;�i2�/
�������! H�.C1/˚H�.C2/

id

??y ??y�˚id

H�.S
1 �Sq �Sr /

.j1�;�i2�/
�������! H�.S

1 �Sq �DrC1/˚H�.C2/;

where j1W S
1 � Sq � Sr ! S1 � Sq �DrC1 is the inclusion map, �W H�.C1/!

H�.S
1 �Sq �DrC1/ is the isomorphism obtained by the composition

H�.C1/
.i0

1�
/�1

�����!H�.S
1
�Sq

� f�g/
.�1jS1�Sq�f�g

/�1
�

�����������!H�.S
1
�Sq

� f�g/
j 0

1�
�����!H�.S

1
�Sq

�DrC1/;

and j 0
1
W S1�Sq �f�g! S1�Sq �DrC1 is the inclusion map. Then, by comparing

the Mayer–Vietoris exact sequences for .C1;C2/ and .S1 �Sq �DrC1;C2/, we see
that X1 has the same homology as SqCrC2 . Therefore, X1 is a homotopy .qCrC2/–
sphere.

By taking connected sum with the inverse of X1 (in the group of homotopy spheres)
if necessary, we can arrange that X1 is diffeomorphic to the standard .qC r C 2/–
sphere, since q C r C 2 � 5 (for details, see Kervaire and Milnor [6]). Therefore,
C2 is diffeomorphic to the exterior of a smooth embedding of S1 �Sq �DrC1 into
SqCrC2 .

Now, let N� be the exterior of the standard embedding of S1�Sq�DrC1 into SqCrC2

(see also Section 3). For the natural identification map �2W @N�DS1�Sq�Sr!@C1 ,
let us show that X2 D C1[�2

N� is a homotopy .qC r C 2/–sphere.

First, note that by Alexander duality we have

H�.C2/ŠH�.N�/ŠH�.S
rC1
_SqCr

_Sr /:
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Let j2W S
1�Sq�Sr !N� be the inclusion map. Note that 1; q; qC1; r; rC1; qCr

are all distinct.

Let us consider the Mayer–Vietoris exact sequences for the pairs .C1;C2/ and .S1 �

Sq �DrC1;N�/, respectively

HkC1.S
qCrC2/!Hk.S

1
�Sq

�Sr /!Hk.C1/˚Hk.C2/!Hk.S
qCrC2/;

HkC1.S
qCrC2/!Hk.S

1
�Sq

�Sr /

!Hk.S
1
�Sq

�DrC1/˚Hk.N�/!Hk.S
qCrC2/:

We see that i2�W Hk.S
1�Sq�Sr /!Hk.C2/ and j2�W Hk.S

1�Sq�Sr /!Hk.N�/

are isomorphisms for k D r; r C1; qC r . Therefore, we can construct an isomorphism
� W H�.C2/!H�.N�/ such that the diagram

H�.S
1 �Sq �Sr /

.i1�;�i2�/
�������! H�.C1/˚H�.C2/

id

??y ??yid˚�

H�.S
1 �Sq �Sr /

.i1�;�j2�/
�������! H�.C1/˚H�.N�/

is commutative. Hence, X2 has the same homology as the .q C r C 2/–sphere.
Furthermore, we can show that X2 is simply connected as before. Hence, X2 is a
homotopy .qC r C 2/–sphere. Then, by modifying �2 appropriately, we can arrange
so that X2 is diffeomorphic to the standard .q C r C 2/–sphere. Therefore, C1 is
diffeomorphic to the exterior of a smooth embedding of N� into SqCrC2 .

Consequently, f has the Fox property when 1< q < r and r ¤ qC 1.

Case 2 1D q < r ¤ 2

By the same argument as in [11, Section 4], we have only to consider the two cases

(2-1) H�.C1/ŠH�.S
1 �S1/,

(2-2) H�.C1/ŠH�.S
1 �Sr /.

(2-1) Suppose H�.C1/ŠH�.S
1 �S1/. By the same argument as in [11, Section 4],

we see that the natural inclusion S1�S1�f�g!C1 induces a homology equivalence.
Then, by the same argument as in Case 1, we can show that X1D .S

1�S1�DrC1/[�1

C2 is diffeomorphic to the standard .rC3/–sphere for some attaching diffeomorphism
�1 .

Let us consider X2DC1[�2
N� , where �2W @N�DS1�S1�Sr! @C1 is the natural

identification map, and N� ('SrC1_SrC1_Sr , see Section 3) is the exterior of the
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standard embedding of S1�S1�DrC1 into SrC3 . Let us consider the Mayer–Vietoris
exact sequence for the pair .C1;C2/

HkC1.S
rC3/!Hk.S

1
�S1

�Sr /!Hk.C1/˚Hk.C2/!Hk.S
rC3/:

Since the inclusion S1�S1�f�g! C1 induces a homology equivalence, we see that
i2�W Hk.S

1�S1�Sr /!Hk.C2/ is an isomorphism for k D r; r C1. Therefore, by
the same argument as in Case (1-2), we can show that X2 is a homotopy .rC3/–sphere.

Hence f has the Fox property.

(2-2) Suppose H�.C1/ŠH�.S
1 �Sr /. Let us consider the exact sequence

0! Ker i1�!H1.@C1/
i1�

�����!H1.C1/!H1.C1; @C1/:

Since H1.@C1/ Š Z˚Z, H1.C1/ Š Z and H1.C1; @C1/ Š H rC2.C1/ D 0, there
exists a base f
1; 
2g of H1.@C1/ŠZ˚Z such that i1�
2D0 and i1�
1 is a generator
of H1.C1/Š Z.

Let
�W S1

�S1
D S1

�S1
� f�g! S1

�S1
�Sr

D @C1

be the natural inclusion. There exist 
 0
1
; 
 0

2
2H1.S

1�S1/ such that ��
 0i D
i , iD1; 2.
Then there exists a diffeomorphism b� W S1�S1!S1�S1 such that b� �ŒS1�f�g�D
 0

1

and b� �Œf�g�S1�D 
 0
2

. Set � D b� � idSr W .S1�S1/�Sr ! .S1�S1/�Sr . Then
by an argument similar to that in [11], we see that

i1 ı � jS1�f�g�Sr W S1
� f�g�Sr

! @C1! C1

induces a homology equivalence.

By the universal coefficient theorem, we can show that it also induces an isomorphism
of cohomology rings as well. Let �1 2 H 1.C1/ Š Z and �r 2 H r .C1/ Š Z be
generators. Then �1 ^�r is a generator of H rC1.C1/ and we have

hi�1 �1; ��ŒS
1
� f�g� f�g�i D ˙1; hi�1 �1; ��Œf�g�S1

� f�g�i D 0:

Hence i�
1
�1 coincides with the Poincaré dual of ��Œf�g�S1 �Sr � 2HrC1.@C1/ up

to sign. Furthermore, we see that i�
1
�r coincides with the Poincaré dual of ��ŒS1 �

S1 � f�g� 2 H2.@C1/. Therefore, the Poincaré dual of i�
1
.�1 ^ �r / coincides with

��Œf�g�S1 � f�g� 2H1.@C1/. This implies that

h�1 ^�r ; i1���Œf�g�S1
�Sr �i D 0;

and hence i1���Œf�g�S1 �Sr �D 0 in HrC1.C1/.
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Let us consider the Mayer–Vietoris exact sequence for the pair .C1;C2/

HkC1.S
rC3/!Hk.S

1
�S1

�Sr /!Hk.C1/˚Hk.C2/!Hk.S
rC3/:

Since i1�
2 D 0 and i1�
1 is a generator of H1.C1/Š Z, i2�
2 must be a generator
of H1.C2/ Š Z. We also see that i2���Œf�g � S1 � Sr � must be a generator of
HrC1.C2/Š Z. Furthermore, i2�W H2.S

1 �S1 �Sr /!H2.C2/ is an isomorphism.

Let �1W @C2 D S1 � S1 � Sr ! S1 � S1 � Sr be the diffeomorphism defined by
�1 D �

�1 and set X1 D .S
1 �D2 �Sr /[�1

C2 . Then, by using the Mayer–Vietoris
exact sequence

HkC1.X1/!Hk.S
1
�S1

�Sr /!Hk.S
1
�D2

�Sr /˚Hk.C2/!Hk.X1/;

we can show that X1 is a homotopy .r C 3/–sphere.

Let us consider X2 D C1 [�2
N� , where N� (' S1 _ S2 _ SrC1 ) is the exterior

of the standard embedding of S1 �D2 �Sr into SrC3 , and �2W @N�! @C1 is the
diffeomorphism defined by �2 D � . Then, by the Mayer–Vietoris exact sequence

HkC1.X2/!Hk.S
1
�S1

�Sr /!Hk.C1/˚Hk.N�/!Hk.X2/;

we see that X2 is also a homotopy .r C 3/–sphere.

Therefore, f has the Fox property.

Case 3 1< q D r

By the same argument as in [11, Section 4], we have only to consider the two cases:
H�.C1/Š H�.S

q �Sq/ or H�.C1/Š H�.S
1 �Sq/. In the former case, the same

argument as in (1-1) works. In the following, we suppose H�.C1/ŠH�.S
1 �Sq/.

By the Mayer–Vietoris exact sequence

HqC1.S
2qC2/!Hq.S

1
�Sq

�Sq/!Hq.C1/˚Hq.C2/!Hq.S
2qC2/;

we see that there exists a base f
1; 
2g of Hq.S
1 �Sq �Sq/Š Z˚Z such that

i1�
2 D 0; i1�
1 is a generator of Hq.C1/Š Z;

i2�
1 D 0; i2�
2 is a generator of Hq.C2/Š Z:

Let �W Sq � Sq D f�g � Sq � Sq ! S1 � Sq � Sq be the natural inclusion. Since
��W Hq.S

q�Sq/!Hq.S
1�Sq�Sq/ is an isomorphism, we have 
 0

1
; 
 0

2
2Hq.S

q�

Sq/ such that ��
 0i D 
i , i D 1; 2.
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There exists a matrix
�

a c

b d

�
2 GL.2;Z/


 01 DaŒSq
� f�g�C bŒf�g�Sq �;such that


 02 DcŒSq
� f�g�C d Œf�g�Sq �:

(3-1) Let us first consider the case where q � 3 is odd. Set

G1 D

��
a11 a12

a21 a22

�
2 GL.2;Z/

ˇ̌̌̌
a11 � a22 6� a12 � a21 .mod 2/

�
:

Then, we see that at least one of the following matrices lies in G1 :�
a c

b d

�
;

�
aC c c

bC d d

�
;

�
a aC c

b bC d

�
:

Then by Wall [16] (see also Golstein [4] and the authors [10]), there exists a diffeomor-
phism b� W Sq�Sq!Sq�Sq which realizes one of the above matrices as the induced
automorphism of Hq.S

q�Sq/ŠZ˚Z with respect to the base fŒSq�f�g�; Œf�g�Sq �g.
For the diffeomorphism � D idS1 �b� W S1 � .Sq �Sq/! S1 � .Sq �Sq/, we have
one of the following.

(a) ��Œf�g�Sq � f�g�D 
1 and ��Œf�g� f�g�Sq �D 
2 ,

(b) ��Œf�g�Sq � f�g�D 
1C 
2 and ��Œf�g� f�g�Sq �D 
2 ,

(c) ��Œf�g�Sq � f�g�D 
1 and ��Œf�g� f�g�Sq �D 
1C 
2 .

Set X1 D .S
1
�Sq

�DqC1/[�1
C2;

where �1 D �
�1W @C2 ! @.S1 � Sq �DqC1/. Let us consider the Mayer–Vietoris

exact sequence

HqC1.X1/!Hq.S
1
�Sq

�Sq/
.j1�;�i2���/
�����������!Hq.S

1
�Sq

�DqC1/˚Hq.C2/!Hq.X1/;

where j1W S
1 � Sq � Sq ! S1 � Sq �DqC1 is the natural inclusion. In cases (a)

and (b), we have that j1�Œf�g � f�g � Sq � D 0, j1�Œf�g � Sq � f�g� is a generator
of Hq.S

1 � Sq � DqC1/, and �i2���Œf�g � f�g � Sq � is a generator of Hq.C2/.
Hence, the map .j1�;�i2���/ is an isomorphism. In cases (a) and (c), we have that
j1�Œf�g�Sq�f�g� is a generator of Hq.S

1�Sq�DqC1/, �i2���Œf�g�Sq�f�g�D0,
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and �i2���Œf�g � f�g � Sq � is a generator of Hq.C2/. Therefore, again the map
.j1�;�i2���/ is an isomorphism.

Let us now study the Mayer–Vietoris exact sequence

(2.1) HqC2.X1/!HqC1.S
1
�Sq

�Sq/
.j1�;�i2���/
�����������!HqC1.S

1
�Sq

�DqC1/˚HqC1.C2/!HqC1.X1/:

For this purpose, set

e
 1 D aŒS1
�Sq

� f�g�C bŒS1
� f�g�Sq �;e
 2 D cŒS1

�Sq
� f�g�C d ŒS1

� f�g�Sq �;

which constitute a base of HqC1.S
1�Sq�Sq/. Let us show that i1�e
 1 is a generator

of HqC1.C1/ and i1�e
 2 D 0 in HqC1.C1/.

Since q is odd, we have the intersection numbers


 01 � 

0
1 D 


0
2 � 


0
2 D 0; 
 01 � 


0
2 D�


0
2 � 


0
1 D˙1:

On the other hand, since i1�
2D 0 in Hq.C1/, there exists a .qC1/–chain �2 in C1

such that Œ@�2�D 
2 . Then, for the intersection numbers in C1 , we have

�2 � i1�e
 1 D˙1; �2 � i1�e
 2 D 0:

Therefore, we see that i1�e
 1 is a generator of HqC1.C1/ and i1�e
 2 D 0.

By a similar argument, we can show that i2�e
 2 is a generator of HqC1.C2/ and
i2�e
 1 D 0.

Then in the exact sequence (2.1), we can show that

.j1�;�i2���/W HqC1.S
1
�Sq

�Sq/!HqC1.S
1
�Sq

�DqC1/˚HqC1.C2/

is an isomorphism for the cases (a)–(c). Hence, X1 is a homotopy .2qC 2/–sphere.

Set X2DC1[�2
N� , where �2D� W @N�!@C1 and N� is the exterior of the standard

embedding of S1�Sq �DqC1 into S2qC2 . Let us consider the Mayer–Vietoris exact
sequence

HkC1.X2/!Hk.S
1
�Sq

�Sq/
.i1���;�j2�/
�����������!Hk.C1/˚Hk.N�/!Hk.X2/;

where j2W S
1 � Sq � Sq ! N� is the natural inclusion. Then, by using the same

argument as for X1 , we can show that X2 is also a homotopy .2qC 2/–sphere.

Therefore, f has the Fox property.
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(3-2) Let us now consider the case where q � 2 is even. Let �q denote a generator of
H q.C1/ŠZ. Furthermore, let f
 �

1
; 
 �

2
g be the base of H q.@C1/ŠHom.Hq.@C1/;Z/

dual to the base f
1; 
2g of Hq.@C1/. Then, we have

i�1 �q D u
 �1 C v

�
2

for some integers u and v . Since

v D hi�1 �q; 
2i D h�q; i1�
2i D 0

holds, we have i�
1
�q D u
 �

1
.

Let us consider the cohomology exact sequence for the pair .C1; @C1/

H q.C1; @C1/!H q.C1/
i�
1

�����!H q.@C1/!H qC1.C1; @C1/:

Note that we have

H q.C1; @C1/ŠHqC2.C1/D 0 and H qC1.C1; @C1/ŠHqC1.C1/Š Z:

Therefore, i�
1

maps H q.C1/ injectively to a nontrivial direct summand of H q.@C1/.
Therefore, we must have i�

1
�q D˙


�
1

.

Let f.
 0
1
/�; .
 0

2
/�g be the base of H q.Sq �Sq/ŠHom.Hq.S

q �Sq/;Z/ dual to the
base f
 0

1
; 
 0

2
g of Hq.S

q �Sq/. Then, we have

.
 01/
�^ .
 01/

�
D .��
 �1 / ^ .��
 �1 /

D ��.
 �1 ^
 �1 /

D ��i�1 .�q ^�q/ D 0;

since �q ^�q 2H 2q.C1/D 0.

By Poincaré duality, the cup product on H q.Sq �Sq/ defines a symmetric bilinear
form which is unimodular and of even type. Therefore we have

h.
 01/
�^ .
 02/

�; ŒSq
�Sq �i D ˙1.D "/; h.
 02/

�^ .
 02/
�; ŒSq

�Sq �i D 2m

for some integer m. Set

�2 D .

0
2/
�
� "m.
 01/

�
2H q.Sq

�Sq/:

Then we have
�2 ^ �2 D 0; h.
 01/

�^ �2; ŒS
q
�Sq �i D ":

Set 
 001 D 

0
1C "m


0
2; 


00
2 D 


0
2;
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which constitute a base of Hq.S
q �Sq/. Then we see that the base f.
 00

1
/�; .
 00

2
/�g of

H q.Sq �Sq/Š Hom.Hq.S
q �Sq/;Z/ dual to the base f
 00

1
; 
 00

2
g of Hq.S

q �Sq/

coincides with f.
 0
1
/�; �2g. Therefore, for the intersection numbers, we have


 001 � 

00
1 D 0; 
 002 � 


00
2 D 0; 
 001 � 


00
2 D˙1:

Thus, there exists a diffeomorphism b� W Sq �Sq! Sq �Sq such that

��Œf�g�Sq
� f�g�D ��


00
1 D 
1C "m
2;

��Œf�g� f�g�Sq �D ��

00
2 D 
2;

where � D idS1 �b� W S1 � .Sq �Sq/! S1 � .Sq �Sq/.

Since i1�
2 D 0, there exists a .qC 1/–chain �2 in C1 such that Œ@�2�D 
2 . As

�2 � .i1���ŒS
1
�Sq

� f�g�/D 
2 � ��ŒS
1
�Sq

� f�g�D˙1;

we see that i1���ŒS
1 �Sq � f�g� generates HqC1.C1/. Furthermore, since

�2 � .i1���ŒS
1
� f�g�Sq �/D 
2 � ��ŒS

1
� f�g�Sq �D 0;

we see that i1���ŒS
1 � f�g � Sq � D 0 in HqC1.C1/. Then, by the Mayer–Vietoris

exact sequence

HqC2.S
2qC2/!HqC1.S

1
�Sq
�Sq/!HqC1.C1/˚HqC1.C2/!HqC1.S

2qC2/;

we see that i2���ŒS
1 � f�g�Sq � generates HqC1.C2/.

Then the same argument as in Case (3-1) (b) shows that f has the Fox property.

Case 4 q D 1 and r D 2

By the same argument as in [11, Section 5], we have only to consider the following
two cases.

(4-1) H�.C1/ŠH�.S
1 �S1/,

(4-2) H�.C1/ŠH�.S
1 �S2/.

(4-1) When H�.C1/ŠH�.S
1 �S1/, the natural inclusion

i 01W S
1
�S1

� f�g! S1
�S1

�S2
D @C1! C1
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induces an isomorphism of homology groups in dimension 1. Then, by considering
the commutative diagram

H 1.C1/˝H 1.C1/
.i0

1
/�˝.i0

1
/�

��������! H 1.S1 �S1 � f�g/˝H 1.S1 �S1 � f�g/

^

??y ??y^
H 2.C1/

.i0
1
/�

����! H 2.S1 �S1 � f�g/;

we see that i 0
1

induces a homology equivalence.

Using the fact that 2D 1C 1 is even, we see that i1�Œf�g� f�g�S2�D 0 in H2.C1/.
Then by the same argument as before, we can show that f has the Fox property.

(4-2) When H�.C1/ŠH�.S
1 �S2/, by an argument similar to that in the proof of

[11, Lemma 5.2], we see that for some diffeomorphism b� W S1 �S1! S1 �S1 , the
composite

S1
�S2

� j
S1�f�g�S2

�����������!S1
�S1

�S2
D @C1! C1 or

S1
�S2

� j
S1�f�g�S2

�����������!S1
�S1

�S2
D @C2! C2

induces a homology equivalence, where �Db��idS2 W .S1�S1/�S2! .S1�S1/�S2 .
We may assume that the upper one induces a homology equivalence. By choosing b�
appropriately, we may assume that ��Œf�g�S1 � f�g�D 0 in H1.C1/. Then, by the
same argument as before, we can show that f has the Fox property.

Case 5 When 1< q , qC 1D r and r is even.

As in [11, Section 6], we have only to consider the two cases as follows.

(5-1) H�.C1/ŠH�.S
1 �Sq/,

(5-2) H�.C1/ŠH�.S
1 �SqC1/ or H�.C1/ŠH�.S

q �SqC1/.

(5-1) When H�.C1/ŠH�.S
1 �Sq/, by the same argument as before, we see that

the natural inclusion

i 01W S
1
�Sq

� f�g! S1
�Sq

�SqC1
D @C1! C1
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induces isomorphisms of (co)homology groups in dimensions 1 and q . By considering
the commutative diagram

H 1.C1/˝H q.C1/
.i0

1
/�˝.i0

1
/�

��������! H 1.S1 �Sq/˝H q.S1 �Sq/

^

??y ??y^
H qC1.C1/

.i0
1
/�

����! H qC1.S1 �Sq/;

we see that i 0
1

induces an isomorphism of (co)homology groups in dimension qC 1 as
well.

Furthermore, since q C 1 is even, by an argument using the intersection form on
HqC1.S

1 � Sq � SqC1/ (for example, see [11, Lemmas 5.1 and 5.2]), we see that
i1�Œf�g� f�g�SqC1�D 0. Then, by the Mayer–Vietoris exact sequence

HqC2.S
2qC3/!HqC1.S

1
�Sq
�SqC1/!HqC1.C1/˚HqC1.C2/!HqC1.S

2qC3/;

we see that i2�Œf�g� f�g�SqC1� is a generator of HqC1.C2/Š Z.

Let us consider X1 D .S
1�Sq �DqC2/[�1

C2 , where �1W @C2! S1�Sq �SqC1

is a natural identification. By the Mayer–Vietoris exact sequence

HkC1.X1/!Hk.S
1
�Sq

�SqC1/!Hk.S
1
�Sq

�DqC2/˚Hk.C2/!Hk.X1/;

we see that X1 is a homotopy .2qC 3/–sphere.

Set X2 D C1 [�2
N� , where N� .' SqC1 _ SqC2 _ S2qC1/ is the exterior of the

standard embedding of S1�Sq�DqC2 into S2qC3 and �2W @N�! @C1 is the natural
identification. Then, by the Mayer–Vietoris exact sequence

HkC1.X2/!Hk.S
1
�Sq

�SqC1/!Hk.C1/˚Hk.N�/!Hk.X2/;

we see that X2 is also a homotopy .2qC 3/–sphere.

Therefore, f has the Fox property.

(5-2) When H�.C1/ŠH�.S
1�SqC1/ or H�.C1/ŠH�.S

q�SqC1/, we can show
that the natural inclusion

i 01W S
1
� f�g�SqC1

! S1
�Sq

�SqC1
D @C1! C1 or

i 02W f�g�Sq
�SqC1

! S1
�Sq

�SqC1
D @C2! C2

induces a homology equivalence, using the fact that qC1 is even. Then, by an argument
as before, we see easily that f has the Fox property.

This completes the proof of Theorem 1.1.
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3 A construction

For 1�p� q� r , let †p;q;r D @N
p;q;r
C D @N p;q;r

� .ŠSp�Sq�Sr / be the product of
three spheres standardly embedded in SpCqCrC1 as constructed in Section 1. Then the
closure of one of the components of SpCqCrC1X†p;q;r coincides with N

p;q;r
C , which

is diffeomorphic to Sp �Sq �DrC1 . The other one N p;q;r
� , which is diffeomorphic

to
...DpC1

�Sr /� Int DpCrC1/�Sq/[ .SpCr
�DqC1/;

is in fact a regular neighborhood of the union of two embedded spheres SpCr and
SqCr in SpCqCrC1 intersecting each other transversely along Sr�1 . In particular,
N p;q;r
� has the homotopy type of the bouquet SpCr _SqCr _Sr .

In [11], we have constructed embeddings fnW S
p�Sq�Sr!SpCqCrC1 , n2ZXf0g,

which do not have the Alexander property for 2� p � q � r with r D pCq odd. It is
not difficult to observe that exactly the same construction works also for p D 1 and
r D qC 1 odd. For completeness, let us recall the construction.

Let us write S2rC1 as the union

(3.1) S2rC1
D .DrC1

�2
�Sr /['� .S

r
�Sr

� I/['C .S
r
�DrC1

2
/;

where I D Œ�1; 1�, DrC1
˙2

are .rC1/–disks, and '�W @.DrC1
�2
�Sr /!Sr�Sr�f�1g

and 'CW @.Sr �DrC1
2

/! Sr �Sr � f1g are the standard identification maps. Since
Sr �I is diffeomorphic to the closure of the complement of two disjoint .rC1/–disks
in SrC1 D .Sp �DqC1/[ .DpC1 �Sq/, we can write Sr �Sr � I as the union of

X�D ..S
p
�DqC1/�Int DrC1

�1
/�Sr and XCD ..D

pC1
�Sq/�Int DrC1

1
/�Sr

attached along Sp �Sq �Sr , which is a boundary component of each, where DrC1
˙1

are interior disks. Note that the embedding Sp �Sq �Sr DX�\XC �X�[XC D

Sr �Sr � I � S2rC1 defined via (3.1) is standard.

Note that Hr .S
r �Sr / is a free abelian group of rank 2 generated by ŒSr � f�g� and

Œf�g�Sr �, where we choose orientations of the representative manifolds once and for
all. By [4, Proposition 2.5] or [10, Theorem 2.2], for each matrix

(3.2) �n D

�
4nC 1 2n

2 1

�
2GL.2;Z/

with n 2ZXf0g, the automorphism of Hr .S
r �Sr /DZ˚Z given by the matrix �n

with respect to the above base is realized by a diffeomorphism  nW S
r�Sr!Sr�Sr ,

since r is odd. By (3.1), we still have

S2rC1
Š .DrC1

�2
�Sr /['�ı n

.Sr
�Sr

� I/['Cı n
.Sr
�DrC1

2
/:
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Put eX � D .DrC1
�2
�Sr /['�ı n

X�; eX C DXC['Cı n
.Sr
�DrC1

2
/;

and consider the embedding fnW S
p�Sq�Sr D eX �\ eX C ,! eX �[ eX CD S2rC1 .

In [11] we have seen H�. eX C/ŠH�.Sq �Sr / and H�. eX �/ŠH�.Sp �Sr / as
additive groups. Furthermore, the image of the cup product

^W H q. eX C/˝H r . eX C/!H qCr . eX C/
is a subgroup of index j2nj, while that for

^W H p. eX �/˝H r . eX �/!H pCr . eX �/
is a subgroup of index j4nC 1j. It is easy to observe that if fn has the Alexander
property, then one of the above indices must be equal to 1 or 1. Therefore, we can
conclude that the embeddings fn do not have the Alexander property. Note also that if
m¤ n, then there exists no diffeomorphism of S2rC1 which takes the image of the
embedding fn to that of fm .

Remark 3.1 For an arbitrary embedding f W Sp�Sq�Sr!SpCqCrC1 , 1�p�q�

r , let us denote by C1 and C2 the closures of the two components of SpCqCrC1XImf .
Then, as has been observed in [11], C1 or C2 has the homology of Sp�Sq , Sp�Sr

or Sq �Sr .

When rDpCq is odd, for the embeddings fn constructed above, the manifolds C1 and
C2 have the homologies of Sp�Sr and Sq�Sr . Recall that by [11, Proposition 7.1]
if H�.C1/ŠH�.S

p �Sq/, p; q � 2, then C1 is diffeomorphic to Sp �Sq �DrC1 :
consequently, such an f has the Alexander property.

In Section 5, we will prove the following.

Theorem 3.2 Suppose 1 � p � q � r , and r D p C q is odd. Then the smooth
embeddings fnW S

p�Sq�Sr!SpCqCrC1 , n¤ 0;�1, do not have the Fox property
in the smooth category.

Remark 3.3 In [12], embeddings of S1 �Sq �Sr into SqCrC2 whose images do
not bound the product of two spheres and a disk have been constructed. However, they
do have the Alexander property, since the closure of one of the two components of
the complement is diffeomorphic to the closure of one of the two components of the
complement of a standard embedding. Thus, in a sense, the embeddings constructed
for p D 1 in [12] are weakly knotted. We do not know if there exist embeddings
S1 �Sq �Sr ! SqCrC2 that do not have the Alexander property for general q and
r . (As has been mentioned above, such embeddings do exist if r D qC 1 is odd.)
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4 Diffeomorphisms of S p �S q �S r for r D pC q

For the proof of Theorem 3.2, we need a lemma concerning diffeomorphisms of
Sp �Sq �Sr with r D pC q and p ¤ q .

Set M D Sp � Sq � Sr with r D p C q . Let us study those automorphisms of
Hr .M /Š Z˚Z which are induced by diffeomorphisms of M . Set

˛1 D ŒS
p
�Sq

� f�g�; ˛2 D Œf�g� f�g�Sr �;

which constitute a base of Hr .M /. To each diffeomorphism 'W M !M we associate
the 2� 2 integer matrix Œ'��D .aij / 2GL.2;Z/ by

'� j̨ D

2X
iD1

aij˛i ; j D 1; 2:

Lemma 4.1 The matrix Œ'�� is of the form�
˙1 0

� ˙1

�
:

Proof Let �p 2H p.M / and �q 2H q.M / be the cohomology classes Poincaré dual
to the homology classes Œf�g�Sq�Sr �2HqCr .M / and ŒSp�f�g�Sr �2HpCr .M /,
respectively. Note that H p.M / and H q.M / are infinite cyclic groups generated by
�p and �q , respectively. Since '�W H�.M /!H�.M / is an automorphism, we have
'��p D˙�p and '��q D˙�q . In particular, we have

'�.�p ^�q/D˙�p ^�q 2H pCq.M /DH r .M /:

Let �1 and �2 2H r .M / be the cohomology classes Poincaré dual to the homology
classes Œf�g�f�g�Sr � and ŒSp�Sq�f�g�2Hr .M /, respectively. Note that we may
assume �p ^ �q D �1 , since .f�g �Sq �Sr /\ .Sp � f�g �Sr /D f�g � f�g �Sr .
Note also that f�1; �2g is the base of H r .M /Š Hom.Hr .M /;Z/ dual to f˛1; ˛2g.

Then the matrix representative of the automorphism '�W H r .M /! H r .M / with
respect to the base f�1; �2g is of the form�

˙1 �

0 ˙1

�
:

Therefore, '�W Hr .M /!Hr .M / has a matrix representative, with respect to the dual
base f˛1; ˛2g, of the form �

˙1 0

� ˙1

�
:

This completes the proof.
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5 Proof of Theorem 3.2

Let C1 and C2 be the closures of the two components of SpCqCrC1Xfn.S
p�Sq�Sr /.

We may assume

H�.C1/ŠH�.S
p
�Sr /; H�.C2/ŠH�.S

q
�Sr /:

Note that in the notation of Section 3 or [11, Section 9], C1 and C2 correspond to eX �
and eX C , respectively.

Our strategy is to show that the closed manifold Ci [N
p0;q0;r 0

˙
obtained by attaching

Ci and N
p0;q0;r 0

˙
along their boundaries, i D 1; 2, can never be diffeomorphic to the

sphere SpCqCrC1 for every permutation .p0; q0; r 0/ of .p; q; r/.

Let us first show that C1 cannot be diffeomorphic to the exterior of N
p0;q0;r 0

C embedded
in SpCqCrC1 . Suppose this was the case. Then, by an argument using the Alexander
duality, we see that the manifold

(5.1) W D C1[' .D
pC1
�Sq

�Sr /;

obtained by attaching DpC1�Sq�Sr to C1 by using a diffeomorphism 'W @.DpC1�

Sq �Sr /! @C1 , should be diffeomorphic to SpCqCrC1 .

Let us consider the Mayer–Vietoris exact sequence associated with the decomposition
(5.1)

(5.2) Hr .S
p
�Sq

�Sr /
ˆD.��;�j�/
��������!Hr .C1/˚Hr .D

pC1
�Sq

�Sr / �!Hr .W /;

where j W Sp �Sq �Sr D @.DpC1 �Sq �Sr /!DpC1 �Sq �Sr is the inclusion
map and � W Sp �Sq �Sr ! C1 is given by the composition

� W Sp
�Sq

�Sr
D @.DpC1

�Sq
�Sr /

'
���!Sp

�Sq
�Sr

D @C1

i1
���!C1

with i1W @C1! C1 being the inclusion map.

By Lemma 4.1, we have '�˛1 D˙˛1C b˛2 for some b 2 Z. Let ˇ 2Hr .C1/Š Z
be a generator. Furthermore, set ˇ0 D Œf�g� f�g�Sr � 2Hr .D

pC1 �Sq �Sr /Š Z,
which is a generator. Then, by the construction of fn , we have i1�˛1 D ˙2ˇ and
i1�˛2 D˙.4nC 1/ˇ (for details, see [11]). Therefore, we have

��˛1 D i1�'�˛1 D i1�.˙˛1C b˛2/D˙2ˇ˙ b.4nC 1/ˇ D .˙2˙ b.4nC 1//ˇ:

On the other hand, by Lemma 4.1, we have '�˛2 D˙˛2 . Hence, we have

��˛2 D i1�'�˛2 D i1�.˙˛2/D˙.4nC 1/ˇ:

Algebraic & Geometric Topology, Volume 11 (2011)



The Fox property for codimension one embeddings 3061

Furthermore, we have j�˛1 D 0, since ˛1 D ŒS
p �Sq � f�g� and Sp �Sq � f�g D

@.DpC1 �Sq � f�g/. We also have j�˛2 D˙ˇ
0 .

Therefore, the matrix representative of ˆD .��;�j�/ in (5.2) with respect to the bases
f˛1; ˛2g and fˇ; ˇ0g is of the form�

˙2˙ b.4nC 1/ ˙.4nC 1/

0 ˙1

�
:

According to the exact sequence (5.2), in order to have Hr .W /D 0, we must have

˙2˙ b.4nC 1/D˙1

for some integer b , which is possible only when n D 0;�1. As we have assumed
n¤ 0;�1, this is impossible. Consequently, the manifold W cannot be diffeomorphic
to SpCqCrC1 .

Let us now show that C1 cannot be diffeomorphic to the exterior of N� DN p0;q0;r 0

�

embedded in SpCqCrC1 . For this, let us consider the manifold

W 0 D C1['0 N�;

obtained by attaching N� to C1 by using a diffeomorphism '0W @N�! @C1 . Note
that by an argument using the Alexander duality, we have only to consider the case
where N� is the exterior of Sp �Sr standardly embedded in SpCqCrC1 :

N�D ...D
pC1
�Sq/� Int DpCqC1/�Sr /[ .SpCq

�DrC1/' SpCq
_SqCr

_Sq

Let us consider the Mayer–Vietoris exact sequence

Hr .S
p
�Sq

�Sr /
ˆ0D.� 0�;�j 0�/
��������!Hr .C1/˚Hr .N�/ �!Hr .W

0/;

where j 0W Sp�Sq�Sr D@N�!N� is the inclusion map and � 0W Sp�Sq�Sr!C1

is given by the composition

� 0W Sp
�Sq

�Sr
D @N�

'0

���!Sp
�Sq

�Sr
D @C1

i1
���!C1:

By an argument similar to the above, we can show that a matrix representative of ˆ0 is
of the form �

˙2˙ b.4nC 1/ ˙.4nC 1/

˙1 0

�
for some integer b . Therefore, we have Hr .W

0/D 0 only if ˙.4nC 1/D˙1, which
is possible only if nD 0. Since we have assumed n¤ 0, this shows that W 0 cannot
be diffeomorphic to SpCqCrC1 .

Consequently, the embedding fn , n ¤ 0;�1, does not have the Fox property. This
completes the proof of Theorem 3.2. �
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Remark 5.1 In [11, Section 9], we have used the matrix �n as in (3.2) for constructing
the embeddings fn . Analyzing the proof, we see that we could as well use the matrix�

4nC 1 8n

2n 4n� 1

�
for the construction. Let the resulting embedding be denoted by gnW S

p �Sq �Sr !

SpCqCrC1 . Then we can show that for gn , n¤ 0;�1, the closures C1 and C2 of the
two components of SpCqCrC1 X Im gn both violate the Fox property. In other words,
we can show that none of C1[.D

pC1�Sq�Sr /, C1[N p;r;q
� , .Sp�DqC1�Sr /[C2

or N q;r;p
� [C2 is diffeomorphic to SpCqCrC1 .

In this paper, we have mainly worked in the smooth category. By using similar
techniques, we can show that Theorems 1.1 and 3.2 are valid in the PL locally flat
category as well. The proofs are almost the same: it suffices to replace diffeomorphisms
by PL homeomorphisms. We also need the solution to the high dimensional PL Poincaré
conjecture proved by Smale (see [14], for example).

6 Summary of results and open problems

Summarizing the results obtained so far, for a smooth embedding f W Sp �Sq �Sr !

SpCqCrC1 with 1� p � q � r , we have the following.

(i) When 2� p , and either pC q ¤ r or pC q D r is even, f has the Alexander
property [11]. In fact, its image always bounds the product of two spheres and a
disk.

(ii) When p D 1, 3� qC r , and either 1C q ¤ r or 1C q D r is even, f has the
Fox property (Theorem 1.1 of the present paper).

(iii) When .p; q; r/ D .1; 1; 1/, f has the Fox property in the TOP locally flat
category [12].

(iv) When p D 1, there exist infinitely many embeddings such that their images
do not bound the product of two spheres and a disk, but that they all have the
Alexander property [12].

(v) When pC q D r is odd, there exist infinitely many smooth embeddings which
do not have the Fox property ([11] and Theorem 3.2 of the present paper).

We end this paper by posing some problems.
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Problem 6.1 .1/ Characterize the exteriors of smooth embeddings f W Sp�Sq�Sr!

SpCqCrC1 , especially when they do not have the Fox property.

.2/ Let SpCqCrC1DNC[N� be the decomposition induced by a standard embedding
of Sp�Sq�Sr into SpCqCrC1 . Given arbitrary two smooth embeddings '˙W N˙!
SpCqCrC1 , does there exist a smooth embedding f W Sp �Sq �Sr ! SpCqCrC1

such that the closures of the two components of SpCqCrC1 X Imf are diffeomorphic
to the exteriors of '˙ ?
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