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Expanders and property A

ANA KHUKHRO
NICK J WRIGHT

We give a cohomological characterisation of expander graphs, and use it to give a
direct proof that expander graphs do not have Yu’s property A.

20F65, 20F69, 51F99, 55N20; 05C80, 43A07, 55B20, 68R10

1 Introduction
Property A, first introduced by Yu [6], is a coarse geometric analogue of amenability.

Definition 1.1 A discrete bounded geometry metric space X has property A if for
each x € X and each n € N, there is an element f,(x) € Prob(X) with

(1) asequence Sy such that supp( f(x)) € Bg, (x), and

(2) forany R > 0, || fa(x1) — fu(x0)|lgr = 0 as n — oo uniformly on the set
{(x0.x1) : d(x0,x1) = R}.

Yu [6] proved that if a metric space has property A then it is uniformly embeddable
into Hilbert space. Indeed, this was the original motivation behind this definition, since
a result of the same paper [6] states that the coarse Baum—Connes conjecture holds
for discrete bounded geometry metric spaces which admit a uniform embedding into
Hilbert space.

There are few known examples of metric spaces which do not have property A. One such
family of examples is provided by expander graphs (cf Lubotzky [3] and Margulis [4]).
Informally, an expander is a sequence of highly connected graphs which have bounded
valency. Expander graphs are used in computer science due to their high connectivity.
They are also of theoretical interest as they provide counterexamples to the coarse
Baum—Connes conjecture; see Higson, Lafforgue and Skandalis [2].

It is well-known that expander graphs do not uniformly embed into Hilbert space
(see for example Roe [5]). It follows that expanders cannot have property A. By
using nonembeddability into Hilbert space, the existing proof of this fact obscures the
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relationship between these two notions. In this paper we give a new, direct proof that
expanders do not have property A, making the connection between the two properties
explicit. Our proof is based on the observation that both the expander condition
and property A can be expressed in terms of a coboundary operator which, roughly
speaking, measures the size of the (co)boundary of a set of vertices. The cohomological
description of property A was given in [1], while the cohomological description of the
expander condition is introduced in this paper.

2 Expanders and cohomology

Let {I';} be a sequence of finite graphs with uniformly bounded valencies. Abusing
notation, we will also denote the vertex set by I'; and the edges by E;. We take
the edges to be directed, with an edge connecting x to y if and only if there is
an edge connecting y to x. The Cheeger constant of the graph I'; is defined by
h(y) = %inf(|8F |/|F|), where F ranges over the nonempty subsets of I'; such that
|F| < %|Fi| and 0F denotes the coboundary! of F, ie the set of edges of I'; with
exactly one end point in F'. The factor of % compensates for the doubling arising from
the use of directed edges.

Definition 2.1 A finite graph T is a (k, &)—expander if each vertex of I" has valency
at most k, and A(I") > ¢.

A sequence of finite graphs {I';} is called an expander sequence if |I';| — oo and there
exists k, e such that each I is a (k, &)—expander.

It is not obvious that such sequences exist. Their existence was first proved by Pinsker,
in a nonconstructive way. Margulis [4] was the first to give explicit examples of
expanders, using discrete groups with property (T).

Let I' be a finite graph and let E denote its set of directed edges. We view C as
the subspace of £!(I") consisting of constant functions, and write f for the class in
¢1(I")/C represented by f € £1(I"). The norm on £!(I")/C is the quotient norm
defined by ||]7||41/C =infeec || f + |- We will write E(IJ(E) for the subspace of
¢1(E) consisting of functions whose sum is zero. The norm on E(l)(E ) is the usual £,
norm. Define a coboundary map

d: '(I')/C —> L3(E)

by df(¢) = f(eT)— f(e™) where e~ is the starting vertex and e is the end vertex
of the directed edge e.

IThis is usually referred to as the boundary of F, however as the map goes from vertices to edges,
homologically it is a coboundary.
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Lemma 2.2 The Cheeger constant h(I') is at least ¢/2 if and only if ||df||¢1 >
el fllgr)c forevery f el (IM/C.

Proof Suppose ||df||;1 > 8||f||e1/(c for every f € £!(T")/C. Then in particular, for
any subset F' C I' such that |F| < 2|I'| we have ||dxFlly1 = 8||)(F||41/(C, where xp
denotes the characteristic function of F. It is clear that ||d X F||1 is equal to |0F], the
coboundary of the set F (recall that we are taking our edges to be directed). Also,
since |F| < %|F|, we have

DTIxrM Hel =) 11+l + D el =Y 1= e+ D lel= > 1.
yel yeF y¢éF yeF yeF y¢F yeF

From this, we can see that the infimum over ¢ € C of Zy er|xF(y) +c| is achieved
when ¢ = 0 and so we have [|XF|¢1,c = |F|. Hence for every F with [F| < 2|1"|
we have |0F| > ¢|F| and so h(I") = /2.

Suppose now that 4(T') is at least £/2. Given f € £'(I')/C, pick an f’ € £(I")
which takes positive values on each element of I" and such that ]7’ = /7 . We can write
Slas Y ajx F; for some nested collection of subsets Fy C F, C--- C Fp of I' and

coefficients a; > 0. Now ||d]7||41 = ||d]7’||¢1 is equal to Y a;|ldXF; g1 since the F;
are nested. Hence

IWM=ZWMEM=ZMML

Let FC denote the complement of F; in I'. Since h(F) >¢/2, when |Fj| < 2|F| we
have |8Fj| > ¢|Fj| = |1 XF; llgr ¢ » while for | Fj| > 2|F| we have

|0F;| = |0Ff | = e| Ff | = el XFe o1y = el 1= xF Ly = I XF o

andso  [|df |1 282 ajllxFilerc=e E aj X F; "
. . C
j j

This completes the proof. O

=e| flle1/c-

The map ¢! (T") — Z(l)(l") taking a function f € £!(I') to g = f — (1/ITDY ger S (B)
has kernel C, and hence induces an isomorphism from ¢!(I")/C to Z(l)(l"). This map
has norm at most 2 since

MMZZVM——ZﬂM<ZVMHZU@FMMW

T
yel Bel’ yel Bel’

while the inverse is given by the inclusion of £} o(I) in £1(I") which has norm 1. Hence
identifying £!(I")/C with £} o([), the norms dlffer by a factor of at most 2.
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We now move on to the definition of the cohomology which detects expander sequences.
Let {T';};enN be a sequence of graphs. We denote by [[7en ¢! (I';) the space of bounded
elements of the direct product. That is, []7ey £1(T';) is the space of functions from
[1; T to C, such that the sup—£!—norm

11 = sup | /1r,
ieN

e

is finite. We define a summation map og: [[fen €' (') — £°(N) by ao(f)(i) =
> _xer, J(x). Similarly [Ten €1 (E;) is the space of functions on | [; E; with finite
sup—{¢! —norm, and we define a map o;: [[fen £} (Ei) — €%°(N) by o1(f)(i) =
ZXGE,’ f(x)

We define Co({Ti}) =ker(og), C'({I'}) = ker(oy).

Note that C?({T;}) consists of functions whose restriction to each I'; lies in E(l)(I‘i),
and C!({I';}) consists of functions whose restriction to each E; is in E(l)(E,-). There-
fore combining the coboundary maps on each component yields a coboundary map
d: CO({T';}) — C'({T;}), and it is easy to see that this is bounded. In the spirit of [1],
our cohomological description of the expander condition is given by completing this
cochain complex.

Definition 2.3 [1, Definition 3.1] The quotient completion of a pre-Fréchet space V/
(a space equipped with a countable family of seminorms |-|;) is the space Vg =
£ (N, V)/co(N, V) of bounded sequences in V' modulo sequences vanishing at
infinity.

For simplicity we suppose that the seminorms are monotonic, that is ||-||; < ||-||; for
i < j. We note the following useful property of this completion.

Lemma 2.4 Let T: V — W be a bounded map from a normed spaced V to a
pre-Fréchet space W. Then T is bounded below if and only if the induced map
TC: Vo — Wy [1, Proposition 3.3] is injective.

Proof One direction is obvious: if 7' is bounded below then T2 is also bounded
below hence injective. For the converse suppose that 7' is not bounded below. This
means that for each seminorm ||-||; > for W and all & > 0 there exists v in V' with
[Tv|;w < ellvlly- Hence we can find a sequence v, € V' with [lv,|y = 1 and
1T vnllpw < % As the sequence vy is bounded, it determines an element v of Vg .
Its image under 7€ is given by the sequence Tv,, and since for n > j we have
1T vnllj i < 1T vnllpw < %, we have Tv, € co(N, W). Hence T9v =0, s0 79 is
not injective. |
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We remark that the lemma is not true in general if V' is a pre-Fréchet space. Whilst
for T not bounded below there still exists a sequence v, not tending to zero such that
Tv, — 0, there may be no bounded sequence with these properties.

We now give our cohomological description of the expander condition. Let Cé (i)
denote the quotient completion of C?({I';}) for p = 0,1. The extension of the
coboundary map d to the completion we again denote by d .

Definition 2.5 The Cheeger cohomology of a sequence of graphs {I';}, denoted
Hj({T;}) is the cohomology of the cochain complex (C Qp (b, d).

We remark that C 5 ({T';}) is the kernel of the induced map O'pQ, since the quotient
completion preserves exactness (cf [1]).

Theorem 2.6 Let {I';};cN be a sequence of finite graphs with bounded valency. Then
{T';} is an expander sequence if and only if H }? ({T';}) vanishes.

Proof Using Lemma 2.2 and the identification of £!(I';)/C with Z(l)(F,-), the graphs
{T';} form an expander sequence if and only if there exists ¢ > 0 such that for each
graph I'; the coboundary map d: E(l)(I‘i) — Z(l)(E,-) is e—bounded below. The in-
dividual coboundary maps are bounded below by a common ¢ if and only if the
map d: C°({T;}) — C'({T;}) is bounded below. By Lemma 2.4 this is equivalent to
injectivity of the coboundary map d: C g {rih—-C é ({T;}) on the completed complex.
Hence the graphs {I';} form an expander sequence if and only if H}? (;H=0. O

3 Symmetrisation of property A

In this section we recall one of the cohomological characterisations of property A
from [1], and prove a symmetrisation result. Throughout this section, let X denote a
metric space. At certain points we will require X to be a discrete, bounded geometry
space, that is, for each R > 0 there exists N such that for all x € X the ball of radius R
about x contains at most N points.

Definition 3.1 An X -module is a triple V = (V, ||| , supp), where V is a Banach
space with norm ||-|| and supp is a function from V to the power set of X such that

(1) supp(v) =@ ifv=0,

(2) supp(v + w) < supp(v) U supp(w) for every v,w eV,

(3) supp(Av) = supp(v) for every v € V and every A # 0,

(4) if vy, is a sequence converging to v then supp(v) C m
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Let £7(X,V) denote the space of functions ¢ from X?*! to V such that for all
R > 0 the function ¢ is bounded on

Af{H = {(x0,...,Xp) € xrtt. d(x;i,xj) < Rforalli,j}
and there exists S > 0 such thatif x=(xg,...,Xxp) € Aiﬂ then supp(¢(x)) € Bg(x;)
for all 7.

The space £ (X, V) is equipped with the family of seminorms

lpll g = supllp(x) [l : x € ARF!Y,

In [1] this is denoted by £7:~1(X, V), being part of a bicomplex, however for simplicity
we drop the —1 from our notation. We note that £%(X, V) is a normed space, since in
dimension zero the norms are independent of R.

Let £ 5 (X, V) denote the quotient completion of £ (X, V). The usual formula

p+1

D¢(X0, ey xp+1) = Z(—l)i¢(XQ, ce ,),(?i, e ,xp+1)
i=0

yields a coboundary map from £7 (X, V) to EPT1(X, V), and the extension of D to
the completion we again denote by D

The controlled cohomology H 5 (X, V) is the cohomology of the completed complex
(55()(, V), D).

Let 19 denote the constant function 1 on X, viewed as a 0—cocycle in 5& (X,0C),
and let 7y: (X N(X))— HY (X, C) be the map on cohomology induced by the
summation map m: (X)) — C. By [1, Theorem 7.2] the space X has property A
if and only if the class [1g] € H 9 (X,C) is in the image of the map m4. Here the
module £!(X) is equipped with the usual support function, while all elements of C
are defined to have empty support.

We now compare £! and £? coefficients. We define maps a: £!(X) — £?(X) and
B: €2(X) — £1(X) by

a () (x) = VInx)| for ne €1(X),  BE)(x) = E(x)| for § € E(X).
Note that (17> = Inllgr and [BE) e = 1§17

Lemma 3.2 Let «, B be defined as above. Then the compositions with o and 8 yield
maps EP(X, L1 (X)) = EP(X,0*(X)) and EP(X,L*(X)) — EP(X, L' (X)) which
extend in the natural way to maps ox, B« on the quotient completions. Moreover these
maps take 0—cocycles to 0—cocycles.
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Proof The identity ||a(77)||§2 = |Inllg1 shows that for ¢, a bounded sequence in
EP(X,LY(X)), the sequence « o ¢, € EP(X,£*(X)) is also bounded. Hence, as
composition with « preserves supports, « o ¢, defines an element in the quotient
completion. We note that the inequalities

[VIn@) = VI @)l = \/}IU(Z)I — @] = VInz) —n'2)]

imply that |j(n) —oz(n’)||§2 < |m—=n"llg:. It follows that if ¢, is another bounded
sequence in EP (X, £'(X)) such that ||¢, — ¢} || g — 0, then || oy —a o) | g — O,
and so the element of £ 5 (X, £%(X)) obtained by composition with ¢ is independent of
the choice of representative of element of £ 5 (X, £1(X)). Thus we have a well-defined
map o: ES(X, (X)) — 85()(, 02(X)).

The estimate ||oc(7) —oz(r]’)||§2 <|m=n'll;1 also yields

| Der(pn) (xo. X1 172 = ller(pn (1) — @(@bu(x0)) 172
< |¢n(x1) — Pn(x0)ler
= [[Dén(x0, x1) g1
for ¢, a bounded sequence in Sg (X,€'(X)). Hence ay takes O—cocycles to 0—
cocycles.

The argument for S« is similar, using the identity [|B(&)| 1 = ||€]] ?2 and the estimate
IBE) = BEMer = 1€ =& lle2 (€]l g2 + 11E"ll¢2) which follows from

1EC)IZ = 18" ()] = 1§ )] = & o[ (1§ Co)l + 18 (x)1)
= [EG) =& 0)](1EG)] + 18 (x)])

by the Cauchy—Schwartz inequality. O

We now prove a symmetrisation result. Note that we will omit norm subscripts where
this does not cause confusion.

For an element ¢ of Sg(X, 21(X)) or 5& (X, €2(X)) we say ¢ is symmetric if it can
be represented by a sequence ¢, such that ¢(x)(z) is real and ¢, (x)(z) = ¢n(z)(x)
for all x,z € X. We say that ¢ is everywhere unital if lim,— o ||¢n(x)| = 1 for all
x € X (note that this limit is independent of the choice of representative sequence).

Theorem 3.3 Let X be a bounded geometry metric space. The following are equiva-
lent:

(1) X has property A.
(2) There is a cocycle ¢ € 5(02 (X, €1(X)) such that 4 (¢) = 1p.
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(3) There is a symmetric cocycle ¢ € 8& (X, 21(X)) such that 4 (¢p) = 1p.

(4) There is a symmetric cocycle ¥ € Sg (X, €%(X)) such that Y is everywhere
unital.

Proof The equivalence of (1) and (2) is [1, Theorem 7.2].

First we prove (2)= (4). Suppose there exists a cocycle ¢ € Sg (X, £1(X)) such that
x(¢) = 1. We consider ax¢. Choosing a representative sequence ¢, for ¢ we note
that || (¢, (x))]|%> = ||¢n(x)|| > 1 for all x since m(¢p(x)) = 1. Let

1
On B . .
)= Ta@n ooy @)
We know that a«¢ is a cocycle. The estimate
R O O T I N S T e I e
‘mﬁ|mff EEMEEIL H
<2[&-¢|

for £ € £2(X) with ||£] > 1, shows that D, — 0, ie § again determines a cocycle.

Consider the operators Tj,: £2(X) — £2(X) defined by

(Tud)(Y) = Y Ou(X)(E(X).

xeX

The support condition on 6, provides an S, > 0 such that 8,(x) is supported in
Bg, (x), and bounded geometry gives a bound /N, on the size of these balls, hence the
operators 75 are bounded. The support condition also shows that these operators have
finite propagation, and thus they are elements of the uniform Roe algebra of X (see [5,
Section 4.4]). Consider T, = (T, T, ,,)1/ 2. This lies in the uniform Roe algebra since
T, does, and hence for each n we can find another self-adjoint operator 7, with 7’
of finite propagation and |7,/ — 7,)|| — 0 as n — oo.

Define ¥n(x) = T,/ (8x). For & € £2(X) we have

(Tu€, Tu€) = (T, Tu€. ) = ((T,)*6, &) = (T,6. T,6)

so [|Tuéll = IT,€| for all §. We have || 7,;(8x)[l = | Tn(8x) [l = [|6n(x) [ = 1. Hence
|¥n(x)|| =T,/ (6x)|| = 1 as n — oco. Finite propagation of 7, provides the support
condition for v, and so ¥, gives an everywhere unital element of 8& (X, 02(X)). To
see that v is a cocycle note that || D6y, (xo. x1)|| = | Tn(8x; —Sxo) |l = | Tp(8x; —8x0) |l
and || DYy (xo, x1) || = 1T, (6x, —x,) |- As T,/ =T, — 0, D8, — 0 implies Dy, — 0.
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As T, is self-adjoint, we have ¥, (x)(z) = (T,/6x.6z) = (6x,T,)/6z) = ¥n(z)(x).
To make v, symmetric it therefore suffices to ensure that ¥, (x)(z) is real. For an
operator T: £2(X) — £2(X), let T denote the operator defined by T¢é = T S where &
denotes the s the entry-w Wlse complex conjugate of £. As 0, is real, it follows that T, = T,
and so T*Tn = Tn T, = T)T,, henceas T,*T, = T,* we have T/ = T/2 =T,;Ty.
Since the positive square-root T, of T,*T,, is unique we have T,, = T,,. Without loss
of generality we may assume that 7, = T}/, since replacing T,/ with its real part
%(T " +T))') reduces the distance from T,,. Hence we have ¥, (x)(z) = (T)/8x, ;)
real, so we have proved (4).

(4)=(3) is immediate from Lemma 3.2: given ¥, we take ¢ = S« . Symmetry is
preserved and as Y is everywhere unital, the same holds for ¢. So, as ¢ is nonnegative,
we have ¢ =1¢.

(3)=(2) is trivial. O

4 Expanders do not have property A

Let T be a disjoint union of graphs {I';};eny equipped with a proper metric such
that the restriction to each component I'; is the graph metric on I';, and such that
the distance between I'; and its complement I'f tends to infinity as i — oo. If T
has property A then there is a cocycle ¢ € £2 (F L1(T)) with w4 (¢p) = 1o, while if
{I'i} is an expander sequence then H, O((T; }) is zero. We will show that these two
cohomological conditions are contradlctory, that is, expanders cannot have property A.

Theorem 4.1 Let I' be a disjoint union of graphs I'; with bounded valency, such that
d(I';,Tf) — o0 and |I';| — oo as i — oo. If there exists a cocycle ¢ € £ (F,El(l"))
such that 74 (¢) = 1¢ then HO({F, }) is nonzero.

Proof Suppose there exists a cocycle ¢ € 50 (T, ¢1(T)) such that 4(¢) = 1p. We
will use this to construct a nonzero cocycle i 1n c? ({I',}) thus proving that H, Qv
is nonzero. By Theorem 3.3 we may assume that ¢ is a symmetric cocycle.

For each n € N the controlled support condition provides an S, > 0 such that for each
x €T, the support of ¢, (x) liesin Bg, (x). As the distance between components tends
to oo, if i is sufficiently large then the distance between I'; and the other components
of T exceeds S,. Hence there exists j, such that if i > j, then ¢, (x) is supported
in I'; forall x € I';.

For each i, n, we choose a vertex efl € I'; so that the infimum of

> Du(xo.x1)(2)

(x0,x1)€EE;
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over all z € I'; isrealised at z = efl, where E; denotes the set of edges of I';. Note that
the infimum is actually a minimum, since each I'; is finite, and so such an e; exists.
For i > j, we define f € £'T; by fI(x) = ¢n(x)(e})—1/|T;|, and for i < j, we
define fn’ to be 0. By symmetry of ¢,, when i > j, we have

MIASEDS .

= ”¢n(ezl1)”€1 1.
. . |I il
xel; x€l;

$n(ey)(x) —

This is bounded in 7, n, hence f, = (f,!, f,?,...) defines an element f in the quotient
completion of [[Ser £!(T;). We will show that this is a nonzero cocycle in C g (T}

For i < j, we have ao(f)(i) = ZXGF:‘ £ (x) = 0, while for i > j, we have
iy — i 1y _ i 1y _ i
Y i =3 (e = 1) = 3 ($nle )~ 1) = mdn)ef) —

xel; xel; xel;

by symmetry of ¢,. Since m«(¢p) = 19, the sequence (d),,)(e,’;) — 1 tends to zero
(uniformly in i) as n — oco. Thus UOQ (f)=0,s0 f is an element of Cg({l“i}).

Recalling that the valencies of the I'; are uniformly bounded, we have a bound N,, on
the cardinality of the balls By, (e,l;). As ¢u(el)(x) =0 outside By, (e,’;), when i > j,
we have the following lower bound for the ¢! —norm of f:
j 1 |Fi | — Ny Nn
I filler = e
e B ITil

x€li\Bs), (eh)

Hence || /|| = sup;en | £ |lg1 = 1 for all n. In particular | f,|| does not tend to zero,
so f is a nonzero element of C g (T:}).

It remains to verify that f is a cocycle. We apply the coboundary operator d to fn’ .
This clearly vanishes when i < j,, while for i > j, we have

dfil(xo.x1) = fil(x1) = f}(x0) = D (xo,x1)(eh).

Our choice of ef, now comes into play. Let k& be an upper bound on the valency of the
graphs, so that |E;|/|T;| <k for all i. Then we have

ldfillo < Y |D¢(xo,x1)(e:;)|=ii|2 > D¢ (xo.x1)(ep)]

r
(x0,x1)€E; | z€l (x0,x1)€EE;

gﬁz > 1D X))

zel; (X(),xl)EE,'

<kl Donl r=1
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as Zzer‘i | Do (x9,x1)(2)| < || D¢l r=1. This tends to zero as n — oo since ¢ is a
cocycle. Hence df =0, so f is a nonzero cocycle and H, }? ({T';}) is nonzero. |

Since property A is equivalent to existence of a cocycle ¢ € 522 (X, €'(X)) such that
7+ (¢) =10, and a sequence of graphs is an expander if and only if H, }(l) ({T;}) vanishes
we obtain the following immediate corollary to Theorem 4.1.

Corollary 4.2 Let I' be the disjoint union of an expander sequence, with metric as
above. Then I' does not have property A.
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