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Locally symmetric spaces and K –theory of number fields

THILO KUESSNER

For a closed locally symmetric space M D �nG=K and a representation �W G!
GL.N;C/ we consider the pushforward of the fundamental class in H�.BGL.xQ//
and a related invariant in K�.xQ/˝Q . We discuss the nontriviality of this invariant
and we generalize the construction to cusped locally symmetric spaces of R–rank one.

57R19, 53C35, 57M50; 11R70, 22E46

1 Introduction

While elements in topological K–theory K��.X / are, by definition, represented
by (virtual) vector bundles over the space X , it is less evident what the topological
meaning of elements in algebraic K–theory K�.A/ for a commutative ring A may be.
An approach, which can be found eg in the appendix of Karoubi [18], is to consider
elements in Kd .A/ associated to a flat GL.A/–bundle over a d –dimensional homology
sphere M . Namely, let

�W �1M ! GL.A/

be the monodromy representation of the flat bundle, then its plusification

.B�/C W MC
! BGLC.A/

can, in view of MC ' Sd , be considered as an element in algebraic K–theory

Kd .A/ WD �dBGLC.A/:

It was proved by Hausmann and Vogel [16] that for a finitely generated, commutative,
unital ring A and d �5 or dD3, all elements in Kd .A/ arise from such a construction.

If the manifold M is not a homology sphere, but still possesses a fundamental class
ŒM � 2Hd .M IQ/, one can still consider

.B�/� ŒM � 2Hd .BGL.A/IQ/

and can use a suitably defined projection (see Section 2.4) to the primitive part of the
homology to obtain


 .M / 2 PHd .BGL.A/IQ/ŠKd .A/˝Q:
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An interesting special case, which has been studied by Dupont and Sah and others,
is K3.C/. By a theorem of Suslin [27], Kind

3
.C/ is, up to torsion, isomorphic to the

Bloch group B.C/. On the other hand, each ideally triangulated hyperbolic 3–manifold
yields, in a very natural way, an element in B.C/, the Bloch invariant. By Neumann
and Yang [24], this element does not depend on the chosen ideal triangulation.

A generalization to higher-dimensional hyperbolic manifolds was provided by Gon-
charov [15]. To an odd-dimensional hyperbolic manifold M 2n�1 and the flat bun-
dle coming from a half-spinor representation he associates an element 
 .M / 2

K2n�1.xQ/˝Q and proves its nontriviality by showing that evaluation of the Borel
class yields (a fixed multiple of) the volume.

It thus arises as a natural question, whether other locally symmetric spaces and different
flat bundles give nontrivial elements in the K–theory of number fields (and eventu-
ally how much of algebraic K–theory in odd degrees can be represented by locally
symmetric spaces and representations of their fundamental groups).

In Section 2, we generalize the argument from [15] to the extent that, for a compact
locally symmetric space M 2n�1 D �nG=K of noncompact type and a representation
�W G! GL.N;C/, nontriviality of the associated element 
 .M / 2K2n�1.xQ/˝Q
is (independently of � ) equivalent to nontriviality of the Borel class ��b2n�1 .

It does not in general work to associate elements in algebraic K–theory to flat bundles
over manifolds with boundary. Nonetheless we succeed in Section 4 to associate an
element 
 .M /2K2n�1.xQ/˝Q to flat bundles over locally rank one symmetric spaces
of finite volume. (Goncharov [15] did this for hyperbolic manifolds and half-spinor
representations, but implicitly assumed that @M be connected.)

Nontriviality of classes in K2n�1.xQ/˝QŠ PH2n�1.GL.N; xQ/IQ/ will be checked
by pairing with the Borel classes b2n�1 2 H 2n�1

c .GL.N;C/IR/. The results of
Section 2 (for closed manifolds) and Section 4 (for cusped manifolds) are subsumed as
follows.

Theorem For each symmetric space G=K of noncompact type and odd dimension
d D 2n� 1, and to each representation �W G! GL.N;C/ with ��b2n�1 6D 0, there
exists a constant c� 6D 0 such that the following holds.

If M D �nG=K is a finite-volume, orientable, locally symmetric space and either M

is compact or rk.G=K/D 1, then there is an element


 .M / 2K2n�1.xQ/˝Q

such that application of the Borel class b2n�1 yields

hb2n�1; 
 .M /i D c� vol.M /:
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In particular, if ��b2n�1 6D0, then locally symmetric spaces �nG=K of Q–independent
volume give Q–independent elements in K2n�1.xQ/˝Q.

(In many cases one actually associates an element in K2n�1.F/˝Q, for some number
field F ; see Theorem 2 in Section 2.6.)

In Section 3, we work out the list of fundamental representations �W G! GL.N;C/
for which ��b2n�1 6D 0 holds true. It is easy to prove that ��b2n�1 6D 0 is always true
if 2n� 1� 3 mod 4 (and � is not the trivial representation). We work out for which
fundamental representations ��b2n�1 6D 0 holds if 2n� 1� 1 mod 4.

Theorem The following is a complete list of irreducible symmetric spaces G=K of
noncompact type and fundamental representations �WG!GL.N;C/ with ��b2n�1 6D 0

for 2n� 1 WD dim.G=K/.

Symmetric Space Representation

SLl.R/=SOl ; l � 0; 3; 4; 7 mod 8 any fundamental representation
SLl.C/=SUl ; l � 0 mod 2 any fundamental representation
SL2l.H/=Spl ; l � 0 mod 2 any fundamental representation
Spinp;q =.Spinp �Spinq/, any fundamental representation
p; q � 1 mod 2;p 6� q mod 4

Spinp;q =.Spinp �Spinq/, positive and negative
p; q � 1 mod 2;p � q mod 4 half-spinor representation

SOl.C/=SOl ; l � 3 mod 4 any fundamental representation
Spl.C/=Spl ; l � 1 mod 4 any fundamental representation
E7.C/=E7 any fundamental representation

In this list, the only examples with rank.G=K/D 1 are the hyperbolic spaces H d D

Spin .d; 1/ =Spin.d/ with d odd. Thus in the noncompact case we only get invariants
for hyperbolic manifolds. (In forthcoming work with Inkang Kim we will generalize
the construction to Q–rank 1 lattices in symmetric spaces of higher rank.)

For hyperbolic manifolds and half-spinor representations, the construction of 
 .M / is
due to Goncharov [15] (though the proof implicitly assumes that @M be connected). For
hyperbolic 3–manifolds, another construction is due to Cisneros-Molina and Jones [8].
(It was related in [8] to the construction of Neumann and Yang [24].) The latter has
the advantage that the number of boundary components does not impose technical
problems, contrary to the group-homological approach in [15].
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Our construction for closed locally symmetric spaces in Section 2 is a straightforward
generalization of [15]. In the case of cusped locally symmetric spaces (with possibly
more than one cusp) it would have seemed more natural to stick to the approach
of [8], and in fact this approach generalizes to locally symmetric spaces in a completely
straightforward way. However, we did not succeed in evaluating the Borel class (in order
to discuss nontriviality of the obtained invariants) in this approach. On the other hand,
Goncharov’s approach, even in the case of only one cusp, uses very special properties
of the spinor representation, which can not be generalized to other representations.

Therefore, our argument is sort of a mixture of both approaches. On the one hand
it is closer in spirit to the arguments of [15] (but with the cuspidal completion in
Section 4.2 memorizing the geometry of distinct cusps). On the other hand the
argument in Section 4.3 uses arguments from [8] to circumvent the very special group-
homological arguments that were applied in [15] in the special setting of the half-spinor
representations.

Of course, it should be interesting to relate the different constructions more directly.

2 The closed case

The results of this section are fairly straightforward generalizations of the results in [15]
from hyperbolic manifolds to locally symmetric spaces of noncompact type. (Similar
constructions have also appeared in work of other authors, mainly for hyperbolic
3–manifolds.) We define a notion of representations with nontrivial Borel class and,
mimicking the arguments in [15], show that representations with nontrivial Borel class
give rise to nontrivial elements in algebraic K–theory of number fields. The problem
of constructing representations with nontrivial Borel class will be tackled in Section 3.

2.1 Preparations

Classifying space For a group G, its classifying space BG (with respect to the discrete
topology on G ) is the simplicial set BG defined as follows:
� the k –simplices of BG are the k –tuples .g1; : : : ;gk/ with g1; : : : ;gk 2G ,
� the operator @W Sk.BG/! Sk�1.BG/ is defined by

@.g1; : : : ;gk/

D .g2; : : : ;gk/C

k�1X
iD1

.�1/i.g1; : : : ;gigiC1; : : : ;gk/C .�1/k.g1; : : : ;gk�1/;

� the degeneracy maps are defined by

sj .g1; : : : ;gk/D .g1; : : : ;gj ; 1;gjC1; : : : ;gk/:
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The simplicial chain complex of BG will be denoted C
simp
� .BG/. The group homology

with coefficients in a ring R is

H�.GIR/DH
simp
� .BGIR/ WDH�.C

simp
� .BG/˝Z R; @˝ 1/:

A homomorphism �W �!G induces .B�/� W H� .�IR/!H�.GIR/.

Straight simplices Let M be a Riemannian manifold of nonpositive sectional curva-
ture, C�.M / the chain complex of singular simplices.

Let � W �M !M be the universal covering. Fix a point x0 2M and a lift zx0 2
�M .

Then � WD �1.M;x0/ acts isometrically by deck transformations on �M .

In a simply connected space of nonpositive sectional curvature each ordered .kC1/–
tuple of vertices .y0; : : : ;yk/ determines a unique straight k –simplex str.y0; : : : ;yk/.
In particular, for g0;g1; : : : ;gk 2 � D �1.M;x0/ there is a unique straight simplex

str.g0zx0;g1zx0; : : : ;gk zx0/

in �M . A simplex � 2C�.M / is said to be straight if some (hence any) lift z� 2C�. �M /

with �z� D � is a straight simplex.

Let C
str;x0
� .M / be the chain complex of straight simplices with all vertices in x0 .

There is a canonical chain map

‰W C
simp
� .B�/! C

str;x0
� .M /

given by

‰.g1; : : : ;gk/ WD �.str.zx0;g1zx0;g1g2zx0; : : : ;g1 : : :gk zx0//:

Let w0; : : : ; wk be the vertices of the standard simplex �k . For j D 0; : : : ; k let

j ��

k be the sub–1–simplex with @
j D wj �wj�1 for j D 1; : : : ; k . Then there
is a homomorphism

ˆW C
str;x0
� .M /! C

simp
� .B�/

defined by ˆ.�/D .g1; : : : ;gk/, where gj 2 � D �1.M;x0/ is the homotopy class
(rel. vertices) of � j
j

for j D 1; : : : ; k .

Clearly ˆ.�.str.zx0;g1zx0;g1g2zx0; : : : ;g1 : : :gk zx0///D .g1; : : : ;gk/, thus ˆ‰D id.
On the other hand, a straight simplex � W �k !M with all vertices in x0 is uniquely
determined by the homotopy classes (rel. vertices) of gj D Œ� j
j

� for j D 1; : : : ; k ,
because its lift to �M must be in the � –orbit of str.zx0;g1zx0;g1g2zx0; : : : ;g1 : : :gk zx0/.
Thus ‰ˆ D id. This shows that ‰ and ˆ are chain isomorphisms, inverse to each
other.
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Eilenberg–Mac Lane map Let C
x0
� .M / � C�.M / be the subcomplex generated

by singular simplices with all vertices in x0 . The inclusions

C
str;x0
� .M /� C

x0
� .M /� C�.M /

are chain homotopy equivalences1. For the first inclusion this is proved (for arbitrary
aspherical manifolds, but with an isomorphic image of C

simp
� .B�/ instead of the in

this generality not defined C
str;x0
� .M /) by Eilenberg and Mac Lane [13, Theorem 1a].

For the second inclusion it is proved by Eilenberg [12, Paragraph 31].

The composition of the chain isomorphism ‰W C
simp
� .B�/! C

str;x0
� .M / with the

inclusion C
str;x0
� .M /! C�.M / is thus a chain homotopy equivalence

C
simp
� .B�/! C�.M /;

the induced isomorphism

EMW H simp
� .B�IZ/!H�.M IZ/

will be called the Eilenberg–Mac Lane map. The chain homotopy inverse is given by
the composition of str with the chain isomorphism ˆ, thus

EM�1
Dˆ� ı str� :

The geometric realization jB�j of B� in the sense of Milnor [22] is aspherical by
May [21, page 128]. Given a manifold M and an isomorphism I W �1M Š � , there
is an up to homotopy unique continuous mapping hM W M ! jB�j which induces
I on �1 ; see [21, page 177]. The map hM (rather its homotopy class) is called the
classifying map for �1M . If M is aspherical and has the homotopy type of a CW–
complex then hM is a homotopy equivalence, and hM

� W H� .M IZ/!H� .jB�jIZ/

is the composition of EM�1 with the isomorphism i�W H
simp
� .B�IZ/!H� .jB�jIZ/

that is induced by the inclusion i of the simplicial into the singular chain complex.

2.2 Construction of elements in algebraic K –theory

Throughout this paper, a ring A will mean a commutative ring with unit. In all
applications A will be a subring (with unit) of the ring of complex numbers: A�C .

One defines GL.A/ as the increasing union GL.A/ D
S

N2N GL.N;A/, where
GL.N;A/ is considered as a subgroup of GL .N C 1;A/ via the canonical embedding

1Pictorially the chain homotopy inverse strW C�.M /! C
str;x0
� .M / of the inclusion C

str;x0
� .M /�

C�.M / first homotopes all vertices of a given cycle into x0 and then straightens the so-obtained cycle
(by induction on dimension of subsimplices, depending on the given order of vertices) as in Benedetti and
Petronio [2, Lemma C.4.3].
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as .N�N /–block matrices with complementary .1�1/–block having entry 1. We
consider the simplicial set BGL.A/ as defined in Section 2.1, and jBGL.A/j its
geometrical realisation.

A representation �W �! GL.A/ induces a continuous map

jB�jW jB�j ! jBGL.A/j:

Definition 1 Let M be a topological space with � WD �1.M;x0/;x0 2M , let A be
a commutative ring with unit and let �W �! GL.A/ be a homomorphism. Then we
define

.H�/�W Hd .M IQ/!H
simp
d

.BGL.A/IQ/

as the composition of jB�j with the classifying map hM W M ! jB�j:

Hd .M IQ/
hM
� // Hd .jB�jIQ/

jB�j� // Hd .jBGL.A/jIQ/ŠH
simp
d

.BGL.A/IQ/ :

(We will use without mention that inclusion i W C
simp
� .BGL.A// ! C�.jBGL.A/j/

induces an isomorphism i�W H
simp
� .BGL.A//!H�.jBGL.A/j/; see [22, Lemma 5].)

If M is a closed, orientable, connected d –manifold, and the ring A satisfies mild
assumptions (see Section 2.5), eg for AD xQ, then we will now explain how to construct
an element in Kd .A/˝Q.

Let ŒM � 2Hd .M IQ/ be the fundamental class. Consider

.H�/�ŒM � 2Hd .jBGL.A/jIQ/ŠHd .jBGL.A/jCIQ/:

By the Milnor–Moore Theorem, the Hurewicz homomorphism

Kd .A/ WD �d .jBGL.A/jC/!Hd j.BGL.A/jCIZ/

gives, after tensoring with Q, an injective homomorphism

Kd .A/˝QD �d .jBGL.A/jC/˝Q!Hd .jBGL.A/jCIQ/:

Its image, again by the Milnor–Moore theorem, is the subgroup PHd .jBGL.A/jCIQ/
of primitive elements, which we will henceforth identify with Kd .A/˝Q.

By Quillen (compare Burgos Gil [6, Section 9.1]), inclusion induces an isomorphism

Q�W PH�.jBGL.A/jIQ/! PH�.jBGL.A/jCIQ/ŠK�.A/˝Q:

(Ford even and A a ring of integers in any number field, PH
simp
d

.BGL.A/IQ/D 0;
cf [6, Theorem 9.9]. Therefore one is only interested in the case d D 2n� 1.)
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Whenever we have a fixed projection

pr�W H
simp
� .BGL.A/IQ/! PH

simp
� .BGL.A/IQ/Š PH� .jBGL.A/jIQ/ ;

we can define an element 
 .M / 2Kd .A/˝Q as


 .M / WDQ� pr� .H�/� ŒM �:

In Section 2.5 we are going to show that eg for AD xQ (and also for many other rings)
the projection pr� can be chosen such that the evaluations of the Borel class on h and
pr�.h/ agree for all h 2H

simp
� .BGL.xQ/IQ/. In particular, to check nontriviality of


 .M / it will then suffice to apply the Borel class to .H�/�ŒM �.

If M is a (compact, orientable) manifold with nonempty boundary, then there is no
general construction of an element in algebraic K–theory. However, we will show in
Section 4 that for finite-volume locally rank one symmetric spaces one can generalize
the above construction and again construct an invariant 
 .M / 2Kd .xQ/˝Q.

2.3 The volume class in H d
c .Isom.eM //

Volume class For a Lie group G , let Cc

�
G�C1;R

�
be the continuous G–invariant

mappings from G�C1 to R, ı the usual coboundary operator and H�c .GIR/ the
cohomology of .Cc.G

�C1;R/G ; ı/. There is a comparison map compW H�c .GIR/!
H�.GIR/ defined by the cochain map

comp.f /.g1; : : : ;gk/ WD f .1;g1;g1g2; : : : ;g1g2 : : :gk/:

Remark 1 For f 2H�c .GIR/ and c 2H�.GIR/, we will denote

hf; ci D comp.f /.c/:

Let �M D G=K be a symmetric space of noncompact type. The Riemannian metric
and in particular the volume form are given via the Killing form and are thus canonical.
It is well-known (see Helgason [17, Chapter V, Theorem 3.1]) that �M has nonpositive
sectional curvature. One can assume that G is semisimple and acts by orientation-
preserving isometries on �M .

Fix an arbitrary point zx 2 �M DG=K . The volume class

vd 2H d
c .GIR/

is defined as follows. We define a simplicial cochain c�d 2 C d
simp.BG/ by

c�d .g1; : : : ;gd /D algvol.str.zx;g1zx; : : : ;g1 : : :gd zx// WD intstr.zx;g1zx;:::;gd zx/ dvol;
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that is the signed volume algvol [2, page 107] of the straight simplex with vertices
zx;g1zx; : : : ;g1 : : :gd zx . From Stokes’ Theorem and

algvol.str.g1zx;g1g2zx; : : : ;g1 : : :gd zx//D algvol.str.zx;g2zx; : : : ;g2 : : : ;gd zx//

one can conclude

ıc�d .g1; : : : ;gdC1/D int@ str.zx;g1zx;:::;g1:::gdC1zx/ dvol

D intstr.zx;g1zx;:::;gdC1zx/ d.dvol/D 0:

Thus c�d is a simplicial cocycle on BG .

Consider the cocycle �d 2 C d
c .GIR/ given by the (clearly continuous) mapping

�d .g0; : : : ;gd /D c�d .g
�1
0 g1; : : : ;g

�1
d�1gd /

D intstr.zx;g�1
0

g1zx;:::;g
�1
d�1

gd zx/
dvolD intstr.g0zx;g1zx;:::;gd zx/ dvol :

It defines a cohomology class vd WDŒ�d �2H d
c .GIR/ such that comp.vd /2H d.BGIR/

is represented by c�d . The volume class vd does not depend on the chosen zx 2G=K .

Theorem 1 Let M D �nG=K be a closed, oriented, connected, d –dimensional
locally symmetric space of noncompact type, let j W �! G be the inclusion of � D
�1M and Bj�W H

simp
� .B�IZ/! H

simp
� .BGIZ/ the induced homomorphism. Let

ŒM � 2Hd .M IZ/ be the fundamental class of M . Then

vol.M /D hvd ;Bj� EM�1ŒM �i:

Proof Let
Pr

iD1 ai�i represent ŒM �. Fix zx0 2
�M and x0 WD �.x0/ 2M . Then

also
Pr

iD1 ai�i WD
Pr

iD1 ai str.�i/ 2 C
str;x0
� .M / represents ŒM �, and vol.M / DPr

iD1 ai algvol.�i/ from Stokes’ Theorem. Let 
 i
j 2 � be the homotopy class (rel.

vertices) of the closed edge from �i.wj�1/ to �i.wj /. Then

�j D �.str.zx0; 

i
1zx0; : : : ; 


i
1 � � � 


i
d zx0//:

Thus from EM�1
Dˆ� str� we have that Bj� EM�1ŒM �2Hd .GIZ/ is represented by

rX
iD1

ai.1; 

i
1; : : : ; 


i
d / 2 C

simp
d

.BG/:

But

c�d .

i
1; : : : ; 


i
d /D intstr.zx0;


i
1
zx0;:::;


i
1
���
 i

d
zx0/

dvolD int�i
dvolD algvol.�i/;
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which implies

hvd ;Bj� EM�1ŒM �i D c�d

� rX
iD1

ai.

i
1; : : : ; 


i
d /

�
D

rX
iD1

ai algvol.�i/D vol.M /:

2.4 Borel classes

2.4.1 Dual symmetric space and dual representations Let �M D G=K be a sym-
metric space of noncompact type. Then G is a semisimple, connected Lie group and
K is a maximal compact subgroup; see Helgason [17, Chapter VI.1].

Let g be the Lie algebra of G and g D k˚p its Cartan decomposition. The Killing
form B.X;Y / D Tr .ad.X / ı ad.Y // is negatively definite on k , positively definite
on p .

The dual symmetric space to G=K is Gu=K , where Gu is the simply connected Lie
group with Lie algebra gu D k˚ ip � g˝C ; cf [17, Chapter V.2.]. The Killing form
on gu is negatively definite, thus Gu=K is a compact symmetric space.

The Lie algebra cohomology H�.g/ is the cohomology of the complex .ƒ�g; d/ with
d�.X0; : : : ;Xn/D

P
i<j .�1/iCj�.ŒXi ;Xj �;X0; : : : ; yXi ; : : : ; yXj ; : : : ;Xn/.

The relative Lie algebra cohomology H�.g; k/ is the cohomology of the subcomplex
.C �.g; k/; d/�.ƒ�g; d/ with C �.g; k/Df�2ƒ�g W i.X /�D0; ad.X /�D� 8X2kg,
where i.X / means insertion as first variable; cf [6, Section 5.5].

If G=K is a symmetric space of noncompact type, and Gu=K its compact dual, then
there is an obvious isomorphism H�.g; k/!H�.gu; k/, dual to the obvious R–linear
map k˚ ip! k˚p .

Moreover, H�.g; k/ is the cohomology of the complex of G–invariant differential
forms on G=K ; cf [6, Example 5.39]. Since Gu is compact and connected, there is an
isomorphism H�.Gu=KIR/!H�.gu; k/, defined by averaging over Gu .

Definition 2 Let �M D G=K be a symmetric space of noncompact type, and let
�W .G;K/! .GL.N;C/;U.N // be a smooth representation. We denote

De�W .g; k/! .gl.N;C/;u.N //

the associated Lie-algebra homomorphism, and, with g D k˚p;gu WD k˚ ip ,

De�uW .gu; k/! .u.N /˚u.N /;u.N //

the induced homomorphism on k˚ ip . The corresponding Lie group homomorphism
�uW .Gu;K/! .U.N /�U.N /;U.N // will be called the dual homomorphism to � .
Denote x�uW Gu=K! U.N / the induced smooth map.
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Here gu , k and ip are to be understood as subsets of the complexification g˝C . In
particular, the complexification of glN C is isomorphic to glN C˚ glN C , and ip '

u .N / in this case. We emphasize that �u sends K to the first factor of U.N /�U.N /,
and not to the diagonal subgroup as has been claimed in [15, page 586].

2.4.2 Van Est Theorem The van Est Theorem (see Burgos Gil [6, Theorem 6.9])
states that there is a natural isomorphism

�G W H
�
c .GIR/!H�.g; k/:

If �W .G;K/! .GL.N;C/;U.N // is a representation then we obtain the following
commutative diagram, where all vertical arrows are isomorphisms

H�c .GL.N;C/IR/
�� // H�c .GIR/

H� .gl.N;C/;u.N //
De�
�

//

��1
GL.N;C/ Š

OO

H�.g; k/

��1
G
Š

OO

H� .u.N /˚u.N /;u.N //
De�
�
u//

Š

OO

H�.gu; k/

Š

OO

H� .U.N /IR/
x��u //

Š

OO

H� .Gu=KIR/

Š

OO

Corollary 1 Let G be a connected, semisimple Lie group, K a maximal compact
subgroup, d D dim.G=K/, vd 2H d

c .GIR/ the volume class, Œdvol�2H d .Gu=KIR/
the de Rham cohomology class of the volume form on Gu=K and

DG W H
� .Gu=KIR/!H�c .GIR/

the isomorphism given by the right-hand column of the above diagram. Then

DG .Œdvol�/D vd :

Proof By [9, Proposition 1.5] �G maps vd to the class of the volume form in
Hd .G=KIR/ŠH d .g; k/. The Riemannian metrics on G=K and Gu=K are defined
by the negative of the Killing form. The R–linear map k˚ip!k˚p clearly preserves
the Killing form, thus the isomorphism H d .g; k/'H d .gu; k/ maps the volume form
of G=K to that of Gu=K .
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2.4.3 Chern classes and Borel classes Let H be a compact connected Lie group.
Let In

S
.H / resp. In

A
.H / be the ad–invariant symmetric resp. antisymmetric multilinear

n–forms on its Lie algebra h. By [6, Proposition 5.2] we have the isomorphism
ˆAW I

n
A
.H /!H n .H IR/. Moreover, we remind that there is the Chern–Weil isomor-

phism ˆS W I
n
S
.H /!H 2n .BH IR/ [6, Theorem 5.23], where in this section (contrary

to the remainder of the paper) BH means the classifying space for H with its Lie
group topology.

For H D U.N / we consider the symmetric polynomial Trn 2 In
S
.U.N // defined by

Trn.A1; : : : ;An/D
1

.2� i/n
1

n!

X
�2Sn

Tr.A�.1/ : : :A�.n// 2 In
S .U.N //:

The 2n–th component of the universal Chern character

chn WDˆS .Trn/ 2H 2n.BU.N /IQ/:

(We consider the rational valued Chern character whose 2n–th component is obtained
by multiplication with 1=.2� i/n from that of the twisted Chern character considered
in [6, Proposition 5.27].)

There is a “transgression map” � which maps a subspace of H 2n�1 .H IZ/ (whose
elements are the so-called transgressive elements) to H 2n .BH IZ/; cf [6, Example
4.16]. By [7] there is a homomorphism

RW In
S .H /! I2n�1

A .H /;

such that the image of ˆAıR in H 2n�1 .H IR/) consists precisely of the transgressive
elements and such that � ıˆA ıRDˆS .

For H DU.N /, [6, Example 5.37] gives an explicit representative for the Borel classes

b2n�1 WDˆA .R .Trn// 2H 2n�1 .U.N /IR/ŠH 2n�1.u.N //

by the Lie algebra cocycle whose value on X1; : : : ;X2n�1 2 u.N / is

1

.2� i/n
.�1/n�1.n�1/!

.2n�1/!

X
�2S2n�1

.�1/� Tr.X�.1/ŒX�.2/;X�.3/� � � � ŒX�.2n�2/;X�.2n�1/�/:

From � ıˆA ıRDˆS we conclude that �.b2n�1/D chn .

Lemma 1 Let G=K be a symmetric space of noncompact type, of odd dimension
d D 2n� 1, �W G! GL.N;C/ a representation. Then

��b2n�1 6D 0 2H 2n�1
c .GIR/ , x��ub2n�1 6D 0 2H 2n�1.Gu=KIR/

, hb2n�1; .�u/�ŒGu=K�i 6D 0:
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Proof This follows from naturality of DG and from Hd .Gu=KIR/ŠR.

It will be clear from the context whether we consider the Borel classes as elements of
H� .u.N //'H� .U.N /IR/ or as the (under the van Est isomorphism) corresponding
elements of H�c .GL .N;C/ IR/.

Stabilization H� .U .N C 1/ IR/!H� .U.N /IR/ preserves b2n�1 , thus b2n�1 may
also be considered as an element of H 2n�1 .U IR/ŠH 2n�1

c .GL.C/IR/.

In Theorem 2 and Theorem 3 we will for subrings A�C consider the homomorphism

K2n�1.A/˝Q!R

defined by application of the isomorphism

K2n�1.A/˝QŠ PH2n�1.jBGL.A/jCIQ/Š PH2n�1.BGL.A/IQ/

from Section 2.2 and pairing with the Borel class

b2n�1 2H 2n�1
c .GL.C/IR/ :

2.5 Projection H
simp
� .BGL. xQ/IQ/!K�. xQ/˝Q

Let A�C be a subring and GDGL.A/. Let I DH��1
simp .BGIQ/ be the augmentation

ideal of H�simp.BGIQ/ and DDI2 the subspace of decomposable cohomology classes.

Let PH
simp
� .BGIQ/ be the subspace of primitive elements in homology. It is easy

to check that c.h/D 0 for all c 2D; h 2 PH
simp
� .BGIQ/. By [23, Proposition 3.10]

I=D is the dual of PH
simp
� .BGIQ/, which implies

D D fc 2 I W c.h/D 0 8 h 2 PH
simp
� .BGIQ/g

PH
simp
� .BGIQ/D fh 2H

simp
� .BGIQ/ W c.h/D 0 8 c 2Dg:

Lemma 2 Let A�C be a subring. Assume that comp.b2n�1/2H 2n�1
simp .BGL.A/IR/

is not decomposable: comp.b2n�1/ 62D . Then there exists a projection

pr2n�1W H
simp
2n�1

.BGL.A/IQ/! PH
simp
2n�1

.BGL.A/IQ/

such that for all h 2H
simp
2n�1

.BGL.A/IQ/,

comp.b2n�1/.pr2n�1.h//D comp.b2n�1/.h/:
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Proof Denote G DGL.A/. We consider comp.b2n�1/ 2H 2n�1
simp .BGIQ/ as a linear

map comp.b2n�1/W H
simp
2n�1

.BGIQ/!Q. We have

PH
simp
2n�1

.BGIQ/D
˚
h 2H

simp
2n�1

.BGIQ/ W c.h/D 0 8c 2D
	
:

Since comp.b2n�1/ 62D there exists some e0 2 PH
simp
2n�1

.BGIQ/ with

comp.b2n�1/.e0/ 6D 0:

We extend fe0g to a basis fej W j 2 JP g of PH
simp
2n�1

.BGIQ/ and then to a basis
fej W j 2 J g of H

simp
2n�1

.BGIQ/, for some index sets f0g � JP � J .

Since comp.b2nC1/.e0/ 6D 0, we have that fe0j W j 2 J g defined by

e00 WD e0; e
0
j WD comp.b2n�1/.e0/ej � comp.b2n�1/.ej /e0 for j 2 J �f0g

is another basis of H
simp
2n�1

.BGIQ/, and

fe0j W j 2 JP g

is another basis of PH
simp
2n�1

.BGIQ/.

Let S � H
simp
2n�1

.BGIQ/ be the subspace spanned by fe0j W j 62 JP g, then S �

ker.comp.b2n�1// and we have a decomposition

H
simp
2n�1

.BGIQ/D PH
simp
2n�1

.BGIQ/˚S:

We use this decomposition to define the projection

pr2n�1W H
simp
2n�1

.BGIQ/! PH
simp
2n�1

.BGIQ/

by pr2n�1.pC s/D p for p 2 PH
simp
2n�1

.BGIQ/ and s 2 S . S � ker.comp.b2n�1//

implies comp.b2n�1/.pr2n�1.pC s//D comp.b2n�1/.pC s/.

To decide whether the Borel class is indecomposable we apply2 Borel’s computation
of K–theory of integer rings in number fields in [4].

2We remark that in the already interesting case ADC one can prove indecomposability of the Borel
class without using Borel’s K –theory computation.

First, H�c .GL.N;C/IQ/DƒQ .b1; b3; b5; : : : ; b2N�1/ implies that b2n�1 is not decomposable in
H�c .GL.N;C/IQ/ for any N . Next, by homology stability of the linear group [6, page 77], inclusion
induces an isomorphism H 2n�1.BGIQ/DH 2n�1 .BGL.N;C/IQ/ if N � 4nC 3 .

By Borel’s Theorem [4, Theorem 9.6], for each arithmetic subgroup � � SL.N;C/ we have an
isomorphism j �W H 2n�1

simp .B�IQ/!H 2n�1
c .BSL.N;C/IQ/ whenever N � 8nC4 . This isomorphism

is constructed via the van Est isomorphism, that is by integration of forms over simplices. In particular, if
h 2H�simp.BSL.N;C/IQ/ and i W �! SL.N;C/ is the inclusion, then comp.j �i�h/D h .

Now if comp.b2n�1/D xy , then b2n�1 D j �i� comp.b2n�1/D .j
�i�x/.j �i�y/ is decomposable

in H�c .GL.N;C/IQ/ for all h 2H
simp
2n�1

.BGL.xQ/IQ/ , giving a contradiction.
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Let OF be the ring of integers in a number field F , which has r1 real and 2r2 complex
embeddings. Borel proves that the Borel regulator, applied to the different embeddings
of SL.OF /, yields an isomorphism between PH

simp
2n�1

.BSL.OF /IZ/ and Zr1Cr2 resp.
Zr2 if n is even resp. odd. Since decomposable cohomology classes vanish on primitive
homology classes, this implies in particular:

If ADOF for a number field F, then b2n�1 is not decomposable for even n.

If moreover F is not totally real, then b2n�1 is not decomposable for all n.

In particular, we can apply Lemma 2 to A D OF , and therefore also to all rings A

with OF �A�C , in particular to AD xQ:

Corollary 2 For all n, there exists a projection

pr2n�1W H
simp
2n�1

.BGL.xQ/IQ/! PH
simp
2n�1

.BGL.xQ/IQ/DK2n�1.xQ/˝Q

such that for all h 2H
simp
2n�1

.BGL.xQ/IQ/,

comp.b2n�1/.pr2n�1.h//D comp.b2n�1/.h/:

2.6 Compact locally symmetric spaces and K –theory

In this subsection, we finally show that to each representation of nontrivial Borel class,
and each compact, oriented, locally symmetric space of noncompact type M we can
find a nontrivial element 
 .M / 2K�.xQ/˝Q.

Theorem 2 For each symmetric space G=K of noncompact type and odd dimension d ,
and each representation �W G ! GL.N;C/ with ��bd 6D 0, there is some c� 6D 0

such that to each compact, oriented, locally symmetric space M D �nG=K , with
� .�/� GL.N;A/ for a subring A�C satisfying the conclusion of Lemma 2, there
exists an element


 .M / 2Kd .A/˝Q

with hbd ; 
 .M /i D c� vol.M /.

Proof Using the projection prd from Lemma 2, we obtain as in Section 2.2


 .M / WDQ� pr�B .�j /� EM�1ŒM � 2Kd .A/˝Q:
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��bd 6D 0 together with H d
c .GIR/DH d .Gu=KIR/DR implies ��bd D c�vd for

some c� 6D 0. Using Lemma 2 we get

hbd ; 
 .M /i D comp.bd /.pr�B.�j /� EM�1ŒM �/

D comp.bd /.B.�j /� EM�1ŒM �/

D comp.��bd /.Bj� EM�1ŒM �/

D c�hvd ;Bj� EM�1ŒM �i D c� vol.M /;

where the last equality is true by Theorem 1.

Corollary 3 For each symmetric space G=K of noncompact type and odd dimension
d D 2n� 1, and to each representation �W G! GL.N;C/ with ��b2n�1 6D 0, there
exists a constant c� 6D 0, such that the following holds: to each compact, oriented,
locally symmetric space M D �nG=K there exists an element


 .M / 2K2n�1.xQ/˝Q

with hb2n�1; 
 .M /i D c� vol.M /.

Proof dim.G=K/ D 2n� 1 implies that G is not locally isomorphic to SL .2;R/,
thus we can apply Weil’s rigidity theorem, which yields a g 2G with g�g�1 2G.xQ/.
Hence M is of the form M D �nG=K with � �G.xQ/.

Each representation �W G! GL.N;C/ is isomorphic to a representation �0 such that
G.xQ/ is mapped to GL.N; xQ/. This follows from the classification of irreducible
representations of Lie groups; see Fulton and Harris [14].

By Corollary 2 we can then apply Theorem 2 to AD xQ.

Corollary 4 Let G=K be a symmetric space of noncompact type and �W G !

GL.N;C/ a representation with ��b2n�1 6D 0, for 2n�1D dim.G=K/. Then compact,
oriented, locally symmetric spaces �nG=K of rationally independent volumes yield
rationally independent elements in K2n�1.xQ/˝Q.

Remark In [15] it was claimed that for .2n�1/–dimensional compact hyperbolic man-
ifolds one can construct an element 
 .M /2K2n�1.xQ/˝Q such that hb2n�1; 
 .M /iD

vol.M /. However, since ��b2n�1 is a rational cohomology class, c� is rational if and
only if v2n�1 is a rational cohomology class, and this is equivalent to vol.M / D

hv2n�1; ŒM �i 2 Q. Since, conjecturally, all hyperbolic manifolds have irrational
volumes, one can probably not get rid of the factor c� in Theorem 2.

Algebraic & Geometric Topology, Volume 12 (2012)



Locally symmetric spaces and K–theory of number fields 171

In conclusion, we are left with the problem of finding representations of nontrivial
Borel class, which will be solved in Section 3.

Compact examples can eg be obtained by Borel’s construction of locally symmetric
spaces in [3]. A very special case is the construction of arithmetic hyperbolic manifolds
using quadratic forms (cf [2, Chapter E.3]).

Let u2R be an algebraic integer such that all roots of its minimal polynomial have multi-
plicity 1 and are real and negative (except possibly u). Assume moreover that .0; : : : ; 0/
is the only integer solution of x2

1
C � � �Cx2

2n�1
�ux2

2n
D 0. Let y� � GL.2n;ZŒu�/

be the group of maps preserving x2
1
C � � �Cx2

2n�1
�ux2

2n
. It is isomorphic to a

discrete cocompact subgroup of SO.2n�1; 1IZŒu�/� SO.2n�1; 1IR/. By Selberg’s
lemma, it contains a torsion-free cocompact subgroup � � SO.2n� 1; 1IZŒu�/. With
the computations in Section 3 below one concludes: If n is even, then the compact
manifold M WD �nH2n�1 (and, for example, a half-spinor representation) gives a
nontrivial element 
 .M / 2K2n�1.ZŒu�/˝Q. If n is odd, then Corollary 2 can not be
applied to ZŒu� but to xQ, one gets at least a nontrivial element 
 .M /2K2n�1.xQ/˝Q.

Matthey, Pitsch and Scherer [20] constructed a somewhat stronger invariant for stably
parallelisable manifolds: given an embedding M d !Rn with trivial normal bundle
�M and a regular neighborhood U they consider the composition

Sn
! xU =@U ! xU =@U ^MCD T h .�M /^MCD†

n�dMC^MC! Sn�d
^MC

giving an element 
 .M / 2 �s
d
.M /.

3 Existence of representations of nontrivial Borel class

3.1 Trace criterion

Lemma 3 Let G=K be a symmetric space of noncompact type, of dimension 2n� 1.
Let t �p be a Cartan subalgebra of g .

Then for a representation �W G ! GL.N;C/ and its dual �uW Gu! U.N /�U.N /

the following are equivalent:

(i) � has nonvanishing Borel class ��b2n�1 6D 0 2H 2n�1
c .GIR/.

(ii) Tr..De�u.i t//n/ 6D 0 for some t 2 t .

(iii) Tr..De�.t//
n/ 6D 0 for some t 2 t .
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Proof As in Definition 2 we consider the dual representation

�uW .Gu;K/! .U.N /�U.N /;U.N //

and the smooth map �uW Gu=K!U.N /�U.N /=U .N /'U.N /. Since �u sends K

to the first factor of U.N /�U.N / we have �2�uD�up , where �2W U.N /�U.N /!

U.N / is the projection to the second factor and pW Gu ! Gu=K projection to the
quotient.

By Lemma 1 we have that ��b2n�1 6D 0 2H 2n�1
c .GIR/ if and only if

�u
�b2n�1 6D 0 2H 2n�1.Gu=K/:

Averaging of differential forms over the compact group K shows p�W H�.Gu=K/!

H�.Gu/ is injective. Hence, �u
�b2n�1 6D 0 if and only if its image in H 2n�1.Gu/

does not vanish. The latter equals

.�2�u/
�b2n�1;

because �2�u D �up .

Using the notation and facts from Section 2.4.3 we have

.�2�u/
�b2n�1 D .�2�u/

�ˆA.R.Trn//DˆA.R..�2�u/
� Trn//;

.�2�u/
� chn D .�2�u/

�ˆS .Trn/DˆS ..�2�u/
� Trn/:

Now ˆA and ˆS are isomorphisms, moreover � ıˆA ıRDˆS implies injectivity
of R. Hence .�2�u/

� chn 6D 0 if and only if .�2�u/
� b2n�1 6D 0.

From the definition of Trn we see that

.�2�u/
� Trn.A1; : : : ;An/D

1

.2� i/n
1

n!

X
�2Sn

Tr.De.�2�u/A�.1/ : : :De.�2�u/A�.n//;

An easy exercise in multilinear algebra shows that a symmetric polynomial P.x1; : : : ;xn/

is nontrivial if and only if there is some x with P .x;x; : : : ;x/ 6D0. Hence it is sufficient
to check that the invariant polynomial

Tr..De.�2�u/. � //
n/

is not trivial on gu .

Let tu be the Cartan subalgebra of gu , which corresponds to t under the canonical
bijection k˚p ' k˚ ip . There is an action of the Weyl group W on tu , we de-
note its space of invariant polynomials by SW

� .tu/. By a theorem of Chevalley (see
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Bourbaki [5]), restriction induces an isomorphism

S
Gu
� .gu/Š SW

� .tu/:

In particular, it suffices to check that Tr..De.�2�u/. � //
n/ is not trivial on tu .

By assumption the Cartan algebra t is contained in p . (This can actually always be
achieved by a suitable conjugation.) Thus tu� ip . This implies that, for t 2 tu , De�u.t/

belongs to the second factor of u.N /˚u.N /, and thus De.�2�u/.t/DDe�u.t/ for
t 2 tu , which proves the equivalence of (i) and (ii). Finally we note that, for t 2p ,
Tr..De�.t//

n/ and Tr..De�u.i t//n/ coincide up to a power of i . The equivalence of
(ii) and (iii) follows.

Corollary 5 Let G=K be a symmetric space of noncompact type. If d WD

dim.G=K/ � 3 mod 4, then every nontrivial representation �W G ! GL.N;C/ has
nonvanishing Borel class ��bd 6D 0 2H d

c .GIR/.

Proof We apply Lemma 3 with d D 2n� 1, that is n is even.

For each t 2 t we have that

De�u.i t/ 2 u.N /˚u.N /

has purely imaginary eigenvalues, since matrices in u.N /˚u.N / are skew-symmetric.
Hence, if � is nontrivial (and thus De�u 6� 0), the eigenvalues of .De�u.i t//n are
either all positive (if n � 0 mod 4) or all negative (if n � 2 mod 4). In either case
Tr..De�u.i t//n/ 6D 0.

3.2 Borel class of Lie algebra representations

3.2.1 Preliminaries Let g be a semisimple Lie algebra and R.g/ its (real) repre-
sentation ring, with addition ˚ and multiplication ˝. Let t be a Cartan subalgebra
of g .

In this section we consider, for n 2N , the map ˇ2n�1W R.g/!CŒt � given by

ˇ2n�1.�/.t/D Tr.�.t/n/:

For representations �1; �2 , one has ˇ2n�1.�1˚�2/D ˇ2n�1.�1/Cˇ2n�1.�2/ and
ˇ2n�1.�1˝�2/D ˇ2n�1.�1/ˇ2n�1.�2/.

By Lemma 3 a representation �W G!GL.N;C/ has nontrivial Borel class ��b2n�1 6D0

in H 2n�1
c .GIR/ if and only if Tr.De�.A/

n/ 6D 0 for some A 2 t , in other words if
and only if the associated Lie algebra representation � DDe�W g! gl.N;C/ satisfies

ˇ2nC1.�/ 6D 0 2CŒt �:
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In this section we will investigate for which fundamental representations of Lie algebras
the latter condition is satisfied.

In the following subsections we will consider complex simple Lie algebras g and the
ring RC.g/ � R.g/ of their C–linear representations. The general picture can be
reduced to that of C–linear representations in view of the following observations.

Noncomplex Lie algebras Let � W g! gl.N;C/ be an R–linear representation of a
simple Lie-algebra g which is not a complex Lie algebra. Then g˝C is a simple
complex Lie algebra and � is the restriction of some C–linear representation g˝C!
gl.N;C/. Let t be a Cartan subalgebra of g . Then it is obvious that an element
t 2 t ˝C with

Tr.�.t/n/ 6D 0

exists if and only if such an element exists in t . Thus � has nontrivial Borel class if
and only if the C–linear representation � ˝C has nontrivial Borel class.

R–linear representations of complex Lie algebras If g is a simple complex Lie
algebra, then each R–linear representation � W g!gl.N;C/ is of the form �D�1˝�2

for C–linear representations �1; �2 . The equality

Tr.�.t/n/D Tr.�1.t/
n/Tr.�2.t/

n/:

implies that R–linear representations with b2n�1.�/ exist only if there are C–linear
ones.

In the sequel we will go through the fundamental representations of simple Lie algebras
and discuss whether their Borel class is nontrivial. The results will be subsumed in
Section 3.3 in the proof of Theorem 3. For faster reading we are going to highlight the
exceptional cases that will occur in the proof of Theorem 3.

3.2.2 g D sl.l C 1;C/ Let V D ClC1 be the standard representation, with basis
e1; : : : ; elC1 . Then

RC.g/D ZŒA1; : : : ;Al �

with Ak the induced representation on ƒkV ; cf [14, page 377]. In particular, irre-
ducible representations occur as representations of dominant weight in tensor products
of the fundamental representations A1; : : : ;Al . We compute ˇ2n�1 on the fundamental
representations Ak ; k D 1; : : : ; l .

A basis of ƒkV is given by

fei1
^ � � � ^ eik

W 1� i1 < � � �< ik � l C 1g:
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As Cartan subalgebra we may choose the diagonal matrices

t D fdiag.h1; : : : ; hl ; hlC1/ W h1C � � �C hlC1 D 0g:

diag.h1; : : : ; hl ; hlC1/ acts on ei1
^ � � � ^ eik

by multiplication with hi1
C � � � C hik

.
Hence

ˇ2n�1.Ak/

0BB@
h1 0 � � � 0

0 h2 � � � 0

� � � � � �

0 0 � � � hlC1

1CCAD X
1�i1<���<ik�lC1

.hi1
C � � �C hik

/n:

If k D l D 1 then hn
1
C hn

2
is a multiple of h1C h2 D 0 if and only if n is odd. Thus

for l D 1 we have ˇ2n�1.A1/ 6D 0 if n is even and ˇ2n�1.A1/D 0 if n is odd.

If k D 1 and l � 2, then
PlC1

iD1 hn
i does not vanish for example for h1 D 2, h2 D�1,

h3 D � � � D hl D 0; hlC1 D�1.

If 2� k � l and nD 1, thenX
1�i1<���<ik�lC1

.hi1
C � � �C hik

/D
� l

k�1

�
.h1C � � �C hl�1/D 0;

thus ˇ1.Ak/D 0.

If 2 � k � l and n > 1, then ˇ2n�1.Ak/ 6D 0. Indeed, nontriviality can be seen for
example by considering again the diagonal matrix .2;�1; 0; : : : ; 0;�1/ 2 t , for which
we obtain X

1�i1<���<ik�lC1

.hi1
C � � �C hik

/n D .2n
� 1/

�� l�2

k�1

�
�

� l�1

k�1

��
< 0:

Conclusion The exceptional cases with ˇ2n�1.Ak/D 0 occur for

� k D l D 1, n odd,

� 2� k � l , nD 1.

3.2.3 gD spin.2l;C/ Let V DC2l with C–basis e1; : : : ; el ; f1; : : : ; fl . Let Q be
the quadratic form given by Q.ei ; fi/DQ.fi ; ei/D 1 for i D 1; : : : ; l , Q.ei ; fj /D

Q.fi ; ej /D 0 for i 6D j and Q.ei ; ej /DQ.fi ; fj /D 0 for all i; j D 1; : : : ; l .

Following [14, page 268 ff] we consider spin.2l;C/ as the skew-symmetric matrices
with respect to the quadratic form QW V �V !C . (All quadratic forms are equivalent
over C under a suitable change of base, the corresponding Lie groups SO.Q/ �
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GL.N;C/ are conjugate, thus it is sufficient to consider the Lie algebra spin.Q/ with
respect to this quadratic form Q.)

Let D1W spin.2l;C/! gl.V / be the standard representation.

Then
RC.g/D ZŒD1; : : : ;Dl�2;S

C;S��

with Dk W spin.2l;C/! gl.ƒkV / the representation induced from D1 on ƒkV , and
S˙ the half-spinor representations.

As a Cartan subalgebra we may choose the diagonal matrices

t D fdiag.h1; : : : ; hl ;�h1; : : : ;�hl/ W h1; : : : ; hl 2Cg:

First we look at ˇ2n�1.Dk/ for the fundamental representations Dk .

A basis of ƒkV is given by

fei1
^� � �^eip^fj1

^� � �^fjk�p
W0�p�k; 1� i1< � � �< ip� l; 1�j1< � � �<jk�p� lg:

diag.h1; : : : ; hl ;�h1; : : : ;�hl/ acts on ei1
^ � � � ^ eip ^fj1

^ � � � ^fjk�p
by multipli-

cation with hi1
C � � �C hip � hj1

� � � � � hjk�p
. Hence

ˇ2n�1.Dk/

0BBBBBBB@

h1 0 � � � 0 0 � � �

0 h2 � � � 0 0 � � �

� � � � � �

0 0 � � � �h1 0 � � �

0 0 � � � 0 �h2 � � �

� � � � � �

1CCCCCCCA
D

X
1�i1<���<ip�l;

1�j1<���<jk�p�l

.hi1
C � � �C hip � hj1

� � � � � hjk�p
/n:

If n is even, then we get a nonvanishing polynomial. This follows from Corollary 5 or
more explicitly for example from

ˇ2n�1.Dk/.diag.1; 0; : : : ; 0;�1; 0; : : : ; 0// > 0:

If n is odd, then the permutation, which transposes ir and jr simultaneously for
all r , multiplies the sum by �1, but on the other hand preserves the sum. Thus
ˇ2n�1.Dk/D 0 if n is odd.

Next we look at ˇ2n�1.S
˙/ for the half-spinor representations S˙ .
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Let T V D
Lm

kD0 V ˝k be the tensor algebra of V and let Cl.Q/ D T V =I.Q/ be
the Clifford algebra of Q, where I.Q/ is the ideal generated by all v˝ vCQ.v; v/1

with v 2 V . The grading of
Lm

kD0 V ˝k induces a well-defined Z=2Z–grading
Cl.Q/D Cl.Q/even˚Cl.Q/odd on the Clifford algebra.

Denote by Eij the elementary matrix with entry 1 at position .i; j / and entries 0 else.
Then

fAi WDEi;i �ElCi;lCi ; i D 1; : : : ; lg

is a basis of t .

By [14, pages 303–305], there is an injective homomorphism

�W spin.Q/! Cl.Q/even

which maps, in particular, Ai to 1
2
.ei ˝fi � 1/.

Let W be the C–subspace of V spanned by e1; : : : ; el .

From the proof of [14, Lemma 20.9] we have a homomorphism

ˆW Cl.Q/! gl.ƒ�W /

ˆ.ei/.v1 ^ � � � ^ vk/D ei ^ v1 ^ � � � ^ vkwith

ˆ.fi/.v1 ^ � � � ^ vk/D

kX
jD1

.�1/j�12Q.vj ; fi/v1 ^ � � � bvj � � � ^ vk

for all v1 ^ � � � ^ vk 2ƒ
�W and i D 1; : : : ; l , which implies

ˆ

�
1

2
.ei ˝fi � 1/

�
.ei1
^ � � � ^ eik

/D
1

2
ei1
^ � � � ^ eik

if i 2 fi1; : : : ; ikg and

ˆ

�
1

2
.ei ˝fi � 1/

�
.ei1
^ � � � ^ eik

/D�
1

2
ei1
^ � � � ^ eik

if i 62 fi1; : : : ; ikg.

By [14, page 305], restriction of ˆ to Cl.Q/even gives rise to an isomorphism

ˆeven
W Cl.Q/even

! End.ƒevenW /˚End.ƒoddW /:

Let �1; �2 be the projections from End.ƒevenW /˚ End.ƒoddW / to the first resp.
second summand. The induced homomorphisms

SC WD �1ˆ
even�W spin.Q/! End.ƒevenW /

S� WD �2ˆ
even�W spin.Q/! End.ƒoddW /
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give the positive resp. negative half-spinor representations that we are going to consider.

Thus

S˙.Ai/.ei1
^ � � � ^ eik

/D
1

2
ei1
^ � � � ^ eik

if i 2 fi1; : : : ; ikg and

S˙.Ai/.ei1
^ � � � ^ eik

/D�
1

2
ei1
^ � � � ^ eik

if i 62 fi1; : : : ; ikg.

For the positive half-spinor representation SC and any n 2N we obtain

ˇ2n�1.S
C/

0BBBBBBB@

h1 0 � � � 0 0 � � �

0 h2 � � � 0 0 � � �

� � � � � �

0 0 � � � �h1 0 � � �

0 0 � � � 0 �h2 � � �

� � � � � �

1CCCCCCCA
D

1

2n

X
0�k�l
k even

X
jI jDk

�X
i2I

hi �

X
j 62I

hj

�n

:

If n is even, then ˇ2n�1.S
C/ 6D 0 follows from Corollary 5.

If n is odd and l is even, then for each I with kDjI j even we have I 0 WD f1; : : : ; lg�I

with k 0DjI 0j even and .
P

i2I hi�
P

j 62I hj /
n cancels against .

P
i2I 0 hi�

P
j 62I 0 hj /

n .
Thus all summands cancel and ˇ2n�1.S

C/D 0.

We prove that the polynomial is nontrivial for all n � l with n� l mod 2, in partic-
ular if n and l are both odd. It suffices to show that for example the coefficient of
hn�lC1

1
h2 : : : hn is not zero. First we observe that the coefficient of hn�lC1

1
h2 : : : hn

in .
P

i2I hi �
P

j 62I hj /
n is

n!

.n� l C 1/!
.�1/n�k if 1 2 I

resp.
n!

.n� l C 1/!
.�1/l�k if 1 62 I:

Thus the coefficient of hn�lC1
1

h2 : : : hn in
P
jI jDk.

P
i2I hi �

P
j 62I hj /

n is

n!

.n� l C 1/!

�� l�1

k�1

�
.�1/n�k

C

� l�1

k

�
.�1/l�k

�
:

All summands have the same sign because of n� l mod 2. Thus ˇ2n�1.S
C/ 6D 0.
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For the negative half-spinor representation S� and any n 2N we obtain

ˇ2n�1.S
�/

0BBBBBBB@

h1 0 � � � 0 0 � � �

0 h2 � � � 0 0 � � �

� � � � � �

0 0 � � � �h1 0 � � �

0 0 � � � 0 �h2 � � �

� � � � � �

1CCCCCCCA
D

1

2n

X
0�k�l
k odd

X
jI jDk

�X
i2I

hi �

X
j 62I

hj

�n

:

If n is even, then ˇ2n�1 .S
�/ 6D 0 by Corollary 5.

If n is odd, then the same argument as in the computation of ˇ2n�1.Dk/D 0 shows

ˇ2n�1.S
C/Cˇ2n�1.S

�/D 0;

thus ˇ2n�1.S
C/ 6D 0 implies ˇ2n�1.S

�/ 6D 0 if n� l and n� l mod 2.

Conversely, if n is odd and l is even, then ˇ2n�1 .S
�/D 0.

Conclusion The cases with ˇ2n�1.�/D 0 are precisely

� � DDk (1� k � l � 2), n odd,

� � D S˙ , l even, n odd.

3.2.4 g D spin.2l C 1;C/ Let V DC2lC1 with C–basis e1; : : : ; el ; f1; : : : ; fl ;g ,
and Q the quadratic form given by Q.g;g/ D 1;Q.ei ; fi/ D Q.fi ; ei/ D 1 for
i D 1; : : : ; l , and Q. � ; � /D 0 for all other pairs of basis vectors.

Following [14, page 268 ff] we consider spin.2lC1;C/ as the skew-symmetric matrices
with respect to the quadratic form QW V �V !C . Let C1W spin.2l C 1;C/! gl.V /

be the standard representation. Then

RC.g/D ZŒC1; : : : ;Cl�1;S �

with Ck W spin.2l C 1;C/! gl.ƒkV / the representation induced from C1 on ƒkV ,
and S the spinor representation.

As a Cartan subalgebra we may choose the diagonal matrices

t D fdiag.h1; : : : ; hl ;�h1; : : : ;�hl ; 0/ W h1; : : : ; hl 2Cg:

Then the computation of ˇ2n�1 on Ck is exactly the same as for spin.2l;C/ and Dk ,
in particular ˇ2n�1.Ck/ 6D 0 for n even and ˇ2n�1.Ck/D 0 for n odd.

We look at ˇ2n�1.S/ for the spinor representation S . As in the case of spin.2l;C/,
we have �W spin.Q/! Cl.Q/even with �.Ei;i �ElCi;lCi/D

1
2
.ei ˝fi � 1/.
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Let W be the C–subspace of V spanned by e1; : : : ; el . It follows from the proof of
[14, Lemma 20.16] that Cl.Q/ acts on ƒ�W as follows: the action of ei resp. fi , for
i D 1; : : : ; l is defined as in the case of spin.2l;C/, and g acts as multiplication by 1
on ƒevenW and as multiplication by -1 on ƒoddW . In particular, we have again that
1
2
.ei ˝fi � 1/ acts by sending ei1

^ � � � ^ eik
to 1

2
ei1
^ � � � ^ eik

if i 2 fi1; : : : ; ikg

resp. to �1
2
ei1
^ � � � ^ eik

if i 62 fi1; : : : ; ikg.

This action gives rise to an isomorphism Cl.Q/even Š End .ƒW / (see [14, page 306]).
The induced action of spin.Q/ on ƒW is the spinor representation S .

Let fAi W i D 1; : : : ; lg be a basis of t , where

Ai DEi;i �ElCi;lCi :

The element Ai acts on ei1
^ � � �^ eik

by multiplication with 1
2

if i 2 fi1; : : : ; ikg and
by multiplication with �1

2
if i 62 fi1; : : : ; ikg. Thus we obtain for any n 2N ,

ˇ2n�1.S/

0BBBBBBB@

h1 0 � � � 0 0 � � �

0 h2 � � � 0 0 � � �

� � � � � �

0 0 � � � �h1 0 � � �

0 0 � � � 0 �h2 � � �

� � � � � �

1CCCCCCCA
D

1

2n

X
0�k�l

X
jI jDk

�X
i2I

hi �

X
j 62I

hj

�n

:

Thus, by the same argument as for Dk and Ck , ˇ2n�1 .S/ D 0 for n odd and
ˇ2n�1 .S/ 6D 0 for n even.

Conclusion The cases with ˇ2n�1.�/D 0 are precisely

� � D Ck (1� k � l � 1), n odd,

� � D S , n odd.

3.2.5 g D sp.l;C/ Let V DC2l with basis fe1; : : : ; el ; f1; : : : ; flg. Consider the
symplectic form QW V �V !R given by Q.ei ; fi/D 1D�Q.fi ; ei/ for i D 1; : : : ; l ,
and Q. � ; � /D 0 for each other pair of basis vectors. Let Sp.l;C/ be the Lie group of
linear maps preserving this symplectic form. Then its lie algebra sp.l;C/ consists of
matrices �

A B

C D

�
;

such that the .l�l/–blocks A;B;C;D satisfy BT D B;C T D C;AT D �D . As a
Cartan subalgebra we may choose the diagonal matrices

t D fdiag .h1; : : : ; hl ;�h1; : : : ;�hl/ W h1; : : : ; hl 2Cg :
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Then
RC.g/D ZŒB1; : : : ;Bl �

where by [14, page 377] the fundamental representations Bk are the induced repre-
sentations of sp.l;C/ on ker.�k W ƒ

kV !ƒk�2V / for k D 1; : : : ; l , where �k is the
contraction using Q defined in [14, page 260] by

�k.v1 ^ � � � ^ vk/D
X
i<j

Q.vi ; vj /.�1/iCj�1v1 ^ � � � ^ yvi ^ � � � ^ yvj ^ � � � ^ vk :

We consider ˇ2n�1 for the fundamental representations Bk ; k D 1; : : : ; l .

If n is even, then ˇ2n�1 .Bk/ 6D 0 follows from Corollary 5.

We claim that ˇ2n�1 .Bk/ D 0 if n is odd. This can be seen as follows. Consider
the involution B 2 gl.2l;C/ given by B.ei/ D fi ;B.fi/ D �ei for i D 1; : : : ; l . It
induces an involution on ƒkV . B preserves the symplectic form Q, thus we have

�k.Bv1 ^ � � � ^Bvk/

D

X
i<j

Q.Bvi ;Bj /.�1/iCj�1Bv1 ^ � � � ^
cBvi ^ � � � ^

cBvj ^ � � � ^Bvk

D

X
i<j

Q.vi ; vj /.�1/iCj�1Bv1^� � �^
cBvi^� � �^

cBvj^� � �^BvkDB.�k.v1^� � �^vk//:

In particular B maps ker.�k/ to itself. If fb1; : : : ; bdim.ker.�k//g is a basis of
dim.ker.�k//, then fBb1; : : : ;Bbdim.ker.�k//g is a basis of dim.ker.�k//.

Let h � ; � i be the standard scalar product on C2l such that fe1; : : : ; el ; f1; : : : ; flg is an
orthonormal basis. Note B preserves this scalar product. Thus, if fb1; : : : ; bdim.ker.�k//g

is an orthonormal basis of ker.�k/ � C2l , then fBb1; : : : ;Bbdim.ker.�k//g is an or-
thonormal basis of ker.�k/ as well and we have

Tr.Bk.H /n/D

dim.ker.�k//X
iD1

hBk.H /nbi ; bii D

dim.ker.�k//X
iD1

hBk.H /nBbi ;Bbii

for each H 2 sp.l;C/.

On the other hand, for H D diag.h1; : : : ; hl ;�h1; : : : ;�hl/ 2 t � sp.l;C/ and n odd
we have

hBk.H /nei ; eii D hn
i ; hBk.H /nfi ; fii D �hn

i

for i D 1; : : : ; n, which implies

hBk.H /nei ; eii D �hBk.H /nBei ;Beii; hBk.H /nfi ; fii D �hBk.H /nBfi ;Bfii:
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From bilinearity of the scalar product we conclude

hBk.H /nv; vi D �hBk.H /nBv;Bvi

for all v 2C2l , in particular for v D b1; : : : ; bdim.ker.�k// 2 ker.�k/. Thus

dim.ker.�k//X
iD1

hBk.H /nbi ; bii D �

dim.ker.�k//X
iD1

hBk.H /nBbi ;Bbii;

which implies

Tr.Bk.H /n/D

dim.ker.�k//X
iD1

hBk.H /nbi ; bii D 0:

Conclusion The cases with ˇ2n�1 .Bk/D 0 are precisely

� 1� k � l , n odd.

3.2.6 Exceptional Lie groups For the applications of Theorem 2 and Theorem 3
we will have to consider only odd-dimensional manifolds and therefore we are only
interested in Lie groups which admit a symmetric space of odd dimension. The only
exceptional Lie group admitting an odd-dimensional symmetric space is E7 with
dim .E7=E7 .R//D 163. The fact that 163� 3 mod 4 implies by Corollary 5 that
��b163 6D 0 holds for each irreducible representation � .

For completeness we also show, at least for a specific representation, that ��b2n�1 6D 0

holds for each n � 6. Namely, we consider the representation �W E7! GL .56;C/,
which has been constructed by Adams [1, Corollary 8.2], and we are going to show
that this representation satisfies ��b2n�1 6D 0 for each n� 6, in particular for nD 82.

By [1, Chapter 7–8] there is a monomorphism Spin.12/� SU.2/=Z2!E7 and the
Cartan subalgebra of the Lie algebra e7 coincides with the Cartan subalgebra t of
spin.12/˚ spin.2/. By [1, Corollary 8.2], the restriction of � to Spin.12/�SU.2/ is
�1

12
˝�1˚S�˝ 1, where �1

12
resp. �1 are the standard representations and S� is

the negative spinor representation.

For even n, we know that ��b2n�1 6D 0. If n is odd then, for the derivative �1

of the standard representation �1 of SU.2/ we have Tr .�1.h/
n/ D 0, whenever

h 2 t \ spin.2/ belongs to the Cartan subalgebra of spin.2/, because the latter are the
diagonal .2x2/–matrices of trace 0. Thus the first direct summand �1

12
˝�1 does not

contribute to Tr.�.h/n/. Hence, for h D .hspin; hspin/ 2 t � spin.12/˚ spin.2/, we
have Tr.�.h/n/D Tr.S�.hspin/

n/. But the nontriviality of the latter has already been
shown in Section 3.2.3.
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3.3 Conclusion

In this section, we discuss, for which symmetric spaces G=K (irreducible, of non-
compact type, of dimension 2n� 1) and which representations �W G!GL.N;C/ the
inequality ��b2n�1 6D 0 holds.

Theorem The following is a complete list of irreducible symmetric spaces G=K of
noncompact type and fundamental representations �WG!GL.N;C/ with ��b2n�1 6D 0

for 2n� 1 WD dim.G=K/.

Symmetric Space Representation

SLl.R/=SOl ; l � 0; 3; 4; 7 mod 8 any fundamental representation
SLl.C/=SUl ; l � 0 mod 2 any fundamental representation
SL2l.H/=Spl ; l � 0 mod 2 any fundamental representation
Spinp;q =.Spinp �Spinq/, any fundamental representation
p; q � 1 mod 2;p 6� q mod 4

Spinp;q =.Spinp �Spinq/, positive and negative
p; q � 1 mod 2;p � q mod 4 half-spinor representation

SOl.C/=SOl ; l � 3 mod 4 any fundamental representation
Spl.C/=Spl ; l � 1 mod 4 any fundamental representation
E7.C/=E7 any fundamental representation

Proof By Lemma 3 it suffices to check whether ˇ2n�1.�/ 6� 0, where � is the Lie
algebra representation induced by � . Thus we can use the results from Section 3.2.

We use the classification of symmetric spaces as it can be read off Onishchik and
Vinberg [25, Table 4, page 229 ff]. Of course, we are only interested in symmetric spaces
of odd dimension. A simple inspection shows that all odd-dimensional irreducible
symmetric spaces of noncompact type are given in the first table on the next page.

If 2n� 1� 3 mod 4, then n is even and by Corollary 5 all representations �W G!
GL.N;C/ satisfy ��b2n�1 6D 0. This applies to the symmetric spaces in the second
table on the next page.

Next we look at the irreducible locally symmetric spaces of dimension � 1 mod 4.

For those G=K , whose Lie algebra g is not a complex Lie algebra (this concerns the
first 3 cases), we can, as observed in Section 3.2.1, directly apply the results for the
respective complexifications. Thus we have to check whether ˇ2n�1.�C/ 6D 0.
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Symmetric Space Dimension

SLl.R/=SOl ; l � 0; 3; 4; 7 mod 8 1
2
.l � 1/.l C 2/

SLl.C/=SUl ; l � 0 mod 2 l2� 1

SL2l.H/=Spl ; l � 0 mod 2 .l � 1/.2l C 1/

Spinp;q =.Spinp �Spinq/;p; q � 1 mod 2 pq

SOl.C/=SOl ; l � 2; 3 mod 4 1
2
l.l � 1/

Spl.C/=Spl ; l � 1 mod 2 l.2l C 1/

E7.C/=E7 163

Symmetric Space Condition

SLl.R/=SOl l � 0; 7 mod 8

SLl.C/=SUl l � 0 mod 2

SL2l.H/=Spl l � 0 mod 4

Spinp;q =.Spinp �Spinq/ p; q � 1 mod 2;p 6� q mod 4

SOl.C/=SOl l � 3 mod 4

Spl.C/=Spl l � 1 mod 4

E7.C/=E7

� For SLl.R/=SOl ; l � 3; 4 mod 8, every fundamental representation � satisfies
��b2n�1 6D 0. (Indeed l � 3; n � 3, thus we are not in one of the exceptional cases
from Section 3.2.2.)

� For SL2l.H/=Spl ; l � 2 mod 4, every fundamental representation � satisfies
��b2n�1 6D 0. (Indeed the complexification of sl2l.H/ is sl4l.C/. We have 4l � 8

and n� 3, thus we are not in one of the exceptional cases from Section 3.2.2.)

� For Spinp;q =.Spinp �Spinq/;p; q � 1 mod 2;p� q mod 4, the positive and neg-
ative half-spinor representations are the only fundamental representations � satisfying
��b2n�1 6D 0. (The assumptions imply that the complexification is spin.2l;C/ with l

odd, because of 2l D pC q � 2 mod 4. In particular n� l mod 2 and we are not in
the exceptional case of Section 3.2.3.)

For those G=K whose Lie algebra g is a complex Lie algebra, we use the fact that
each R–linear representation is of the form �1˝ �2 . We get:

� For SOl.C/=SOl ; l � 3 mod 4, we have l � n mod 2 and by Section 3.2.4 no
fundamental representation � satisfies ��b2n�1 6D 0.

� For Spl.C/=Spl ; l � 1 mod 4, by Section 3.2.5 no fundamental representation �
satisfies ��b2n�1 6D 0.
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Example (Goncharov) Consider hyperbolic space Hd D Spind;1 =.Spind �Spin1/.
It was shown in [15] that the half-spinor representations have nontrivial Borel class if
d is odd. The above results show that for d � 3 mod 4 each irreducible representation
has nontrivial Borel class, but for d � 1 mod 4 the positive and half-negative spinor
representation are the only fundamental representations with this property.

For d D 3 we will however compute in Section 3.4 that the invariants coming from
irreducible representations, albeit all distinct, are rational multiples of each other.

3.4 Some clues on computation

So far we have been using Lemma 3 to decide when ��b2n�1 6D 0. In this subsection
we will give some clues to the actual computation of ��b2n�1 .

Recall that H�.gu; k/ is the cohomology of the complex of Gu –invariant forms on
Gu=K . For a d –dimensional compact symmetric space Gu=K , there is an isomorphism
H d .gu; k/ ' H d .Gu=KIR/ ' R given by integration over ŒGu=K�. Moreover, a
Gu –invariant d –form is uniquely determined by its value on an orthonormal (for the
metric given by the negative of the Killing form) basis X1; : : : ;Xd of TŒe�Gu=K' ip .
By definition, the volume form takes the value 1 on each orthonormal basis. On the
other hand, the volume form represents vol.Gu=K/ŒGu=K�

v 2 H d .Gu=K/, where
ŒGu=K�

v means the dual of the fundamental class. Thus we have:

Lemma 4 Let Gu=K be a compact symmetric space of dimension d , ! 2 C d .gu; k/

a Gu –invariant d –form and X1; : : : ;Xd an orthonormal basis of ip . Then

Œ!�D ! .X1; : : : ;Xd / vol .Gu=K/ ŒGu=K�
v
2H d .Gu=KIR/ :

The Borel class b2n�1 2H 2n�1 .u.N // is represented by b2n�1.X1; : : : ;X2n�1/D

1

.2� i/n
.�1/n.n� 1/!

.2n� 1/!

X
�2S2n�1

.�1/� Tr.X�.1/ŒX�.2/;X�.3/� � � � ŒX�.2n�2/;X�.2n�1/�/:

Under the identification H 2n�1.u.N / ˚ u.N /;u.N // ' H 2n�1.u.N //, the ele-
ment bu˚u

2n�1
is represented by bu˚u

2n�1
.Y1; : : : ;Y2n�1/D b2n�1.X1; : : : ;X2n�1/. Here

Y1; : : : ;Y2n�1 2 u.N /˚ u.N / and X1 WD �2.Y1/; : : : ;X2n�1 WD �2.Yn/ 2 u.N /,
where �2 is the projection to the second summand of u.N /˚u.N /.

After the identification H 2n�1.gl.N;C/;u.N //'H 2n�1.u.N /˚u.N /;u.N // this
gives b

gl
2n�1

represented by b
gl
2n�1

.y1; : : : ;y2n�1/D i2n�1b2n�1.x1= i; : : : ;x2n�1= i/.
Here x1 D �.y1/; : : : ;x2n�1 D �.y2n�1/, where � W gl.N;C/! iu.N / is the pro-
jection associated to gl.N;C/D u.N /˚ iu.N /.
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Borel element In the notation of [6, Section 9.7], we have b
gl
2n�1
D .1=.2� i/n/ˆ2n�1 .

The Borel element Bon 2C �.gl.N;C/;u.N /IR.n�1// is given in [6, Section 9.7] by
Bon.

V2n�1
jD1 yj /Dˆ2n�1.

V2n�1
jD1 .xy

t
j Cyj /// and this is then used to define the Borel

regulator.

For xj 2 iu.N / we have xxt
j Cxj D 2xj , hence

Bon.
V2n�1

jD1 xj /D .2� i/n22n�1b2n�1.x1; : : : ;x2n�1/:

Example (Hyperbolic 3–manifolds) A Killing form-orthonormal basis of

TŒe� SL.2;C/=SU.2/D fB 2Mat.2;C/ W Tr.B/D 0;B D xBT
g

is f.1=2
p

2/H; .1=2
p

2/X; .1=2
p

2/Y g, with

H D

�
1 0

0 �1

�
; X D

�
0 1

1 0

�
; Y D

�
0 i

�i 0

�
:

For a representation �W SL.2;C/! GL .mC 1;C/ and � DDe� we have

��b
gl
3
.H;X;Y /

D
i

.2� i/2
1

6

�
2 Tr.� iH Œ� iX; � iY �/C2 Tr.� iX Œ� iY; � iH �/C2 Tr.� iY Œ� iH; � iX �/

�
D�

1

6�2
Tr..� iH /2/�

1

6�2
Tr..� iX /2/�

1

6�2
Tr..� iY /2/:

Each .mC1/–dimensional irreducible representation is equivalent to �m given by

�m.iH /D

0BB@
im 0 0 � � � 0

0 i.m� 2/ 0 � � � 0

� � � � � � �

0 0 � � � � �im

1CCA ;

�m.iX /D

0BBBB@
0 �i 0 � � � 0

�im 0 �2i � � � 0

0 �i.m� 1/ 0 � � � 0

� � � � � � �im

0 0 0 � � �i 0

1CCCCA ;

�m.iY /D

0BBBB@
0 1 0 � � � 0

�m 0 2 � � � 0

0 �.m� 1/ 0 � � � 0

� � � � � � m

0 0 0 � � �1 0

1CCCCA �
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The diagonal entries of �m.iH /2 are

.�m2;�.m� 2/2; : : : ; 0; : : : ;�.m� 2/2;�m2/;

and the diagonal entries of �m.iX /
2 and �m.iY /

2 are both equal to

.�m;�m� 2.m� 1/;�2.m� 1/� 3.m� 2/; : : :/:

In particular Tr.�m.iX /
2/D Tr.�m.iY /

2/. After scaling with 1=2
p

2 we conclude

��mb
gl
3

�
1

2
p

2
H;

1

2
p

2
X;

1

2
p

2
Y

�
D

i

96
p

2�2

mX
kD0

.m� 2k/2C
i

48
p

2�2

mX
kD0

k.m� kC 1/C .kC 1/.m� k/:

Comparison of Borel element and hyperbolic volume form If m D 1, that is for
the inclusion �1 D j W SL.2;C/� GL.2;C/, we get

j �b
gl
3

�
1

2
p

2
H;

1

2
p

2
X;

1

2
p

2
Y

�
D

i

16
p

2�2
; j �bu˚u

3

�
i

2
p

2
H;

i

2
p

2
X;

i

2
p

2
Y

�
D

1

16
p

2�2
:

Therefore by Lemma 4, the element j �bu˚u
3
2 H 3.gu; k/ ' H 3.S3/ represents

.1=.16
p

2�2// vol.S3/ŒS3�.

Explicit computation shows the projection SL.2;C/!H3 maps

1

2
p

2
H;

1

2
p

2
X;

1

2
p

2
Y

to vectors of hyperbolic length 1=
p

2. Thus the hyperbolic metric is given by one
half of the Killing form: lengths are multiplied by 1=

p
2, volumes by 1=2

p
2. By

Lemma 4 this means that the isomorphism H 3.sl.2;C/; spin.2// ' H 3.S3/ sends
the class Œdvol� of the hyperbolic volume form to .1=2

p
2/ vol.S3/ŒS3�. In particular

j �b
gl
3
2C 3.sl.2;C/; spin.2// is 1=8�2 times the class of the hyperbolic volume form.

For the Borel element we have Bo2 D�32�2b
gl
3

, it follows that the Borel element is
�16 times the hyperbolic volume. (Dupont and Sah [10] and Neumann and Yang [24]
compute the imaginary part of the Borel regulator to be 1=2�2 times the hyperbolic
volume, but they are using a different definition.)
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Example (SL .3;R/ =SO.3/) Let �W SL .3;R/!GL .3;C/ be the inclusion. Since
SL .3;R/ =SO.3/ is 5–dimensional, we wish to compute ��b5 . Let

H1 D

0@i 0 0

0 �i 0

0 0 0

1A ; X1 D

0@0 i 0

i 0 0

0 0 0

1A ; Y1 D

0@0 �1 0

1 0 0

0 0 0

1A :
We will use the convention that, for A 2 fH;X;Y g if A1 is defined (in a given basis),
then A2 is obtained via the base change e1! e2; e2! e3; e3! e1 and A3 is obtained
via the base change e1! e3; e3! e2; e2! e1 .

We have ŒH1;H2�D0; ŒH1;X1�D2Y1; ŒH1;X2�D�Y2; ŒH1;X3�D�Y3; ŒX1;X2�D

iY3 and more relations are obtained out of these ones by base changes.

A basis of ip is given by H1;H2;X1;X2;X3 . There are 120 summands in the formula
for ��b5.H1;H2;X1;X2;X3/. (24 of them contain ŒH1;H2�D 0 or ŒH2;H1�D 0.)

Each summand appears four times because, for example, H1ŒH2;X1�ŒX2;X3� also
shows up as �H1ŒX1;H2�ŒX2;X3�;�H1ŒH2;X1�ŒX3;X2� and H1ŒX1;H2�ŒX3;X2�.
Thus one has to add 30 summands (6 of them zero), and multiply their sum by 4.

We note that all summands of the form H1ŒH2; � �Œ � ; � � give after base change corre-
sponding elements of the form H2ŒH1; � �Œ � ; � �, which are summed with the opposite
sign. Thus these terms cancel each other. The same cancellation occurs between
summands of the form X2Œ � ; � �Œ � ; � � and X3Œ � ; � �Œ � ; � �. Thus we only have to sum up
summands of the form X1Œ � ; � �Œ � ; � � and we get

.2� i/35!��b5.H1;H2;X1;X2;X3/

D 4 Tr.X1ŒH1;H2�ŒX2;X3�/C 4 Tr.X1ŒX2;X3�ŒH1;H2�/

C 4 Tr.X1ŒH1;X2�ŒX3;H2�/C 4 Tr.X1ŒX3;H2�ŒH1;X2�/

C 4 Tr.X1ŒH1;X3�ŒH2;X2�/C 4 Tr.X1ŒH2;X2�ŒH1;X3�/

D 0C 0C 4 Tr.X1Y2Y3/C 4 Tr.X1Y3Y2/C 4 Tr.�2X1Y3Y2/C 4 Tr.�2X1Y2Y3/

D 0C 0C 4i C 4i � 8i � 8i D�8i:

Note that H1;H2;X1;X2;X3 are pairwise orthogonal and have norm 2
p

3. Dividing
each of them by 2

p
3 gives an orthonormal basis, on which evaluation of ��b5 gives

��b5

�
1

2
p

3
H1;

1

2
p

3
H2;

1

2
p

3
X1;

1

2
p

3
X2;

1

2
p

3
X3

�
D

1

.2
p

3/5

1

5!

1

.2� i/3
.�8i/

D
1

34560
p

3�3
:

The Borel element is �256�3ib5 , so its value on the orthonormal basis is �i=.135
p

3/.
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4 The cusped case

Outline In Section 2 we defined 
 .M / for closed manifolds M D �nG=K , using
the image of the fundamental class ŒM � 2 H�.M / Š H� .B�/ in H�.BG/ for the
construction, and the volume cocycle in C �simp.BG/ for the proof of the desired non-
triviality properties. In this section we would like to give an analogous construction for
cusped manifolds.

For this we would like to map the fundamental class

ŒM; @M � 2H�

�
D Cone

�[
i

@iM !M

��
ŠH�

�
D Cone

�[
i

B�i! B�

��
(all notions are defined in Section 4.2) to the homology of some completion BGcomp

of BG , where the completion should be chosen such that the volume class extends
to BGcomp .

The completion BGcomp that we define in Section 4.2.2 will be chosen such that for
each c 2 @1G=K a cone over BG is added. There is a natural extension of the volume
class to this set and the addition of all points at infinity will leave us the flexibility to
remember the geometry of cusps.

Now, if G=K has rank one, then each path-component @iM corresponds to a cusp
ci 2 @1G=K and this will allow us to define an image of ŒM; @M � in H� .BGcomp/.

Of course this does not apply to SL.N;C/=SU.N /, which has rank N � 1, but if
�W .G;K/! .SL.N;C/;SU.N // is a representation for a rank one space G=K , then
we get a well-defined image of ci in @1 SL.N;C/=SU.N / and can thus define the
image of ŒM; @M � in H� .BSL.N;C/comp/.

In Section 4.4 we will show this homology class has a preimage in H� .BSL.N;C//.
This then finally allows to generalize the Goncharov construction (Theorem 3).

4.1 Preparations

Let G be a connected, semisimple Lie group with maximal compact subgroup K .
Thus G=K is a symmetric space of noncompact type. Throughout Section 4 we will
make the assumption rank.G=K/D 1.

We will consider a manifold M with boundary @M such that int.M /DM �@M is a
finite-volume locally symmetric space of noncompact type of rank one. This means

int.M /D �nG=K

for a (not necessarily cocompact) lattice � �G .
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We note that connected, semisimple Lie groups are perfect, hence each representation
�W G! GL.N;C/ has image in SL.N;C/. Further we will assume that � maps K

to SU.N /, which can be achieved upon conjugation.

4.1.1 Negative curvature and visibility manifolds If int.M /D�nG=K is a locally
symmetric space of noncompact type of rank one, then its sectional curvature sec is
bounded between two negative constants, after scaling with a constant factor one has

�4� sec� �1:

In particular, by [11, page 440], the universal covering Bint.M /DG=K is a “visibility
manifold” in the sense of [11].

The structure of finite-volume quotients of visibility manifolds has been described
by Eberlein [11]. The following Lemma collects those results from the proof of [11,
Theorem 3.1] that we will frequently use in this paper. (We denote by @1Bint.M /D

@1.G=K/ the ideal boundary of Bint.M /DG=K , that is the set of equivalence classes
of geodesic rays, where rays are equivalent if they are asymptotic; see [11, Section 1].)

Lemma 5 Let zN be a simply connected, complete Riemannian manifold, � be a
discrete group of isometries of zN and N D zN =� .

If zN is a visibility manifold [11] of nonpositive sectional curvature and N has finite
volume, then each end of N has a neighborhood E homeomorphic to Uc=Pc , where
c 2 @1 zN , Uc is a horoball centered at c and Pc � � is a discrete group of parabolic
isometries fixing c .

In particular, if N has finitely many ends, then there are end neighborhoods E1; : : : ;Es

such that KDN�
Ss

iD1 Ei is compact and for iD1; : : : ; s there are homeomorphisms
of pairs .Ei ; @ xEi/! .Uci

=Pci ;Lci
=Pci

/, where ci 2 @1 zN and Lci
is the horosphere

centered at ci which bounds the horoball Uci
.

Corollary 6 If M is a compact manifold with boundary, @1M; : : : ; @sM are the
connected components of @M , and N WD int.M /DM � @M carries a Riemannian
metric of finite volume such that zN is a visibility manifold, then, with the notation of
Lemma 5, we have a homeomorphism of tuples

.M; @1M; : : : ; @sM /!

��
zN �

s[
iD1

Uci

�
=�;Lc1

=Pc1
; : : : ;Lcs

=Pcs

�
:

Proof By the proof of [11, Theorem 3.1], the neighborhood Ei is Riemannian collared,
which implies in particular the existence of a diffeomorphism Ei Š @ xEi � .0;1/. The
claim follows.
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We will say that �ci � @1 zN is the set of parabolic fixed points corresponding to @iM .

It is at this point where we need the assumption rank.G=K/D1. In the higher rank case
it is not true that there is a unique � –orbit of parabolic fixed points �ci � @1.G=K/

associated to a boundary component @iM . The isomorphism �1M Š � does not send
�1@iM to a subgroup of some Fix .ci/, if rank.G=K/� 2.

�1 –injective boundary In the proof of Proposition 1 and Theorem 3 we will use that
�1@iM ! �1M is injective for each path-component @iM of @M . We are going to
explain how this fact follows from well-known properties of visibility manifolds.

Corollary 7 Under the assumptions of Corollary 6 we have that �1@iM ! �1M is
injective for each path-component @iM of @M .

Proof From Corollary 6 we get a commutative diagram

@iM //

��

M

��

Lci
=Pci

// . zN �
Ss

iD1 Uci
/=�

where the vertical arrows are homeomorphisms, thus inducing isomorphisms �1@iM!

Pci
and �1M ! � , and the horizontal arrows are induced by inclusions. If Pci

! �

were not injective, then the lift of �W Lci
=Pci

! . zN �
Ss

iD1 Uci
/=� to the universal

coverings would not be injective. However the lift of � is the inclusion z�W Lci
!

zN �
Ss

iD1 Uci
.

Moreover M and all @iM are aspherical by the Cartan–Hadamard Theorem and
by [11].

Identification of �1@iM with a subgroup of �1M If @M is not connected, then
we have to choose different basepoints x;x1; : : : ;xs for the definition of �1.M;x/;

�1.@1M;x1/; : : : ; �1.@sM;xs/. We can obtain subgroups �1; : : : ; �s � �1.M;x/

isomorphic to �1.@1M;x1/; : : : ; �1.@sM;xs/, respectively, as follows:

Definition 3 Let M be a manifold, @1M; : : : ; @sM the connected components of @M ,
x 2M;x1 2 @1M; : : : ;xs 2 @sM; � D �1.M;x/.

Fix lifts zx; zx1; : : : ; zxs of x;x1; : : : ;xs to the universal covering � W �M ! M , for
i D 1; : : : ; s fix pathes zli W Œ0; 1�! �M with zli.0/ D zx and zli.1/ D zxi , let li D � ı
zli W Œ0; 1�!M , denote Œli � its homotopy class rel. f0; 1g and define

�i WD fŒli �
�1
� 
 � Œli � W 
 2 �1.@iM;xi/g � �

to be the subgroup of � which corresponds to �1.@iM;xi/ after conjugation with Œli �.
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The subgroup �i depends on the chosen lift zxi but, for given zx; zxi , not on zli .

With the homeomorphism from Corollary 6 we obtain �i DPci
. We will say that ci is

the cusp associated to �i . In particular, �i � Fix.ci/.

(The choice of ci in its � –orbit depends on the chosen lift zxi of xi .)

Compactification of universal covering by cusps In the following Corollary we
consider Bint.M /[

Ss
iD1 �ci as a subspace of Bint.M /[ @1Bint.M /, where the latter

has the well-known topology defined for example in [11, Section 1]. The definition of
the disjoint cone D Cone is given in Section 4.2.1 below.

Corollary 8 Let the assumptions of Lemma 5 hold and let a fixed homeomorphism
f W int.M /�

Ss
iD1 Ei!M be given. Then we have a projection

x� WBint.M /[

s[
iD1

�ci!D Cone
� s[

iD1

@iM !M

�
such that

x�jAint.M /�
Ss

iD1 �Uci
W Bint.M / �

s[
iD1

�Uci
! int.M /�

s[
iD1

Ei

is the restriction of the universal covering � WBint.M /! int.M /, x�j�Uci
W �Uci

!

Ei [Cone .@iM /�Ci is a covering with deck group � and x� maps �ci to Ci for
i D 1; : : : ; s , where Ci is the cone point of Cone .@iM /.

Proof Each boundary component @iM corresponds to an end (with neighborhood Ei )
of int.M / and thus by Lemma 5 to a unique � –orbit �ci with ci 2 @1Bint.M / such
that Ei D Uci

=Pci
. Let xEi be the one-point compactification of xEi , denote CCi be

the compactifying point, and let MC be the compactification of M obtained by adding
CC

1
; : : : ;CCs to M . (This is homeomorphic to the space MC which will be considered

in Section 4.1.2.) Then we have homeomorphisms f0W int.M /�
Ss

iD1 Ei !M and
fi W
xEi ! Cone .@iM / such that f0 D fi on @Ei for i D 1; : : : ; s , hence they yield

a well-defined homeomorphism f W MC!D Cone
�Ss

iD1 @iM !M
�

which sends
CCi to Ci , the cone point over @iM .

Moreover, the universal covering � WBint.M /! int.M / sends 
Uci
to Ei for each


 2 � , thus it can be continuously extended to �ci by � .
 ci/D CCi for 
 2 � .

Composition of � with the homeomorphism f yields the desired projection x� .
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Again, by the remark after Corollary 6, also Corollary 8 requires the assumptions
of Lemma 5 and would not work if Bint.M / D G=K were a symmetric space with
rank.G=K/ � 2. (However there is a version of Corollary 8 for locally symmetric
spaces of Q–rank 1, which we will exploit in forthcoming work with Inkang Kim.)

4.1.2 Generalized Cisneros-Molina–Jones construction The aim of Section 4 will
be to associate a K–theoretic invariant to cusped locally symmetric spaces. We mention
that, by an argument completely analogous to [8], one can define an element ˛.M / and
can associate to each representation �W .G;K/! .SL.N;C/;SU.N // the pushforward

.B�/d .˛.M // 2Hd .B.SL.N;C/;F.B///;

where B � SL.N;C/ is a maximal unipotent subgroup.

In the case of hyperbolic 3–manifolds, Cisneros-Molina and Jones lifted the invariant
˛.M / to K3.C/˝Q, and proved its nontriviality by relating it to the Bloch invariant.
We describe now how to do a very similar construction for arbitrary locally symmetric
spaces of noncompact type with finite volume. Unfortunately we did not succeed to
evaluate the Borel class on the constructed invariant. This is the reason why we will
actually pursue another approach, using relative group homology and closer in spirit
to [15], in the remainder of this section. The construction is however included at this
point because its main step, Lemma 6, will be crucial for the proof of Proposition 1.

Let M be an aspherical (compact, orientable, connected) d –manifold with aspherical
boundary, F �C a subring and �W �1M ! SL.F/ a representation3.

To push forward the fundamental class ŒMC� 2Hd .MCIQ/ one would like to have a
map RW MC!BSL.F/C such that the following diagram commutes up to homotopy:

M
q //

jB�jhM

��

MC

R
��

jBSL.F/j incl // jBSL.F/jC

Given this, one can consider R�ŒMC� and use the isomorphism Hd .jBSL.F/jCIQ/Š
Hd .jBSL.F/jIQ/ to define an element in Hd .jBSL.F/jIQ/.

3Notation: We will denote by F �C an arbitrary subring (with 1), while A�C will denote a subring
satisfying the assumptions of Lemma 2.
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Lemma 6 Let M be a manifold with boundary such that M and the path-components
@1M; : : : ; @sM of @M are aspherical. Let qW M !MC be the canonical projection.

Let F � C a subring and let �W �1M ! SL.N IF/ be a representation such that
� .�1@iM / is unipotent for i D 1; : : : ; s .

Then there exists a continuous map RW MC! jBSL.N IF/jC such that

R ı q D incl ıjB�j ı hM ;

where inclW jBSL.N IF/j ! jBSL.N IF/jC is the inclusion.

Proof Let F be the homotopy fiber of jBSL .N;F/ j ! jBSL.N IF/jC . It is well-
known (eg [8, page 336]) that �1F is isomorphic to the Steinberg group St.F/. Let
ˆW St.N IF/! SL.N IF/ be the canonical homomorphism.

By assumption, � maps �1@1M into some maximal unipotent subgroup B�SL .n;F/
of parabolic elements. B is conjugate to B0 � SL .n;F/, the group of upper triangular
matrices with all diagonal entries equal to 1. By [26, Lemma 4.2.3] there exists a homo-
morphism …W B0! St.N IF/ with ˆ…D id. Applying conjugations and composing
with � , we get a homomorphism � W �1@1M ! St .N IF/ such that ˆ� D �j�1@1M .

The component @1M is aspherical, hence � is induced by some continuous mapping
g1W @1M ! F , and the diagram

@1M
i1 //

g1

��

M

jB�jhM

��
F

j // jBSL.N;F/j

commutes up to some homotopy Ht .

This construction can be repeated for all connected components @1M; : : : ; @sM of @M .
For each r D 1; : : : ; s we get a continuous map gr W @r M ! F such that jgr �

jB�jhM ir . Altogether, we get a continuous map gW @M ! F such that jg is homo-
topic to jB�jB�jhM i .

By [8, Lemma 8.1] this implies the existence of the desired map R.

Hence one obtains an element in Hd .jBSL.F/jIQ/. Unfortunately we did not succeed
to prove its nontriviality, ie to evaluate the Borel class. Therefore we will in the remain-
der of Section 4 pursue a different approach, closer in spirit to [15], but surrounding
the problem that @M may be disconnected.
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We mention that another “basis-point independent” approach might use multicomplexes
in the sense of Gromov, but also here we were able to evaluate the Borel class only in
the case that there are 2 or less boundary components. Also, in the case of hyperbolic
3–manifolds, yet another approach is due to Neumann and Yang [24]. For hyperbolic 3–
manifolds of finite volume, Zickert [28] has given a direct construction of a fundamental
class ŒM; @M �2H3 .SL.2;C/;B0/, even in the case of possibly disconnected boundary.
It should be interesting to generalize and compare the different constructions.

4.2 Cuspidal completion

4.2.1 Disjoint cone We start with a notational remark: the notion of disjoint cone
for topological spaces resp. simplicial sets. This notion will be useful for considering
the homology of a group relative to possibly more than one subgroup.

Disjoint cone of topological spaces Let X be a topological space and A1; : : : ;As�X

a set of (not necessarily disjoint) subspaces. There is a (not necessarily injective)
continuous mapping

i W A1 P[ � � � P[As!X

from the disjoint union A1 P[ � � � P[As to X .

We define the disjoint cone

D Cone
� s[

iD1

Ai!X

�
to be the pushout of the diagram

A1 P[ � � � P[As
i //

��

X

��
Cone.A1/ P[ � � � P[Cone.As/ // D Cone.

Ss
iD1 Ai!X /

If X is a CW–complex and A1; : : : ;As are disjoint sub–CW–complexes, then for
� � 2,

H�

�
D Cone

� s[
iD1

Ai!X

��
ŠH�

�
Cone

� s[
iD1

Ai!X

��
DH�

�
X;

s[
iD1

Ai

�
:
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Disjoint cone of simplicial sets We will need the cuspidal completion of a classifying
space, which fits into the setting of simplicial sets. (The point of the construction is
that it may remember the geometry of the cusps of locally symmetric spaces. Thus it
will serve as a technical device to handle the cusped case.)

For a simplicial set .B; @B; sB/ and a symbol c , the cone over B with cone point c is
the quasisimplicial set whose k –simplices are

� either k –simplices in B ,

� or cones over .k�1/–simplices in B with cone point c . (By convention, the
cone point is always the last vertex of the cone over a .k�1/–simplex.)

The boundary operator @ in Cone.B/ is defined by @�D@B� if � 2B and @Cone .�/D
Cone .@B�/C .�1/dim.�/C1� if � 2 B .

If Y is a simplicial set and fBi W i 2 Ig a family of simplicial subsets indexed over a
set I , then we define the quasisimplicial set D Cone

�S
i2I Bi! Y

�
as the pushout

P
S

i2I Bi
//

��

Y

��
P
S

i2I Cone .Bi/ // D Cone
�S

i2I Bi! Y
�
:

4.2.2 Construction of BGcomp and B�comp Recall from the beginning of Section
2.1 that BG is the simplicial set realizing the bar construction. Thus its k –simplices
are of the form .g1; : : : ;gk/ with g1; : : : ;gk 2G . We recall that @1.G=K/ denotes
the ideal boundary of G=K . The point of the following definition is that it allows
to consider the geometry at each c 2 @1.G=K/ separately. (As in the remark after
Corollary 6 the definition of B�comp will assume rank.G=K/D 1.)

Definition 4 Let G=K be a symmetric space of noncompact type. We define the
cuspidal completion BGcomp of BG to be

D Cone
�

P[
c2@1.G=K /

BG! BG

�
:

Notation The cone point of corresponding to c 2 @1.G=K/ will also be denoted
by c .
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Definition 5 Let M be a manifold with �1 –injective boundary @M , let @1M; : : : ;

@sM be the connected components of @M , fix x0 2M and xi 2 @iM for i D 1; : : : ; s ,
and let �i � � WD �1.M;x/ be defined according to Definition 3.

Assume that M satisfies the assumptions of Corollary 6 and let ci 2 @1Bint.M / be the
cusp associated to �i . Then we define

B�comp
DD Cone

� s[
iD1

B�i! B�

�
to be the quasisimplicial set whose k –simplices � are either of the form

� D .
1; : : : ; 
k/

with 
1; : : : ; 
k 2 � or for some i 2 f1; : : : ; sg of the form

� D .p1; : : : ;pk�1; ci/

with p1; : : : ;pk�1 2 �i .

Notation The cone point of Cone .B�i/�B�comp will be denoted by ci 2@1.G=K/,
the cusp associated to �i . This is justified by the following observation.

Observation 1 Let M be a compact manifold with boundary @M D@1M[: : :[@sM

such that int.M / D �nG=K is a locally symmetric space of noncompact type of
rank one with finite volume. Then B�comp � BGcomp , where the cone point ci of
Cone .B�i/ corresponds to ci 2 @1.G=K/ as the cone point of the corresponding
copy of Cone.BG/.

Remark B�comp , as a subset of BGcomp , depends on the chosen identification of
�1 .@iM;xi/ with a subgroup �i of � .

4.2.3 Volume cocycle In Section 2.3 we defined the volume cocycle c�d2C d
simp.BG/

for a symmetric space G=K of noncompact type. In this subsection we will extend
c�d to c�d 2 C d

simp .BGcomp/.

For the remainder of this section we fix some zx 2G=K . Let d D dim.G=K/.

We define the volume cocycle c�d 2 C d
simp .BGcomp/ as follows.

For .g1; : : : ;gd / 2 BG we define

c�d .g1; : : : ;gd /Dalgvol .str .zx;g1zx; : : : ;g1 : : :gd zx//D intstr.zx;g1zx;:::;g1:::gd zx/ dvol
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and for .p1; : : : ;pd�1; c/ 2 Cone.BG/ with c 2 @1.G=K/ we define

c�d .p1; : : : ;pd�1; c/D algvol .str .zx;p1zx; : : : ;p1 : : :pd�1zx; c//

D intstr.zx;p1zx;:::;p1:::pd�1zx;c/ dvol :

(This is defined because ideal d-simplices in a d –dimensional symmetric space G=K

of noncompact type have finite volume.)

The computation in Section 2.3 shows ıc�d .g1; : : : ;gdC1/D 0 for .g1; : : : ;gdC1/2

BG . Moreover, for .p1; : : : ;pd ; c/ 2 Cone.BG/ with c 2 @1.G=K/ we have

ıc�d .p1; : : : ;pd ; c/

D c�d

�
.p2; : : : ;pd ; c/C

d�1X
iD1

.p1; : : : ;pipiC1; : : : ;pd ; c/C.�1/dC1.p1; : : : ;pd /

�
D � � � D int@ str.zx;p1zx;:::;p1:::pd zx;c/ dvolD intstr.zx;p1zx;:::;p1:::pd zx;c/ d.dvol/D 0:

This proves c�d is a simplicial cocycle on BGcomp . Let cvd D Œc�d �2H d
simp.BGcomp/.

By construction we have c�d jBG D c�d and thus cvd jBG D comp.vd / for the volume
class vd D Œ�d � 2H d

c .GIR/ defined in Section 2.3.

The Borel class bd 2H d
c .GL.C/IR/ defined in Section 2.4 may also be considered

as a class bd 2H d
c .SL.C/IR/. For a representative ˇd 2 C d

c .SL.C/IR/ of bd we
define cˇd 2 C d

simp.BSL.C/IR/ by

cˇd .g1; : : : ;gd / WD ˇd .1;g1;g1g2; : : : ;g1g2 : : :gd /:

Then cˇd represents
comp.bd / 2H d

simp.BSL.C/IR/:

Lemma 7 Let d;N 2N with d odd. Let G=K be a d –dimensional symmetric space
of noncompact type. If �W .G;K/! .SL.N;C/;SU.N // is a representation, then
there exists a quasisimplicial set BSL.N;C/fb with

BSL.N;C/� BSL.N;C/fb � BSL.N;C/comp

and a homomorphism

cˇd W C
simp
d

.BSL.N;C/fbIR/!R;

such that

(i) cˇd jC
simp
d

.BSL.N;C/IR/ is a cocycle representing comp.bd /,
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(ii) we have

.B�/d .C
simp
d

.BGcomp
IR//� C

simp
d

.BSL.N;C/fbIR/

and ��cˇd represents c�cvd .
(In particular, cˇd is well-defined on .B�/dHd .BGcompIR/.)

Here, c� 2R is defined by the equality ��bd D c�vd 2H d
c .GIR/ from Theorem 2.

Proof Let dbol be4 an SL.N;C/–invariant differential form on SL.N;C/=SU.N /

representing �SL.N;C/.bd /, where �SL.N;C/ is the map from H d
c .SL.N;C/IR/ to

H d .sl.N;C/; spin.N // from Section 2.4.2. Then a representative ˇd of bd is given by

ˇd .g0;g1; : : : ;gd / WD intstr.g0zx;g1zx;:::;gd zx/ dbol

for each .g0;g1; : : : ;gd /2 .SL.N;C//dC1 . (This follows from the explicit description
of the van Est isomorphism in [9, Theorem 1.1].)

The van Est isomorphism is functorial and ��bd D c�vd , so ��dbol�c�dvol is an
exact differential form. Moreover, ��dbol and dvol are G –invariant differential forms
on G=K . Hence they are harmonic and ��dbol�c�dvol is an exact harmonic form,
thus zero and we conclude

��dbolD c�dvol :

Let zX D SL.N;C/=SU.N /. Define

BSL.N;C/fbd

WD BSL.N;C/d[
[

c2@1 zX

˚
.p1; : : : ;pd�1; c/ 2 Cone.BSL.N;C// W

intstr.zx;p1zx;:::;p1:::pd�1zx;c/ dbol<1
	
:

This defines the d-simplices of BSL.N;C/fb and we define BSL.N;C/fb to be the
quasisimplicial set generated by BSL.N;C/fb

d
under face maps.

Define cˇd W BSL.N;C/fb
d
!R by

cˇd .g1; : : : ;gd /D intstr.zx;g1zx;:::;g1:::gd zx/ dbol

if .g1; : : : ;gd / 2 BSL.N;C/d , and

cˇd .p1; : : : ;pd�1/D intstr.zx;:::;p1zx;p1:::pd�1zx;c/ dbol

if .p1; : : : ;pd�1/2BSL.N;C/d�1 , c2@1 zX and .p1; : : : ;pd�1; c/2BSL.N;C/fb
d

.

By construction, cˇd jC
simp
d

.BSL.N;C/IR/ is a cocycle representing comp.bd /.

4The reason for the notation “dbol” is that dbol relates to the Borel class bn as dvol relates to vn .
The superscript “f b ” in BSL.N;C/fb stands for “finite Borel class”.
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The homomorphism �W G ! SL.N;C/ extends to a well-defined map @1G=K !

@1 zX , thus we obtain a well-defined simplicial map B�W BGcomp! BSL.N;C/comp .
Now ��dbolD c�dvol so .B�/d .C

simp
d

.BGcompIR//� C
simp
d

.BSL.N;C/fbIR/ and
��cˇd represents c�cvd .

Definition 6 Let F � C be a subring (with 1) and G=K a symmetric space of
noncompact type. Then we define

BG.F/comp
DD Cone

�
P[

c2@1.G=K /
BG.F/! BG.F/

�
� BGcomp:

For G D SL.N;C/ we define

BSL .N;F/fb D BSL.N;C/fb\BSL .N;F/comp :

4.3 Straightening of interior and ideal simplices

The purpose of this section is to describe an explicit realization of the isomorphism

H�

�
D Cone

� s[
iD1

@iM !M

��
ŠH

simp
�

�
D Cone

� s[
iD1

B�i! B�

��
for � D �1M; �1 D �1@1M; : : : ; �s D �1@sM , under the assumptions of Lemma 5,
that is if M is a finite-volume quotient of a nonpositively curved visibility manifold.

In Section 2.1 we used straightening to define the Eilenberg–Mac Lane map on genuine
simplices. In this section we will extend the Eilenberg–Mac Lane map to ideal simplices.

Definition 7 Let M be a compact manifold with boundary, let @1M; : : : ; @sM be the
connected components of @M . Let x0;xi ; �; �i be defined according to Definition 3.
We denote

yC�.M / WD C�

�
D Cone

� s[
iD1

@iM !M

��
:

For i D 1; : : : ; s let Ci be the cone point of Cone.C�.@iM //. A vertex of a simplex in
yC�.M / is an ideal vertex, if it is in one of the cone points C1; : : : ;Cs , and an interior
vertex else. Then we define

yC
x0
� .M /� yC�.M /

to be the subcomplex freely generated by those simplices for which

� either all vertices are in x0 ,
� or the last vertex is an ideal vertex Ci , all other vertices are in x0 , and the

homotopy classes (rel. f0; 1g) of all edges between interior vertices belong to
�i � �1.M;x0/.
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By construction, yC�.M / and yC x0
� .M / are chain complexes.

From now on we assume that the assumptions of Corollary 8 (and thus the assumptions
of Lemma 5) hold for N D int.M /DM � @M . In particular we have the projection
x� WBint.M /[

Ss
iD1 �ci!D Cone

�Ss
iD1 @iM !M

�
from Corollary 8.

Definition 8 Let the assumptions of Corollary 8 hold. We say that a simplex in
D Cone

�Ss
iD1 @iM !M

�
is straight if some (hence any) lift to Bint.M /[

Ss
iD1 �ci�

Bint.M / [ @1Bint.M / is straight.

In particular a k –simplex � 2 yC �.M / is straight if it is either of the form

� D � .str .zx0; zx1; : : : ; zxk//

with zx0; zx1; : : : ; zxk 2
Bint.M / or of the form

� D � .str .zx0; zx1; : : : ; zxk�1; 
 ci//

with zx0; zx1; : : : ; zxk�1 2
Bint.M /; 
 2 �; i 2 f1; : : : ; sg.

Definition 9 Let M be a manifold satisfying the assumptions of Definition 8. Let
x0 2M . Then we define the chain complex

yC
str;x0
� .M / WD ZŒf� 2 yC x0

� .M / W � straightg�:

Lemma 8 Let M be a compact manifold with boundary, let @1M; : : : ; @sM be the
connected components of @M . Let x0;xi ; �; �i be defined according to Definition 3.
Moreover let the assumptions of Corollary 8 hold.

(a) Then there is an isomorphism of chain complexes

ˆW yC
str;x0
� .M /! C

simp
� .B�comp/ :

(b) The inclusion
yC

str;x0
� .M /! yC�.M /

is a chain homotopy equivalence.

(c) The composition of ‰ WDˆ�1 with the inclusion

yC
str;x0
� .M /! C�

�
D Cone

� s[
iD1

@iM !M

��
induces an isomorphism

EM�W H
simp
� .B�comp/!H�

�
D Cone

� s[
iD1

@iM !M

��
:
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Proof (a) In Section 2.1 we defined a chain isomorphism

ˆW C
str;x0
� .M /! C

simp
� .B�/

by ˆ.�/ D .g1; : : : ;gk/, where � 2 C
str;x0

k
.M / is a continuous map � W �k !M

with �.wj /D x0 for j D 0; : : : ; k , and gj 2 � D �1.M;x0/ is the homotopy class
(rel. vertices) of � j
j

for j D 1; : : : ; k . Moreover, we defined a chain isomorphism

‰W C
simp
� .B�/! C

str;x0
� .M /

by ‰.g1; : : : ;gk/ WD�.str.zx0;g1zx0;g1g2zx0; : : : ;g1 : : :gk zx0// and we proved ˆ‰D
id and ‰ˆD id. We will now extend ˆ and ‰ to chain isomorphisms

ˆW yC
str;x0
� .M /! C

simp
� .B�comp/;

‰W C
simp
� .B�comp/! yC

str;x0
� .M /

and will prove that the extensions are inverse to each other.

Let � 2 yC str;x0

k
.M / be a straight k –simplex which is not in C

str;x0

k
.M /. This means

that the lift z� of � to

Bint.M /[

s[
iD1

�ci �Bint.M /[ @1Bint.M /

is of the form

z� D �.str.
0zx0; 
1zx0; : : : ; 
k�1zx0; 
 ci//

for some i 2 f1; : : : ; sg and some 
0; : : : ; 
k�1; 
 2 �i . We define

ˆ.�/D .
1

�1
0 ; : : : ; 
k�1


�1
k�2; ci/;

where ci is the cone point of Cone.B�i/.

Conversely, if a simplex � 2 C
simp
� .B�comp/ does not belong to C

simp
� .B�/ then

� 2 Cone.B�i/ for some i 2 f1; : : : ; sg, but � 62 B�i , thus � is of the form

� D .p1; : : : ;pk�1; ci/ 2 C
simp
�

�
D Cone

� s[
iD1

B�i! B�

��
for some i 2 f1; : : : ; sg, with p1; : : : ;pk�1 2 �i and ci the cone point of Cone.B�i/.
Then we define

‰.�/D �.str.zx0;p1zx0; : : : ;p1 : : :pk�1zx0; ci// 2 yC
str;x0
� .M /:
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From Section 2.1 we have ‰.@�/D @‰.�/ for � 2 C
simp
� .B�/. On the other hand, if

� D .p1; : : : ;pk�1; ci/ 2 C
simp
� .B�comp/, then a straightforward computation shows

‰.@�/� @‰.�/D �.str.zx0;p2zx0; : : : ;p2 : : :pk�1zx0; ci//

��.str.p1zx0;p1p2zx0; : : : ;p1p2 : : :pk�1zx0; ci//:

Thus p1 2 �i � Fix.ci/ and � –invariance of �.str. � // implies ‰.@�/D @‰.�/, that
is ‰ is a chain map.

Clearly ˆ.�.str.zx0;p1zx0; : : : ;p1 : : :pk�1zx0; ci/// D .p1; : : : ;pd�1; ci/, therefore
ˆ‰ D id. On the other hand, a straight simplex � W �k !M with the first k vertices
in x0 and the last vertex in �ci is uniquely determined by the homotopy classes (rel.
vertices) of pj D Œ� j
j

� for j D 1; : : : ; k � 1, because its lift to �M must be in the
�–orbit of str.zx0;p1zx0; : : : ;p1 : : :pk�1zx0; ci/. Thus ‰ˆD id. This shows that ‰
and ˆ are inverse to each other, in particular both are chain isomorphisms.

(b) We define a chain homotopy yC�.M /! yC
x0
� .M /, left-inverse to the inclusion, by

induction on the dimension of simplices. First, for each v 2 C0 .@iM / we fix a chain
homotopy from v to xi inside @iM . The fixed path li from Definition 3 provides us
with a chain homotopy from xi to x0 . Composition of these two chain homotopies
yields a chain homotopy from v to x0 2

yC
x0

0
.M /. If v 2 C0.M /�C0 .@M /, then

we fix an arbitrary chain homotopy from v to x0 . For the cone points fix the constant
chain homotopy. Now for each 1–simplex e we have a chain homotopy of its vertices
into either x0 or one of the cone points. This chain homotopy of @e can be extended
to a chain homotopy of e . If e had vertices in @iM , then we observe that the chain
homotopy of the vertices consisted of two steps. In the first step the vertices were
homotoped inside @iM into xi . Thus e can be homotoped inside @iM into a loop with
vertices in xi , which then represents an element of �1 .@iM;xi/. In the second step the
vertices were homotoped along the li , thus e can be homotoped into a loop representing
an element of �i as defined in Definition 3. Thus we have a chain homotopy from
yC1.M / to yC x0

1
.M /. A standard argument shows that this chain homotopy can be

recursively extended to the yCk.M / for all k 2N .

We then apply the usual straightening procedure [2, Lemma C.4.3] to construct a chain
homotopy yC x0

� .M /! yC
str;x0
� .M /, left-inverse to the inclusion.

(c) This follows from (a) and (b).

Thus for d –dimensional compact, orientable Riemannian manifold M of nonpositive
sectional curvature, EM�1

d
ŒM; @M � 2 H

simp
d

�
D Cone

�Ss
iD1 B�i! B�

��
is well-

defined.
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4.4 Construction of x
.M /

The results of the previous sections allow us to consider the image of the fundamen-
tal class ŒM; @M � in H

simp
d

�
D Cone

�Ss
iD1 B�i! B�

��
and its pushforward, for

representations satisfying suitable assumptions, in H
simp
d

.BSL.N;F/fb/. The aim of
this subsection will be to show that this element has a (uniquely defined) preimage in
H

simp
d

.BSL.N;F//.

Proposition 1 Let M be a compact, oriented, connected manifold with boundary
components @1M; : : : ; @sM such that Int.M /D �nG=K is a locally symmetric space
of noncompact type of rank one with finite volume.

Fix x0 2M and xi 2 @iM for i D 1; : : : ; s , and fix the isomorphisms of �1.@iM;xi/

with subgroups �i of � D �1.M;x0/ given by Definition 3. Assume that, for some
subring F �C , we have an inclusion

j W .�; �i/! .G.F/; �i/:

Let
�W G.F/! SL.N;F/

be a representation. Denote by

ŒM; @M � 2Hd

�
D Cone

� s[
iD1

@iM !M

�
IQ

�
the fundamental class of M . Then

B.�j /� EM�1ŒM; @M � 2H
simp
d

.BSL.N;F/fbIQ/

has a preimage

x
 .M / 2H
simp
d

.BSL.N;F/IQ/:

The preimage does not depend on the chosen identification of �1@iM with a subgroup
�i � � .

Proof Let � 0i WD �.�i/ for i D 1; : : : ; s . In a first step we will prove that the desired
preimage exists if

B.�j /� EM�1Œ@iM �D 0 2H
simp
d�1

.B� 0i IQ/

for i D 1; : : : ; s . In the second step we will then prove this equality.
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Step 1 Assume that B.�j /� EM�1Œ@iM �D 0 2H
simp
d�1

.B� 0i IQ/ for i D 1; : : : ; s and
consider the commutative diagram

Zd .M;@M /
c //

@i

��

yZd .M /
ˆ ı str // Z simp

d
.B�comp/

Bj� // Z simp
d

.BG.F/comp/
B�� // Z simp

d
.BSL.N;F/fb/

Zd�1.@i M /
D // Zd�1.@i M /

EM�1

//

Cone

OO

Z
simp
d�1

.B�i /
D //

Cone

OO

Z
simp
d�1

.B�i /
B.�j/� //

Cone

OO

Z
simp
d�1

.B� 0
i
/

Cone

OO

where Zd .M; @M /�Cd .M; @M / is the subgroup of relative cycles, and for a relative
cycle z we define c.z/ D zCCone.@z/ 2 yCd .M / and @iz to be the image of @z 2
Cd�1.@M / under the projection from Cd�1.@M / to its direct summand Cd�1.@iM /.

If z 2 Cd .M; @M / is a relative cycle that represents ŒM; @M �, then @iz represents
Œ@iM �. By the assumption of Step 1 we have chains z0i 2 C

simp
d

.B� 0i/ with

@z0i D B.�j /� EM�1.@iz/;

then

B.�j /�ˆ.str.c.z///�
sX

iD1

Cone.z0i/ 2Z
simp
d

.BSL.N;F/fb/

is a genuine cycle in Z
simp
d

.BSL.N;F//, whose image in Zd .BSL.N;F/fb/ again rep-
resents B.�j /� EM�1ŒM; @M �. Therefore its homology class gives the desired x
 .M /.

Step 2 It remains to prove B.�j /� EM�1Œ@iM �D 0. Let fi W @iM !M be the inclu-
sion, qW M !MC the projection. Thus qfi is constant. Recall that �i �G consists
of parabolic isometries with the same fixed point in @1G=K (see [11, Theorem 3.1]),
thus �i and hence � 0i WD �.�i/ are unipotent and we can apply Lemma 6 and obtain a
continuous map

RW MC! jBSL.N;F/jC

such that
R ı q ıfi D incl ıjB.�j /j ı hM

ıfi :

In particular, incl ıjB.�j /j ıh@i M D incl ıjB.�j /j ıhM ıfi W @iM ! jBSL.N;F/jC

is constant.

Since incl ıjB.�j /jW jB�i j ! jBSL.N IF/jC factors over jB� 0i j
C and since

jB� 0i j � jBSL.N IF/j � jBSL.N IF/jC

are inclusions (the first by � 0i � SL.N IF/, the second by the definition of the plus
construction via attaching cells to jBSL.N IF/j), this implies that

incl ıjB.�j /j ı h@i M
W @iM ! jB�

0
i j
C

Algebraic & Geometric Topology, Volume 12 (2012)



206 Thilo Kuessner

is constant. Since incl�W H�.jB� 0i jIQ/!H�.jB�
0
i j
CIQ/ is an isomorphism,

jB.�j /j�h
@i M
� D 0;

in particular
jB.�j /j�h

@i M
� Œ@iM �D 0 2Hd�1.jB�

0
i jIQ/

for i D 1; : : : ; s .

But h@i M
� Œ@iM � is the image of EM�1Œ@iM � under the isomorphism H

simp
d�1

.B�i IQ/!
Hd�1.jB�i jIQ/ (see Section 2.1), hence jB.�j /j�h@i M

� Œ@iM � is the image of

B.�j /� EM�1Œ@iM �

under the isomorphism H
simp
d�1

.B� 0i IQ/!Hd�1.jB�
0
i jIQ/. Thus

B.�j /� EM�1Œ@iM �D 0:

Welldefinedness The construction of x
 .M / as the homology class represented by
B.�j /�ˆ.str.c.z///�

Ps
iD1 Cone.z0i/ involves a choice of chains z0i 2 C

simp
d

.B� 0i/

with @z0i D B.�j /� EM�1.@iz/.

If z0i and z00i are two such choices, then @z0i D @z00i implies z0i � z00i 2 Z
simp
d

.B� 0i/.
Now we have �i D �1@iM and @iM is an aspherical .d�1/–manifold, hence
cdQ.�i/D d � 1.

We claim that this implies cdQ.�
0
i/ � d � 1. By a theorem of Gruenberg one has

cdQ.�i/ D h.�i/ for a finitely generated torsion-free nilpotent group �i , where h

denotes the Hirsch length and cdQ the rational cohomological dimension. Also � 0i D
�.�i/ is nilpotent, finitely generated and obviously h.� 0i/� h.�i/. Let N �G be the
maximal nilpotent (in the sense of the Iwasawa decomposition) group containing �i ,
then �.N / is conjugate into the group of upper triangular matrices, in particular it
is torsion free. Thus � 0i is a finitely generated torsion-free nilpotent group, to which
Gruenberg’s Theorem applies, and we obtain

cdQ.�
0
i/D h.� 0i/� h.�i/D d � 1:

Hence the d –cycle z0i � z00i must be 0–homologous in C
simp
� .B� 0i/. This implies that

Cone.z0i/�Cone.z00i / is 0–homologous in C
simp
� .BSL.N;F/fb/ and the homology

class of x
 .M / does not depend on the choice of z0i .

Also, the construction of x
 .M / involves a choice of a relative cycle z 2Zd .M; @M /.

If z and z0 are two relative cycles representing ŒM; @M �, then z�z0D @wCu for some
w 2 Cd�1.M /;u 2Zd .@M /. Again Hd .�

0
i IQ/D 0 implies that B .�j /� EM�1.u/

is a boundary. Hence B .�j /�ˆ.str .c .z� z0/// is a boundary and thus the homology
class x
 .M / does not depend on the choice of z .
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Independence of �1@iM Š �i The identification of �1@iM with a subgroup of �
depends on a path zli W Œ0; 1�! �M . For two different paths one obtains subgroups which
are conjugate in � . Conjugation in � induces the identity homomorphism in group
homology, thus the image of H�.B�i/ in H�.B�/ and the image of H�.B�

0
i/ in

H�.BSL.N;F/fb/ do not depend on the chosen identification. In particular x
 .M /

does not depend on this identification.

Proposition 1 was proved in [15, Theorem 2.12] for the special case of hyperbolic
manifolds and half-spinor representations. The proof in [15] uses very special properties
of the half-spinor representations and seems not to generalize to other representations.

4.5 Evaluation of Borel classes

In Theorem 2 we proved for closed manifolds the equality hb2n�1; 
 .M /iD c� vol.M /.
The following theorem will prove the analogous result for the cusped case.

Theorem 3 (a) Let M be a compact, oriented, connected .2n�1/–manifold with
boundary components @1M; : : : ; @sM such that Int.M / is a locally symmetric
space of noncompact type Int.M / D �nG=K of rank one with finite volume.
Let �W .G;K/! .SL.N;C/;SU.N // be a representation and let c� be defined
by Theorem 2. Let

x
 .M / 2H2n�1.BSL.N; xQ/;Q/

be defined by Proposition 1, denote the image of x
 .M / in H2n�1.BGL.xQ/;Q/
by xx
 .M /, and define


 .M / WD pr2n�1.
xx
 .M // 2 PH2n�1.BGL.xQ/;Q/ŠK2n�1.xQ/˝Q;

where pr2n�1 is defined in Corollary 2. Then

hb2n�1; 
 .M /i D c� vol.M /:

(b) If � �G.A/ for a subring A�C that satisfies the assumption of Lemma 2 and
if � maps G.A/ to SL.N;A/5, and if


 .M / WD pr2n�1.
xx
 .M // 2 PH2n�1.BGL.A/;Q/ŠK2n�1.A/˝Q;

where xx
 .M / is the image of x
 .M / 2 H2n�1.BSL.N;A/;Q/ (defined by
Proposition 1) in H2n�1.BGL.A/;Q/, and pr2n�1 is given by Lemma 2, then

hb2n�1; 
 .M /i D c� vol.M /:

5For a semisimple Lie group G , each representation �W G ! SL.N;C/ is isomorphic to a repre-
sentation which maps G.A/ to SL.N;A/ . (This can be read off the classification of representations of
semisimple Lie groups; see [14].)
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Proof Denote d D 2n� 1.

The group G is a linear semisimple Lie group without compact factors, not locally
isomorphic to SL.2;R/. By Weil rigidity we can assume (upon conjugation) that
� �G.xQ/. By Corollary 2, AD xQ satisfies the assumptions of Lemma 2. Thus (a) is
a consequence of (b). We are going to prove (b).

Let z 2 Cd .M; @M / represent ŒM; @M �. Then @z 2 Cd�1.@M / and

zCCone.@z/ 2 yCd .M /� Cd

�
D Cone

� s[
iD1

@iM !M

��
represents the fundamental class.

From Corollary 8 we get a homeomorphism

D Cone
� s[

lD1

@iM !M

�
Š �nG=K[fc1; : : : ; csg;

where cl corresponds to the cone point of Cone .@lM / for l D 1; : : : ; s . Thus we can
define algvol .�/D int� dvol for � 2 C�

�
D Cone

�Ss
iD1 @iM !M

��
, where dvol

is the volume form for the locally symmetric metric and the cusps cl are declared to
have measure zero.

By Stokes’ Theorem, evaluation of the volume form on zCCone .@z/ does not depend
on the chosen representative z of ŒM; @M �. In particular we can, by Whitehead’s
Theorem, assume that z is given by a triangulation of .M; @M /. Then zCCone .@z/
is an ideal triangulation of M and evaluation of the volume form gives the sum of the
signed volumes of simplices in that triangulation, that is vol.M /. This shows that

algvol .zCCone .@z//D vol.M /:

Let x0;xi ; �; �i be defined according to Definition 3. Let

strW yC�.M /! yC
str;x0
� .M /

be the chain homotopy inverse of the inclusion given by part (b) of Lemma 8.

Then str.zCCone.@z// is homologous to zCCone.@z/, thus Stokes’ Theorem implies

algvol.str.zCCone.@z///D algvol.zCCone.@z//D vol.M /:

Let

zCCone.@z/D
rX

iD1

ai�i C

pX
jD1

bj�j

with �i 2 C�.M / and �j 2
Ss

lD1 Cone.C�.@lM // for i D 1; : : : ; r; j D 1; : : : ;p .
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Let w0; : : : ; wd be the vertices of the standard simplex �d . By the proof of Lemma 8,
the isomorphism

ˆW yC
str;x0
� .M /! C

simp
� .B�comp/

maps the interior simplex str.�i/ to

.
 i
1; : : : ; 


i
d / 2 B�;

where 
 i
k
2 � is the homotopy class of the (closed) edge from �i.wk�1/ to �i.wk/,

and the ideal simplex str.�j / to

.p
j
1
; : : : ;p

j

d�1
; clj / 2 Cone.B�lj ! B�/;

where �j 2 Cone.C�.@lj M // and clj 2 @1G=K is the cusp associated to �lj (cf the
remark after Definition 3) and p

j

k
is the homotopy class of the (closed) edge from

�j .wk�1/ to �j .wk/. Thus, in the setting of Proposition 1, we have that

.Bj /� EM�1ŒM; @M � 2Hd .BG.A/comp
IQ/

is represented by

rX
iD1

.
 i
1; : : : ; 


i
d /C

pX
jD1

.p
j
1
; : : : ;p

j

d�1
; clj /:

Let str.zx; 
 i
1
zx; : : : ; 
 i

1
� � � 
 i

d
zx/ be the unique straight simplex with vertices zx; 
 i

1
zx; : : : ;


 i
1
� � � 
 i

d
zx , and str.zx;pj

1
zx; : : : ;p

j
1
� � �p

j

d�1
zx; clj / the unique ideal straight simplex

with interior vertices zx;pj
1
zx; : : : ;p

j
1
� � �p

j

d�1
zx and ideal vertex clj .

By construction we have

x�.str.zx; 
 i
1zx; : : : ; 


i
1 � � � 


i
d zx//D str.�i/;

x�.str.zx;pj
1
zx; : : : ;p

j
1
� � �p

j

d�1
zx; clj //D str.�j /:

Hence

intstr.zx;
 i
1
zx;:::;
 i

1
���
 i

d
zx/ dvolG=K D intstr.zx;
 i

1
zx;:::;
 i

1
���
 i

d
zx/ x�
� dvolM

D intstr.�i / dvolM D algvol.str.�i//;

intstr.zx;pj

1
zx;:::;p

j

1
���p

j

d�1
zx;clj

/
dvolG=K D intstr.zx;pj

1
zx;:::;p

j

1
���p

j

d�1
zx;clj

/
x�� dvolM

D intstr.�j / dvolM D algvol.str.�j //:
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By the construction of the volume cocycle c�d in Section 4.2.3 this implies

c�d

� rX
iD1

ai.1; 

i
1; : : : ; 


i
d /C

pX
jD1

bj .1;p
j
1
; : : : ;p

j

d�1
; clj /

�

D

rX
iD1

ai algvol.str.�i//C

pX
jD1

bj algvol.str.�j //D algvol.zCCone.@z//D vol.M /:

By Lemma 7(b) and Definition 6, B.�j /� EM�1ŒM; @M � 2H
simp
� .BSL.N;A/fbIQ/.

By Lemma 7, there is cˇd W C
simp
d

.BSL.N;C/fbIR/! R such that cˇd restricted
to C

simp
d

.BSL.N;C/IR/ represents comp.bd / and ��cˇd represents c�cvd . (In
particular, cˇd is well-defined on .B�/�H

simp
d

.BG.A/compIQ/.) Then we have

Œcˇd �.B.�j /� EM�1ŒM;@M �/

D ��Œcˇd �..Bj /� EM�1ŒM; @M �/

D c�cvd .Bj� EM�1ŒM; @M �/

D c�c�d

� rX
iD1

.1; 
 i
1; : : : ; 


i
d /C

pX
jD1

.1;p
j
1
; : : : ;p

j

d�1
; cj /

�
D c� vol.M /:

Let i W BSL.N;A/! BSL.N;A/fb be the inclusion, then Proposition 1 gives

i�x
 .M /D B .�j /� EM�1 ŒM; @M � :

Applying Lemma 7(a) to C
simp
d

.BSL.N;A/IR/� C
simp
d

.BSL.N;C/IR/ we obtain

i�cˇd D comp .bd / :

Thus, confusing x
 .M / with its image in Hd .BSL.N;C/IR// we have

hbd ; x
 .M /i D comp.bd /.x
 .M //

D Œi�cˇd �.x
 .M //D Œcˇd �.i�x
 .M //

D Œcˇd �.B.�j /� EM�1ŒM; @M �/D c� vol.M /:

By Lemma 2 this implies hbd ; 
 .M /i D c� vol.M /.

Examples Cusped hyperbolic 3–manifolds were discussed to some extent in [24].

If M is any hyperbolic 3–manifold of finite volume, then �1M can be conjugated to a
subgroup of SL .2;F/, where F is an at most quadratic extension of the trace field [19],
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thus one gets an element in K3.F/˝Q. In [24, Section 9] some examples of this
construction are given. (The discussion in [24] is about elements ˇ.M / 2 B.F/˝Q
for the Bloch group B.F/ but of course, using Suslin’s isomorphism B.F/˝Q Š
Kind

3
.F/˝Q from [27] and the isomorphism Kind

3
.F/˝QŠK3.F/˝Q for number

fields, this construction yields elements in K3.F/˝Q associated to the respective
manifolds and it can actually be shown that 
 .M / corresponds to ˇ.M / under this
isomorphism.)

For example (see [24, Section 9.4]) for any number field F with just one complex place
there exists a hyperbolic 3–manifold of finite volume, such that its invariant trace field
equals F . The associated 
 .M / gives a nontrivial element, and actually a generator,
in K3.F/˝Q.
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