
Algebraic & Geometric Topology 12 (2012) 267–291 267

Lagrangian mapping class groups
from a group homological point of view

TAKUYA SAKASAI

We focus on two kinds of infinite index subgroups of the mapping class group
of a surface associated with a Lagrangian submodule of the first homology of a
surface. These subgroups, called Lagrangian mapping class groups, are known
to play important roles in the interaction between the mapping class group and
finite-type invariants of 3–manifolds. In this paper, we discuss these groups from
a group (co)homological point of view. The results include the determination of
their abelianizations, lower bounds of the second homology and remarks on the
(co)homology of higher degrees. As a byproduct of this investigation, we determine
the second homology of the mapping class group of a surface of genus 3 .

55R40; 32G15, 57R20

1 Introduction

Let †g be a closed oriented connected surface of genus g and let Hg be an oriented han-
dlebody of the same genus. As shown in Figure 1, put Hg in the standard position in R3

and consider †g to be the boundary of Hg . Fix a basis fx1;x2; : : : ;xg;y1;y2; : : : ;ygg

of H WDH1.†g/ as in the figure so that Ker.H1.†g/!H1.Hg// coincides with the
submodule L of H generated by fx1;x2; : : : ;xgg.

1 2 g

x1 x2 xg

y1 y2 yg

Figure 1. A symplectic basis of H1.†g/

The module H has a natural nondegenerate antisymmetric bilinear form �W H˝H!Z
called the intersection pairing. It is easy to see that L is a maximal direct summand
of H on which � restricts to 0. Such a submodule is said to be Lagrangian. By using

Published: 25 February 2012 DOI: 10.2140/agt.2012.12.267



268 Takuya Sakasai

the pairing �, we can naturally identify the quotient module H=L, the dual module
L� WD Hom.L;Z/ and the submodule Ly of H generated by fy1;y2; : : : ;ygg.

The mapping class group Mg of †g is the group of isotopy classes of orientation
preserving self-diffeomorphisms of †g . In this paper, we focus on subgroups of Mg

associated with the above fixed Lagrangian submodule L of H . More precisely, two
subgroups

Lg WD ff 2Mg j f�.L/DLg;

ILg WD ff 2Mg j f�jL D idLg

are studied through their group (co)homology, where f� denotes the induced automor-
phism of H for f 2Mg . We have ILg �Lg by definition and call them Lagrangian
mapping class groups or Lagrangian subgroups. The Torelli group Ig is defined by

Ig WD ff 2Mg j f� D idH g:

One motivation by which the author started to study the groups Lg and ILg is the fact
that they are infinite index subgroups of Mg including Ig . The importance to study
this kind of subgroups will be explained in Section 7.2 with the relationship to the
(non)triviality problem of even Miller–Morita–Mumford classes e2i 2H 4i.MgIQ/
pulled back to H 4i.IgIQ/.

Lagrangian subgroups have been studied by several researchers. Hirose studied a
generating system of Lg in [16], where Lg is called the homological handlebody
group. In fact, the group Lg can be seen as a homological extension of the handlebody
mapping class group Hg . Recall that the group Hg is the subgroup of Mg consisting
of isotopy classes of orientation preserving self-diffeomorphisms of †g D @Hg that
can be extended to self-diffeomorphisms of the handlebody Hg . We can easily check
that Lg DHgIg . Prior to Hirose’s work, Birman gave a generating set of Lg=Ig Š

Hg=.Hg \ Ig/ in [4] and we can give a generating set of Lg by combining her result
with Johnson’s finite generating set of Ig [19].

As for ILg , Levine conducted a series of investigations in [23; 24; 25]. He defined a
filtration of ILg called the Lagrangian filtration, which is analogous to the Johnson
filtration of Ig , by modifying the theory of Johnson homomorphisms so that it conforms
well to ILg . Then he gave an application of this filtration to the theory of homology
3–spheres.

Recently, the groups Lg and ILg appear and play important roles in the theory of
finite-type invariants of 3–manifolds. See Andersen, Bene, Meilhan and Penner [1],
Cheptea, Habiro and Massuyeau [10], Cheptea and Le [11] (with a slightly different
definition) and Garoufalidis and Levine [13], for example. However, it seems that the
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groups Lg and ILg have been studied separately. In this paper, we put Lg on the top
of the Lagrangian filtration of ILg and study them simultaneously as in the case of
Mg and Ig .

We first summarize the notation and fundamental facts on Lg and ILg in Section 2.
Then we will discuss the following in order.

� Section 3: Computation of H1.ILg/

� Section 4: Computations of H1.Lg=Ig/ and H2.Lg=Ig/

� Section 5: Computation of H1.Lg/ and a lower bound of H2.Lg/

� Section 7: Remarks on higher (co)homology of Lg and ILg

Precisely speaking, we study in Sections 3 and 5 the Lagrangian mapping class groups
of a surface with one boundary component and then derive the statements for those of
a closed surface in Section 6.

As a byproduct, we will give a remark that the second homology of the full mapping
class group of genus 3 has Z2 as a direct summand (Theorem 4.9 and Corollary 4.10).
This homology group has been almost determined by Korkmaz and Stipsicz [22] up to
this Z2 summand.

In this paper, we use the same notation H�. � / for the homology of both topological
spaces and groups unless otherwise stated. We refer to Brown’s book [9] for generalities
of group (co)homology.

2 Lagrangian mapping class groups

By using the ordered basis fx1;x2; : : : ;xg;y1;y2; : : : ;ygg of H , we fix an iso-
morphism between Z2g and H , which enables us to identify the symplectic group
Sp.2g;Z/ with the group of automorphisms of H preserving the intersection pairing �.
Then the action of Mg on H gives the exact sequence

(1) 1 �! Ig �!Mg
�
�! Sp.2g;Z/ �! 1

with Ker � D Ig , the Torelli group. The symplecticity condition for a .2g/� .2g/

matrix

X D

�
A B

C D

�
with g�g matrices A;B;C;D is given by

tX

�
O Ig

�Ig O

�
X D

�
O Ig

�Ig O

�
;
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where we denote by Ig the identity matrix of size g . The left hand side is equal to�
�tCAC tAC �tCBC tAD

�tDAC tBC �tDBC tBD

�
:

From this we see that if C DO , then D D tA�1 holds and A�1B is symmetric. This
case corresponds to �.Lg/. That is, if we put

urSp.2g/ WD

��
A B

O tA�1

� ˇ̌̌̌
A�1B : symmetric

�
;

then it is a subgroup of Sp.2g;Z/ and the equality Lg D �
�1.urSp.2g// follows by

definition. The notation urSp.2g/ meaning “upper right” was introduced by Hirose [16].
We have the exact sequence

(2) 1 �! Ig �! Lg

� jLg

���! urSp.2g/ �! 1:

Moreover, if C DO and ADD D Ig , then the matrix B itself is symmetric. In this
case, the subgroup ��

Ig B

O Ig

� ˇ̌̌̌
B : symmetric

�
is naturally isomorphic to the second symmetric power S2L of L because

Hom.Ly ;L/Š Hom.L�;L/ŠL˝L

and B is symmetric. By definition, the equality ILg D �
�1.S2L/ holds and we have

the exact sequence

(3) 1 �! Ig �! ILg

� jILg

����! S2L �! 1:

Note that S2L is a free abelian group. The groups S2L and urSp.2g/ are related by
the exact sequence

(4) 1 �! S2L �! urSp.2g/
ul
�! GL.g;Z/ �! 1;

where the map ul assigns to each matrix its upper left block of size g�g . Note that
this group extension has a splitting defined by

GL.g;Z/ �! urSp.2g/

�
A 7�!

�
A O

O tA�1

��
:

Using (4), we obtain the exact sequence

(5) 1 �! ILg �! Lg

ul ı� jLg

������! GL.g;Z/ �! 1:
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In the subsequent sections, we will use the above exact sequences to discuss the
homology of Lg and ILg . By a technical reason, however, we first consider the
mapping class group Mg;1 of the surface †g;1 obtained from †g by removing an
open disk, where each mapping class is supposed to fix the boundary of †g;1 pointwise.
The subgroups Lg;1 , ILg;1 and Ig;1 are defined similarly. Exact sequences similar to
the above hold for these groups. We naturally identify H with H1.†g;1/. Also, we
assume that g � 3 to avoid the complexity of I2;1 , which is not covered by Johnson’s
work (see the next section).

3 The first homology of ILg;1

We begin our investigation by determining the first homology, namely the abelianization,
of ILg;1 . For that, we use the five-term exact sequence

(6) H2.ILg;1/!H2.S
2L/!H1.Ig;1/S2L!H1.ILg;1/!H1.S

2L/! 0

associated with the group extension (3). Put

X 2
i WD xi ˝xi ; Xij DXji WD xi ˝xj Cxj ˝xi :

The set
fX 2

i j 1� i � gg[ fXij j 1� i < j � gg

forms a basis of S2L in L˝L. As a subgroup of Sp.2g;Z/, the group S2L acts
on H by

(7) X 2
i W

(
xk 7! xk ;

yk 7! ıikxi Cyk ;
Xij W

(
xk 7! xk ;

yk 7! ıjkxi C ıikxj Cyk ;

where ıij is the Kronecker delta.

Lemma 3.1 The homomorphism .� jILg;1
/�W H2.ILg;1/!H2.S

2L/Š ^2.S2L/

is surjective.

Proof We use the technique of abelian cycles to construct homology classes in
Im.� jILg;1

/� . That is, for each homomorphism 'W Z2! ILg;1 , we have a homology
class '�.1/ 2 H2.ILg;1/ by sending the fundamental class 1 2 H2.Z

2/ Š Z to
H2.ILg;1/. Such a class '�.1/, which is in fact defined on cycle level, is called an
abelian cycle associated with ' . Moreover, we can see that

.� jILg;1
ı'/�.1/D .� jILg;1

ı'/..1; 0//^.� jILg;1
ı'/..0; 1//2^2.S2L/ŠH2.S

2L/;

where .1; 0/; .0; 1/ 2 Z2 (see [32, Lemma 2.2] for details).
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cij

i j

dij

ck

k

dk

Figure 2

Define simple closed curves cij ; dij ; ck ; dk .1� i < j � g; 1� k � g/ on †g;1 as in
Figure 2. Let G1 (resp. G2 ) be the subgroup of ILg generated by fTcij

gi;j [fTck
gk

(resp. fTdij
gi;j [ fTdk

gk ), where Tc denotes the right-handed Dehn twist along a
simple closed curve c . Since

� jILg;1
.Tcij

/D� jILg;1
.Tdij

/DX 2
i �XijCX 2

j ; � jILg;1
.Tck

/D� jILg;1
.Tdk

/DX 2
k ;

each of � jILg;1
.G1/ and � jILg;1

.G2/ generates S2L. Clearly fgD gf 2 ILg holds
for any f 2G1 and g 2G2 . Hence, for each element of the form a^ b in ^2.S2L/,
we can take f1 2G1 and f2 2G2 satisfying

.� jILg;1
/.f1/D a; .� jILg;1

/.f2/D b; f1f2 D f2f1:

They give a homomorphism 'W Z2! ILg;1 with .� jILg;1
ı '/�.1/D a^ b , which

implies the surjectivity of .� jILg;1
/� .

Lemma 3.1 shows that H2.ILg;1/ is nontrivial (see also Theorem 7.1). In particular,
its rank, which may be infinite, gets bigger and bigger when g grows.

Before going further, here we recall some results on the Torelli group Ig;1 obtained by
Johnson in [17; 18; 19; 20; 21]. First, he showed in [19] that Ig;1 is finitely generated
for g� 3. This fact together with the sequences (2), (3) imply that Lg;1 and ILg;1 are
also finitely generated. At present, it is not known whether they are finitely presentable
or not, where the same question for Ig;1 is a well-known open problem. Second, he
showed that Ig;1 is normally generated by only one element Tc2

T �1
d2

(see Figure 2).
Finally, in [21], he determined the abelianization of Ig;1 written as follows. Let B be a
commutative Z2 –algebra with unit 1 generated by formal elements xx for x 2H ˝Z2

and having relations

xx2
D xx; xCy D xxC xyC x�.x;y/

for x;y 2H ˝Z2 , where x�.x;y/ WD �.x;y/ mod 2. The algebra B can be graded
by supposing that each xx has degree 1 (after replacing xx2 by xx ). Let Bi be the

Algebraic & Geometric Topology, Volume 12 (2012)



Lagrangian mapping class groups from a group homological point of view 273

submodule of B generated by elements of degree at most i . This endows B with a
filtration

B3
� B2

� B1
� B0

D f0; 1g:

We have a natural action of Mg;1 on B3 defined by f xx WD f�.x/. It is easily checked
that there exists a natural Mg;1 –equivariant isomorphism

B3=B2
Š^

3.H ˝Z2/:

Therefore we can take the fiber product ^3H �^3.H˝Z2/B3 of the natural projections
B3 ! B3=B2 Š ^3.H ˝ Z2/ and ^3H ! ^3.H ˝ Z2/. Then Johnson gave an
Mg;1 –equivariant isomorphism

.�; ˇ/W H1.Ig;1/
Š
�!^

3H �^3.H˝Z2/B3;

where Mg;1 acts on Ig;1 and H1.Ig;1/ by conjugation and on ^3H �^3.H˝Z2/B3

diagonally. The homomorphism � is now called the Johnson homomorphism [17; 20]
and ˇ is called the Birman–Craggs–Johnson homomorphism (see Johnson [18] and
Birman and Craggs [6]). Explicitly, the isomorphism is given by

Tc2
T �1

d2
7�! .x1 ^y1 ^y2; xx1 xy1.xy2C 1//;

which characterizes an Mg;1 –equivariant homomorphism uniquely because Ig;1 is
normally generated by Tc2

T �1
d2

.

Lemma 3.2 We have the following isomorphism:

H1.Ig;1/S2L Š

�
^3L�˚L�˚^2.L�˝Z2/ g D 3;

^3L�˚L� g � 4:

Proof By definition, the coinvariant part H1.Ig;1/S2L is the quotient of H1.Ig;1/

by the submodule Q0 generated by f�x�x j � 2 S2L;x 2H1.Ig;1/g. We now list a
generating set of Q0 explicitly. Assuming that the indices i; j ; k; l 2 f1; 2; : : : ;gg are
distinct from each other, we have

X 2
j .xi ^xj ^yj ; xxi xxj xyj /� .xi ^xj ^yj ; xxi xxj xyj /

D .xi ^xj ^ .xj Cyj /; xxi xxj xj Cyj /� .xi ^xj ^yj ; xxi xxj xyj /

D .xi ^xj ^yj ; xxi xxj .xxj C xyj C 1//� .xi ^xj ^yj ; xxi xxj xyj /

D .0; xxi xx
2
j C xxi xxj /D .0; 0/;

where we used the relations xx2
j D xxj and 2xxi xxj D 0 in B3 . We denote this result by

(1a) ŒX 2
j I .xi ^xj ^yj ; xxi xxj xyj /� WD .0; 0/
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for short. Similar calculations show that

(1b) ŒXkj I .xi ^xj ^yj ; xxi xxj xyj /�D .xi ^xj ^xk ; xxi xxj xxk/,

(1c) ŒXij I .xi ^xj ^yj ; xxi xxj xyj /�D .0; xxi xxj /,

(2a) ŒX 2
k
I .xi ^xj ^yk ; xxi xxj xyk/�D .xi ^xj ^xk ; xxi xxj xxk C xxi xxj /,

(2b) ŒXjk I .xi ^xj ^yk ; xxi xxj xyk/�D .0; xxi xxj /,

(2c)� ŒXlk I .xi ^xj ^yk ; xxi xxj xyk/�D .xi ^xj ^xl ; xxi xxj xxl/,

(3a) ŒX 2
j I .xi ^yi ^yj ; xxi xyi xyj /�D .�xi ^xj ^yi ; xxi xxj xyi C xxi xyi/,

(3b) ŒXik I .xi ^yi ^yj ; xxi xyi xyj /�D .xi ^xk ^yj ; xxi xxk xyj /,

(3c) ŒXjk I .xi ^yi ^yj ; xxi xyi xyj /�D .�xi ^xk ^yi ; xxi xxk xyi/,

(3d) ŒXij I .xi ^yi ^yj ; xxi xyi xyj /�D .xi ^xj ^yj ; xxi xxj xyj C xxi xxj C xxi xyi/,

(4a) ŒX 2
j I .xi ^yj ^yk ; xxi xyj xyk/�D .xi ^xj ^yk ; xxi xxj xyk C xxi xyk/,

(4b) ŒXij I .xi ^yj ^yk ; xxi xyj xyk/�D .0; xxi xyk/,

(4c)� ŒXjl I .xi ^yj ^yk ; xxi xyj xyk/�D .xi ^xl ^yk ; xxi xxl xyk/,

(4d) ŒXjk I .xi ^yj ^yk ; xxi xyj xyk/�D .xi ^xk ^xj Cxi ^xk ^yk �xi ^xj ^yj ,
xxi xxk xxj C xxi xxk xyk C xxi xxj xyj /,

(5a) ŒX 2
i I .yi ^yj ^yk ; xyi xyj xyk/�D .xi ^yj ^yk ; xxi xyj xyk C xyj xyk/,

(5b)� ŒXil I .yi ^yj ^yk ; xyi xyj xyk/�D .xl ^yj ^yk ; xxl xyj xyk/,

(5c) ŒXij I .yi ^yj ^yk ; xyi xyj xyk/�D .xj ^xi ^yk Cxj ^yj ^yk �xi ^yi ^yk ,
xxj xxi xyk C xxj xyj xyk C xxi xyi xyk/,

(6) ŒXij I .0; xxi xyi/�D .0; xxi xxj /,

(7a) ŒX 2
j I .0; xxi xyj /�D .0; xxi xxj C xxi/,

(7b) ŒXij I .0; xxi xyj /�D .0; xxi/,

(7c) ŒXjk I .0; xxi xyj /�D .0; xxi xxk/,

(8a) ŒX 2
i I .0; xyi xyj /�D .0; xxi xyj C xyj /,

(8b) ŒXik I .0; xyi xyj /�D .0; xxk xyj /,

(8c) ŒXij I .0; xyi xyj /�D .0; xxi xxj C xxi xyi C xxj xyj /,

(9a) ŒX 2
i I .0; xyi/�D .0; xxi C 1/,

(9b) ŒXij I .0; xyi/�D .0; xxj /,
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where . � /� means that it is valid for g � 4. The actions not listed above are all trivial,
namely �x�x D .0; 0/, so that they do not contribute to Q0 . In particular, there are
no contribution from the elements

.xi ^xj ^xk ; xxi xxj xxk/; .0; xxi xxj /; .0; xxi/; .0; 1/:

From (7b), (9a), (1c), (1b), (4b), (8a), (3b), (3c), (3a), (5b), (5a), we see that, for g � 4,
Q0 contains .0; xxj /, .0; 1/, .0; xxi xxj /, .xi ^ xj ^ xk ; xxi xxj xxk/, .0; xxi xyk/, .0; xyj /,
.xi ^ xk ^ yj ; xxi xxk xyj /, .xi ^ xk ^ yi ; xxi xxk xyi/, .0; xxi xyi/, .xl ^ yj ^ yk ; xxl xyj xyk/,
.0; xyj xyk/ in order, and combinations of these elements express all the generators listed
above except (5c). Finally (5c) shows .xj ^yj ^yk �xi ^yi ^yk ; xxj xyj xyk C xxi xyi xyk/

are in Q0 . Our claim for g � 4 follows from this, where we assign yk 2 L� to
.yk ^xi ^yi ; xyk xxi xyi/ 2H1.Ig;1/S2L , which does not depend on i .

When gD3, differently from the above, we cannot remove .xl ^yj ^yk ; xxl xyj xyk/ and
.0; xyj xyk/ simultaneously. In this case, we use (5a) to eliminate .xl ^yj ^yk ; xxl xyj xyk/

and conclude that .0; xyj xyk/ survive in H1.Ig;1/S2L and form ^2.L�˝Z2/.

By the exact sequence (6) together with Lemmas 3.1, 3.2, we conclude the following.

Theorem 3.3

H1.ILg;1/Š

�
^3L�˚L�˚^2.L�˝Z2/˚S2L g D 3;

^3L�˚L�˚S2L g � 4:

Remark 3.4 In [23, Theorem 1], Levine constructed a surjective homomorphism

J W H1.ILg;1/� ^3L�˚L�

by using the Johnson homomorphism � for Ig;1 . We can check that J coincides with
the projection to the first two components of the isomorphism in Theorem 3.3. In [8,
Section 5.1], Broaddus, Farb and Putman gave another construction of J . In fact, their
homomorphisms called relative Johnson homomorphisms cover not only ILg;1 but
any subgroup of Mg;1 fixing a given submodule of H .

4 The first and second homology of urSp.2g/

In this section, we determine the first and second homology of urSp.2g/ for later use.
By a technical reason, we first consider its index 2 subgroup urSpC.2g/ defined by

(8) 1 �! urSpC.2g/ �! urSp.2g/
det ı ul
����! Z2 �! 1:
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By restricting the sequence (4) to urSpC.2g/, we have a split exact sequence

(9) 1 �! S2L �! urSpC.2g/
ul
�! SL.g;Z/ �! 1:

Proposition 4.1 (1) The group urSpC.2g/ is perfect, that is H1.urSpC.2g//D 0

for g � 3.

(2) H2.urSpC.2g//Š

8<:
Z2˚Z2˚Z2˚Z2 g D 3;

Z2˚Z2 g D 4;

Z2 g � 5:

We will prove this proposition by using the Lyndon–Hochschild–Serre spectral sequence

(10) E2
p;q DHp.SL.g;Z/IHq.S

2L//H)Hn.urSpC.2g//

associated with (9). Before that, we recall the first and second homology of SL.g;Z/.
Refer to books of Milnor [26, Sections 5 and 10] and Rosenberg [31, Sections 4.1 and
4.2] for the facts below and generalities of the second homology of groups. The group
SL.g;Z/ has a presentation given by

� generators: feij j 1� i � g; 1� j � g and i ¤ j g,

� relations: Œeij ; ekl �D 1 if j ¤ k and i ¤ l ;

Œeik ; ekj �D eij if i ¤ j ¤ k ¤ i ;

.e12e�1
21 e12/

4
D 1;

where eij corresponds to the matrix whose diagonal entries and .i; j /–entry are 1

with the others 0. From this presentation, we immediately see that SL.g;Z/ is perfect
for every g � 3. The second homology, which is also called the Schur multiplier, of
SL.g;Z/ is also known:

H2.SL.g;Z//Š
�

Z2˚Z2 g D 3; 4; (by van der Kallen [35]);
Z2 g � 5;

where van der Kallen also showed in [35] that one summand of H2.SL.3;Z// Š
Z2 ˚ Z2 survives in the stable homology limg!1H2.SL.g;Z// Š K2.Z/ Š Z2

under stabilization, while the other one vanishes in H2.SL.4;Z//.

For computations of the zeroth and first homology of a group G , we can use any
connected CW–complex X with �1X D G . Let Xg be a connected CW–complex
associated with the above presentation of SL.g;Z/. Namely Xg consists of one vertex,
edges fheij i j 1� i � g; 1� j � g and i ¤ j g and faces

fhŒeij ;ekl �i j j ¤k and i¤ l g[fhŒeik ;ekj �e
�1
ij i j if i¤j ¤k¤ i g[fh.e12e�1

21 e12/
4
ig
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attached to the 1–skeleton of Xg along the words. We consider S2L to be a local
coefficient system on Xg . The boundary maps

@1W C1.XgIS
2L/! C0.XgIS

2L/Š S2L;

@2W C2.XgIS
2L/! C1.XgIS

2L/

of the complex C�.XgIS
2L/D C�.Xg/˝S2L are given by

@1.heij i˝ c/D .e�1
ij � 1/c;

@2.he1e2 � � � eni˝ c/D he1i˝ cChe2i˝ e�1
1 cChe3i˝ .e1e2/

�1c

C � � �C heni˝ .e1e2 � � � en�1/
�1c

for c 2S2L, where e1; e2; : : : ; en 2 feij gi;j[fe
�1
ij gi;j and he�1

ij i˝c WD�heij i˝eij c .
The action of SL.g;Z/ on L is given by

eij W xk 7! ıjkxi Cxk ; e�1
ij W xk 7! �ıjkxi Cxk :

Lemma 4.2 (1) H0.SL.g;Z/IS2L/Š .S2L/SL.g;Z/ D 0 for g � 3.

(2) H1.SL.g;Z/IS2L/D 0 for g � 4.

Proof Here and hereafter, we suppose that the indices i; j ; k; l are distinct from each
other. We have

@1.heij i˝X 2
j /D .e

�1
ij � 1/X 2

j D .�xi Cxj /
˝2
�X 2

j DX 2
i �Xij ;

@1.heij i˝Xjk/D .e
�1
ij � 1/Xjk D .�Xik CXjk/�Xjk D�Xik :

By running i; j ; k in f1; 2; : : : ;gg with g� 3, we immediately see that @1 is surjective
and .1/ holds. To show .2/, it suffices to check that @1W C1.SL.g;Z/IS2L/= Im @2!

S2L is an isomorphism. Assume that g � 4. C1.SL.g;Z/IS2L/ is generated by
elements of types

I W heij i˝X 2
i ; II W heij i˝X 2

j ; III W heij i˝X 2
k ;

IV W heij i˝Xij ; V W heij i˝Xjk ; VI W heij i˝Xil ; VII Wheij i˝Xkl :

For c 2 S2L, we have

@2.hŒeik ; ekj �e
�1
ij i˝ c/D heiki˝ .1� e�1

kj e�1
ij /cChekj i˝ .e

�1
ik � e�1

ij /c�heij i˝ c:

By putting c DX 2
i ;X

2
j ;X

2
k
;X 2

l
;Xjk and Xjl , we see that

(i) �heij i˝X 2
i .type I/;

(ii) heiki˝ .Xij CXjk �Xik �X 2
i �X 2

k
/Chekj i˝ .�X 2

i CXij /�heij i˝X 2
j ;
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(iii) hekj i˝ .X
2
i �Xik CX 2

k
/� heij i˝X 2

k
;

(iv) �heij i˝X 2
l

.type III/;

(v) heiki˝ .Xik C 2X 2
k
/Chekj i˝ .Xik �Xij /� heij i˝Xjk ;

(vi) heiki˝ .Xil CXkl/Chekj i˝Xil � heij i˝Xjl

are in Im @2 . From (i), (iii) and (iv), �hekj i˝Xik (type VI) is in Im @2 . Also

(vii) @2.hŒeij ; ekl �i˝X 2
l /D heij i˝ .1� e�1

kl /X
2
l Chekli˝ .e

�1
ij � 1/X 2

l

D heij i˝ .Xkl �X 2
k /

,

(viii) @2.hŒeij ; ekj �i˝X 2
j /D heij i˝ .�X 2

k
CXkj /Chekj i˝ .X

2
i �Xij /

are in Im @2 . From (iv) and (vii), heij i ˝Xkl (type VII) is in Im @2 . Then we can
derive from (vi) that

(ix) heiki˝Xkl � heij i˝Xjl 2 Im @2 .

We see from (iv) and (viii) that

(x) heij i˝Xjk � hekj i˝Xji 2 Im @2 .

Finally, we can derive from (ii) and (v) that

(xi) heiki˝ .Xjk �Xik �X 2
k
/Chekj i˝Xij � heij i˝X 2

j ,

(xii) heiki˝ .Xik C 2X 2
k
/� hekj i˝Xij � heij i˝Xjk

are in Im @2 .

We have so far shown that C1.SL.g;Z/IS2L/= Im @2 is a quotient of the module M

generated by the elements of types (II), (IV) and (V) with the relations (ix), (x), (xi)
and (xii). We can use (xii) to remove heiki˝Xik (type IV) and to produce a relation

(xiii) heiki˝ .Xjk CX 2
k
/� heij i˝ .X

2
j CXjk/

in M from (xi). Therefore M is generated by the elements of types (II) and (V) with
the relations (ix), (x), (xiii). The relation (ix) enables us to put Yil WD�heij i˝Xjl 2M ,
which does not depend on j , and the relation (x) shows that Yil D Yli . On the other
hand, if we put Yi.j ; k/ WD heij i˝X 2

j � heiki˝Xkj , it follows from (ix) and (xiii)
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that Yi.j ; l/DYi.j ; k/DYi.k; j /2M . This implies that Yi WDYi.j ; l/2M is inde-
pendent of j and l . Consequently, M is a free module with a basis fYi j 1� i � gg[

fYjk j 1� j < k � gg. It is easy to see that the homomorphism

z@1W M ! C0.SL.g;Z/IS2L/Š S2L

induced from the surjection

@1W C1.SL.g;Z/IS2L/= Im @2� C0.SL.g;Z/IS2L/

is an isomorphism since z@1.Yi/DX 2
i and z@1.Yjk/DXjk . Therefore

@1W C1.SL.g;Z/IS2L/= Im @2! S2L

is an isomorphism and (2) is proved.

Lemma 4.3 H0.SL.g;Z/IH2.S
2L//Š .^2.S2L//SL.g;Z/ D 0 for g � 4.

Proof By definition, the coinvariant part .^2.S2L//SL.g;Z/ is the quotient of ^2.S2L/

by the submodule Q1 generated by fŒeIx� j e 2 SL.g;Z/; x 2 ^2.S2L/g, where we
put ŒeIx� WD ex�x . Direct computations show that

(i) Œeij IX
2
i ^X 2

j �DX 2
i ^Xij ,

(ii) Œekl IX
2
i ^Xjl �DX 2

i ^Xjk ,

(iii) Œekj IX
2
i ^X 2

j �DX 2
i ^ .X

2
k
CXjk/,

(iv) Œeji IX
2
i ^Xjk �D .X

2
j CXij /^Xjk ;

(v) Œeij IX
2

j ^Xkl �DX 2
i ^Xkl CXij ^Xkl

are in Q1 and that they generate ^2.S2L/ by running i; j ; k; l in f1; 2; : : : ;gg with
g � 4. This completes the proof.

Proof of Proposition 4.1(1) for g � 3 and (2) for g � 4 When g � 3, we have
E2

1;0
DE2

0;1
D 0 in the spectral sequence (10) by Lemma 4.2(1) and the fact that

H1.SL.g;Z//D 0. This proves (1).

Assume further that g�4. By Lemma 4.2(2) and Lemma 4.3, we have E2
1;1
DE2

0;2
D0

in the spectral sequence (10). It follows that H2.urSpC.2g// Š H2.SL.g;Z//. We
finish the proof of (2) for g � 4 by using the explicit description of H2.SL.g;Z//.

Corollary 4.4 (1) H1.urSp.2g//ŠH1.GL.g;Z//Š Z2 for g � 3.

(2) H2.urSp.2g//ŠH2.urSpC.2g// for g � 3.
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Proof By using the Lyndon–Hochschild–Serre spectral sequence associated with the
split extension (8) and the fact that H1.urSpC.2g//D 0, we have H1.urSp.2g//ŠZ2

and H2.urSp.2g//ŠH2.urSpC.2g//Z2
. For g � 4, we have that H2.urSpC.2g//Z2

Š H2.SL.g;Z//Z2
. The action of Z2 on H2.urSpC.2g// is compatible with that

on H2.SL.g;Z// and the latter one is known to be trivial. Hence H2.urSp.2g// Š

H2.urSpC.2g// follows. When g D 3, the action of Z2 on H2.urSpC.2g// is also
trivial, since we can take the minus of the identity matrix as a lift of the generator of Z2

and it is central. Therefore H2.urSp.2g//ŠH2.urSpC.2g// holds also for gD 3.

It remains to compute H2.urSpC.2g// for g D 3.

Lemma 4.5 H1.SL.3;Z/IS2L/Š Z2 and it is generated by he12i˝X 2
3

.

Sketch of Proof Now SL.3;Z/ has a presentation consisting of 6 generators and 13

relations. Also we have S2LŠ Z6 . Hence the complex

C2.SL.3;Z/IS2L/
@2
�! C1.SL.3;Z/IS2L/

@1
�! C0.SL.3;Z/IS2L/

can be explicitly written as

Z78 D2�
��! Z36 D1�

��! Z6

with some matrices D1 and D2 . The author with an aid of a computer calculated the
homology by using the Smith normal form. We omit the details.

Lemma 4.6 H0.SL.3;Z/IH2.S
2L//ŠH2.S

2L/SL.3;Z/Š .^
2.S2L//SL.3;Z/ŠZ2

and it is generated by X 2
3
^X 2

2
. Moreover this generator is mapped nontrivially to

H2.Sp.6;Z// by the composition H2.S
2L/SL.3;Z/!H2.urSpC.6//!H2.Sp.6;Z//

induced from the inclusions S2L ,! urSpC.6/ ,! Sp.6;Z/.

In the proof of this lemma, the following theorem by Stein plays a key role.

Theorem 4.7 (Stein [34, Theorem 2.2]) H2.Sp.6;Z// Š Z˚Z2 and the abelian
cycle associated with the homomorphism 'W Z2! Sp.6;Z/ defined by

'..1; 0//DX 2
3 ; '..0; 1//DX 2

2

gives the element of order 2, where X 2
3

and X 2
2

are in S2L� urSpC.6/� Sp.6;Z/.
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Proof of Lemma 4.6 We use the same notation as in the proof of Lemma 4.3. The
computational results (i), (iii) and (iv) are valid also for g D 3. In particular, the
elements X 2

i ^Xij , Xij ^Xjk and X 2
i ^X 2

k
CX 2

i ^Xjk are in Q1 . We also see that

Œeki IX
2
i ^Xij �DX 2

k ^Xkj CX 2
k ^Xij CXik ^Xkj CXik ^Xij CX 2

i ^Xkj ;

Œeji IX
2
i ^Xij �D 2X 2

i ^X 2
j CXij ^X 2

j :

are in Q1 , from which X 2
k
^Xij CX 2

i ^Xkj and 2X 2
i ^X 2

j are in Q1 . Then there
remains only two possibilities: .^2.S2L//SL.3;Z/ D 0 or Z2 generated by

X 2
1 ^X23 DX 2

3 ^X12 DX 2
2 ^X13 DX 2

1 ^X 2
2 DX 2

1 ^X 2
3 DX 2

2 ^X 2
3 :

By using Theorem 4.7, we see that the latter is true. Indeed, the element X 2
2
^X 2

3

just maps to the element of order 2 in H2.Sp.6;Z// by the map .^2.S2L//SL.3;Z/ D

H2.S
2L/SL.3;Z/!H2.Sp.6;Z//.

Proof of Proposition 4.1 for g D 3 The E2 –term of the Lyndon–Hochschild–Serre
spectral sequence associated with the split extension (8) is given as follows:

.^2.S2L//SL.3;Z/ Š Z2

.S2L/SL.3;Z/ D 0 H1.SL.3;Z/IS2L/Š Z2 H2.SL.3;Z/IS2L/

Z H1.SL.3;Z//D 0 H2.SL.3;Z//Š Z2
2

H3.SL.3;Z//

By Lemma 4.6, the generator of .^2.S2L//SL.3;Z/ D Z2 survives in H2.urSpC.6//.
Therefore d2W H2.SL.3;Z/IS2L/! .^2.S2L//SL.3;Z/ is a trivial map. The existence
of the splitting of the extension (8) shows that d2W H3.SL.3;Z//!H1.SL.3;Z/IS2L/

and d3W H3.SL.3;Z//! .^2.S2L//SL.3;Z/ are also trivial. Hence E2
p;q DE1p;q for

pC q � 2. The E1–term says that there exists a filtration

H2.urSpC.6//� F0 � F1 DE10;2

with H2.urSpC.6//=F0ŠE1
2;0

and F0=F1ŠE1
1;1

. Again the existence of the splitting
of the extension (8) shows that H2.urSpC.6// Š F0˚E1

2;0
Š F0˚H2.SL.3;Z//.

Finally we consider the extension

0 �! .^2.S2L//SL.3;Z/ Š Z2 �! F0 �!H1.SL.3;Z/IS2L/Š Z2 �! 0:

Suppose F0ŠZ4 . Then the second map Z2!Z4 should send 12Z2 to 22Z4 . This
contradicts to the fact that the generator of .^2.S2L//SL.3;Z/ maps to the element of
order 2 in H2.Sp.6;Z//ŠZ˚Z2 . Therefore F0 ŠZ2˚Z2 , finishing the proof.
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Remark 4.8 The homology of SL.3;Z/ was completely determined by Soulé [33].
In particular, H3.SL.3;Z//Š Z2

3
˚Z2

4
.

We finish this section by pointing out a byproduct of our argument (see also Remark 5.2).
Consider the second homology of the full mapping class group M3;1 of genus 3.
Korkmaz and Stipsicz [22] showed that H2.M3/ is Z or Z˚Z2 . Now we can use
Lemma 3.1 and the fact that the generator of .^2.S2L//SL.3;Z/ Š Z2 maps to the
element of order 2 in H2.Sp.6;Z//Š Z˚Z2 to show that there exists an element
of H2.M3;1/ which comes from H2.ILg;1/ and maps to the element of order 2 in
H2.Sp.6;Z//. Consequently, we have:

Theorem 4.9 H2.M3;1/Š Z˚Z2 .

By using an argument of Korkmaz and Stipsicz in [22], we can derive the following.

Corollary 4.10 H2.M3/ Š Z˚Z2 and H2.M3;�/ Š Z˚Z˚Z2 , where Mg;�

denotes the mapping class group of a surface of genus g with one puncture.

5 The first and second homology of Lg;1

We use our results in the previous sections to determine H1.Lg;1/ and give a lower
bound of H2.Lg;1/.

Theorem 5.1

(1) H1.Lg;1/Š

�
Z2˚Z2 g D 3;

Z2 g � 4:

(2) The map .� jLg;1
/�W H2.Lg;1/!H2.urSp.2g// is surjective for g � 3.

Proof Consider the five-term exact sequence

(11) H2.Lg;1/!H2.urSp.2g//

!H1.Ig;1/urSp.2g/!H1.Lg;1/!H1.urSp.2g//! 0

associated with the group extension (2). We have seen that H1.urSp.2g//Š Z2 . We
now show that

H1.Ig;1/urSp.2g/ Š

�
Z2 g D 3;

0 g � 4;

which proves the theorem for g � 4.
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Put H1.Ig;1/urSp.2g/ DH1.Ig;1/=Q2 with Q2 generated by

fŒ� Ix� j � 2 urSp.2g/;x 2H1.Ig;1/g:

Note that Q2 includes Q0 in the proof of Lemma 3.2 since S2L� urSp.2g/.

We have

Œe�1
kl ˚ elk I .yi ^yj ^yk ; xyi xyj xyk/�D .yi ^yj ^yl ; xyi xyj xyl/

for g � 4 and also have

Œe�1
ik ˚ eki I .yi ^xj ^yj ; xyi xxj xyj /�D .yk ^xj ^yj ; xyk xxj xyj /

for g � 3. So H1.Ig;1/=Q2 D 0 holds for g � 4. In the case where g D 3, we have240@0 0 1

0 1 0

1 0 0

1A˚
0@0 0 1

0 1 0

1 0 0

1AI .y1 ^y2 ^y3; xy1 xy2 xy3/

35D�2.y1 ^y2 ^y3; xy1 xy2 xy3/;

Œe�1
ik ˚ eki I .0; xyi xyj /�D .0; xyk xyj /:

Therefore H1.I3;1/=Q2 is at most Z2 generated by .y1 ^y2 ^y3; xy1 xy2 xy3/. To see
that H1.I3;1/=Q2 Š Z2 , which proves (1) and (2) for g D 3 simultaneously, we
now show that there exists a splitting H1.L3;1/! H1.I3;1/=Q2 by constructing a
homomorphism H1.L3;1/! Z2 whose precomposition by H1.I3;1/! H1.L3;1/

is nontrivial. Indeed if such a homomorphism exists, H1.I3;1/=Q2 Š Z2 immedi-
ately follows and the composition H1.I3;1/=Q2!H1.L3;1/! Z2 ŠH1.I3;1/=Q2

becomes the identity map.

Our construction uses the extended Johnson homomorphism

�D .zk; �/WM3;1 �!
1

2
^

3 H ÌSp.6;Z/

first defined by Morita [29]. Note that zkWM3;1 !
1
2
^3 H is a crossed homomor-

phism which extends the original Johnson homomorphism � W I3;1!^
3H . Precisely

speaking, such an extension zk is not unique but unique up to certain coboundaries
(see [29, Sections 4, 5] for details). Here we use the formulation by Birman, Bren-
dle and Broaddus in [5, Section 2.2] and denote their crossed homomorphism by
zkWM3;1!

1
2
^3 H again.

Consider the composition

 W L3;1

zkjLg;1

����!
1

2
^

3 H
proj
��!

1

2
^

3 LŠ
1

2
^

3 Z3
Š

1

2
Z �!

�
1

2
Z

�
=.2Z/;
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where the second map is induced from the projection H�L (in other word, this map
assigns the coefficient of y1^y2^y3 under our basis of H ). We claim the following:

(i) Im � Z=2ZD Z2 ,

(ii)  W L3;1! Z2 is a homomorphism,

(iii) the composition I3;1! L3;1
 
! Z2 is nontrivial.

To show (i), we recall that L3;1D I3;1H3;1 , where H3;1 is the preimage of the handle-
body mapping class group H3 of genus 3 by the natural homomorphism M3;1!M3 .
Birman, Brendle and Broaddus showed in [5, Section 2.2] that zk.h/ does not have the
term n y1 ^y2 ^y3 with n 2 1

2
Z�f0g for any h 2H3;1 . Since

zk.f /D zk.ih/D zk.i/C �.i/ zk.h/D zk.i/C zk.h/

for any element f D ih2L3;1 with i 2I3;1 and h2L3;1 , and zk.i/D �.i/2^3H , we
see that  .f /D .i/C .h/D .i/2Z=2Z, which proves (i). Next, (ii) follows from
the facts that L3;1 acts on H with keeping L and acts on L through ul ı� jLg

W L3;1!

GL.3;Z/ and that GL.3;Z/ acts on ^3L Š Z through detW GL.3;Z/ ! f1;�1g.
Finally, (iii) clearly follows from the construction and we finish the proof.

Remark 5.2 The above computation of H1.I3;1/urSp.6/ and the equality266666664

0BBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 1

1CCCCCCCA
I .y1 ^y2 ^x3; xy1 xy2xx3/

377777775
D .y1 ^y2 ^y3; xy1 xy2 xy3C xy1 xy2/

show that H1.I3;1/Sp.6;Z/ D 0 (see also Putman [30, Lemma 6.4]). Then by the five
term exact sequence associated with (1), the map H2.M3;1/!H2.Sp.6;Z// is onto.
Therefore, by using the results of Korkmaz–Stipsicz and Stein mentioned in Section 4,
we can obtain another proof of H2.M3;1/Š Z˚Z2 .

Remark 5.3 We saw that limg!1H2.urSp.2g//Š limg!1H2.GL.g;Z// in Sec-
tion 4. The stable homology limg!1H2.GL.g;Z//Š Z2 also relates to the second
homology of the automorphism group of a free group as shown by Gersten [14].
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6 Results for Lagrangian mapping class groups of closed sur-
faces

We now consider the Lagrangian mapping class groups Lg and ILg for closed surfaces.
The relationship of Lg;1 and Lg is given by the exact sequence

1 �! �1.T1†g/ �! Lg;1 �! Lg �! 1;

where T1†g is the unit tangent bundle of †g (see Birman [3]), and the relationship
of ILg;1 and ILg is obtained by replacing Lg;1 and Lg with ILg;1 and ILg . As a
subgroup of Lg;1 and ILg;1 , the group �1.T1†g/� Ig;1 is generated by the Dehn
twist along the boundary curve of †g;1 and spin-maps (see Birman [3, Theorem 4.3]
and Johnson [19, Section 3], for example).

Theorem 6.1 The homology group H1.ILg/ is given by

H1.ILg/Š

�
^3L�˚^2.L�˝Z2/˚S2L g D 3;

^3L�˚S2L g � 4:

Proof We have an exact sequence

H1.�1.T1†g// �!H1.ILg;1/ �!H1.ILg/ �! 0:

In [23, Section 3.4], Levine showed that �1.T1†g/ projects trivially on ^3L� and
onto on L� with respect to the abelianization

H1.ILg;1/Š

�
^3L�˚L�˚^2.L�˝Z2/˚S2L g D 3;

^3L�˚L�˚S2L g � 4:

Since �1.T1†g/ is included in Ig;1 , it projects trivially on S2L. Hence the theorem
for g � 4 holds. In the case where g D 3, we can directly check that all of generators
of �1.T1†3/ are sent to 0 2 ^2.L�˝Z2/, which completes the proof for g D 3.

Theorem 6.2

(1) H1.Lg/ŠH1.Lg;1/Š

�
Z2˚Z2 g D 3;

Z2 g � 4:

(2) The map .� jLg
/�W H2.Lg/!H2.urSp.2g// is surjective for g � 3.

Proof Since � jLg;1
W Lg;1! urSp.2g/ factors through Lg , (1) for g� 4 immediately

holds. (1) for g D 3 also holds by explicit computations of the extended Johnson
homomorphism for generators of �1.T1†3/. The proof of (2) is the same as that of
Theorem 5.1.
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7 Remarks on higher (co)homology of Lg and ILg

7.1 Relationship to the homology of the pure braid group

In [23], Levine studied various embeddings of the pure braid group Pn of n strands
into Mg;1 and Mg , where nD g; 2g etc. We now use one of them defined as follows.
Let Dg be a disk with g holes. We take an embedding �W Dg ,!†g;1 as in Figure 3,
where we consider the surface †g;1 to be a disk with g handles attached and the
belt circles of the handles correspond to the loops x1;x2; : : : ;xg in Figure 1 after
filling the boundary @†g;1 by a disk. The mapping class group of Dg , where the
self-diffeomorphisms of Dg are supposed to fix the boundary pointwise, is known to
be isomorphic to the framed pure braid group of g strands. Here the framing counts
how many times one gives Dehn twists along each of the loops parallel to the inner
boundary. For any choice of framings, we have a homomorphism from the pure braid
group Pg of g strands to Mg;1 by extending each mapping class by identity on
the outside of �.Dg/. We can easily check that the image of this map is contained
in ILg;1 . Therefore we obtain a homomorphism ˆW Pg! ILg;1 . Similarly, we have
a homomorphism from Pg to ILg also denoted by ˆW Pg! ILg .

Dg

�

x1 x2 xg

Figure 3. The embedding �W Dg ,!†g;1

Theorem 7.1 The induced map ˆ�W H�.Pg/!H�.ILg/ is injective.

Proof Consider the induced map H�.S2L/!H�.Pg/ of the composition Pg
ˆ
!

ILg ! S2L on cohomology. Here the ring structure of H�.Pg/ was completely
determined by Arnol’d [2], and in particular, it was shown that H�.Pg/ is a finitely
generated free abelian group and is generated by degree 1 elements as a ring. The
former shows that H�.Pg/ is also finitely generated free abelian and the latter shows
that H�.S2L/!H�.Pg/ is onto since it is clear from a presentation of Pg (see [3]
for example) that H 1.S2L/!H 1.Pg/ is onto. By passing to homology, we see that
H�.Pg/!H�.S

2L/ is injective. The theorem follows from this.
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7.2 Vanishing of odd Miller–Morita–Mumford classes on Lg

Finally, we discuss the rational cohomology of higher degrees of Lg with relationships
to characteristic classes of oriented †g –bundles called Miller–Morita–Mumford classes.

Here we recall the definition of Miller–Morita–Mumford classes following Morita [28].
Let � W E! B be an oriented †g –bundle over a closed oriented manifold B . Since
†g is 2–dimensional, the relative tangent bundle Ker�� is a vector bundle over E

of rank 2. In particular, we can take its Euler class e 2 H 2.E/. Then i –th Miller–
Morita–Mumford class ei is defined by

ei WD �!.e
iC1/ 2H 2i.B/;

where �!W H
�.E/! H��2.B/ is the Gysin map. This construction is natural with

respect to bundle maps, so that we can regard ei as a cohomology class in the classifying
space. Namely ei 2H 2i.BDiffC†g/, where BDiffC†g is the classifying space of the
topological group DiffC†g of orientation preserving self-diffeomorphisms of †g with
C1–topology. By a theorem of Earle and Eells [12], we have BDiffC†gDK.Mg; 1/.
Therefore

ei 2H 2i.BDiffC†g/DH 2i.K.Mg; 1//DH 2i.Mg/:

Now we ask whether ei 2 H 2i.MgIQ/, regarded as a rational cohomology class,
survives in H 2i.IgIQ/ by the pullback of Ig ,!Mg . A partial answer to this
question is given as follows (see Morita [28]). It is known that every odd class e2i�1 2

H 4i�2.MgIQ/ can be obtained as the pullback of some class in H 4i�2.Sp.2g;Z/IQ/,
which implies that all the odd classes e2i�1 vanish in H 4i�2.IgIQ/. However, this
argument says nothing about even classes e2i and it has been a long standing problem
to determine whether even classes e2i vanish or not in H 4i.IgIQ/.

The author’s motivation for the study in this paper is to attack this problem by consid-
ering groups locating between Mg and Ig and investigating the behavior of ei on
them. As examples of such a kind of groups, finite index subgroups including level L

mapping class groups defined as the kernel of the composition

Mg �! Sp.2g;Z/ �! Sp.2g;Z=LZ/

are often studied. However, we cannot solve the above problem by using them since
for any finite index subgroup G of Mg there exists a transfer map

trW H�.GIQ/ �!H�.MgIQ/

such that tr ı i�W H�.MgIQ/ ! H�.MgIQ/ is the multiplication by a positive
integer ŒMg WG�, where i W G ,!Mg denotes the inclusion. In particular, we see that
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the pullback map on the rational cohomology is always injective for any finite index
subgroup. Therefore we shall need infinite index subgroups and we focus on Lg and
ILg in this paper. At present, we cannot give the final answer even for Lg , but we
now present an observation for odd classes, by which we finish this paper.

Lemma 7.2 If g is sufficiently larger than q , we have

H q.urSp.2g/IQ/ŠH q.GL.g;Z/IQ/:

Proof The E2 –term of the Lyndon–Hochschild–Serre spectral sequence for the group
extension (4) is given by

E
p;q
2
DH p.GL.g;Z/IH q.S2LIQ//:

Our claim immediately follows once we show that H p.GL.g;Z/IH q.S2LIQ//D0 if
q� 1. Since H q.S2LIQ/Š^q.S2.L�˝Q// and it is easy to show that the invariant
part ^q.S2.L�˝Q//GL.g;Z/ is trivial, we can use Borel’s vanishing theorem [7] to
show that

H p.GL.g;Z/IH q.S2LIQ//D 0

for any q � 1.

Theorem 7.3 For every i , the .2i�1/–st Miller–Morita–Mumford class e2i�1 van-
ishes in H 4i�2.LgIQ/ if g is sufficiently larger than i .

Proof It is known that the group cohomology H�.G/ of a discrete group G can be
rewritten as H�.BGı/, where BG denotes the classifying space of G . When G is
a Lie group, we write GC1 for G with C1 topology and Gı for G with discrete
topology.

Consider the commutative diagram

H�.BSp.2g;R/C
1

IQ/ //

B.id/�
��

	

H�.BGL.g;R/C
1

IQ/

B.id/�
��

H�.BSp.2g;R/ıIQ/

��

H�.BGL.g;R/ıIQ/

��

H�.BSp.2g;Z/IQ/

B��

��

//

	

H�.BurSp../2g/IQ/

B.� jLg /
�

��

// H�.BGL.g;Z/IQ/

H�.BMg/IQ/ // H�.BLgIQ/
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where id denotes the identity map, which always gives a continuous map from G with
discrete topology to that with C1 topology for a Lie group G , and all the arrows not
labeled are pullbacks by the induced maps of inclusions on classifying spaces. We now
assume that g is sufficiently large. Since Sp.2g;R/C

1

is homotopy equivalent to the
unitary group U.g/C

1

, we have H�.BSp.2g;R/C
1

IQ/ŠH�.BU.g/C
1

IQ/ and
the latter is known to be isomorphic to the polynomial algebra QŒc1; c2; : : : � generated
by the Chern classes c1; c2; : : : independently in the stable range. This polynomial
algebra QŒc1; c2; : : : � is mapped onto QŒc1; c3; c5; : : : � in H�.BSp.2g;R/ıIQ/, and
onto QŒe1; e3; e5; : : : � in H�.BMgIQ/. We refer to Morita [28] again for these
arguments. On the other hand, it was shown by Milnor [27, Appendix] that

B.id/�W H�.BGL.g;R/C
1

IQ/ �!H�.BGL.g;R/ıIQ/

is trivial for � � 1. By combining this fact with Lemma 7.2, the theorem follows.

Remark 7.4 Recently, Giansiracusa and Tillmann [15] have proved a closely related
result that odd Miller–Morita–Mumford classes vanish in the integral cohomology of
the handlebody subgroup Hg for g � 2. In fact, they showed that odd Miller–Morita–
Mumford classes are in the kernel of the pullback map on the integral cohomology
by BDiffCM ! BDiffC†g where M is any compact oriented 3–manifold M with
@M D†g .
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