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A note on Gornik’s perturbation
of Khovanov–Rozansky homology

ANDREW LOBB

We show that the information contained in the associated graded vector space to
Gornik’s version of Khovanov–Rozansky knot homology is equivalent to a single
even integer sn.K/ . Furthermore we show that sn is a homomorphism from the
smooth knot concordance group to the integers. This is in analogy with Rasmussen’s
invariant coming from a perturbation of Khovanov homology.
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1 Introduction and statement of results

In the last few years there have been associated to a knot K � S3 various multiply-
graded modules, each one exhibiting a classical knot polynomial as its graded Euler
characteristic. It now seems likely that such knot homologies exist for each polynomial
arising from the Reshetikhin–Turaev construction.

It has been observed that there sometimes exist spectral sequences converging from
one knot homology to another (see Rasmussen [11] for a slew of these). One of the
first examples was due to Lee [6].

1.1 Khovanov homology and Lee’s spectral sequence

From here on we shall work over the complex numbers C . The E2 page of Lee’s
spectral sequence is standard Khovanov homology [3]. With a one-component knot K

as input, the E1 page is a 2–dimensional complex vector space supported in homolog-
ical degree 0. The E1 page also has another integer grading (the quantum grading);
we write zH i;j .K/ for this E1 page where i is the homological grading and j is the
quantum grading. Another way to think of zH i;j .K/ is as the associated graded vector
space to the homology of a filtered chain complex defined by Lee.

Rasmussen [12] showed that zH i;j .K/ is supported in bidegrees i D 0; j D s� 1 and
i D 0; j D sC 1 where s.K/ 2 2Z. Hence the information contained in zH i;j .K/ is
equivalent to a single even integer. Rasmussen further showed:
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Theorem 1.1 (Rasmussen [12]) If g�.K/ is the smooth slice genus of the knot K ,
then

g�.K/�
js.K/j

2
:

This bound is sufficient to recover the Milnor conjecture on the slice genus of torus
knots, a result previously only accessible through gauge theory. Furthermore Rasmussen
showed:

Theorem 1.2 (Rasmussen [12]) The map sW K 7! s.K/ 2 2Z is a homomorphism
from the smooth concordance group of knots to the integers.

1.2 Khovanov–Rozansky homology and Gornik’s spectral sequence

In the case of Khovanov–Rozansky homology H
i;j
n .K/ (n� 2) (which has the quan-

tum sl.n/ knot polynomial as its Euler characteristic), a spectral sequence with E2

page H
i;j
n .K/ was defined by Gornik [1]. He showed that the E1 page of this

spectral sequence is a complex vector space of dimension n supported in homological
degree i D 0. The invariance of this spectral sequence under the Reidemeister moves
was first shown by Wu [14].

Again there is also a quantum grading on this vector space, and the vector space can be
thought of as the associated graded vector space to the homology of a filtered chain
complex Fj zC i

n.D/ defined by Gornik for any diagram D of a knot K . We shall write
Fj zH i

n.K/ for the filtered homology groups � � � � Fj�1 zH i
n.K/� Fj zH i

n.K/� � � � of
this chain complex and

zH i;j
n .K/D Fj zH i

n.K/=Fj�1 zH i
n.K/

for the associated graded vector space.

It was shown by the author [7] and independently by Wu [14] that one can extract a
lower bound on the slice genus from the quantum j –grading of each nonzero vector
space zH 0;j

n .K/ (in fact in these cited papers this was done also for more general
perturbations of Khovanov–Rozansky homology than Gornik’s). Again, these lower-
bounds are enough to imply the Milnor conjecture on the slice genus of torus knots. The
highest nonzero quantum grading in this setup has been called gmax

n and the lowest gmin
n

by Wu. In [13] Wu asks for a relation between gmax
n and gmin

n , and we provide an
answer with our Theorem 1.3.
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1.3 New results

We first show that the information contained in zH i;j
n .K/ is equivalent to a single even

integer sn.K/.

Theorem 1.3 For K a knot, define the polynomial

zPn.q/D

jD1X
jD�1

dimC. zH
0;j
n .K//qj :

Then there exists sn.K/ 2 2Z such that

zPn.q/D qsn.K /
.qn� q�n/

.q� q�1/
:

In other words, this theorem says that the Gornik homology of any knot K is isomorphic
to that of the unknot, but shifted by quantum degree sn.K/.

The results of the author and of Wu’s on the slice genus are then immediately stated as
the following:

Corollary 1.4 (Lobb [7]; Wu [14]) Writing g�.K/ for the smooth slice genus of a
knot, we have

g�.K/�
jsn.K/j

2.n� 1/
:

Furthermore, if K admits a diagram D with only positive crossings then

g�.K/D
�sn.K/

2.n� 1/

D
1

2
.1� #O.D/Cw.D//;

where #O.D/ is the number of circles in the oriented resolution of D and w.D/ is the
writhe of D .

It is a question of much interest whether the sn.K/ are in fact all equivalent to each
other. We hope that this is not true, and do not know whether to expect it to be true.
Nevertheless, let us formulate this as a conjecture.

Conjecture 1.5 For any knot K and m; n� 2, we have

sm.K/

sn.K/
D

m� 1

n� 1
:

Note that s2.K/D�s.K/, so every sn is equivalent to Rasmussen’s original s.K/.
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The falsity of this conjecture would have consequences for the nondegeneracy of the
spectral sequences defined by Rasmussen [11] on the triply-graded Khovanov–Rozansky
homology [5]. One can also make a weaker conjecture:

Conjecture 1.6 For any knot K and n� 2, we have

sn.K/ 2 2.n� 1/Z:

This has the cosmetic appeal that it would rule out the possibility of fractional bounds
on the slice genus coming from Corollary 1.4, but again we have no expectations either
way on the truth of this conjecture.

By analogy with Rasmussen’s Theorem 1.2 we might anticipate that each sn is a
concordance homomorphism. We show that this is in fact the case:

Theorem 1.7 For each n � 2, the map snW K 7! sn.K/ 2 2Z is a homomorphism
from the smooth concordance group of knots to the integers.

This theorem tells us that we have a concordance homomorphism for each integer � 2.
It is a fascinating problem to try and understand if and how these homomorphisms are re-
lated to each other; we hope that this paper will stimulate some activity towards this goal.

We conclude by noting that there are many properties of Rasmussen’s concordance
homomorphism s from Khovanov homology and of the homomorphism � coming
from Heegaard Floer knot homology (see Rasmussen [10] and Ozsváth and Szabó [9])
which follow formally from the properties of s and � analogous to Corollary 1.4 and
Theorem 1.7. Rescaled versions of these results can now be seen to hold for sn . We
restrict ourselves to mentioning one of these which is not well-known as following
from these formal properties.

Corollary 1.8 If K is an alternating knot then

sn.K/D
1

1� n
�.K/;

where �.K/ is the classical knot signature of K .

We sketch the proof of this at the end of the next section.
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2 Proofs of results

We assume in this section some familiarity with Khovanov and Rozansky [4]. We fix
an integer n� 2 and let K be a 1–component knot. In [4] the polynomial w D xnC1

is called the potential. Gornik’s key insight [1] was that it made sense to take a
perturbation zw D xnC1� .nC 1/x of this potential and much of [4] goes through as
before. Gornik showed that for his choice of potential zw , a knot diagram D determines
a chain complex that no longer has a quantum grading but instead a quantum filtration
respected by the differential.

� � � �Fj�1 zC i
n.D/� Fj zC i

n.D/� � � � ;

d W Fj zC i
n.D/! Fj zC iC1

n .D/:

It was immediate from his definitions that there exists a spectral sequence with E2 page
the original Khovanov–Rozansky homology H

i;j
n .K/ converging to the associated

graded vector space

E
i;j
1 .K/D zH

i;j
n .K/D Fj zH i

n.K/=Fj�1 zH i
n.K/

to the filtered homology groups Fj zH i
n.K/.

Given a knot diagram D for K , Gornik gave a basis at the chain level generating the
homology; we now describe this basis. We write O.D/ for the oriented resolution of D ,
and write r for the number of components of O.D/. The oriented resolution O.D/

gives rise to a summand of the chain group zC 0
n .D/D

S
j Fj zC 0

n .D/, isomorphic in a
natural way to

CŒx1;x2; : : : ;xr �=.x
n
1 � 1;xn

2 � 1; : : : ;xn
r � 1/ Œ.1� n/.w.D/C r/�;

where we have indicated a shift in the quantum filtration depending on r and on the
writhe w.D/ of the diagram.

Definition 2.1 Let � D e2� i=n . For each p D 0; 1; : : : ; n� 1 we define an element
gp 2

zC 0
n .D/ that lies in this summand by

gp D

rY
kD1

.xn
k
� 1/

.xk � �
p/
:

Theorem 2.2 (Gornik [1]) Each gp is a cycle and fŒg0�; Œg1�; : : : ; Œgn�1�g is a basis
for the homology zH i

n.K/D
S

j Fj zH i
n.K/. Consequently zH i

n.K/ is a vector space of
dimension n supported in homological degree i D 0.
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Our first observation is that we can find a good basis for the subspace of zC 0
n .D/ spanned

by g0;g1; : : : ;gn�1 . What we mean here by “good” requires another definition.

Definition 2.3 A monomial
Qs

iD1 x
ai

i 2CŒx1;x2; : : : ;xs � is said to be of n–degree d

if and only if
sX

iD1

ai D d .mod n/:

A polynomial is said to have be n–homogenous of n–degree d if and only if it is a
linear combination of monomials of n–degree d .

We note that projection extends the notion of n–degree unambiguously to elements
lying in the ring

CŒx1;x2; : : : ;xs �=.x
n
1 � 1;xn

2 � 1; : : : ;xn
s � 1/

since the quotient ideal is generated by n–homogeneous polynomials.

Next we give a basis consisting of n–homogeneous elements for the vector space
spanned by the elements g0;g1; : : : ;gn�1 2

zC 0
n .D/.

Lemma 2.4 Let g0;g1; : : : ;gn�1 be given as in Definition 2.1, and consider the
n–dimensional complex vector space

V D hg0;g1; : : : ;gn�1i �CŒx1;x2; : : : ;xr �=.x
n
1 � 1;xn

2 � 1; : : : ;xn
r � 1/:

For p D 0; 1; : : : ; n� 1 let

hp 2CŒx1;x2; : : : ;xr �=.x
n
1 � 1;xn

2 � 1; : : : ;xn
r � 1/

be the unique n–homogeneous element of n–degree p such that

g0 D h0C h1C � � �C hn�1:

Then we have
V D hh0; h1; : : : ; hn�1i:

Proof For dimensional reasons it is enough to show that for each t D 0; 1; : : : ; n� 1

we have
gt 2 hh0; h1; : : : ; hn�1i:

So let us fix such a t and let xhp be the unique n–homogeneous element of n–degree p

such that
gt D

xh0C
xh1C � � �C

xhn�1:

We will show that xhp is a multiple of hp and then we will be done.
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Consider a monomial of n–degree p

rY
iD1

x
ai

i where
rX

iD1

ai D p .mod n/ and 0� ai � n� 1 for all i:

The coefficient of this monomial in hp (or, equivalently, in g0 ) is clearly 1. The
coefficient c of this monomial in gt is expressible as a product c D c1c2 � � � cr where
ci is the coefficient of xai in the expansion of

xn� 1

x� � t
D

xn� .� t /n

x� � t
:

We leave it to the reader to check that ci D �
�.aiC1/t , so that

c D ��t.
Pr

iD1.aiC1//
D ��t.pCr/:

Hence we see that

xhp D �
�t.pCr/hp so gt 2 hh0; h1; : : : ; hn�1i:

To put our new n–homogeneous basis to use, we require a proposition telling us how
we might expect it to behave with respect to the filtration. In what follows, since we are
assuming some familiarity with [4], we allow ourselves to refer to a matrix factorization
as just a letter, M . We begin with a definition.

Definition 2.5 If V is some filtered vector space

� � � �FiV � FiC1V � � � � ;

and we have a nonzero x 2 V , we shall define the quantum grading qgr.x/ 2 Z by
the requirement that x is nonzero in

Fqgr.x/V =Fqgr.x/�1V:

The reason for the word “quantum” in the definition is that in this paper the only vector
spaces we shall worry about are those coming from chain groups or homology groups
carrying a “quantum” filtration.

Proposition 2.6 If M is a matrix factorization whose homology H.M / appears
as a summand of the chain group zC i.D/, then there is a natural .Z=2nZ/–grading
on H.M / which we write as

Gr˛ H.M / for ˛ 2 Z=2nZ:
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This grading extends to a grading on the chain groups zC i
n.D/, which is respected by

the differential

d W Gr˛ zC i
n.D/ �! Gr˛ zC iC1

n .D/ for ˛ 2 Z=2nZ;

thus giving a .Z=2nZ/–grading on the homology groups Gr˛ zH i
n.K/ for ˛ 2 Z=2nZ.

Furthermore, if a 2 Gr˛ zC 0
n .D/ and b 2 Grˇ zC 0

n .D/ represent nonzero classes Œa�, Œb�
in homology zH 0

n .K/ then we have

˛�ˇ D qgr.a/� qgr.b/ .mod 2n/

D qgr.Œa�/� qgr.Œb�/ .mod 2n/:

Proof The matrix factorization M consists of two “internal” graded vector spaces
V0 , V1 and pair of “internal” differentials

d0W V0! V1 and d1W V1! V0; d1d0 D d0d1 D 0:

If we were working with Khovanov and Rozansky’s potential w D xnC1 then we
would know that these internal differentials d0 , d1 were both graded of degree nC 1.
But with Gornik’s potential zw D xnC1 � .nC 1/x the internal differentials cease to
respect the grading. So instead we take the filtration associated to the grading of the
internal vector spaces and we observe that the internal differentials are then filtered of
degree nC 1. This gives rise to a filtered homology H.M / and so to filtered chain
groups.

The crux of this proposition is recognizing that the polynomials appearing as matrix
entries in Gornik’s internal differentials are all n–homogenous. Since the various
xi appearing in the definition of M are assigned grading 2, this means that the
homology H.M / inherits a .Z=2nZ/–grading from the .Z=2nZ/–grading on the
internal vector spaces of M coming from collapsing their Z–grading.

Similarly the differentials on the chain complex zC i
n.D/ have n–homogeneous matrix

entries. It needs to be checked that these entries are graded of degree 0 2Z=2nZ – we
leave this to the reader. Hence we inherit a .Z=2nZ/–grading on homology

Gr˛ zH i
n.K/ where ˛ 2 Z=2nZ:

The first equality of the final part of the proposition follows from the observation
that both the filtration and the .Z=2nZ/–grading on zC i

n are induced from the same
Z–grading on the matrix factorizations. The second equality follows from the fact that
the differential on zC i

n respects the .Z=2nZ/–grading.
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In Proposition 2.6 we restricted ourselves to relative quantum gradings, but we did this
simply as a matter of convenience, so that we did not have to worry about the various
grading shifts happening in the definition of the chain complex. It is of course possible
to be more precise. The content of the next proposition is that we have computed the
grading shifts to give a precise statement of Proposition 2.6 applied to the case of the
n–homogenous generators h0; h1; : : : ; hn�1 .

Proposition 2.7 For p D 0; 1; : : : ; n� 1, each hp of Lemma 2.4 can be considered
as a cycle of the chain group zC 0

n .D/, each lying in the summand of this chain group
corresponding to the oriented resolution O.D/.

Then each Œhp � is a nonzero class in homology lying in the graded part zH 0;jp

n .K/ for
some jp satisfying

jp D 2pC .1� n/.w.D/C r/ .mod 2n/:

Proof Certainly each hp lies in a unique .Z=2nZ/–grading. We note that the writhe of
the diagram w.D/ and the number r of components of O.D/ appear in Proposition 2.7
because of the grading shift of the chain group summand. The factors of 2 appear since
the various xi appearing in the definition of the homology are assigned grading 2. We
note also that w.D/C r is always an odd number.

Definition 2.8 For K a knot let

smax
n .K/Dmaxfj W zH 0;j

n .K/DCg;

smin
n .K/Dminfj W zH 0;j

n .K/DCg:

It is now clear that Theorem 1.3 follows immediately from Proposition 2.7 and the
following:

Proposition 2.9 For any knot K we have

smax
n .K/� smin

n .K/� 2.n� 1/:

To verify Proposition 2.9 we need to appeal to the results of [7], specifically those of
Section 3:3 which explains how, given a link L, zH i;j

n .L/ may change under elementary
1–handle addition to L. We do not need these results in full generality; the relevant
picture for this paper is that of Figure 1.

We state the next proposition without proof and refer interested readers to [7, Sec-
tion 3:3] for more details.
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K1

K1

K2

K2

K

1–handle 1–handle

Figure 1. In this figure we show how the connect sum K DK1 # K2 of two
knots K1 , K2 is obtained from the disjoint union of the knots by a knot
cobordism consisting of a single 1–handle attachment (the straight arrow),
and likewise the reverse direction (the bendy arrow).

Proposition 2.10 Consider the setup of Figure 1 where K DK1 # K2 . Associated to
the straight arrow is a map

F W Fj1 zH i
n.K1/˝Fj2 zH i

n.K2/ �! Fj1Cj2Cn�1 zH i
n.K/;

and associated to the bendy arrow is a map

GW Fj zH i
n.K/ �!

[
j1;j2

j1Cj2DjCn�1

Fj1 zH i
n.K1/˝Fj2 zH i

n.K2/:

For pD 0; 1; : : : ; n�1 we write Œgp �; Œg
1
p �; Œg

2
p � for Gornik’s basis elements of zH 0

n .K/,
zH 0

n .K1/, zH 0
n .K2/ respectively. We have

F.Œg1
p1
�˝ Œg2

p2
�/D ˛Œgp1

�;

where ˛ 6D 0 if and only if p1 D p2 , and

G.Œgp �/D ˇ.Œg
1
p �˝ Œg

2
p �/;

where ˇ 6D 0.

With this proposition in hand we are almost ready to prove Proposition 2.9 and hence
Theorem 1.3. We just need one more easy lemma.
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Lemma 2.11 If g 2 zC 0
n .D/ is one of Gornik’s basis elements of zH 0

n .K/ then

qgr.Œg�/D smax
n .K/:

Proof This follows from the observation that the quantum grading of exactly one
of the Œhp � must be smax

n .K/, and that g is a linear combination of the hp , with all
coefficients nonzero.

Proof of Proposition 2.9 In Figure 1, let K D K1 and let K2 D U , the unknot.
Choose p 2 f0; 1; : : : ; n � 1g so that Œh1

p � is nonzero in zH 0;smin
n

n .K1/. Now h1
p is

expressible as a linear combination of Gornik’s generators g1
0
;g1

1
; : : : ;g1

n�1
. Assume

without loss of generality that the coefficient of g1
0

in this linear combination is nonzero.
Then we have

smax
n .K/D qgr.Œg0�/

D F.Œh1
p �˝ Œg

2
0 �/

� qgr.Œh1
p �/C qgr.Œg2

0 �/C n� 1

D smin
n .K/C n� 1C n� 1

D smin
n .K/C 2n� 2:

Now Theorem 1.3 follows easily.

Proof of Theorem 1.3 Propositions 2.7 and 2.9 combine to imply Theorem 1.3

We can use the same technique from the proof of Proposition 2.9 to prove Theorem 1.7.

Proof of Theorem 1.7 To check we have a homomorphism, it is enough to show that
sn respects the group operations. In other words if K DK1 # K2 we wish to see

sn.K/D sn.K1/C sn.K2/:

Again we refer to Figure 1 and choose p 2 f0; 1; : : : ; n� 1g so that Œh1
p � is nonzero

in zH 0;smin
n

n .K1/ and assume without loss of generality that the coefficient of g1
0

in the
expansion of h1

p is nonzero.
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We observe

sn.K1/C sn.K2/D smin
n .K1/C smax

n .K2/

D qgr.Œh1
p �˝ Œg

2
0 �/

� qgr.F.Œh1
p �˝ Œg

2
0 �//� nC 1

D qgr.Œg0�/� nC 1

D smax
n .K/� nC 1

D sn.K/;

sn.K1/C sn.K2/D smax
n .K1/C smax

n .K2/� 2nC 2

D qgr.Œg1
0 �˝ Œg

2
0 �/� 2nC 2

D qgr.G.Œg0�//� 2nC 2

� qgr.Œg0�/C n� 1� 2nC 2

D smax
n .K/� nC 1

D sn.K/:

Finally we indicate the proof of Corollary 1.8.

Proof of Corollary 1.8 The main tool is due to Kawamura [2] in which she gives an
explicit estimate of s.K/ and �.K/ depending on a diagram D of K . In deriving
this estimate she only makes use of the formal properties of s and � analogous to
Corollary 1.4 and Theorem 1.7, hence her arguments also apply to sn .

In [8], the author independently derives this estimate for s.K/, using an algebraic
argument rather than the formal properties of s . Proposition 1:5 of [8] shows that
the estimates are tight given an alternating diagram D of K , but the proof of this
Proposition does not use the definition of s and hence also shows that the bounds on
sn.K/ are tight for alternating knots.

Therefore since we know appropriately rescaled versions of this Corollary hold for s

and for � , they also hold for sn .
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