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Higher cohomologies of modules

MARÍA CALVO
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If C is a small category, then a right C–module is a contravariant functor from C
into abelian groups. The abelian category ModC of right C–modules has enough
projective and injective objects, and the groups ExtnModC

.B;A/ provide the basic
cohomology theory for C–modules. We introduce, for each integer r � 1 , an
approach for a level–r cohomology theory for C–modules by defining cohomology
groups H n

C;r.B;A/ , n � 0 , which are the focus of this article. Applications to the
homotopy classification of braided and symmetric C–fibred categorical groups and
their homomorphisms are given.

18D10, 55N25; 55P91, 18D30

1 Introduction and summary

Among the Ext groups in the category Ab of abelian groups, only HomAb.B;A/ and
Ext1Ab.B;A/ are relevant since all groups ExtnAb.B;A/ vanish for n� 2, and there is
nothing to say about the latter. In the fifties, however, Eilenberg and Mac Lane [27;
28; 29; 43] introduced what are now known as higher cohomology theories for abelian
groups: for each integer r� 1, the level–r cohomology groups of an abelian group B

with coefficients in an abelian group A are defined to be the cohomology groups of the
Eilenberg–Mac Lane complex K.B; rC 1/ with coefficients in A, up to a dimension
shift, that is,

H n
r .B;A/DH nCr.K.B; rC 1/;A/; n� 0:

In the beginning, these higher-level cohomology groups were studied primarily with
interest in algebraic topology. For example, Copeland [20, Proposition 9] proved
a remarkable classifying fact stating that, for each k 2 H n

r .B;A/, n � 3, there
exists a pointed CW-complex .X;�/, unique up to homotopy equivalence, such that
�rC1.X;�/DB , �rCn.X;�/DA, �i.X;�/D 0 for all i ¤ rC1; rCn, and k is the
(unique nontrivial) Postnikov invariant of .X;�/ (see Whitehead [60, Chapter IX]). But
later, these cohomologies of abelian groups found an application in solving purely al-
gebraic problems. Thus, for instance, the classification result for symmetric categorical
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groups P D .P ;˝; I; a; r; l ; c/, which appeared originally in the unpublished thesis of
Sinh [54] (where they are called Picard categories), is stated in terms of the associated
abelian groups BD�0P , the group of iso-classes of its objects, AD�1P , the group of
automorphisms of its unit object, and a second-level cohomology class k 2H 3

2
.B;A/,

canonically deduced from the coherence pentagons and hexagons in P . Previously, as a
consequence of having Ext2Ab.B;A/D0, Deligne [21] had proved that the classification
of strictly commutative symmetric categorical groups (ie, when cx;x D 1x˝x ) is trivial,
in the sense that only the two abelian groups B and A above are a complete invariant for
the equivalence type of such a strictly commutative symmetric categorical group. Later,
an extension of Sinh’s results was proved by Joyal and Street [41], where they stated a
classification theorem for braided categorical groups (defined similarly to symmetric
categorical groups, but where the usual symmetry condition cy;xcx;y D 1x˝y is not
assumed), in terms of elements of the first-level third cohomology groups H 3

1
.B;A/.

If C is a small category, then the category ModC of right C–modules has objects the
contravariant functors AW Cop ! Ab from C into abelian groups, with morphisms
the natural transformations. This is an abelian category with enough injectives and
projectives, and the abelian groups ExtnModC

.B;A/ provide the basic cohomology
theory for C–modules. For instance, if ZW Cop ! Ab is the constant functor with
value Z, then the groups H n.C;A/D ExtnModC

.Z;A/ are the cohomology groups of
the category C with coefficients in the C–module A, studied by Roos [52], Watts [59],
Mitchell [46] and Baues and Wrisching [3], among other authors. In this paper we
introduce, for each integer r � 1, an approach for a level–r cohomology theory for
C–modules by defining cohomology groups

(1) H n
C;r.B;A/ WDH nCr.holim

���!
C K.B; rC 1/; holim

���!
C �IA/; n� 0;

which we believe enjoy many desirable properties and are the focus of this article. In
the case where C is the trivial category with only one arrow, these level–r cohomology
groups reduce to those of Eilenberg–Mac Lane above for abelian groups. When C is
a group G (that is, C has one object and all its morphisms are invertible), then the
first-level cohomology groups of a G –module B with coefficients in a G –module A,
H n

G;1
.B;A/ coincide with those “abelian” cohomology groups H n

G;ab.B;A/ studied by
Cegarra and Khmaladze [15], while the second-level cohomology groups H n

G;2
.B;A/

coincide with the “symmetric” cohomology groups H n
G;s.B;A/ treated by same authors

in [16].

The results here are mainly of algebraic interest, but they may also be considered within
the homotopy theory of diagrams of spaces, as has been studied by various authors such
as Dror, Dwyer and Kan [23], Dwyer and Kan [26], Dror Farjoun [24], Dror Farjoun
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and Zabrodsky [25], Moerdijk and Svensson [47; 48] and Chachólski and Scherer [17].
The contents of the paper can be summarized as follows:

We begin by providing a brief account of the cohomology of simplicial sets. Here, at
the same time as fixing notation and terminology, we review necessary aspects and
results concerning cohomology groups of small categories, simplicial sets and diagrams
of simplicial sets that will be used throughout the paper. The main notion we need
to establish is that of the cohomology groups H n.holim

���!
C X;A/, for X W Cop ! S

a diagram of simplicial sets, and AW Cop ! Ab any C–module, since it leads to
the definition of the level–r cohomology groups of C–modules (1), H n

C;r.B;A/. A
significant component here is the construction of a manageable and lucid cochain
complex C �C;r.B;A/, called the complex of level–r cochains, for computing higher
cohomologies of C–modules:

Theorem 3.3 For any two C–modules A, B , there are isomorphisms

H n
C;r.B;A/ŠH nC �C;r.B;A/; r� 1:

As one of the relevant consequences of the above isomorphisms, we prove the expected
isomorphisms and monomorphism for levels r and rC 1, namely:

Theorem 3.4 For n� rC 1, there are natural isomorphisms

H n
C;rC1.B;A/ŠH n

C;r.B;A/;

and a monomorphism
H rC2

C;rC1
.B;A/ ,!H rC2

C;r .B;A/:

In this paper, we use mainly the cohomology groups H n
C;r.B;A/ for n� 3. Hence, we

pay particular attention to low-dimensional cocycles and coboundaries. We explicitly
describe the cochain complexes C �C;1.B;A/ and C �C;2.B;A/, and specifically analyse
their corresponding truncated subcomplexes that, respectively, yield the first- and
second-level cocycles and coboundaries in dimensions � 3. This analysis allows us to
quickly obtain interpretations for the cohomology groups H n

C;r.B;A/ for n � 2, in
terms of C–module homomorphisms and extensions. More precisely, for any r� 1,
we prove:

Theorems 5.1 and 5.3 For any two C–modules A;B , H 0
C;r.B;A/ D 0, and there

are isomorphisms H 1
C;r.B;A/ŠHomModC .B;A/ and H 2

C;r.B;A/Š ExtModC .B;A/.
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The remaining results in the article focus on the cohomology groups H 3
C;r.B;A/, to

whose elements we give a natural interpretation in terms of equivalence classes of
braided or symmetric C–fibred categorical groups, P D .P ;P;˝; I; a; r; l ; c/, that is,
categories fibred in groupoids, P W P !C , enriched with a locally compact monoidal
C–structure by C–functors ˝W P �C P ! P and I W C ! P , and corresponding
coherent associativity, unit and commutativity C–fibred constraints. Indeed, a main
objective of this paper is to state and prove precise classification theorems for braided
and symmetric fibred categorical groups by generalizing the aforementioned results
for the nonfibred case stated by Joyal and Street [41] and Sinh [54]. To do so, we
consider the 2–categories that braided and symmetric C–fibred categorical groups
form, respectively denoted by BCG#C

and SCG#C
, and our approach to the issue

mainly consists in proving (see Theorems 7.2 and 6.15):

Theorem There are biequivalences of 2–categories

(2)
Z3

C;1
PC
' Psd.Cop;BCG/

R
C
' BCG#C

;

Z3
C;2

PC
' Psd.Cop;SCG/

R
C
' SCG#C

;

where
� Z3

C;1 (resp. Z3
C;2 ) is the 2–category of first-level (second-level) 3–cocycles of

C–modules, whose objects are triples .B;A; h/ with A and B two C–modules
and h a first-level (second-level) 3–cocycle of B with coefficients in A;

� Psd.Cop;BCG/ (resp. Psd.Cop;SCG/) is the 2–category of pseudofunctors
from Cop to the 2–category of braided (symmetric) categorical groups.

With the biequivalences PC above, we develop a “factor sets theory” for braided or
symmetric fibred categorical groups, like Schreier and Eilenberg–Mac Lane did for ordi-
nary group extensions. The biequivalences denoted by

R
C in (2) are actually monoidal

enriched versions of the so-called Grothendieck construction (see Grothendieck [37;
36]) biequivalence between the 2–category of contravariant pseudofunctors from a
category C to the 2–category of small 2–categories and the 2–category of fibred
categories over C , by Giraud [33; 34] (see also the paper by Vistoli [58], for a recent
treatment). In regard to these biequivalences

R
C in (2), we should note that the result

is presumably known to experts but, since it does not appear in the literature (to the
authors’ knowledge), we have included it here with the aim of making this paper as
self-contained as possible.

By taking quasi-inverses of the biequivalences (2), we deduce our main classification
applications for braided and symmetric fibred categorical groups and their homomor-
phisms. We introduce the category of first-level (resp. second-level) 3–cohomology
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classes, H3
C;1 (H3

C;2 ), whose objects are triples .B;A; k/ with A and B two C–
modules and k 2 H 3

C;1.B;A/ (k 2 H 3
C;2.B;A/). An arrow .p; q/W .B;A; k/ !

.B0;A0; k 0/ consists of C–module homomorphisms pW B!B0 and qW A!A0 , such
that p�.k 0/D q�.k/ 2H 3

C;1.B;A
0/. Then, we prove:

Theorem 7.5 There are classifying functors clW BCG#C
!H3

C;1 and clW SCG#C
!

H3
C;2 , written

.P
F
�! P 0/

cl
7! . .�0P ; �1P ; k3P /

.�0F;�1F / // .�0P 0; �1P 0; k3P 0/ /;

which have the following properties:

� Both classifying functors are essentially surjective on objects. That is, for any
object .B;A; k/ of H3

C;1 (resp. H3
C;2 ), there is a braided (symmetric) C–fibred

categorical group P with an isomorphism cl.P /Š .B;A; k/.

� For any isomorphism .p; q/W cl.P /Š cl.P 0/, there is a braided C–fibred equiv-
alence F W P ! P 0 such that cl.F /D .p; q/.

� cl.F / is an isomorphism if and only if F is a braided C–fibred equivalence.

� For any given .p; q/W cl.P /!cl.P 0/, the set of monoidal C–fibred isomorphism
classes, ŒF �, of braided C–fibred functors F W P ! P 0 with cl.F /D .p; q/ is
a principal homogeneous space under the abelian group H 2

C;1.B;A/. Hence,
there is a (nonnatural) bijection

fŒF �W P ! P 0 j cl.F /D .p; q/g ŠH 2
C;1.B;A/:

(cf Joyal and Street [41, Theorem 3.3] and Cegarra and Khmaladze [15, Theorems 22,
24], [16, Theorem 3.12]).

For any C–modules B;A, let BCG#C
ŒB;A� (resp. SCG#C

ŒB;A�) denote the set of
braided C–fibred equivalence classes of those braided (symmetric) C–fibred categorical
groups P with �0P D B and �1P DA. Then, for any integer r� 2, we have:

Theorem 7.6 There are natural bijections

H 3
C;1.B;A/Š BCG#C

ŒB;A�; H 3
C;r.B;A/Š SCG#C

ŒB;A�:

We should recall here the classical result by Deligne in [21, Proposition 1.4.15], where
he states that there is a natural bijection Ext2ModC

.B;A/ŠPic#C
ŒB;A�, where the latter

denotes the set of braided C–fibred equivalence classes of those strictly commutative
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symmetric C–fibred categorical groups P with �0P D B and �1P DA. Hence, the
natural inclusions

Ext2ModC
.B;A/�H 3

C;2.B;A/�H 3
C;1.B;A/

are, in general, strict. Also, we should mention the work of Breen [8] (see also Al-
drovandia and Noohi [1]), where he offers an excellent discussion about the cohomology
classification of symmetric and braided categorical group stacks over an arbitrary site C .
However, Breen’s results are far from being as explicit as ours in this work in terms of
cocycles when C is discrete.

The plan of this paper, briefly, is as follows. After this introductory first section, the
paper is organized in seven sections. In Section 2, at the same time as fixing notation
and terminology, we review some aspects concerning cohomology groups of small
categories, simplicial sets and diagrams of simplicial sets. Section 3 mainly includes
the definition of the level–r cohomology groups of C–modules, H n

C;r.B;A/, and
the construction of the cochain complexes C �C;r.B;A/ for computing them. Next, in
Section 4, we pay particular attention to the complexes C �C;1.B;A/ and C �C;2.B;A/,
with an explicit description of the level–r cochains that are low-dimensional cocycles
and coboundaries. Section 5 is devoted to showing natural interpretations for the coho-
mology groups H 1

C;r.B;A/ and H 2
C;r.B;A/, in terms of C–module homomorphisms

and extensions, respectively. Section 6 is long and very technical, but crucial to our
discussions. Here, we mainly show in detail how the 2–category of braided C–fibred
categorical groups is biequivalent to the 2–category of pseudofunctors from Cop to the
category of braided categorical groups. In Section 7, we include our theorems on the
homotopy classification of braided and symmetric C–fibred categorical groups and their
homomorphisms by means of the cohomology groups H 3

C;r.B;A/ and H 2
C;r.B;A/.

2 Cohomology of diagrams of pointed simplicial sets

The material of this section is fairly standard, so the expert reader may skip most of it.
In general, we employ the standard symbolism and nomenclature to be found in texts
on the cohomology of simplicial sets, and we refer to Bousfield and Kan [6], Gabriel
and Zisman [32], Illusie [40], Mac Lane [44], and mainly to Goerss and Jardine [35]
for the background.

2.1 Cohomology of small categories and simplicial sets

If C is a small category, then a functor AW Cop! Ab, where Ab is the category of
abelian groups, is called a C–module. We write ModC for the category of C–modules.
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There is a “global sections” functor lim
 �

CW ModC! Ab, given by

lim
 �

C.A/D

�
.au/ 2

Y
u2ObC

Au j �
�au D av for every � W v! u in C

�
;

where we write �� for A.�/, and, since the category ModC has enough injectives, we
can form the right derived functors of lim

 �
C . These yield the cohomology groups of C

with coefficients in a C–module A, due to Roos [52], Watts [59], Mitchell [46] and
Baues and Wrisching [3]:

H n.C;A/D .Rnlim
 �

C/.A/; n� 0:

Cohomology theory of small categories is itself a basis for other cohomology theories
such as, for example, the cohomology theory of simplicial sets with twisted coefficients.
Recall now that the simplicial category, denoted by �, has objects the ordered sets
Œn� D f0; : : : ; ng, n � 0, and its arrows are weakly monotone maps cW Œm� ! Œn�.
Throughout, we shall regard each ordered set Œn� as a category with exactly one arrow
j! i whenever i � j ; then, a weakly monotone map Œm�! Œn� is the same as a functor,
and � is viewed as a full subcategory of the category of small categories, denoted by
Cat. As is usual, for X W �op! Set any simplicial set, we write c�W Xn!Xm for the
map induced by a map cW Œm�! Œn� in the simplicial category, and di W Xn! Xn�1

for its corresponding face maps. The category of simplicial sets is denoted by S.

If X is a simplicial set, then its category of simplices, denoted by
R
�X , is the category

whose objects are pairs .x; Œm�/; where Œm� 2 � and x 2 Xm ; an arrow .x; Œm�/!

.y; Œn�/ is a weakly monotone map cW Œm�! Œn� such that c�yDx: A coefficient system
on X is an

R
�X –module, that is, a functor AW .

R
�X /op! Ab, and the cohomology

groups of X with coefficients in A are, by definition,

H n.X;A/DH n.
R
�X;A/; n� 0:

The functor nerve NW Cat! S, associates to any small category C the simplicial set
NC D Cat.�;C/W �op ! Set, whose n–simplices are the functors � W Œn�! C , or
tuples of arrows in C

� D
�
�j

�i;j

�! � i
�

0�i�j�n

such that �i;j�j ;kD�i;k and �i;iD1� i . Several times, we shall identify such a simplex
� 2 NnC with the basic string

.�1; : : : ; �p/ D �0
�1
 � � �

�p

 �p;
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where �i D �i�1;i . There is a functor by Illusie [40, Chaper VI, (3.1.2)]

(3)
R
�NC!C;

�
.�; Œm�/

c
! .�; Œn�/

�
7! .�0

�0;c0

�! �0/;

that induces, for any C–module A, canonical isomorphisms [40, Chaper VI, (3.4.2)]

H n.C;A/ŠH n.NC;A/; n� 0;

(see also Gabriel and Zisman [32, Appendix II, Proposition 3.3], Baues and Wrisching
[3, Proposition 8.5] and Goerss and Jardine [35, Chaper IV, Lemma 2.11]).

The functor N fully embeds Cat in the category of simplicial sets as a reflective
subcategory, with reflector the categorization functor CW S!Cat, Mac Lane [45, II,8],
which can be described as follows. For any simplicial set X , one forms the graph whose
objects are the 0–simplices of X and whose arrows x! x0 are those 1–simplices
y 2 X1 such that d0y D x and d1y D x0 . Then CX is the quotient category of the
free category of this graph by the relations s0xD 1x if x 2X0 , and .d2z/.d0z/D d1z

if z 2X2 . For each simplicial set X , the unit of the adjunction uW X ! NCX is the
simplicial map carrying a simplex z 2Xn to the simplex uz 2 NnCX with

uzi;j D Œd
n�j
2

d
j�i�1
1

d i
0z�W d

n�j
1

d
j
0

z �! dn�i
1 d i

0z; 0� i < j � n;

where, for each y 2 X1 , Œy�W d0y ! d1y denotes the arrow in CX that y defines,
and each dm

k
D dk

m
� � � dk W Xn! Xn�m denotes the m–fold iterated composition of

the k –th face operators of X . The counit of the adjunction is an identity, that is, for
any small category C , CNC DC .

If X is any simplicial set, then, by composition with the canonical composite functorR
�X

R
�u
//
R
�NCX

.3/ // CX;

any CX –module A gives a coefficient system on X , also denoted by A. The co-
homology groups of X with coefficients in the CX –module A are, by definition, the
cohomology groups of X with coefficients in the system A. For computing these coho-
mology groups H n.X;A/, there is a cosimplicial abelian group C �.X;A/W �! Ab,
which is defined in degree p by

C p.X;A/D
Q

x2Xp
Ad

p

0
x;

so that a p–cochain of X with coefficients in A is a map f W Xp!
F
v2X0

Av such that
f x 2 Ad

p

0
x , for each x 2 Xp . The homomorphism c�W C

p.X;A/! C q.X;A/ in-
duced by a map cW Œp�! Œq� in � takes a p–cochain f as above to the q–cochain c�f

given by .c�f /x D f .c�x/ if cp D q and .c�f /x D Œd
q�cp�1
1

d
cp
0

x��f .c�x/ if
cp < q , where Œdq�cp�1

1
d

cp
0

x��W Ad
p

0
c�x!Ad

q

0
x is the homomorphism induced on
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coefficients by the 1–simplex d
q�cp�1
1

d
cp
0

x of X . In particular, the coboundary oper-
ator on the associated complex of normalized cochains, equally denoted by C �.X;A/,
@pW C p.X;A/! C pC1.X;A/ is given by

.@pf /x D

pX
iD0

.�1/if .dix/C .�1/pC1Œd
p
0

x��f .dpC1x/:

In Gabriel and Zisman [32, Appendix II, Proposition 3.3], there are shown canonical
isomorphisms:

(4) H n.X;A/DH nC �.X;A/; n� 0:

If Y � X is any subsimplicial set, then the relative cohomology groups are de-
noted, as usual, by H n.X;Y IA/. Thus, for any CX –module A, H n.X;Y IA/ D

H nC �.X;Y IA/, where C �.X;Y IA/�C �.X;A/ is the cochain subcomplex making
exact the cochain complex sequence

0! C �.X;Y IA/ �! C �.X;A/
res
�! C �.Y;A/! 0:

Remark 2.1 Recall from Gabriel and Zisman [32, pages 10, 39], that the fundamental
groupoid, …X , of any simplicial set X , is the localized category of fractions CX Œ†�1�

for † the set of all morphisms of CX . Those CX –modules that factor through the
localization functor CX !…X are precisely the local coefficient systems on X ; that
is, a local coefficient system on X is a CX –module AW CX op! Ab, such that for
any x 2X1 , A gives an isomorphism Œx��W Ad1x ŠAd0x . When the simplicial set X

satisfies the Kan extension condition, then CX Š …X is an isomorphism, whence
every CX –module is locally constant.

In general, the cohomology groups (4) are not invariants of the weak homotopy type of
the simplicial set X , that is, for an arbitrary CX –module A, the cohomology groups
H n.X;A/ cannot be obtained from the geometric realization jX j of the simplicial set.
However, if A is a local system of coefficients on a simplicial set Y , then Quillen
[51, II, Proposition 4] proves that any weak homotopy equivalence of simplicial sets
f W X ! Y induces isomorphisms in cohomology H n.Y;A/ŠH n.X; f �A/.

2.2 Cohomology of diagrams of simplicial sets

A cohomology theory of diagrams of simplicial sets comes from the cohomology theory
of simplicial sets thanks to Bousfield and Kan’s homotopy colimit construction [6]. Let
us recall that, for any small category C , the simplicial replacement of a C–diagram of
simplicial sets, that is, a functor, X W Cop! S is the bisimplicial set

‰C.X /W �
op
! S; Œp� 7!

`
�2NpC X�0:
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The homomorphism induced by a map cW Œq�! Œp�, in �, maps the simplicial set
component at � W Œp�!C into the component at the composite �cW Œq�!C , just by
the simplicial set map ��

0;c0
W X�0!X�c 0 attached to the diagram at the morphism

�0;c0W �c0! �0 of C . Then, the homotopy colimit of the C–diagram X , denoted
by holim
���!

C X , is the diagonal simplicial set of the simplicial replacement, that is,

holim
���!

C X D diag‰C.X /W �
op! S:

Notice that, for any X W Cop ! S, there is a canonical simplicial projection map
holim
���!

C X ! NC , defined by .z; �/ 7! � , which, by the adjunction C a N, gives a
canonical functor C.holim

���!
C X /!C . Hence, every C–module AW Cop! Ab gives

rise to a C.holim
���!

C X /–module, also denoted by A, and therefore the corresponding
cohomology groups

H n.holim
���!

C X;A/

are defined as in (4). We refer to them as the cohomology groups of the C–diagram X

with coefficients in A.

As we stressed in Remark 2.1, the cohomology groups above cannot be expressed
in terms of the geometric realization space j holim

���!
C X j since A does not generally

define a local system of coefficients on it. However, we have the following invariance
result (see Moerdijk and Svensson [48, Theorem 2.3, Corollary 2.5] for a very general
Invariance Theorem):

Proposition 2.2 Let X;Y W Cop ! S be two C–diagrams of simplicial sets, and
suppose that f W X ! Y is a pointwise weak equivalence between them (ie, a natural
transformation such that fuW Xu! Yu is a weak homotopy equivalence for each object
u 2C ). Then, for any C–module A, f induces isomorphisms

H n.holim
���!

C Y;A/ŠH n.holim
���!

C X;A/:

Proof Let AW Cop! Ab be any given C–module. For any two objects u; v 2C let
C �.Xu;Av/ be the cosimplicial abelian group of cochains of the simplicial set Xu with
constant coefficients in the abelian group Av , and let C �;�.X;A/ denote the double
cosimplicial abelian group with

C p;�.X;A/D
Q
�2NpC C �.X�0

;A�p/:

The homomorphism c�W C
p;�.X;A/! C q;�.X;A/ induced by a map cW Œp�! Œq�

in � maps an f D .f� / 2 C p;m.X;A/ to c�f D ..c�f /� / 2 C q;m.X;A/, whose
component at a q–simplex, say � W Œq�!C , of NC is the dotted map at the top of the
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commutative square below.

.X�0/m

��
0;c 0

��

.c�f /� // A�q

.X�c 0/m
f�c // A�cp

��cp;q

OO

Since we have an identification diag C �;�.X;A/DC �.holim
���!

C X;A/, which is natural
both in X and A, the homomorphisms f �W H n.holim

���!
C Y;A/!H n.holim

���!
C X;A/

are those induced in homology by the map f �W diag C �;�.Y;A/! diag C �;�.X;A/.
Now, by hypothesis, all maps fuW Xu!Yu are weak equivalences, whence they induce
cohomology isomorphisms f �W C �.Yu;Av/!C �.Xu;Av/. Then, every cosimplicial
map C p;�.Y;A/! C p;�.X;A/ is also a cohomology isomorphism, for any p � 0,
and the proposition follows from the generalized Eilenberg–Zilber theorem of Dold
and Puppe [22] (see Goerss and Jardine [35, Lemma 2.6]).

If S� denotes the category of pointed simplicial sets, then a C–diagram of pointed sets
is a functor X W Cop!S� . This is the same as a pointed C–diagram of simplicial sets in
the natural sense: Let �W Cop! S be the C–diagram which is constant the simplicial
set with only one simplex. Then a pointed C–diagram of simplicial sets means a
C–diagram X W Cop! S endowed with a C–diagram morphism �!X . There is an
induced simplicial inclusion map holim

���!
C � ,! holim

���!
C X , and the reduced cohomology

groups of the C–diagram of pointed simplicial sets, denoted by zH n.holim
���!

C X;A/,
are defined to be the corresponding relative cohomology groups, that is, for any C–
module A,

(5) zH n.holim
���!

C X;A/DH n.holim
���!

C X; holim
���!

C �IA/:

Note that there is a simplicial isomorphism holim
���!

C �ŠNC , .�; �/$ � , and therefore

zH n.holim
���!

C X;A/DH n.holim
���!

C X;NCIA/:

Since, for any X W Cop!S� , the retractive diagram X�� gives a simplicial retraction
holim
���!

C X � NC, the restriction homomorphisms in the long exact sequence

� � � zH n.holim
���!

C X;A/!H n.holim
���!

C X;A/!H n.NC;A/! zH n.holim
���!

C X;A/ � � �

split. Hence, there are isomorphisms

H n.holim
���!

C X;A/Š zH .holim
���!

C X;A/˚H n.C;A/:

Remark 2.3 The category of C–diagrams of pointed simplicial sets, SCop

� , has a
closed Quillen model structure, where weak equivalences and fibrations are levelwise
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(Bousfield and Kan [6, page 313], Quillen [51, II, Theorem 4]). Therefore, for any
X W Cop! S� and AW Cop! Ab, Quillen’s homotopical cohomology groups of X

with coefficients in A, say Qn.X;A/, are defined [51, II, 5.1] to be

Qn.X;A/D HomHo SCop
�
.X;K.A; n//;

the abelian groups of morphisms in the homotopy category from X to the C–diagram
of simplicial abelian groups K.A; n/W Cop! SAb obtained by composing A with the
Eilenberg–Mac Lane functors K.�; n/W Ab! SAb.

Also, for any X and A as above, Dwyer and Kan [26, 3.2] defined corresponding
cohomology groups, say DKn.X;A/, as the cohomology groups of the (relative to �)
complex whose n–cochains are natural transformations �W Xn!A (with coboundary
@� D

P
.�1/idi in the standard way) or, equivalently, as

DKn.X;A/D ŒX;K.A; n/�SCop
�
;

the abelian groups of homotopy classes of pointed simplicial natural transformations
from X to K.A; n/; see Piazenza [50, Theorem 2.6]. When X is cofibrant, then
there are isomorphisms Qn.X;A/ŠDKn.X;A/, by Quillen [51, I, Corollary 1], since
K.A; n/ is fibrant in the category of diagrams.

But notice that, in general, the cohomology defined in (5) does not coincide with
Quillen’s homotopical cohomology. This is due to the fact that the homotopy colimit
construction holim

���!
CW SCop

� ! .S#NC/� is not a right Quillen equivalence, between
SCop

� and the closed model category of pointed objects over NC (ie, of retractive
simplicial sets over NC ), except for example, when C is a groupoid (see Hollander
[38, Theorem 2.7], or Dror, Dwyer and Kan [23] for C D G a group). The closed
model structure on .S#NC/� is induced by the usual one of simplicial sets; that is,
where a map is a weak equivalence, cofibration or fibration if and only if it is a weak
equivalence, cofibration or fibration of simplicial sets, respectively.

Indeed, in the case where C is a groupoid there are isomorphisms

HomHo SCop
�
.X;K.A; n//Š HomHo.S#NC/�

�
holim
���!

C X; holim
���!

C K.A; n/
�
:

Now, holim
���!

C X is cofibrant and, if C is a groupoid, then holim
���!

C K.A; n/ is fibrant
in the model category .S # NC/� . Therefore, there are isomorphisms

HomHo.S#NC/�

�
holim
���!

C X; holim
���!

C K.A; n/
�
Š
�

holim
���!

C X; holim
���!

C K.A; n/
�
.S#NC/�

relating morphisms in the homotopy category to homotopy classes of maps in the pointed
comma category .S#NC/� . Finally, by Goerss and Jardine [35, VI, Lemma 4.13], we
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have isomorphisms�
holim
���!

C X; holim
���!

C K.A; n/
�
.S#NC/�

Š zH n.holim
���!

C X;A/;

whence Qn.X;A/Š zH n.holim
���!

C X;A/ whenever C is a groupoid.

3 Higher cohomologies of C–modules

As above, if B is an abelian group, then, for each integer m� 2, let K.B;m/ denote
the Eilenberg–Mac Lane minimal complex having B as its unique nontrivial homotopy
group at dimension m, that is,

K.B;m/W �op
! Set; Œn� 7!Zm.Œn�;B/;

is the simplicial abelian group whose n–simplices are normalized m–cocycles of the
category Œn� with coefficients in B . For any two abelian groups B and A, and each
integer r� 1, the cohomology groups

H n
r .B;A/DH nCr.K.B; rC 1/;A/; n� 0;

define the level–r Eilenberg–Mac Lane cohomology theory of the abelian group B

with coefficients in the abelian group A [27; 28; 29; 43]. Let us now suppose that C
is any given small category. By composing any C–module, say BW Cop! Ab, with
the functor K.�;m/W Ab! S� , we obtain a C–diagram of pointed simplicial sets,
denoted by

K.B;m/W Cop
! S�; u 7!K.Bu;m/:

Then, in a natural way, we establish the following:

Definition 3.1 Let C be a small category, and r � 1 an integer. For any two C–
modules B;AW Cop!Ab, the level–r cohomology groups of B with coefficients in A

are defined by

H n
C;r.B;A/D

zH nCr.holim
���!

C K.B; rC 1/;A/:

Thus, the cohomology groups H n
C;r.B;A/ are computed from the relative cochain

complex
C �Cr.holim

���!
C K.B; rC 1/;NCIA/:

However, both for the theoretical and computational interests, it is desirable to have
an explicit description of more appropriate cochain complexes to compute these coho-
mology groups. To do that, recall that, for any abelian group B , the chain complex
of an Eilenberg–Mac Lane space K.B;m/ is chain-homotopic to the m–fold iterated
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bar construction on the group algebra xBm.ZB/, which we will denote as A.B;m/,
Eilenberg and Mac Lane [28, I, Theorem 20.3]. Thus, the Eilenberg–Mac Lane reduction
quasi-isomorphism (ie, cohomology-isomorphism cochain map)

(6) kW C �.K.B; rC 1/;A/! Hom.A.B; rC 1/;A/

provides the possibility to explicitly compute the level–r cohomology groups of an
abelian group B with coefficients in an abelian group A, as H n

r .B;A/DH nC �r .B;A/,
where

C �r .B;A/D Hom.A.B; rC 1/�Cr;A/

is the cochain complex

(7) � � � ! Hom.A.B; rC 1/n;A/
@�n
�! Hom.A.B; rC 1/nC1;A/! � � �

with dimensions raised by r. One of the main goals of this section is to establish the
counterpart result in the diagrammatic setup by means of certain cochain complexes
C �C;r.B;A/, the cohomology groups of which are the level–r cohomology groups
H n

C;r.B;A/, given in Definition 3.1. This cochain complex is defined as follows:

Definition 3.2 For any two C–modules B;AW Cop! Ab, and r � 1 an integer, let
C
�;�
C;r.B;A/ be the cochain bicomplex with

C
p;�
C;r .B;A/D

Q
�2NpC Hom.A.B�0; rC 1/;A�p/

whose coboundary operator @W C p�1;�
C;r ! C

p;�
C;r is given by the formula

(8) .@f /� .x/D fd0� .�
�
1 x/C

Pp�1
iD1

.�1/ifdi� .x/C .�1/p��p fdp� .x/:

Then, the complex of level–r cochains of the C–module B with coefficients in the
C–module A, is defined by

(9) C �C;r.B;A/D KerTot
�
C
�;�
C;r.B;A/

res
�! C

�;�
C;r.0;A/

��Cr
;

where Tot is the usual total cochain complex construction on double cochain complexes,
the bicomplex homomorphism res is the retraction induced by the zero map 0! B ,
and the notation “�C r” at the right indicates that the dimensions of the complex are
raised by r.

Below is one of the main results of this section.

Theorem 3.3 For any B;AW Cop! Ab, two modules over a small category C , and
r� 1, an integer, there are natural isomorphisms

H n
C;r.B;A/ŠH nC �C;r.B;A/:
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Proof For any two objects u; v 2 C let C �.K.Bu; rC 1/;Av/ be the cosimplicial
abelian group of cochains of K.Bu; rC 1/ with coefficients in the abelian group Av ,
so that we have the reduction quasi-isomorphism of cochain complexes (6),

kW C �.K.Bu; rC 1/;Av/! Hom.A.Bu; rC 1/;Av/;

which is natural both on u and v .

Let C
�;�
C .K.B; rC 1/;A/ denote the double cosimplicial abelian group with

C
p;�
C .K.B; rC 1/;A/D

Q
�2NpC C �.K.B�0

; rC 1/;A�p/ :

The homomorphism c�W C
p;�.K.B; rC 1/;A/! C q;�.K.B; rC 1/;A/, induced by

a map cW Œp� ! Œq� in �, maps an f D .f� / 2 C p;m.K.B; rC 1/;A/ to c�f D

..c�f /� / 2 C q;m.K.B; rC1/;A/, whose component at a q–simplex, say � W Œq�!C ,
of NC is the composite map

K.B�0; rC 1/m
��

0;c0 // K.B�c 0; rC 1/m
f�c // A�cp

��cp;q // A�q:

We have a homomorphism of bicomplexes

kW C �;�C .K.B; rC 1/;A/! C
�;�
C;r.B;A/;

inducing a natural quasi-isomorphism on the total cochain complexes

kW TotC �;�C .K.B; rC 1/;A/! TotC �;�C;r.B;A/;

since the cochain complex map kW C p;�
C .K.B; rC 1/;A/! C

p;�
C;r .B;A/; is a quasi-

isomorphism for every p .

Furthermore, since diag C
�;�
C .K.B; rC 1/;A/ D C �.holim

���!
C K.B; rC 1/;A/, as a

result of Dold and Puppe [22, Theorem 2.15], there is a natural quasi-isomorphism of
cochain complexes

sW TotC �;�C .K.B; rC 1/;A/! C �.holim
���!

C K.B; rC 1/;A/:

By combining the quasi-isomorphisms k and s, both for B as above and the zero
C–module 0W Cop ! Ab, we get the following commutative diagram of cochain
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complexes, induced by the inclusion of C–modules 0 ,! B ,

C �.holim
���!

C K.B; rC 1/;A/
res0 // C �.holim

���!
C K.0; rC 1/;A/

TotC �;�C .K.B; rC 1/;A/

s

OO

k
��

res00 // TotC �;�C .K.0; rC 1/;A/

s

OO

k
��

TotC �;�C;r.B;A/
res // TotC �;�C;r.0;A/

where the three horizontal restriction maps are retractions.

We now notice the following straightforward five observations: (1) there is an identifica-
tion C �.holim

���!
C K.0; rC1/;A/DC �.NC;A/; (2) the kernel of res0 , the top retraction

in the diagram, is the relative cochain complex C �.holim
���!

C K.B; rC1/;NCIA/; (3) the
bicomplexes C

�;�
C .K.0; rC 1/;B/ and C

�;�
C;r.0;A/ are both isomorphic to the double

cochain complex which is the complex C �.NC;A/ constant in the vertical direction;
(4) the vertical complex maps k and s at the right in the diagram are actually the
identity maps on C �.NC;A/; (5) the complex C �C;r.B;A/, by definition, occurs in
the diagram as the kernel of the bottom retraction res with its dimensions raised by r,
that is, C �C;r.B;A/D Ker.res/�Cr .

It follows that the complex maps induced on kernels

C �Cr
C .holim
���!

C K.B; rC 1/;NCIA/
k
 � Ker.res00/�Cr s

�! C �C;r.B;A/

are both quasi-isomorphisms, whence H n
C;r.B;A/ŠH nC �C;r.B;A/, as claimed.

One of the relevant consequences of Theorem 3.3 follows:

Theorem 3.4 Let B;AW Cop ! Ab be C–modules, and r � 1 an integer. For any
n� rC 1, there are natural isomorphisms

H n
C;rC1.B;A/ŠH n

C;r.B;A/;

and a monomorphism
H rC2

C;rC1
.B;A/ ,!H rC2

C;r .B;A/:

Proof All the isomorphisms and the monomorphism above are established through
the suspension-inclusion maps [28, Section 14] A.B; rC1/�C1 ,!A.B; rC2/, which
are indeed the identity maps between the q–chains of A.B; rC 1/ and the .qC1/–
chains of A.B; rC 2/, whenever q � 2rC 3. It follows that the induced bisimplicial
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map C
�;�
C;rC1.B;A/ ! C

�;�C1
C;r .B;A/, on the bicomplexes in Definition 3.2, is an

identity on all .p; q/–cochains with q � 2rC 3. Therefore, the induced suspension
map of complexes

(10) C �C;rC1.B;A/! C �C;r.B;A/

is an identity on n–cochains with n� rC 2, whence the theorem follows.

4 Low-dimensional cocycles and coboundaries

In this paper we are going to use only the cohomology groups H n
C;r.B;A/ for n� 3,

and for them Theorem 3.4 can be specified as follows:

Corollary 4.1 For any C–modules B;AW Cop! Ab, and r� 2 an integer, there are
natural identifications

H 0
C;r.B;A/DH 0

C;1.B;A/;

H 1
C;r.B;A/DH 1

C;1.B;A/;

H 2
C;r.B;A/DH 2

C;1.B;A/;

H 3
C;r.B;A/DH 3

C;2.B;A/�H 3
C;1.B;A/:

We next explicitly describe the cochain complexes C �C;1.B;A/ and C �C;2.B;A/, in-
troduced in Definition 3.2. To do so, we recall the following bar notation: If X is a set,
then for p � 1 any integer,

X p
WD f.x1; : : : ;xp/; xi 2X g;

as is usual; for a tuple of integers pD .p1; : : : ;pr /, with r � 1 and pi � 1,

X p
DX p1 j � � � jX pr WD

˚
.˛1 j � � � j ˛r /; j̨ 2X pj

	
I

and for a sequence of tuples .p1; : : : ;ps/, with s � 1,

X p1k � � � kX ps WD
˚
.ˇ1k � � � kˇs/; ˇk 2X pk

	
:

Furthermore, for � 2 Shuf.m; n/ any .m; n/–shuffle, then

�.x1; : : : ;xm j xmC1; : : : ;xmCn/ WD .x�1; : : : ;x�.mCn//;

�.˛1j � � � j˛mk˛mC1j � � � j˛mCn/ WD .˛�1j � � � j˛�.mCn//:
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Then, for any two modules B;AW Cop!Ab over a small category C , the complex of
first-level cochains of B with coefficients in A, C �C;1.B;A/, is trivial in dimension 0

and for n� 1

C n
C;1.B;A/D

Q
�2NpC

Q
p C 1.B

p
�0
;A�p/;

where the product is taken over all � 2 NpC , with p � 0, and the tuples p D
.p1; : : : ;pr / as above, such that

pC r C
Pr

jD1 pj D nC 1:

Thus, a cochain in C n
C;1.B;A/ is a sequence f D .f� /�2NpC of normalized functions

f� W
`
.p1;:::;pr /

B
p1

�0
j � � � j B

pr

�0
�!A�p:

For such a sequence, the coboundary operator @W C n
C;1.B;A/! C nC1

C;1 .B;A/ is given
by the formula below, where the three first terms come from (8), and the two last terms
from (7).

.@f /� .˛1 j � � � j ˛r /

D fd0� .�
�
1 ˛1 j � � � j �

�
1 ˛r /C

Pp�1
mD1

.�1/mfdm� .˛1 j � � � j ˛r /

C.�1/p��p fdp� .˛1 j � � � j˛r /C
Pr

iD1

Ppi

jD1
.�1/pC�i�1Cjf� .˛1 j � � � jdj˛i j � � � j˛r /

C
Pr�1

iD1

P
�2Shuf.pi ;piC1/

.�1/pC�iC�.�/f� .˛1 j � � � j �.˛i j ˛iC1/ j � � � j ˛r /;

where dj W B
pi

�0
!B

pi�1
�0

are the face operators of K.B�0; 1/, �i D p1C� � �CpiC i ,
and �.�/ is the parity of the shuffle � .

Similarly, the complex C �C;2.B;A/ of second-level cochains of B with coefficients
in A is trivial in dimension 0, and for n� 1

C n
C;2.B;A/D

Q
�2NpC

Q
.p1;:::;ps/

C 1.B
p1

�0
k � � � kB

ps

�0
;A�p/;

where the product is taken over all � 2 NpC , with p � 0, and the tuples .p1; : : : ;ps/,
with pj D .p

j
1
; : : : ;p

j
rj / as above, such that

pC sC
Ps

jD1

�
rj C

Prj
kD1

p
j

k

�
D nC 2:

Thus, a cochain in C n
C;2.B;A/ is a sequence f D .f� /�2NpC of normalized functions

f� W
`
.p1;:::;ps/

B
p1

�0
k � � � kB

ps

�0
�!A�p:

Algebraic & Geometric Topology, Volume 12 (2012)



Higher cohomologies of modules 361

For such a sequence, the coboundary operator @W C n
C;2.B;A/ ! C nC1

C;2 .B;A/ is
given by

.@f /� .ˇ1k� � �kˇs/

D fd0� .�
�
1
ˇ1k� � �k�

�
1
ˇs/

C
Pp�1

mD1
.�1/mfdm� .ˇ1k� � �kˇs/C .�1/p��p fdp� .ˇ1k� � �kˇs/

C
P
.A/.�1/�

j

k�1
Cif� .ˇ1k� � �k ǰ�1k˛

j
1
j: : :j di˛

j

k
j� � �j ˛

j
rj k ǰC1k� � �kˇs/

C
P
.B/.�1/�

j

k
C�.�/f� .ˇ1k� � �k ǰ�1k˛

j
1
j : : : j�.˛

j

k
j˛

j

kC1
/ j: : :j˛

j
rj k ǰC1k� � �kˇs/

C
P
.C /.�1/�jC�.�/f� .ˇ1k� � �k ǰ�1k�. ǰk ǰC1/k ǰC2k� � �kˇs/;

in whichP
.A/ D

Ps
jD1

Prj
kD1

Pp
j

k

iD0
;

P
.B/ D

Ps
jD1

Prj�1

kD1

P
�2Shuf.pj

k
;p
j

kC1
/
;P

.C / D
Ps�1

jD1

P
�2Shuf.rj ;rjC1/

;

�j D pC
Pj

lD1

Prl

kD1
p l

k
; �j ;k D �j�1C

Pk
tD1 p

j
t C k; ǰ D .˛

j
1
j � � � j ˛

j
rj /:

For future reference we specify the relevant truncated subcomplexes of C �C;1.B;A/ and
C �C;2.B;A/ that, respectively, yield the first- and second-level cocycles and cobound-
aries at dimensions � 3. We have the induced suspension map of complexes (10)

(11)

0! C 1
C;2.B;A/

@1
// C 2

C;2.B;A/
@2
// C 3

C;2.B;A/
@3
// C 4

C;2.B;A/ � � �

S
��

0! C 1
C;1.B;A/

@1
// C 2

C;1.B;A/
@2
// C 3

C;1.B;A/
@3
// C 4

C;1.B;A/ � � �

where

(12) C 1
C;1.B;A/D

Y
u2ObC

C 1.Bu;Au/;

so that a first (Dsecond) level 1–cochain, f 2 C 1
C;1.B;A/ D C 1

C;2.B;A/, is a nor-
malized function associating

� an element fu.x/ 2Au to each object u of C and x 2 Bu ;

(13) C 2
C;1.B;A/D

Y
u

C 1.Bu �Bu;Au/�
Y
v
�
!u

C 1.Bu;Av/;

thus a first (Dsecond) level 2–cochain g 2C 2
C;1.B;A/DC 2

C;2.B;A/ is a normalized
function associating
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� an element gu.x;y/ 2Au to each object u of C and x;y 2 Bu ,

� an element g� .x/ 2Av to each arrow v
�
! u of C and x 2 Bu ;

(14) @1
W C 1

C;1.B;A/! C 2
C;1.B;A/

is given by (x;y , and � as above)

.@1f /u.x;y/D fu.y/�fu.xCy/Cfu.x/;(15)

.@1f /� .x/D fv.�
�x/� ��fu.x/I(16)

(17) C 3
C;1.B;A/D

Y
u

C 1.Bu�Bu�Bu;Au/�
Y

u

C 1.Bu j Bu;Au/

�

Y
v
�
!u

C 1.Bu�Bu;Av/�
Y

w
�
!v

�
!u

C 1.Bu;Aw/;

thus a first (Dsecond) level 3–cochain h 2 C 3
C;1.B;A/D C 3

C;2.B;A/ is a normalized
function associating

� an element hu.x;y; z/ 2Au to each object u of C and x;y; z 2 Bu ,

� an element hu.x j y/ 2Au to each object u of C and x;y 2 Bu ,

� an element h� .x;y/ 2Av to each arrow v
�
! u of C and x;y 2 Bu ,

� an element h�;� .x/2Aw to each pair of arrows w
�
! v

�
! u of C and x 2Bu ;

(18) @2
W C 2

C;1.B;A/! C 3
C;1.B;A/

is given by (x;y; z; � and � as above)

.@2g/u.x;y; z/D gu.y; z/�gu.xCy; z/Cgu.x;yC z/�gu.x;y/;(19)

.@2g/u.x j y/D gu.y;x/�gu.x;y/;(20)

.@2g/� .x;y/D �
�gu.x;y/�gv.�

�x; ��y/Cg� .y/�g� .xCy/Cg� .x/;(21)

.@2g/�;� .x/D �
�g� .x/�g�� .x/Cg� .�

�x/I(22)
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C 4
C;1.B;A/D

Y
u

C 1.B4
u ;Au/�

Y
u

C 1.Bu j B
2
u ;Au/�

Y
u

C 1.B2
u j Bu;Au/(23)

�

Y
v
�
!u

C 1.B3
u ;Av/�

Y
v
�
!u

C 1.Bu j Bu;Av/

�

Y
w
�
!v

�
!u

C 1.B2
u ;Aw/�

Y
m

!w

�
!v

�
!u

C 1.Bu;Am/;

C 4
C;2.B;A/D

Y
u

C 1.B4
u ;Au/�

Y
u

C 1.Bu j B
2
u ;Au/�

Y
u

C 1.B2
u j Bu;Au/(24)

�

Y
u

C 1.Bu jj Bu;Au/�
Y
v
�
!u

C 1.B3
u ;Av/�

Y
v
�
!u

C 1.Bu j Bu;Av/

�

Y
w
�
!v

�
!u

C 1.B2
u ;Aw/�

Y
m

!w

�
!v

�
!u

C 1.Bu;Am/;

so that a first-level 4–cochain  2 C 4
C;1.B;A/ is a normalized function associating

� an element  u.x;y; z; t/ 2Au to each object u of C and x;y; z; t 2 Bu ,
� an element  u.x j y; z/ 2Au to each object u of C and x;y; z 2 Bu ,
� an element  u.x;y j z/ 2Au to each object u of C and x;y; z 2 Bu ,

� an element  � .x;y; z/ 2Av to each arrow v
�
! u of C and x;y; z 2 Bu ,

� an element  � .x j y/ 2Av to each arrow v
�
! u of C and x;y 2 Bu ,

� an element  �;� .x;y/ 2Aw to each arrows w
�
! v

�
! u of C and x;y 2 Bu ,

� an element  �;�; .x/ 2Am to each arrows m

!w

�
! v

�
! u of C and x 2Bu ;

while a second-level 4–cochain  2 C 4
C;2.B;A/ is a first-level 4–cochain  2

C 4
C;1.B;A/, as above, together with a normalized function associating in addition

� an element  u.x jj y/ 2Au to each object u of C and x;y 2 Bu .

The suspension epimorphism in (11)

(25) S W C 4
C;2.B;A/! C 4

C;1.B;A/

is the obvious projection map. The coboundary

(26) @3
W C 3

C;2.B;A/! C 4
C;2.B;A/

is given by (x;y; z; t; �; � and  as above)

(27) .@3h/u.x;y; z; t/D hu.y; z; t/� hu.xCy; z; t/C hu.x;yC z; t/

� hu.x;y; zC t/C hu.x;y; z/;
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(28) .@3h/u.x j y; z/D hu.x j z/� hu.x j yC z/C hu.x j y/� hu.x;y; z/

C hu.y;x; z/� hu.y; z;x/;

(29) .@3h/u.x;y j z/D hu.y j z/� hu.xCy j z/C hu.x j z/C hu.x;y; z/

� hu.x; z;y/C hu.z;x;y/;

(30) .@3h/u.x jj y/D�hu.x j y/� hu.y j x/;

(31) .@3h/� .x;y; z/D �
�hu.x;y; z/� hv.�

�x; ��y; ��z/

� h� .y; z/C h� .xCy; z/� h� .x;yC z/C h� .x;y/;

(32) .@3h/� .x j y/D �
�hu.x j y/� hv.�

�x j ��y/C h� .x;y/� h� .y;x/;

(33) .@3h/�;� .x;y/D �
�h� .x;y/� h�� .x;y/C h� .�

�x; ��y/� h�;� .y/

C h�;� .xCy/� h�;� .x/;

(34) .@3h/�;�; .x/D 
�h�;� .x/� h�;� .x/C h��; .x/� h�; .�

�x/:

And, finally, the coboundary

(35) @3
W C 3

C;1.B;A/! C 4
C;1.B;A/

is the composite of (26) with the suspension map (25), that is, it works according to
the same formulas as (27)–(34) above, but disregarding (30).

5 H 1
C;r and homomorphisms, H 2

C;r and extensions

Let C be a given small category, and let B;AW Cop! Ab be two C–modules.

Since the group C 0
C;1.B;A/ is trivial, by Theorem 3.3 and Corollary 4.1,

(36) H 0
C;r.B;A/DH 0

C;1.B;A/D 0;

for any r� 1, and there is nothing to say about these cohomology groups.

To analyse the cohomology groups at degree 1, from Theorem 3.3, we have

(37) H 1
C;1.B;A/DZ1

C;1.B;A/D Ker.C 1
C;1.B;A/

@1

�! C 2
C;1.B;A//;

where C 1
C;1.B;A/, C 2

C;1.B;A/ and @1 are described in (12), (13) and (14), respec-
tively. Then, recalling that ModC denotes the abelian category of C–modules with
natural transformations as homomorphisms between them, the following is clear from
(37) and Corollary 4.1:
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Theorem 5.1 For any C–modules B;AW Cop! Ab, and any integer r� 1, there are
natural identifications

(38) H 1
C;1.B;A/DH 1

C;r.B;A/D HomModC .B;A/:

We now deal with the cohomology group H 2
C;1.B;A/, which, from Theorem 3.3, can

be computed as

(39) H 2
C;1.B;A/DH

�
C 1

C;1.B;A/
@1

! C 2
C;1.B;A/

@2

! C 3
C;1.B;A/

�
;

where C 3
C;1.B;A/ and @2 are described in (17) and (18), respectively. Next we shall

prove that first-level 2–cocycles in Z 2
C;1.B;A/ D Ker.@2/ are the appropriate data

to construct the set of all C–module extensions of a given C–module B by a given
C–module A, up to isomorphism.

Recall that the category ModC is abelian, and that such an extension is a short exact
sequence in ModC

(40) EW 0!A
i
!E

p
! B! 0;

where short exactness means that every sequence 0!Au
iu
!Eu

pu
! Bu! 0 is an

abelian group extension for any object u of C . The extension E is equivalent to E0 if
there exists a C–module isomorphism ˆW E ŠE0 such that ˆi D i 0 and p0ˆD p ,
and we denote by

ExtModC .B;A/

the set of equivalence classes of extensions of B by A.

Every 2–cocycle g 2Z 2
C;1.B;A/ gives rise to a C–module extension

(41) E.g/W 0!A
i
!E.g/

p
! B! 0;

which is described as follows: for each object u of C , let E.g/u be the abelian group
with the same elements as Au �Bu and addition given by

.a;x/C .b;y/D .aC bCgu.x;y/;xCy/:

Note that, so defined, E.g/u is actually an abelian group thanks to the normal 2–cocycle
equalities .@2g/u.x;y; z/D0 in (19) for associativity .@2g/u.x jy/D0 in (20) for com-
mutativity and gu.0;y/D 0 for providing .0; 0/ as the zero element. Inverses in E.g/u
are defined by �.a;x/D .�a�gu.x;�x/;�x/. The C–module E.g/W Cop!Ab is
then defined as the functor that carries each object u of C to the abelian group E.g/u ,
and an arrow � W v! u to the map ��W E.g/u!E.g/v given by

��.a;x/D .��a�g� .x/; �
�x/;
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which is actually a group homomorphism because of the 2–cocycle condition (21)
.@2g/� .x;y/D 0. Similarly, it is easy to see the 2–cocycle conditions .@2g/�;� .x/D 0

in (22) for compositions and g1.x/D 0 for identities imply that E.g/W u 7! E.g/u
is a functor from Cop into abelian groups, that is, a C–module. Finally, the C–
module homomorphisms i and p in the sequence (41), consist of the abelian group
homomorphisms iuW Au ! E.g/u and puW E.g/u ! Bu , u 2 ObC , respectively
defined by iu.a/D .a; 0/ and pu.a;x/D x . Therefore, E.g/ is easily recognized as
a C–module extension of B by A.

Theorem 5.2 Let B;AW Cop! Ab be any two C–modules.

(i) Any C–module extension of B by A is equivalent to an extension of the form
E.g/, for some first-level 2–cocycle g 2Z 2

C;1.B;A/.

(ii) Two 2–cocycles g;g0 2 Z 2
C;1.B;A/ produce equivalent extensions, that is,

E.g/ŠE.g0/, if and only if they are cohomologous.

Proof (i) Let E be a given C–module extension as in (40). For notational simplicity,
there is no loss of generality in assuming that every iuW Au ,!Eu is the inclusion map,
u 2ObC , and let us choose a function suW Bu!Eu with pusuD 1Bu

and su.0/D 0.
Then, a first-level 2–cochain g 2 C 2

C;1.B;A/ is determined by the formulas

� su.x/C su.y/D gu.x;y/C su.xCy/, for each object u of C and x;y 2Bu ,

� sv.�
�x/D g� .x/C �

�su.x/, for each arrow v
�
! u of C and x 2 Bu .

It is plain to see that, thus defined, g is a normalized function. Moreover, we can
prove that g is actually a 2–cocycle, that is, that @2g D 0 in (18), as follows: it is
well known (see Mac Lane [44, page 121], for example) that the first two cocycle
conditions .@2g/u.x;y; z/D 0 and .@2g/u.x j y/D 0 are respective consequences of
the associative and commutative laws su.x/C.su.y/Csu.z//D .su.x/Csu.y//Csu.z/

and su.x/C su.y/D su.y/C su.x/, in each group Eu . We next prove that the third
cocycle condition in .@2g/� .x;y/D0 follows from the equalities ��.su.x/Csu.y//D

��su.x/C �
�su.y/; in fact, on one hand

��.su.x/C su.y//D �
�gu.x;y/C �

�su.xCy/

D ��gu.x;y/�g� .xCy/C sv.�
�xC ��y/;

and, on the other hand,

��su.x/C �
�su.y/D�g� .x/C sv.�

�x/�g� .y/C sv.�
�y/

D�g� .x/�g� .y/Cgv.�
�x; ��y/C sv.�

�xC ��y/:
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Therefore, comparison gives the claimed third 2–cocycle condition for g . And, sim-
ilarly, one sees that the fourth and last 2–cocycle condition .@2g/�;� .x/D 0 in (22)
results from the equalities .��/�su.x/D �

���.su.x//.

We now recognize that E.g/ and E are equivalent extensions due to the existence of
the C–module isomorphism ˆW E.g/ŠE defined by ˆu.a;x/D aC su.x/, for any
object u of C , a 2Au , and x 2 Bu .

(ii) Let ˆW E.g/ Š E.g0/ be a C–module isomorphism making E.g/ and E.g0/

equivalent extensions. Write ˆu.0;x/ D .fu.x/;x/ where fuW Bu! Au is a map,
for each object u of C . Then fu determines ˆu by the rule

(42) ˆu.a;x/D .aCfu.x/;x/ for x 2 Bu; a 2Au:

Because

ˆu..0;x/C .0;y//Dˆu.gu.x;y/;xCy/D .gu.x;y/Cfu.xCy/;xCy/;

whereas

ˆu.0;x/Cˆu.0;y/D .fu.x/;x/C.fu.y/;y/D .fu.x/Cfu.y/Cg0u.x;y/;xCy/;

it follows that gu.x;y/D g0u.x;y/C .@
1f /u.x;y/. Since

ˆv.�
�.0;x//Dˆv.g� .x/; �

�x/D .g� .x/Cfv.�
�x/; ��x/;

where � W v! u, x 2 Bu , whereas

��ˆu.0;x/D �
�.fu.x/;x/D .�

�fu.x/Cg0� .x/; �
�x/;

it follows that g� .x/D g0� .x/C .@
1f /�.x/. Therefore, gD g0C@1f , where @1f is

the 2–coboundary defined by f as in (14), and therefore g and g0 are cohomologous
first-level 2–cocycles.

Conversely, if g D g0C @1f , for some f 2 C 1
C;1.B;A/, then g and g0 lead to the

isomorphic C–module extensions, E.g/ Š E.g0/, just by the maps ˆu , u 2 ObC ,
defined by (42), as we see by retracing our steps.

As a consequence of Theorem 5.2 above and Corollary 4.1, we get the theorem below.

Theorem 5.3 For any C–modules B;A, and any integer r � 1, there are natural
identifications

(43) H 2
C;1.B;A/DH 2

C;r.B;A/D ExtModC .B;A/:
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6 Braided and symmetric fibred categorical groups

As we will state further below, for any small category C , the cohomology groups
H 3

C;r.B;A/ play a fundamental role in the problem of providing a complete invariant
for the classification of braided and symmetric C–fibred categorical groups. These
are categories fibred in groupoids, P ! C , equipped with a compact monoidal C–
structure by C–functors ˝W P �C P ! P and I W C! P , and corresponding coherent
associativity, unit, and commutativity C–fibred constraints (see Definition 6.1 for
the details). For this classification, two braided or symmetric C–fibred categorical
groups that are connected by a braided C–fibred equivalence are considered the same.
The problem of giving a complete invariant of this relation arises, and we solve it by
generalizing the results by Joyal and Street [41] and Sinh [54] for the nonfibred case,
and those by Cegarra, García-Calcines and Ortega [13] and Cegarra and Khmaladze [15;
16] for the G –graded case (ie, when C is a group G ). To go further, we recommend
to the reader the work of Breen in [8], where he offers an excellent discussion of this
issue within the general framework of a Grothendieck topos, that is, of the category of
sheaves over a category C endowed with a Grothendieck topology. Indeed, he shows a
cohomological classification for symmetric and braided categorical group stacks over
an arbitrary site C . However, the results are far from being as explicit in terms of
cocycles as they can be when C is discrete, such as we impose in this paper.

This technical section concerns setting up the foundations required to handle braided
and symmetric C–fibred categorical groups as pseudofunctors, which is crucial to
our later discussions and classifying results. By taking into account the well-known
relationship between fibred categories over a category and pseudofunctors on itself,
by Grothendieck [37; 36] and Giraud [33; 34], most of our work here is dedicated
to extending the so-called Grothendieck construction to pseudodiagrams of braided
(resp. symmetric) categorical groups. We give a detailed proof that our enriched
Grothendieck construction process is actually a 2–functor, which makes the 2–category
of braided (symmetric) C–fibred categorical groups biequivalent to the 2–category
of contravariant pseudofunctors from C with values in the 2–category of braided
(symmetric) categorical groups. But we are not claiming much originality, since
extensions of the ubiquitous “Grothendieck construction” have been developed in many
general frameworks; see for instance Street [55], Carrasco and Cegarra [10], Cegarra
and Garzón [14], Hollander [38; 39], Lurie [42], Carrasco, Cegarra and Garzón [11],
Cisinski [18] or Tamaki [57]. The result proven here would probably be considered
“folklore” by experts, however, being unable to find a published account of it, we have
included it here.
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We have organized the section into seven subsections. Section 6.1 contains a minimal
amount of notation and terminology on Grothendieck fibrations and 2–categories. In
Section 6.2 we mainly include the definitions of braided and symmetric C–fibred
categorical groups, and list some striking examples of them. Section 6.3 is dedicated to
describe the 2–categories that braided and symmetric C–fibred categorical groups form,
denoted respectively by BCG#C

and SCG#C
, whose 1–cells are braided C–fibred

functors, and whose 2–cells are monoidal C–fibred isomorphisms. Next, in Section 6.4,
we give an explicit description of the 2–categories Psd.Cop;BCG/ and Psd.Cop;SCG/,
of pseudofunctors to braided and symmetric categorical groups, respectively, whose 1–
cells are called braided pseudotransformations, and whose 2–cells are termed braided
modifications. The following Sections 6.5 and 6.6 are dedicated to describe in detail the
“enriched” Grothendieck construction 2–functors

R
CW Psd.Cop;BCG/! BCG#C

andR
CW Psd.Cop;SCG/! SCG#C

, which, in the final Section 6.7, we prove are strong
biequivalences of 2–categories.

6.1 Some preliminaries on fibrations and 2–categories

We shall begin by recalling from Grothendieck [36] some needed definitions and
terminology about fibred categories. For the general background on 2–categories used
in this paper we refer to Street [56] and Borceux [4].

6.1.1 Fibred categories, functors, and natural transformations If P W P ! C is
any given functor, then, for any object u of C , the fibre category over u, denoted
by Pu , is the subcategory of P whose objects, called u–objects, are those x of P such
that Px D u, and whose arrows, called u–morphisms, are those arrows f of P such
that Pf D 1u . More generally, if � W u! v is a morphism in C , then a morphism f

in P such that Pf D � is called a � –morphism. A � –morphism y� W �
�y ! y is

deemed cartesian if, for any � –morphism f W x! y , there is a unique u–morphism
f 0W x! ��y such that y�f

0D f . In such a case, the cartesian � –morphism is unique
up to an isomorphism in Pu , and one refers to ��y as a pullback of y by � .

The functor P W P!C is called a fibration provided that, for any morphism � W u! v ,
and any v–object y , there exists a cartesian � –morphism with target y , y� W �

�y! y ,
and, moreover, the composition of cartesian morphisms is also cartesian (existence
and transitivity of pullbacks). When a fibration P W P ! C is given, the category P
is termed a C–fibred category. If, moreover, every fibre category Pu , u 2 ObC , is a
groupoid, then P is called a category C–fibred in groupoids. It is a fact that in any
category C–fibred in groupoids every morphism is cartesian [36, page 21].

If P D .P ;P / and P 0 D .P 0;P 0/ are C–fibred categories, then a C–fibred functor
from P to P 0 is a functor F W P!P 0 such that P 0 F DP and, moreover, it is cartesian
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in the sense that it carries cartesian morphisms in P to cartesian morphisms in P 0 . A
C–fibred homomorphism or C–fibred natural transformation ‰W F ) F 0 , between
C–fibred functors F;F 0W P!P 0 is then a natural transformation such that P 0‰D 1P .

6.1.2 2–Categories A 2–category X is just a category enriched in the category
of small categories. Then, X is a category in which the hom-set of morphisms
f W x ! y (which are now also called 1–cells) between any two objects x;y 2 X
is the set of objects of a category HomX .x;y/, whose arrows are called 2–cells
and are denoted  W f ) g . Moreover, the composition is a bifunctor HomX .y; z/�

HomX .x;y/!HomX .x; z/, which is associative and has identities 1x 2HomX .x;x/.
This bifunctor produces compositions of 1–cells and 2–cells respectively, both denoted
here by juxtaposition. On the other hand, composition in each category HomX .x;y/

is denoted by “ � ”.

From now on, we will only consider 2–categories X such that, for any objects x , y , the
category HomX .x;y/ is a groupoid. Then, following Gabriel and Zisman’s terminology
[32, Chapter V, Section 1.2], for a such 2–category X , we will denote by

(44) HoX

the homotopy category of X , that is, the quotient category of the underlying category
of X , with isomorphism classes of 1–cells as morphisms. Hence, a morphism f W x!y

is an equivalence in X if and only if the induced Œf �W x!y is an isomorphism in HoX .

A 2–functor F W X ! Y between 2–categories is an enriched functor and so it takes
objects, arrows and 2–cells in X to objects, arrows and 2–cells in Y , respectively, in
such a way that all the 2–category structure is preserved. A 2–functor F W X ! Y ,
is a biequivalence [56, page 570] when each of the functors F W HomX .x;x

0/ !

HomY.Fx;Fx0/ is an equivalence, and, for each object y of Y , there is an equivalence
Fx! y in Y , for some object x of X .

If X is any 2–category, then

(45) Psd.Cop;X /

denotes the 2–category of (normal) pseudofunctors from Cop to X , whose 1–cells are
the pseudonatural transformations, and whose 2–cells are the modifications. We refer
to Street [56] for details.

6.2 Braided (symmetric) C–fibred categorical groups

A braided categorical group, Joyal and Street [41, Definition 3.1], is a braided monoidal
category in which every arrow is invertible and every object is regular, that is, where,
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for any object x , the endofunctor y 7! x˝y is an autoequivalence. In other words, a
braided categorical group is a braided monoidal groupoid such that, for each object x ,
there is an object x0 with an arrow x˝x0! I . Braided categorical groups are also
called braided Gr-categories by Breen [7; 8] and braided (weak) 2–groups by Baez and
Lauda [2] and Aldrovandia and Noohi [1]. A braided categorical group whose braiding
is a symmetry is called a symmetric categorical group by Joyal and Street [41] and
Vitale [5]. Symmetric categorical groups are also termed Picard categories by Deligne
[21] and Sinh [54], group-like categories by Fröhlich and Wall [30], and symmetric
(weak) 2–groups in [1; 2]. Below we detail the monoidal fibred categories, in the sense
of Saavedra [53, Chapter I, Section 4.5], we are mainly going to work with.

Definition 6.1 Let C be a category. A braided C–fibred categorical group

P D .P ;P;˝; I; a; r; l ; c/

consists of a category C–fibred in groupoids P D .P ;P /, two C–fibred functors

˝W P �C P ! P ; I W C! P ;

where P �C P is the C–fibred pullback category, Grothendieck [36, Proposition 6.5],
and C–fibred natural equivalences a , r , l , and c (called associativity, unit and
braiding constraints, respectively), defined by u–isomorphisms

.x˝y/˝ z
ax;y;z // x˝ .y˝ z/; x˝ Iu

rx // x; Iu˝x
lx // x; x˝y

cx;y// y˝x;

for any objects u of C and x;y; z of Pu , such that the following four coherence
conditions hold:

ax;y;z˝t ax˝y;z;t D .1x˝ ay;z;t / ax;y˝z;t .ax;y;z˝ 1t /;(46)

.1x˝ ly/ ax;Iu;y D ry ˝ 1y ;(47)

ay;z;x cx;y˝z ax;y;z D .1y ˝ cx;z/ ay;x;z .cx;y ˝ 1z/;(48)

a�1
z;x;y cx˝y;z a�1

x;y;z D .cx;z˝ 1y/ a�1
x;z;y .1x˝ cy;z/;(49)

and, for any u–object x , there is another u–object x0 with an u–morphism x˝x0!Iu.

A symmetric C–fibred categorical group is a braided C–fibred categorical group, as
above, whose braiding c is a symmetry, that is, it satisfies that, for any objects u of C
and x;y of Pu , the equation below holds.

(50) cy;x cx;y D 1x˝y
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If P is any braided C–fibred categorical group, then, for any object u of C , the tensor
product and the associativity, commutativity, and unit constraints can be restricted to the
fibre category over u so that every fibre inherits a braided categorical group structure
Pu D .Pu;˝; Iu; a; r; l ; c/. Thus, a braided (symmetric) C–fibred categorical group
is the same thing as a stack of braided (symmetric) categorical groups over the discrete
site C ; see Aldrovandia and Noohi [1] and Breen [8].

In any braided monoidal C–fibred category, for any object u of C and any u–objects
x;y , the following equalities hold; see Joyal and Street [41, Propositions 1.1 and 2.1]:

(51)
rIu D lIu; lx cx;Iu D rx; rx cIu;x D lx;

rx˝y D .1x˝ ry/ ax;y;Iu; lx˝y aIu;x;y D lx˝ 1y :

6.2.1 Some examples To help motivate the reader we show below some striking ex-
amples of braided and symmetric C–fibred categorical groups (see also Example 6.13).

Example 6.2 Let C be a category. A braided C–fibred categorical group, P D
PC.A;B; d; �/, can be constructed from any system of data consisting of

� a pair of C–modules A;BW Cop! Ab,

� a C–module homomorphism d W A! B ,

� a biadditive natural transformation �W B �B! Ker.d/, such that

�jImg.d/�B D 0D �jB�Img.d/;

as follows. For any object u 2C , an u–object of P is an element bu 2 Bu . For any
morphism � W u! v in C , a � –morphism a� W bu! bv is an element a� 2Au such
that bu D du.a� /C �

�bv .

If � W u ! v and � W v ! w are two composable arrows in C , the composition of
� –morphisms with � –morphisms in P is defined by

.bv
a�
�! bw/.bu

a�
�! bv/D . bu

a�C�
�a� // bw /:

The tensor product of two � –morphisms is given by addition in Bu , Bv , and Au :

.bu
a�
�! bv/˝ .b

0
u

a0�
�! b0v/D . buC b0u

a�Ca0� // bvC b0v /

The associativity and unit C–fibred constraints are identities, and the braiding, at any
u–objects bu; b

0
u 2 Bu , is given by

�u.bu; b
0
u/W buC b0u! b0uC bu:
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So defined, PC.A;B; d; �/ is not symmetric in general. However, when � D 0, then
PC.A;B; d/ becomes a symmetric C–fibred categorical group, whose construction
is due to Deligne [21, 1.4.11]. The nonfibred case with d D 0, P .A;B; �/, was
considered by Joyal and Street in [41, Example 3.1]. For an instance of PC.A;B; �/,
that is, in the fibred case with d D 0, let T be a topological space and let C.T / denote
its poset of open sets, regarded as a category. Then, if .T;OT / is any ringed space (a
scheme for example), we can take C DC.T /, ADOT D B under addition, while �
is given by the ring multiplication operations OT .U /�OT .U /!OT .U /, for each
open set U of T .

Example 6.3 For any topological space T , let C.T / denote its poset of open sets,
regarded as a category. If F ,G 2 ShAb.T / are sheaves of abelian groups on a space T ,
then the symmetric C.T /–fibred categorical group of local extensions of F by G ,
denoted by EXT.F ;G/, is defined as follows:

For any open set U of T , an U –object of EXT.F ;G/ is an extension in ShAb.U /

of F jU by GjU ,

(52) E W 0! GjU
i
! E

p
! F jU ! 0:

For any inclusion of open sets iU;U 0 W U � U 0 , an iU;U 0 –morphism E! E 0 , from the
U –object (52) to the U 0–object E 0W 0! GjU 0 ! E 0! F jU 0 ! 0, is an isomorphism
E! E 0jU in ShAb.U /, such that the diagram below commutes.

0 // GjU // E

��

// F jU // 0

0 // GjU // E 0jU // F jU // 0

Thus EXT.F ;G/ is a category fibred in groupoids over C.T /. The fibre at any open
subset U of T , is the groupoid of extensions of F jU by GjU in the abelian category
ShAb.U /, which is pointed by the split extension

I.U /D 0! GjU ! GjU �F jU ! F jU ! 0:

This describes on objects the C.T /–fibred functor I W C.T /! EXT.F ;G/, and the
C.T /–fibred structure functor

CW EXT.F ;G/�C.T / EXT.F ;G/! EXT.F ;G/

is given by the Baer addition of extensions. For E 1 and E 2 as in (52),

E 1C E 2W 0! GjU ! E1C E2! F jU ! 0
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is the extension in ShAb.U / given by the pushout diagram

0 // GjU �GjU //

C ��

E1 �F jU E2

��

// F jU // 0

0 // GjU // E1C E2
// F jU // 0:

The canonical isomorphisms

.E1 �F jU E2/�F jU E3 Š E1 �F jU .E2 �F jU E3/;

E �F jU F jU Š E Š F jU �F jU E ; E1 �F jU E2 Š E2 �F jU E1;

induce the C.T /–fibred associativity, unit, and symmetry constraints, respectively.

Example 6.4 The braided C–fibred categorical group of 2–loops of a diagram of
pointed topological spaces .X;�/W Cop! Top� , denoted by …2

C.X;�/, is defined as
follows: let us write .X;�/ by

.u
�
! v/ 7! ..Xv;�v/

��

�! .Xu;�u//:

Then, an object of …2
C.X;�/ is a 2–loop in Xu based on �u , for some object u 2C ;

that is, a map
!uW .S

2;�/D.I2; @I2/! .Xu;�u/

from the square I�I into Xu which is constant �u along the edges. For any morphism
� W u! v in C , a � –morphism, denoted by Œh� �W !u ! !v , is the homotopy class
(relative to @I ) of a path between 2–loops h� W !u) �� !v . That is, it is represented
by a relative map

h� W .I
3; @I2

� I/! .Xu;�u/

with h� .s; t; 0/ D !u.s; t/ and h� .s; t; 1/ D ��!v.s; t/; two such maps h and h0�
are equivalent whenever there exists a map H W .I4; @I2 � I2/! .Xu;�u/ such that
H.s; t;x; 0/ D h� .s; t;x/, H.s; t;x; 1/ D h0� .s; t;x/, H.s; t; 0;y/ D !u.s; t/ and
H.s; t; 1;y/D ��!v.s; t/.

If � W u ! v and � W v ! w are two composable arrows in C , the composition of
� –morphisms with � –morphisms in …2

C.X;�/ is induced by the usual vertical com-
position of homotopies, according to the formula

.!v
Œh� �
�! !w/.!u

Œh� �
�! !v/D . !u

Œ��h�ıh� �// !w /;

where

.��h� ı h� /.s; t;x/D

�
h� .s; t; 2x/ 2x � 1;

��h� .s; t; 2x� 1/ 2x � 1:
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Thus, the fibre category, at any object u of C , is the fundamental groupoid of the
double loop space of .Xu;�u/, …2

C.X /uD….�
2.Xu;�u//. The fibred tensor product

is given on objects by concatenation of 2–loops:

?
!u

?
˝

?
!0u

?
D

?
!u

?
!0u

?

? ? ? ? ? ? ?

and on � –morphisms by the horizontal composition of homotopies. The 1–iso-
morphisms giving associativity and unit constraints are defined to be the equivalence
classes of the respective standard homotopies proving the associativity and unit of the
loop composition, and the braiding 1–isomorphisms are the equivalence classes of the
ordinary homotopies showing the commutativity of the second homotopy groups of
spaces, namely

?

!u

?

!0u

? ?
!u

?
?u

? ?
?u

?
!u

? ?

!0u

?

!u

?

' ?
?u

?
!0u

? ' ?
!0u

?
?u

? '

? ? ? ? ? ? ? ? ? ? ? ? :

This braided C–fibred categorical group …2
C.X;�/ brings with it all information on

the equivariant weak homotopy 3–type of any diagram of pointed spaces X in which
all homotopy groups �i.Xu;�u/ vanish for i ¤ 2; 3 and any u 2 ObC .

If we consider the induced diagram of pointed loop spaces .�.X;�/;�/W Cop!Top� ,
then the C–fibred braiding of …3

C.X;�/ WD…
2
C.�.X;�/;�/ is actually a symmetry.

This is called the symmetric C–fibred categorical group of 3–loops of .X;�/.

Example 6.5 Let G be a group, regarded as a category, and let S be a ring on which
an action by ring automorphisms of a group G is given. Then, the Picard symmetric G –
fibred categorical group of the G –ring S , PicG.S/, is defined as follows the objects
of PicG.S/ are the invertible (right) S –modules, ie, those finitely generated projective
S –modules P with constant rank 1, and, for any � 2 G , a � –morphism P ! Q

is an isomorphism of abelian groups f W P !Q such that f .p �.s//D f .p/ s , for
any p 2 P and s 2 S . The composition is defined by usual composition of maps,
and thus PicG.S/ becomes a groupoid, which is actually G–fibred thanks to the � –
isomorphism idW P� ! P , for each � 2G , where P� denotes the S –module which
is the same abelian group as P with S –action by p � s D p ��1.s/. The G–tensor
product is given by the tensor product of modules over S , and the unit G–functor
I W G ! PicG.S/ is defined by I.�/ D ��1W S ! S . The associativity, unit and
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commutativity constraints are as usual for the tensor product of S –modules:

P˝S .Q˝S R/Š .P˝S Q/˝S R; P˝S S Š P Š S˝P; P˝S QŠQ˝S P;

x˝.y˝z/$ .x˝y/˝z x˝s$ xs$ s˝x x˝y$ y˝x:

Note that the fibre category (over the unique object of G ) is the symmetric categorical
group Pic.S/ D .Pic.S/;˝S / of rank one projective S –module, where the dual
module P� D HomS .P;S/ is an inverse of each invertible S –module P .

We should note that, for any group G , a symmetric G–fibred categorical group is
exactly a stably G–graded symmetric categorical group in the sense of Fröhlich and
Wall in [30; 31], where we refer the reader for other interesting examples in the study
of rings in equivariant situations, such as the Brauer symmetric G –fibred categorical
group, BrG.S/.

Example 6.6 Let G be a topological abelian group. Then, the symmetric fibred
categorical group of principal G –bundles, B.G/, is defined as follows (see Giraud [34]
for more details):

The objects of B.G/ are principal G–bundles pW P ! T . A morphism B.G/ is a
cartesian diagram, in the category Top of topological spaces,

P 0
p0 //

�
��

T 0

���
P

p // T;

where �W P 0 ! P is G–equivariant. The base functor B.G/! Top, .�; �/ 7! � ,
makes B.G/ a category fibred in groupoids over Top. The fibre at any space T ,
B.G/T , is the groupoid of principal G –bundles over T , which is pointed by the trivial
principal G –bundle I.T /D T �G! T .

Given two principal G –bundles over the same space, say pW P ! T and qW Q! T ,
we can define a new principal G–bundle over T , P ^G Q! T , where P ^G Q WD

P �T Q=G is the quotient of the pullback space by the antidiagonal action, that
is, we identify .x;y/ � .x � g;y � g�1/. The G–action on P ^G Q is given by
Œx;y� �g D Œx �g;y�. Thus, we have the structure Top–fibred functors (this uses that
G is abelian)

^
G
W B.G/�Top B.G/! B.G/; I W Top! B.G/:

The associativity, unit, and commutativity constraints

.P ^G Q/^G R! P ^G .Q^G R/; P ^G .T �G/! P; P ^G Q!Q^G P;
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are, respectively, given by the maps

ŒŒx;y�; z� 7! Œx; Œy; z��; Œx; .px;g/� 7! x �g; Œx;y� 7! Œy;x�:

For any principal G –bundle P!T , we have the opposite principal G –bundle MP!T ,
which is the same space P with G–action p M�g D p �g�1 , and the T –isomorphism
P ^G MP ! T �G , Œx �g;x� 7! .px;g/.

6.3 The 2–category of braided (symmetric) C–fibred categorical groups

For any given category C , we shall describe here two striking examples of 2–categories.
The 2–category of braided C–fibred categorical groups, denoted by

(53) BCG#C
;

and its full sub–2–category, the 2–category of symmetric C–fibred categorical groups,

(54) SCG#C
;

whose 1–cells are braided C–fibred functors, and whose 2–cells are monoidal C–fibred
isomorphisms, which are defined as follows.

Definition 6.7 If P and P 0 are braided C–fibred categorical groups, then a braided C–
fibred functor F D .F; '/W P!P 0 consists of a C–fibred functor F W P!P 0 , between
the underlying C–fibred categories, together with two C–fibred natural isomorphisms
defined, respectively, by 1–isomorphisms

'x;y W Fx˝Fy! F.x˝y/; 'uW I
0u! FIu;

such that, for any objects u of C and x;y; z of Pu , the following four coherence
equations hold:

'x;y˝z .1Fx˝'y;z/ a0Fx;Fy;Fz D F.ax;y;z/ 'x˝y;z .'x;y ˝ 1Fz/;(55)

F.rx/ 'x;Iu .1Fx˝'u/D r 0Fx; F.lx/ 'Iu;x .'u˝ 1Fx/D l 0Fx;(56)

F.cx;y/ 'x;y D 'y;x c0Fx;Fy :(57)

Definition 6.8 If F;F 0W P ! P 0 are braided C–fibred functors between braided
C–fibred categorical groups, then a monoidal C–fibred isomorphism between them
is a C–fibred isomorphism on the underlying C–fibred functors ‰W F ) F 0 , such
that, for all objects u of C and x;y of Pu , the following two coherence equations
below hold.

(58) '0x;y .‰x˝‰y/D‰x˝y 'x;y ; '0u D‰Iu 'u:
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If F W P ! P 0 and F 0W P 0 ! P 00 are braided C–fibred functors, then the structure
constraints of the composite F 0F W P ! P 00 , at any objects u of C and x;y of Pu ,
are obtained from those ' and '0 , of F and F 0 respectively, by the compositions

(59) 'F 0F
x;y D F 0.'x;y/ '

0
Fx;Fy ; 'F 0F

u D F 0.'u/ '
0
u:

This composition is associative and unitary, so that the category of braided C–fibred
categorical groups is defined. Actually, this is the underlying category of the 2–
category (53) whose 2–arrows are the monoidal C–fibred isomorphisms. In this
2–category of braided C–fibred categorical groups, the vertical composition of 2–cells
‰W F ) F 0 and ‰0W F 0) F 00 , for F;F 0;F 00W P ! P 0 braided monoidal C–fibred
functors, is given by the ordinary vertical composition of natural transformations
‰0 �‰W F ) F 00 . That is, the component of ‰0 �‰ at any object x of P is given by
the composition in P 0 :

(60) .‰0 �‰/x D‰
0
x ‰x W Fx

‰x
�! F 0x

‰0x
�! F 00x

Similarly, the horizontal composition ‰0‰W F 0F ) G0G , for ‰W F ) GW P ! P 0

and ‰0W F 0)G0W P 0! P 00 two C–fibred morphisms is given by the usual horizontal
composition of natural transformations:

(61) .‰0‰/x DG0‰x ‰
0
Fx D‰

0
Gx F 0‰x W F

0Fx)G0Gx

The homotopy category (44) of braided C–fibred categorical groups, HoBCG#C
, is

then the quotient category of all braided C–fibred categorical groups with monoidal
C–fibred isomorphism classes of braided C–fibred functors as morphisms. A braided
C–fibred equivalence is then a braided C–fibred functor inducing an isomorphism
in the homotopy category. It is an easy consequence of a result by Grothendieck [36,
Proposition 6.10] that a braided C–fibred functor F W P ! P 0 is a braided C–fibred
equivalence if and only if, for all objects u of C , the restriction functor FuW Pu! P 0u
is an equivalence.

The 2–category (54), SCG#C
, is the full sub–2–category of BCG#C

defined by the
symmetric C–fibred categorical groups. Note that the corresponding homotopy category
HoSCG#C

is a full subcategory of HoBCG#C
.

6.4 Pseudofunctors to braided (symmetric) categorical groups

For any given category C , closely related to the 2–category of braided C–fibred
categorical groups is the 2–category (see (45))

Psd.Cop;BCG/
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of (normal) pseudofunctors P W Cop! BCG to the 2–category BCG of braided cate-
gorical groups (= BCG#1 , where 1 is the terminal category), whose 1–cells are called
braided pseudotransformations, and whose 2–cells are termed braided modifications.
For notational accuracy or emphasis, we state bellow these concepts.

Definition 6.9 A (normal) pseudofunctor to braided categorical groups

P W Cop
! BCG

consists of mappings associating

� a braided categorical group Pu , to each object u of C ,
� a braided functor ��W Pu! Pv , to each arrow � W v! u in C ,

� a braided isomorphism h�; �iW ����) .��/� , to each pair of arrows w
�
!v

�
!u.

These data are required to satisfy the normalization conditions:

1�u D 1Pu
for each object u of C;(62)

h�; 1vi D 1�� D h1u; �i for each arrow v
�
! u of C;(63)

and the coherence condition that, for any triple of composable arrows t

!w

�
! v

�
! u

of C , the following coherence condition holds:

(64) h�; � i � h�;  i�� D h��;  i �  �h�; �i:

Definition 6.10 If P;P 0W Cop! BCG are two pseudofunctors of braided categorical
groups, then a braided pseudotransformation T D .T; ‰/W P) P 0 consists of

� a braided functor TuW Pu! P 0u , for each object u of C ,
� a braided isomorphism ‰� W Tv �

�) �� Tu , for each arrow � W v! u in C ,
satisfying that

(65) ‰1u
D 1Tu

for each object u of C;

and, for any pair w
�
! v

�
! u in C , the following coherence condition holds:

(66) ‰�� �Twh�; �i D h�; �iTu � �
�‰� �‰��

�:

Definition 6.11 For any two braided pseudotransformations T;T 0W P ) P 0 , be-
tween pseudofunctors of braided categorical groups as above, a braided modification
M W T V T 0 consists of a braided isomorphism MuW Tu) T 0uW Pu! P 0u , for each
object u of C , such that, for each � W v! u, the following coherence condition holds

(67) ‰0� �Mv�
�
D ��Mu �‰� :
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In the 2–category Psd.Cop;BCG/, a braided modification M W T V T 0 composes
with a braided modification M 0W T 0 V T 00 yielding the braided modification M 0 �

M W T V T 00 , which is obtained from M and M 0 by pointwise vertical composition
of braided isomorphisms, that is,

(68) .M 0
�M /u DM 0

u �Mu;

for any object u of C . Thus, every such braided modification M W T V T 0 becomes
invertible and therefore, in this 2–category of pseudofunctors of braided categorical
groups, the hom-categories are groupoids.

The composition T 0T W P) P 00 of braided pseudotransformations T W P) P 0 and
T 0W P 0)P 00 between pseudofunctors of braided categorical groups P;P 0;P 00W Cop!

BCG , is the braided pseudotransformation whose component at any object u of C is
given by the composition of the braided functors T 0u and Tu :

(69) .T 0T /u D T 0uTu;

and whose component at any morphism � W v! u of C , ‰T 0T
� W T 0vTv�

�) ��T 0uTu ,
is the braided isomorphism obtained as the composite

(70) ‰T 0T
� D‰0�Tu �T

0
v‰� W T 0vTv�

�
T 0v‰� +3 T 0v�

�Tu

‰0�Tu +3 ��T 0uTu:

Similarly, the composition M 0M W T 0T VS 0S of braided modifications M W T VS W

P)P 0 and M 0W T 0VS 0W P 0)P 00 is given, at any object u of C , by the horizontal
composition of the braided isomorphisms Mu and M 0

u , that is, by the formula

(71) .M 0M /u DM 0
u Mu D S 0uMu �M

0
uTu DM 0

uSu �T
0
uMuW T

0
uTu H) S 0uSu:

The homotopy category (44) of pseudofunctors of braided categorical groups,

HoPsd.Cop;BCG/;

is then the quotient category of pseudofunctors with isomorphism classes of braided
pseudotransformations as morphisms. A braided pseudoequivalence is then a braided
pseudo transformation T W P ) P 0 that induces an isomorphism in the homotopy
category. It is not hard to see that T is a braided pseudoequivalence if and only if for
all objects u of C , the braided functor TuW Pu! P 0u is an equivalence of categories.

Remark 6.12 Let U W Psd.Cop;BCG/! Psd.Cop;Cat/ be the forgetful 2–functor.
If P W Cop! BCG is any given pseudofunctor to braided categorical groups, then there
is a (strict, genuine) functor P 0W Cop! Cat which is pseudoequivalent to UP (see
Giraud [33, Section 5] and Street [56, Corollary 9.2]). Since one can use any selected
pseudoequivalence T W UP ) P 0 to transport the given braided monoidal structure

Algebraic & Geometric Topology, Volume 12 (2012)



Higher cohomologies of modules 381

of P to one on P 0 such that T W P ) P 0 becomes a braided pseudoequivalence, it
follows that every pseudofunctor P W Cop ! BCG is pseudoequivalent to a functor
P 0W Cop! BCG .

The 2–category SCG , of symmetric categorical groups, is a full sub–2–category of
the 2–category BCG of braided categorical groups. Hence, we have

Psd.Cop;SCG/� Psd.Cop;BCG/;

the full sub–2–category of pseudofunctors to symmetric categorical groups, and the
corresponding full subcategory Ho Psd.Cop;SCG/�Ho Psd.Cop;BCG/, which is the
homotopy category of pseudofunctors to symmetric categorical groups.

Example 6.13 Braided crossed modules (see Brown and Gilbert [9] and Joyal and
Street [41, Remark 3.1]), also called reduced 2–crossed modules by Conduché [19], are
systems of data .H;G; @; f ; g/ consisting of groups G , H , a group homomorphism
@W H ! G , a (right) group action of G on H , denoted .h;g/ 7! hg , and a bracket
operation given by a map f ; gW G �G!H , subject to the following conditions:

� h
@h2

1
D h�1

2
h1h2 , @.hg/D g�1@.h/g ,

� @fg1;g2g D g�1
2

g�1
1

g2g1 , hfg; @.h/g D hg , hgf@.h/;gg D h.

A braided crossed module .H;G; @; f ; g/ is called a symmetric crossed module by
Aldrovandia and Noohi [1], or a stable crossed module by Conduché [19], whenever
fg1;g2gfg2;g1g D 1, for all g1;g2 2G .

These braided (resp. symmetric) crossed modules are the objects of a 2–category (cf
Noohi [49, Section 8]), denoted by BXM (SXM), whose 1–cells

.q;p; '/W .H;G; @; f ; g/! .H 0;G0; @0; f ; g0/

consist of normalized maps qW H !H 0 , pW G!G0 , and 'W G�G!H 0 , satisfying

� @0q D p @,

� p.g1g2/Dp.g1/p.g2/ @.'.g1;g2//, q.h1h2/D q.h1/ q.h2/ '.@.h1/; @.h2//,

� '.g1;g2/
p.g3/ '.g1g2;g3/D '.g2;g3/ '.g1;g2g3/;

� fp.g1/;p.g2/g
0 '.g2;g1/D '.g1;g2/ q.fg1;g2/g/:

If .q0;p0; '0/W .H;G; @; f ; g/ ! .H 0;G0; @0; f ; g0/ is another morphism between
braided crossed modules, then a 2–cell ‰W .q;p; '/) .q0;p0; '0/ is a map ‰W G!H 0 ,
such that
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� p0.g/D p.g/ @.‰.g//, q0.h/D q.h/‰.@.h//,

� '.g1;g2/‰.g1g2/D‰.g1/
p.g2/‰.g2/ '

0.g1;g2/.

We should stress that there is an interesting description of the 1–cells in BXM in
terms of braided butterflies .B; �; �; �; �/W .H;G; @; f ; g/ ! .H 0;G0; @0; f ; g0/ in
Aldrovandia and Noohi [1, Definitions 4.1.3, 7.4.1], that is, commutative diagrams of
groups

H

@

��

�
  

H 0

@0

��

�
}}

B

� !!�~~
G G0

such that the various maps satisfy the following conditions:

� � � D 1, and the sequence 1!H 0
�
! B

�
!G! 1 is short exact,

� �.h�.b//D b�1�.h0/ b , �.h0�.b//D b�1�.h0/ b ,

� �f�.b1/; �.b2/g �f�.b1/; �.b2/g D b�1
2

b�1
1

b2b1 .

Any braided (symmetric) crossed module .H;G; @; f ; g/ gives rise to a braided
(symmetric) categorical group P .H;G; @; f ; g/, which is defined as follows. The
objects are the elements g 2 G . A morphism hW g! g0 is an element h 2 H with
g0D g@.h/, and the composition is multiplication in H . The tensor product is given by

.g1

h1
�! g01/˝ .g2

h2
�! g02/D . g1g2

h
g2
1

h2 // g0
1
g0

2 /:

The associativity and unit constraints are identities, and the braiding is given by the
equation

cg1;g2
D fg1;g2gW g1g2! g2g1:

Indeed, this construction .H;G; @; f ; g/ 7!P .H;G; @; f ; g/ is the function on objects
of respective biequivalences of 2–categories BXM' BCG and SXM' SCG (cf
Noohi [49, Section 8]). Hence, for any category C , there are biequivalences

Psd.Cop;BXM/' Psd.Cop;BCG/; Psd.Cop;SXM/' Psd.Cop;SCG/:

6.5 From pseudofunctors to fibrations: The braided Grothendieck con-
struction

Given a pseudofunctor to categories, P W Cop ! Cat, there is a well-known way to
form a single C–fibred category

R
C P , called the Grothendieck construction on P ,
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due to Grothendieck [37] and Giraud [33; 34]. Below, we enrich the Grothendieck
construction for any pseudofunctor to braided categorical groups P W Cop ! BCG ,
assembling it into a large braided C–fibred categorical group

(72)
R

CP D .
R

CP;P;˝; I; a; r; l ; c/;

which is actually a pseudocolimit of the braided categorical groups Pu , u 2 ObC (see
Carrasco, Cegarra and Garzón [12, Theorem 3.1]). This braided C–fibred categorical
group

R
C P is defined as follows.

The objects are pairs .x;u/, where u is an object of C and x one of the category Pu .

The arrows are pairs .f; �/W .y; v/! .x;u/ where � W v!u is in C and f W y! ��x

is in Pv .

The composition is defined by

(73) ..z; w/
.g;�/ // .y; v/

.f;�/// .x;u// 7! ..z; w/
.h�;�ix �

�f g; ��/// .x;u//:

As is well-known, this composition is associative and unitary owing to the naturality,
coherence condition (64), and normalization conditions (62) and (63). For any object
.x;u/ of

R
CP , the corresponding identity is just 1.x;u/ D .1x; 1u/W .x;u/! .x;u/.

Thus,
R

CP is a category.

The projection functor P W
R

CP!C is given by�
.y; v/

.f;�/
�! .x;u/

� P
7! .v

�
! u/:

This is actually a fibration since, for any morphism � W v! u in C and any u–object
.x;u/ of

R
CP , there is the cartesian � –morphism .1��x; �/W .�

�x; v/! .x;u/:

The C–fibred tensor product

(74) ˝W
R

CP �C
R

CP �!
R

CP;

is defined by

..y; v/
.f;�/// .x;u// ˝ ..y0; v/

.f 0;�/// .x0;u//

D ..y˝y0; v/
.'�
�

x;x0
.f˝f 0/;�/

// .x˝x0;u//:

So defined, ˝ is actually a functor since, for any morphisms of the form

.z; w/
.g;�/ // .y; v/

.f;�/ // .x;u/; .z0; w/
.g0;�/ // .y0; v/

.f 0;�/// .x0;u/;
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the equality�
.f; �/.g; �/

�
˝
�
.f 0; �/.g0; �/

�
D
�
.f; �/˝ .f 0; �/

��
.g; �/˝ .g0; �/

�
;

follows (by composing with the morphism g˝ g0W z˝ z0! ��y˝ ��y0 ) from the
commutativity of the outside region in the diagram:

��y˝��y0

.A/
'�
�

y;y0 ��

��f˝��f 0 // ����x˝����x0

'�
�

��x;��x0

||

'�
���

x;x0

!!

.59/

h�;�ix˝h�;�ix0 // .��/�x˝.��/�x0

'
.��/�

x;x0��
.58/

��.y˝y0/

''��.f˝f 0/

.��/�.x˝x0/

��.��x˝��x0/
��'�

�

x;x0 // ����.x˝x0/

66

h�;�ix˝x0

where the region labelled (A) commutes since '�
�

is natural, and the other two commute
by the references given in them.

The associativity C–fibred constraint, at any u–objects .x;u/; .y;u/ and .z;u/

of
R

CP ,

(75) a.x;u/;.y;u/;.z;u/W ..x;u/˝ .y;u//˝ .z;u/! .x;u/˝ ..y;u/˝ .z;u//

is the morphism .ax;y;z; 1u/W ..x˝ y/˝ z;u/! .x˝ .y ˝ z/;u/; where ax;y;z is
the associativity isomorphism in the braided categorical group Pu . This family of
1–isomorphisms (75) actually gives a C–fibred natural equivalence since, for any three
morphisms in

R
CP of the form .f; �/W .x0; v/! .x;u/, .g; �/W .y0; v/! .y;u/ and

.h; �/W .z0; v/! .z;u/, the equality

a.x;u/;.y;u/;.z;u/
�
.f; �/˝ .g; �//˝ .h; �/

�
D
�
.f; �/˝ ..g; �/˝ .h; �//

�
a.x0;v/;.y0;v/;.z0;v/

follows from the commutativity of the following diagram in Pv :

x0˝.y0˝z0/
f˝.g˝h/// ��x˝.��y˝��z/

1˝'�
�

y;z

))
.x0˝y0/˝z0

.f˝g/˝h ��

a
55

.A/ ��x˝��.y˝z/

'�
�

x;y˝z��
.��x˝��y/˝��z

a

44

'�
�

x;y˝1 ))

��.x˝.y˝z//

��.x˝y/˝��z

.55/

'�
�

x˝y;z // ��..x˝y/˝z/
��a

55
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where the inner subdiagram (A) commutes by the naturality of a , and the other is
commutative by the reference therein since ��W Pu! Pv is a braided functor.

The C–fibred unit functor,

(76) I W C!
R

CP;

is defined on objects by Iu D .Iu;u/, where Iu is the unit object of the braided
categorical group Pu , and it carries a morphism � W v! u of C to the � –morphism
of
R

CP given by the structure unit isomorphism of the braided functor ��W Pu! Pv ,
'�
�

1
W Iv! ��Iu , that is,

(77) I� D .'�
�

1
; �/W .Iv; v/! .Iu;u/:

Note that I W C!
R

CP is unitary because of the normalization condition (62). Fur-
thermore, if � W w! v and � W v! u is any pair of composable arrows in C , then the
equality I.�/I.�/D I.��/ follows from the commutativity of the following diagram
in Pw

Iw
'.��/

�

1 //

'�
�

1
��

'�
���

1
$$

.��/�Iu

��Iv
��'�

�

1

//
.59/

.58/

����Iu;

h�;�iIu

OO

where both triangles commute by the references given in them, since h�; �iW ����)
.��/� is a braided isomorphism. Hence, (76) is actually a C–fibred functor.

The unit C–fibred constraints, at any object .x;u/ of
R

CP ,

(78) r.x;u/W .x;u/˝ .Iu;u/! .x;u/; l .x;u/W .Iu;u/˝ .x;u/! .x;u/;

are respectively given by the morphisms

.rx; 1u/W .x˝ Iu;u/! .x;u/ and .lx; 1u/W .Iu˝x;u/! .x;u/;

where rx and lx are the right and left unit isomorphisms in the braided categorical
group Pu . These families of 1–isomorphisms (78) actually give C–fibred natural equiv-
alences since, for any morphism of

R
CP , say .f; �/W .y; v/! .x;u/, the equalities

r.x;u/
�
.f; �/˝.'�

�

1
; �/

�
D .f; �/ r.y;u/ and l .x;u/

�
.'�

�

1
; �/˝.f; �/

�
D .f; �/ l .y;u/
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follow from the commutativity of the following diagrams in Pv

y˝ Iv
f˝1

((

ry //

f˝'�
�

1

��

y

.B/

f // ��x

.A/ ��x˝ Iv

r��x
66

1˝'�
�

1
vv

.56/

��x˝ ��Iu

'�
�

x;Iu // ��.x˝ Iu/;

��rx

OO

Iv˝y
1˝f

((

ly //

'�
�

1 ˝f

��

y

.B/

f // ��x

.A/ Iv˝ �
�x

l��x
66

'�
�

1 ˝1
vv

.56/

��Iu˝ �
�x

'�
�

Iu;x // ��.Iu˝x/;

��lx

OO

where the regions (A) commute owing to ˝ being a functor, the commutativity of the
regions (B) follows from the naturality of the right and left unit constraints of Pv , and
the third regions commute by the reference therein.

The braiding C–fibred constraint,

(79) c.x;u/;.y;u/W .x;u/˝ .y;u/! .y;u/˝ .x;u/;

at any u–objects .x;u/ and .y;u/, is given by the morphism .cx;y ; 1u/W .x˝y;u/!

.y˝x;u/, where cx;y is the braiding in Pu . So defined, c is natural since, for any
arrow � W v ! u in C and any pair of � –morphisms .f; �/W .x0; v/ ! .x;u/ and
.g; �/W .y0; v/! .y;u/ in

R
CP , the equality c.x;u/;.y;u/

�
.f; �/˝ .g; �/

�
D
�
.g; �/˝

.f; �/
�

c.x0;v/;.y0;v/ is a direct consequence of the commutativity of the following
diagram in Pv

x0˝y0

.A/

.57/

cx0;y0 //

f˝g

��

y0˝x0
g˝f // ��y˝ ��x

'�
�

y;x

��
��x˝ ��y

c��x;��y

33

'�
�

x;y

// ��.x˝y/
��cx;y

// ��.y˝x/;

where (A) commutes due to the naturality of the braiding c of Pv .

Thus, we conclude that the Grothendieck construction .
R

CP;P;˝; I; a; r; l ; c/ yields
a braided C–fibred categorical group since it is straightforward to see that the required
coherence conditions in (46)-(49) follow from the corresponding ones in each braided
categorical group Pu for the different objects u of C .
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Remark 6.14 By construction, it is clear that if P W Cop! SCG is a pseudofunctor to
symmetric categorical groups, then

R
CP is actually a symmetric C–fibred categorical

group.

6.6 The braided Grothendieck construction 2–functor

The ordinary Grothendieck construction is the function on objects of a 2–functorR
CW Psd.Cop;Cat/! Cat#C

, from the 2–category of pseudofunctors to categories to
the 2–category of C–fibred categories (see Giraud [33; 34] and Vistoli [58]). Similarly,
the assignment P 7!

R
CP , given by the enriched Grothendieck construction (72), is

the function on objects of a 2–functor

(80)
R

CW Psd.Cop;BCG/! BCG#C
;

described as follows:

On braided pseudotransformations, it carries any T D .T; ‰/W P) P 0 to the braided
C–fibred functor

(81)
R

CT D .
R

CT; '
R
CT

/W
R

CP!
R

CP 0;

which is defined by

(82) ..y; v/
.f;�/// .x;u// �

R
CT
// ..Tvy; v/

.‰�x Tvf; �/ // .Tux;u//:

As is well-known,
R

CT W
R

CP !
R

CP 0 is actually a C–fibred functor thanks to the
naturality, coherence condition (66), and normalization condition (65). Indeed, it is a
braided C–fibred functor, whose structure C–fibred natural equivalences

'
R
CT

.x;u/;.y;u/
W
R

CT .x;u/˝
R

CT .y;u/!
R

CT ..x;u/˝ .y;u//;(83)

'
R
CT

u W Iu!
R

CTIu;(84)

for any objects u of C and .x;u/ and .y;u/ of
R

CP , are respectively defined by

'
R
CT

.x;u/;.y;u/
D .'

Tu
x;y ; 1u/W .Tux˝Tuy;u/! .Tu.x˝y/;u/;(85)

'
R
CT

u D .'Tu

1
; 1u/W .Iu;u/! .TuIu;u/:(86)

The four coherence equations in (55), (56), and (57), in order for
R

CT to be a
braided C–fibred functor, follow from the corresponding coherence conditions for
the various braided functors Tu , u 2 ObC . To prove that both '

R
CT

in (83) and
(84) are natural, let � W v! u be any arrow in C and let .f; �/W .x0; v/! .x;u/ and
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.g; �/W .y0; v/! .y;u/ be any two � –morphisms in
R

CP . Then, observe that the
commutativity of the diagrams

R
CT .x0; v/˝

R
CT .y0; v/

'

R
CT

//R
CT .f;�/

˝
R

CT .g;�/ ��

R
CT ..x0; v/˝ .y0; v//R

CT ..f;�/

˝.g;�//��R
CT .x;u/˝

R
CT .y;u/

'

R
CT

//
R

CT ..x;u/˝ .y;u//

Iv
'

R
CT

//

I�

��

R
CTIvR

CTI�

��
Iu

'

R
CT

//
R

CTIu

follows from the commutativity of the two diagrams below, where the region (A)
commutes by naturality, and the other regions by the references given in them.

Tv.x
0˝y0/

Tv.f˝g/

''

.59/

.58/

Tvx
0˝Tvy

0

Tvf˝Tvg

��

'
Tv
x0;y0

66

.A/
Tv.�

�x˝ ��y/

Tv'
��

x;y

��
Tv�

�x˝Tv�
�y

‰�x˝‰�y

��

//'
Tv�
�

x;y

'
Tv
��x;��y

33

Tv�
�.x˝y/

‰� .x˝y/

��
��Tux˝ ��Tuy

'�
�

Tux;Tuy
((

//'
��Tu
x;y

.59/

��Tu.x˝y/

��.Tux˝Tuy/
��'

Tu
x;y

77

TvIv
Tv'

��

1

$$
.59/

Iv

'�
�Tu

1

%%

'Tv
1

;;

'�
�

1

��

//'Tv�
�

1 Tv�
�Iu

‰�Iu

��
��Iu

��'Tu
1

//

.59/

.58/

��TuIu:

On braided modifications, the 2–functor
R

C acts as follows: For any two braided
pseudotransformations T;T 0W P) P 0 , any braided modification M W T V T 0 gives
rise to the braided C–fibred isomorphism

(87)
R

CM W
R

CT )
R

CT 0W
R

CP!
R

CP 0;
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whose component at an object .x;u/ of
R

C P , is defined by

(88)
R

CM.x;u/D .Mux; 1u/W .Tux;u/ �! .T 0ux;u/:

As is well-known,
R

CM is actually a C–fibred natural transformation, thanks to the
naturality of the various Mu and the coherence condition (67). Moreover, we conclude
that it is actually a braided C–fibred isomorphism since the two coherence conditions
in (58), that is, the commutativity of the diagrams

R
CT .x;u/˝

R
CT .y;u/

'

R
CT

//

R
CM˝

R
CM

��

R
CT ..x;u/˝ .y;u//R

CM

��R
CT 0.x;u/˝

R
CT 0.y;u/

'

R
CT 0

//
R

CT 0..x;u/˝ .y;u//;

Iu
'

R
CT 0

  ��
'

R
CT

R
CTIu

R
CM

//
R

CT 0Iu;

follows from the commutativity of the corresponding diagrams for the different Mu ,
u 2 ObC , that is,

Tux˝Tuy
'

Tu
x;y //

Mux˝Muy
��

Tu.x˝y/

Mu.x˝y/
��

T 0ux˝T 0uy
'

T 0u
x;y // T 0u.x˝y/;

Iu

��

'
T 0u

1

��

'
Tu

1

TuIu
Mu // T 0uIu:

For any braided modifications M W T V T 0 and M 0W T 0V T 00 , where T;T 0;T 00W

P)P 0 , the equality
R

C.M
0 �M /D

R
CM 0 �

R
CM is easily verified (from (60) and (68)),

as well as the equality
R

C1T D1R
CT ; for any braided pseudotransformation T W P)P 0 .

Furthermore, it is easily seen that
R

C1P D 1R
CP and, if T W P!P 0 and T 0W P 0!P 00

are any two composable braided pseudotransformations, then
R

C.T
0T /D

R
CT 0

R
CT

as functors, since R
C.T

0T /.x;u/D .T 0uTux;u/D
R

CT 0
R

CT .x;u/;

for any object .x;u/ of
R

CP , and, if .f; �/W .y; v/! .x;u/ is any morphism of
R

CP ,
then

R
C.T

0T /.f; �/
.82/
D .‰T 0T

� x .T 0T /vf; �/
.69/;.70/
D .‰

0

�Tux T 0v‰�x T 0vTvf; �/

.82/
D
R

CT 0.‰�x Tvf; �/
.82/
D
R

CT 0
R

CT .f; �/:
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Indeed, they are the same monoidal functors since, for any objects u of C and
.x;u/; .y;u/ of

R
CP ,

'
R
CT 0

R
CT

.x;u/;.y;u/

.59/
D
R

CT 0'
R
CT

.x;u/;.y;u/
'
R
CT 0R
CT .x;u/;

R
CT .y;u/

D
R

CT 0.'
Tu

x;y
; 1u/ .'

T 0u

Tux;Tuy
; 1u/

.82/;.65/
D .T 0u'

Tu

x;y
; 1u/ .'

T 0u

Tux;Tuy
; 1u/D .T

0
u'

Tu

x;y
'

T 0u

Tux;Tuy
; 1u/

.59/
D .'

T 0uTu

x;y
; 1u/D '

R
CT 0T

.x;u/;.y;u/
;

'
R
CT 0

R
CT

u

.59/
D
R

CT 0'
R
CT

u
'
R
CT 0

u
D
R

CT 0.'
Tu

1
; 1u/ .'

T 0u

1
; 1u/

.82/;.65/
D .T 0u'

Tu

1
; 1u/ .'

T 0u

1
; 1u/D .T

0
u'

Tu

1
'

T 0u

1
; 1u/

.59/
D .'

T 0uTu

1
; 1u/D '

R
CT 0T

u
:

Therefore, the equality between braided C–fibred functors
R

C.T
0T / D

R
CT 0

R
CT

holds.

Similarly, for M W TVS W P)P 0 and M 0W T 0VS 0W P 0)P 00 braided modifications,
we have the equality

R
C.M

0M /D
R

CM 0
R

CM , since, for any object .x;u/ of
R

CP ,R
CM 0

R
CM.x;u/

.61/
D
R

CS 0.Mux; 1u/
R

CM 0.Tux;u/

.82/;.65/
D .S 0uMux; 1u/ .M

0
uTux; 1u/

.71/
D ..M 0M /ux; 1u/D

R
C.M

0M /.x;u/:

The above confirms that (80),
R

CW Psd.Cop;BCG/! BCG#C
, is a 2–functor, which,

from Remark 6.12, restricts to the 2–category of pseudofunctors of symmetric categor-
ical groups. Thus, we have the commutative diagram of 2–functors:

(89)
Psd.Cop;SCG/

R
C //

� _

��

SCG#C� _

��
Psd.Cop;BCG/

R
C // BCG#C

6.7 Braided Grothendieck construction 2–functors are biequivalences

The ordinary Grothendieck construction 2–functor
R

CW Psd.Cop;Cat/! Cat#C
is a

biequivalence of 2–categories (see Giraud [33; 34], Hollander [39] or Vistoli [58]).
The following theorem is the principal result of this section:

Theorem 6.15 For any small category C , both Grothendieck construction 2–functors
in (89) are strong biequivalences, in the sense that:
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(i) For any two pseudofunctors of braided categorical groups P;P 0W Cop! BCG ,
the functor

(90)
R

CW HomPsd.Cop;BCG/.P;P 0/! HomBCG#C
.
R

CP;
R

CP 0/

is an isomorphism of categories (rather than an equivalence).

(ii) For any braided (resp. symmetric) C–fibred categorical group P , there exist a
pseudofunctor to braided (resp. symmetric) categorical groups P and a strict
braided C–fibred isomorphism (rather than a braided C–fibred equivalence)

(91)
R

CP Š
�! P :

Proof (i) The functor (90) is plainly recognized to be faithful and injective on
objects: Suppose M;M 0W T V T 0 are two braided modifications such that

R
CM DR

CM 0 , where T;T 0W P)P 0 are braided pseudotransformations. Then, for any object
.x;u/ 2

R
CP ,

.Mux; 1u/
.88/
D
R

CM.x;u/D
R

CM 0.x;u/
.88/
D .M 0

ux; 1u/;

whence Mux DM 0
ux , for all objects u of C and x of Pu . Therefore, M DM 0 ,

and (90) is faithful. To see that it is also injective on objects, let us suppose thatR
CT D

R
CT 0 . Then, from (82), for the case where � D 1u , (85) and (86), we deduce

that Tu D T 0u for all objects u 2C . Moreover, again by (82), now for the case where
f D 1��x , we conclude that ‰T

� x D ‰T 0

� x , for any morphism � W v! u in C and
object x of Pu . Therefore, T D T 0 .

To prove that (90) is full, let ‰W
R

CT V
R

CT 0 be any braided C–fibred isomorphism.
For each object .x;u/ of

R
CP , let us write

‰.x;u/ D .Mux; 1u/W .Tu;u/! .T 0ux;u/

for a morphism MuxW Tux ! T 0ux in Pu . Then, for .f; �/W .y; v/ ! .x;u/ any
morphism in

R
C P , the naturality equation ‰.x;u/

R
CT .f; �/ D

R
CT 0.f; �/‰.y;v/ ,

implies that the following diagram is commutative:

Tvy

Mvy

��

Tvf // Tv�
�x

‰�x // ��Tux

��Mux
��

T 0vy
T 0vf // T 0v�

�x
‰0�x

// ��T 0ux

Then, from the case where � D 1u , we deduce that Mux Tuf D T 0uf Muy , for any
morphism f W y!x in Pu ; that is, every MuW Tu)T 0u is natural. And, from the case
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where f D 1��x , we have the equality ‰0�x Mv�
�x D ��Mux‰�x for any arrow

� W v! u in C and any object x of Pu ; that is, the required equation (67) holds.

Furthermore, since it is easy to see that the two coherence conditions in (58) for the
different Mu , u 2 ObC , that is,

'
T 0u

x;y .Mux˝Muy/DMu.x˝y/ '
Tu

x;y ; Mu '
Tu

1
D '

T 0u

1
;

follow from the corresponding ones for ‰ , that is,

'
R
CT 0

.x;u/;.y;u/ .‰.x;u/˝‰.y;u//D‰.x;u/˝.y;u/ '
R
CT

.x;u/;.y;u/; ‰Iu '
R
CT

u D '
R
CT 0

u ;

we conclude that M W TVT 0 is actually a braided modification, and clearly
R

CM D‰ .

We next observe that (90) is surjective on objects: Let F W
R

CP!
R

CP 0 be any given
braided C–fibred functor. Then, we obtain a braided functor TuD .Tu; '

Tu/W Pu!P 0u ,
for any object u of C , if we write

� F.x;u/D .Tux;u/ for each object x of Pu ,

� F.f; 1u/ D .Tuf; 1u/W .Tux;u/ ! .Tuy;u/ for each morphism f W x ! y

of Pu ,

� 'F
.x;u/;.y;u/

D.'
Tu
x;y ; 1u/W .Tux˝Tuy;u/! .Tu.x˝y/;u/ for any objects x;y

of Pu ,

� 'F
u D .'

Tu

1
; 1u/W .Iu;u/! .TuIu;u/.

Furthermore, for each arrow � W v! u in C and each object x of Pu , let us write

� F.1��x; �/D .‰�x; �/W .Tv�
�x; v/! .Tux;u/,

where ‰�xW Tv�
�x! ��Tux is a morphism in Pv . Note that ‰1u

xD 1Tux , since F

is a functor and preserves identities. Then, for .f; �/W .y; v/! .x;u/ any morphism
in
R

CP , we have

F
�
.y; v/

.f;�/ // .x;u/
�
D F

�
.y; v/

.f;1v/ // .��x; v/
.1��x ;�/ // .x;u/

�
D
�
.Tvy; v/

.Tvf;1v/ // .Tv�
�x; v/

.‰�x;�/ // .Tux;u/
�

D ..Tvy; v/
.‰�x Tvf; �/ // .Tux;u//:

If � W w! v is any other arrow in C , then the equality

F.f; �/F.1��y ; �/D F..f; �/.1��y ; �//
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yields the commutativity of the following diagram in Pw ,

Tw�
�y

‰�y

��

Tw�
�f // Tw�

���x
Twh�;�ix // Tw.��/

�x

‰��x

��
��Tvy

��Tvf // ��Tv�
�x

��‰�x // ����Tux
h�;�iTux

// .��/�Tux;

which, for the respective cases where � D 1v or f D 1��x , tells us that the two
diagrams below are commutative.

Tw�
�y

Tw�
�f //

‰�y

��

Tw�
�x

‰�x

��
��Tvy

��Tvf // ��Tvx;

Tw�
���x

Twh�;�ix //

‰��
�x

��

Tw.��/
�x

‰��x

��
��Tv�

�x
��‰�x // ����Tu

h�;�iTux // .��/�Tux

This means that, on one hand, every ‰� W Tw��) ��Tv is natural, and, on the other
hand, that the equation (66) holds.

Moreover, every ‰� W Tv��) ��Tu is monoidal since, for any objects x;y 2 Pu , we
have the commutative diagrams

Tv�
�x˝Tv�

�y

.A/

'
Tv�
�

x;y

''.59/
'

Tv
��x;��y//

‰�x˝‰�y

��

Tv.�
�x˝ ��y/

Tv'
��

x;y // Tv�
�.x˝y/

‰� .x˝y/

��
��Tux˝ ��Tuy

'
��Tu
x;y

77
.59/

'�
�

Tux;Tuy// ��.Tux˝Tuy/
��'

Tu
x;y // ��Tu.x˝y/;

Iv

.B/

.59/ .59/

��

'Tv�
�

1

��

'�
�Tu

1

��
'�
�

1��
'Tv

1

TvIv

Tv'
��

1
��

��Iu

��
��'Tu

1

Tv�
�Iu

‰� // ��TuIu;
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where the commutativity of inner diagrams (A) and (B) hold thanks, respectively, to
the commutativity of the two following naturality diagrams:

F.��x; v/˝F.��y; v/
'F

//

F.1��x ;�/

˝F.1��y ;�/ ��

F..��x; v/˝ .��y; v//

F..1��x ;�/

˝.1��y ;�//��
F.x;u/˝F.y;u/

'F

// F..x;u/˝ .y;u//

Iv
'F

//

I�
��

FIv

FI�
��

Iu
'F

// FIu

Hence, T D .T; ‰T /W P)P 0 is a braided pseudotransformation, and, by construction
(recall (82), (85) and (86)), it is clear that

R
CT D F . This makes the proof of (i)

complete.

(ii) Let P D .P ;P;˝; I; a; r; l ; c/ be any given braided C–fibred categorical group.
Then, recalling that every fibre inherits a braided categorical group structure Pu D

.Pu;˝; Iu; a; r; l ; c/, a pseudofunctor to braided categorical groups

(92) P W Cop
! BCG such that Pu D Pu for each object u 2C;

is defined as follows:

Since P W P!C is a fibration, we can choose a normalized cleavage for it in the sense
of Grothendieck [37, Definition 7.1]; that is, for each arrow � W v! u in C and each
object x of Pu , we select a pullback x� W �

�x! x of x by � . Specifically, we choose
x1u
D 1x W x! x ; so that 1�ux D x .

Then, every � W v ! u in C defines a braided functor ��W Pu ! Pv by sending
each object x of Pu to ��x , and each arrow f W x! y of Pu to the unique arrow
��f W ��x! ��y in Pv making the diagram

(93)
��x

x� //

��f ��

x

f
��

��y
y� // y

commute, and for which the structure isomorphisms '�
�

x;y and '�
�

1
are respectively

those in Pv causing the triangles below to commute.

(94)
��x˝ ��y

x�˝y� %%

'�
�

x;y // ��.x˝y/

.x˝y/�yy
x˝y;

Iv
'�
�

1 //

I� ��

��Iu

.Iu/�~~
Iu
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To prove the naturality condition for the isomorphisms '�
�

, let us consider the following
diagram, for f W x! x0 and gW y! y0 any two morphisms of Pu

��x˝ ��y

.93/

'�
�

x;y //

x�˝y� ''

��f˝��g

��

.93/

.94/

��.x˝y/

.x˝y/�ww

��.f˝g/

��

x˝y

f˝g
��

x0˝y0

��x0˝ ��y0

'�
�

x0;y0

//

x0�˝y0�
77
.94/

��.x0˝y0/;

.x0˝y0/�
gg

where the inner regions commute by the references in them. Then, the required
commutativity of the outside region follows since .x0˝y0/� is cartesian. The coherence
condition (55) for �� is a consequence of the naturality of the associativity constraint
of P : for any objects x;y; z 2 Pu , we have the following diagram

.��x˝ ��y/˝ ��z

.x�˝y� /˝z�
**

'�
�

x;y˝1
//

a

��

��.x˝y/˝ ��z

'�
�

x˝y;z

��

.x˝y/�˝z�
tt

.x˝y/˝ z

.94/

.A/

.94/

.93/

a

��

��x˝ .��y˝ ��z/

x�˝.y�˝z� /
**

1˝'�
�

y;z

��

��..x˝y/˝ z/

��a

��

..x˝y/˝z/�

jj

x˝ .y˝ z/

.94/

.94/

��x˝ ��.y˝ z/

x�˝.y˝z/�

44

'�
�

x;y˝z

// ��.x˝ .y˝ z//;

.x˝.y˝z//�

jj

where region (A) commutes by the naturality of a , and the other inner regions commute
by the respective references in them. Then, the required commutativity of the outside
region holds since the morphism ..x˝y/˝ z/� is cartesian. Similarly, the coherence
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conditions (56) and (57) for �� hold: for any objects x;y 2 Pu , we have the diagrams

��x˝ Iv
1˝'�

�

1 //

x�˝I� ))

r

��

��x˝ ��Iu

x�˝.Iu/�vv

'�
�

x;Iu

��

x˝ Iu
r

zz

.94/

.93/

.94/.A/

x

��x

x�
99

��.x˝ Iu/;
��roo

.x˝Iu/�

aa

��x˝ ��y

x�˝y� ((

'�
�

x;y //

c

��

��.x˝y/

��c

��

.x˝y/�vv
x˝y

.B/ .93/

.94/

c
��

y˝x

.94/

��y˝ ��x
'�
�

y;x

//

y�˝x�
66

��.y˝x/;

.y˝x/�
hh

where (A) and (B) commute by the naturality of r and c , respectively, and the other
inner regions by the references given in them. Then, the required commutativity of the
respective outside regions holds since both morphisms x� and .y˝x/� are cartesian.

Note that, since the selected cleavage is normalized, it is easily verified that, for any
object u of C , 1�u is the identity braided functor on Pu . That is, condition (62) holds.

For any pair of composable arrows w
�
! v

�
! u of C , the component of the braided

isomorphism h�; �iW ����) .��/� , at any object x 2 Pu , is the unique morphism
in Pw making the diagram

(95)
����x

.��x/� //

h�;�ix
��

��x

x�

��
.��/�x

x�� // x

commute. By Grothendieck [37, Proposition 7.4], we know that h�; �i is a natural
isomorphism, as well as that the equalities (63) and (64) hold. Furthermore, to see that
it is actually a braided isomorphism, let us consider the following diagrams, where
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x;y are any two objects in Pu :

����x˝ ����y

.94/

h�;�ix˝h�;�iy

��

'�
���

x;y //
'�
�

��x;��y

**

.��x/�˝.�
�y/�

  

����.x˝y/

��

.��.x˝y//�

h�;�ix˝y

��

��.��x˝ ��y/

.93/
.��x˝��y/�

��

��'�
�

x;y
22

.59/

��x˝ ��y.95/

.94/

'�
�

x;y //

x�˝y�
��

��.x˝y/

.x˝y/�uu
.95/

x˝y

.94/

.��/�x˝ .��/�y
'
.��/�

x;y

//

x��˝y��
44

.��/�.x˝y/

.x˝y/��

ll

Iw

.59/ .94/.94/
$$

I.��/
I�

��{{

'�
�

1

'�
���

1

��

'
.��/�

1

��

��Iv

.93/

.Iv/� //

��

��'�
�

1

Iv
I� //

.94/
'�
�

1
��

Iu

��Iu

.Iu/�

::

.95/

����Iu
h�;�iIu

//
.��Iu/�

;;

.��/�Iu

OO

.Iu/��

where each inner region is commutative thanks to the reference therein. Then, the
required commutativity of the outside regions in the diagrams follows from the fact
that both .x˝y/�� and .Iu/�� are cartesian.

Therefore, by (92)–(95) we have a well-defined pseudofunctor to braided categorical
groups P W Cop ! BCG . We now recognize that both braided C–fibred categor-
ical groups

R
CP and P are isomorphic by means of the strict braided C–fibred

functor
R

CP ! P that carries any object .x;u/ of
R

CP to x , and any morphism
.f; �/W .y; v/ ! .x;u/ to x�f W y ! x , the composite of f W y ! ��x with the
cartesian morphism x� W �

�x! x .

Finally, note that, whenever the originally given P is a symmetric C–fibred categorical
group, then the above-constructed pseudofunctor P is actually of symmetric categorical
groups. This completes the proof of part (ii) in the theorem.
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Theorem 6.15 has two key consequences, given below.

Theorem 6.16 For any small category C , the enriched Grothendieck construction
2–functor

R
C.�/ induces equivalences of homotopy categories

Ho Psd.Cop;BCG/ //� HoBCG#C
; Ho Psd.Cop;SCG/ //� HoSCG#C

:

7 H 3
C;r and braided and symmetric C–fibred categorical

groups

Our classification results for braided and symmetric C–fibred categorical groups will
be given below by exhibiting biequivalences between their respective 2–categories
and corresponding 2–categories of first- and second-level 3–cocycles of C–modules,
which are defined as follows:

7.1 The 2–categories of 3–cocycles

For any given small category C , the 2–category of first-level 3–cocycles of C–modules,
denoted by

Z3
C;1; .Z3

1 ; if C D 1 is the one arrow trivial category/;

has objects triples .B;A; h/, where B;AW Cop! Ab are C–modules and

h 2Z3
C;1.B;A/D Ker.C 3

C;1.B;A/
@3

�! C 4
C;1.B;A//;

is a first-level 3–cocycle of B in A. A 1–cell in Z3
C;1 from .B;A; h/ to .B0;A0; h0/

is a triple .p; q;g/W .B;A; h/! .B0;A0; h0/, consisting of morphisms of C–modules
pW B ! B0 and qW A! A0 and a 2–cochain g 2 C 2

C;1.B;A
0/, such that q�.h/ D

p�.h0/C @2g , where

C �C;1.B
0;A0/

p�

! C �C;1.B;A
0/

q�
 C �C;1.B;A/

are the complex homomorphisms canonically induced by p and q , respectively. The
composite of .p; q;g/ with the morphism .p0; q0;g0/W .B0;A0; h0/! .B00;A00; h00/ is
defined by

.p0; q0;g0/.p; q;g/D .p0p; q0q;p�.g0/C q0�.g//;

and identities are given by 1.B;A;h/ D .1B; 1A; 0/.

For any two morphisms .p; q;g/; .p0; q0;g0/W .B;A; h/! .B0;A0; h0/, the existence of
2–cells in Z3

C;1 between them requires that pDp0 and qDq0 , and, in such a case, such
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a 2–cell f W .p; q;g/) .p; q;g0/ consists of a 1–cochain f 2 C 1
C;1.B;A

0/ such that
gDg0C@1f . The vertical composition of f with a 2–cell f 0W .p; q;g0/) .p; q;g00/

is given by pointwise addition in A0 , that is f 0Cf W .p; q;g/) .p; q;g00/. The identity
2–cell over a 1–cell .p; q;g/W .B;A; h/! .B0;A0; h0/ is given by the zero C–module
morphism 0W B!A0 , and every 2–cell f W .p; q;g/) .p; q;g0/ as above is invertible,
with the inverse given by the opposite C–module homomorphism �f W B!A0 . Hence,
the hom-categories of Z3

C;1 are all groupoids.

The horizontal composition of 2–cells f W.p;q;g1/) .p;q;g2/W.B;A;h/! .B0;A0;h0/

and f 0W .p; q;g0
1
/) .p; q;g0

2
/W .B0;A0; h0/! .B00;A00; h00/ is given by the formula

f 0f Dp�.f 0/Cq0�.f /W .p
0p; q0q;p�.g01/Cq0�.g1//) .p0p; q0q;p�.g02/Cq0�.g2//:

The corresponding quotient category (44) of isomorphism classes of 1–cells, that is,
the homotopy category of first-level 3–cocycles of C–modules, is HoZ3

C;1 .

The 2–category of second-level 3–cocycles of C–modules, Z3
C;2 � Z3

C;1 , is the full
sub–2–category given by those objects .B;A; h/ with

h 2Z3
C;2.B;A/D Ker.C 3

C;2.B;A/
@3

�! C 4
C;2.B;A//;

a second-level 3–cocycle. The full subcategory HoZ3
C;2 � HoZ3

C;1 is then the homo-
topy category of second-level 3–cocycles of C–modules.

A simple straightforward comparison gives the result below.

Lemma 7.1 For any small category C , there are isomorphisms of 2–categories (those
labelled with the symbol Š) making the diagram below commutative:

(96)

Z3
C;2

Š //
� _

��

Psd.Cop;Z3
2
/

� _

��
Z3

C;1
Š // Psd.Cop;Z3

1
/

7.2 From 3–cocycles to pseudofunctors

We define here a 2–functor, denoted by

PCW Z3
C;1! Psd.Cop;BCG/;

through which we shall state as first-level 3–cocycles are appropriate data for the con-
struction of all braided C–fibred categorical groups, up to braided fibred equivalence.
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Every pair of C–modules A;BW Cop!Ab, together with a 3–cocycle h2Z3
C;1.B;A/,

give rise to a pseudofunctor to braided categorical groups

(97) PC.B;A; h/W C
op
! BCG;

which is defined as follows:

� At any object u of C , the braided categorical group PC.B;A; h/u has objects the
elements of Bu . The hom-sets are given by

HomPC.B;A;h/u.x;y/D

�
Au if x D y;

∅ otherwise:

Composition is addition in Au . The tensor product is defined by

.x
a
! x/˝ .x0

a0

! x0/D .xCx0
aCa0

�! xCx0/:

The associativity isomorphism is

(98) hu.x;y; z/W .xCy/C z! xC .yC z/;

the braiding isomorphism is

(99) hu.x j y/W xCy! yCx

and the 0 of Bu is the (strict) unit object.

The equation in (46) follows from the symmetric cocycle condition .@3h/u.x;y; z; t/D0

in (27). The coherence conditions in (48) and (49) hold because of the cocycle conditions
.@3h/u.x j y; z/ D 0 and .@3h/u.x;y j z/ D 0, in (28) and (29), respectively. Also,
the equation in (47) holds thanks to the normalization condition of hu . Since both Bu

and Au are groups, objects and morphisms in PC.B;A; h/u are invertible, whence
PC.B;A; h/u is actually a braided categorical group for any object u of C .

� For any arrow � W v!u in C , the braided functor ��WPC.B;A;h/u!PC.B;A;h/v
is given by

(100) .x
a // x/

��

7! .��x
��a // ��x/;

with the structure constraints

(101)
h� .x;y/W �

�xC ��y! ��.xCy/;

0W 0! ��0:

The symmetric 3–cocycle condition .@3h/� .x;y; z/D 0 in (31) implies the coherence
condition (55), whereas those in (56) hold thanks to the normalization of h, and (57)
holds owing to the cocycle condition .@3h/� .x j y/D 0 in (32).
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� The braided isomorphism ����).��/� associated to each pair of arrows w
�
!v

�
!u

of C is given by

(102) h�;� .x/W �
���x! .��/�x;

at any x 2 Bu . This actually defines a braided isomorphism since the corresponding
conditions in (58) hold by the 3–cocycle equality .@3h/�;� .x;y/D 0 in (33), and by
the normalization condition of h.

The conditions in (62) and (63) are satisfied because the first-level 3–cocycle h is
normalized, and the coherence condition in (64) follows from the cocycle condition
.@3h/�;�; .x/D 0 in (34). Consequently, PC.B;A; h/ is actually a pseudofunctor of
braided categorical groups.

The assignment .B;A; h/ 7! PC.B;A; h/ is the function on objects of the 2–functor

(103) PCW Z3
C;1! Psd.Cop;BCG/

described below.

On the hom categories, the 2–functor PC carries any 1–cell .p; q;g/W .B;A; h/!
.B0;A0; h0/ to the braided pseudotransformation

(104) PC.p; q;g/W PC.B;A; h/) PC.B
0;A0; h0/

defined as follows:

� At any object u 2C , the braided functor

PC.p; q;g/uW PC.B;A; h/u! PC.B
0;A0; h0/u

is given by

(105) .x
a // x/ 7! .pux

qua// pux/;

with the structure constraints

(106) gu.x;y/W puxCpuy! pu.xCy/; 0W 0! pu0:

The coherence equations (55) and (57), that is,

gu.x;y/Cgu.xCy;z/Cquhu.x;y;z/D h0u.pux;puy;puz/Cgu.y;z/Cgu.x;yCz/;

gu.x;y/Cquhu.x j y/D h0u.pux j puy/Cgu.y;x/;

follow from the equality q�.h/D p�.h0/C @2g and (19) and (20), respectively. The
equation in (56) holds thanks to the normalization of g .
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� For each arrow � W v! u in C , the braided isomorphism

PC.B;A; h/u
PC.p;q;g/u //

�� �� )

PC.B
0;A0; h0/u

����
PC.B;A; h/v PC.p;q;g/v

// PC.B
0;A0; h0/v

is given by

(107) g� .x/W pv�
�x! ��pux;

at any x 2 Bu . The first coherence condition in (58), that is,

gv.�
�x; ��y/C qvh� .x;y/Cg� .xCy/

D g� .x/Cg� .y/C h0� .pux;puy/C ��gu.x;y/;

holds owing to the equality q�.h/D p�.h0/C @2g and (21), whereas the second one
follows from the normalization condition g� .0/D 0 of g .

The condition in (65), for PC.p; q;g/, is satisfied because the symmetric 2–cochain g

is normalized, and the coherence condition in (66), that is,

qwh�;� .x/Cg�� .x/D g� .�
�x/C ��g� .x/C h0�;� .pux/;

follows from the equality in q�.h/D p�.h0/C @2g and (22). Hence, PC.p; q;g/ is
actually a braided pseudotransformation.

If f W .p; q;g/) .p; q;g0/W .B;A; h/! .B0;A0; h0/, is any 2–cell in Z3
C;1 , then the

associated braided modification

(108) PC.f /W PC.p; q;g/V PC.p; q;g
0/

consists of the braided isomorphisms PC.f /uW PC.p; q;g/u)PC.p; q;g
0/u given by

(109) fu.x/W pux! pux;

for any object u of C and x 2 Bu . The first coherence equation in (58) for PC.f /u ,
that is,

g0u.x;y/Cfu.x/Cfu.y/D fu.xCy/Cgu.x;y/;

holds because of the equality g D g0C @1f and (15), whereas the second one follows
from the normalization condition fu.0/ D 0. Thus, every PC.f /u is a braided iso-
morphism. Furthermore, the required coherence condition (67) for PC.f /, that is, the
equality

g0� .x/Cfv.�
�x/D ��fu.x/Cg� .x/;

follows from the equality g D g0C @1f and (16).
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This makes complete the description of PC . The verification that it preserves composi-
tions and identities, both vertical and horizontal, is easily done, and we leave it to the
reader. Therefore, PCW Z3

C;1! Psd.Cop;BCG/ is a 2–functor.

Let us now observe that, when .B;A; h/ 2 Z3
C;2 , that is, if h is a second-order 3–

cocycle, then the cocycle condition .@3h/u.x jj y/ D 0 in (30) implies the relation
cy;x cx;y D 1 for the braiding in every PC.B;A; h/u . This means that PC.B;A; h/

is actually a pseudofunctor of symmetric categorical groups. Hence, the 2–functor PC

restricts to a 2–functor

(110) PCW Z3
C;2! Psd.Cop;SCG/;

and we have the commutative diagram of 2–functors:

(111)
Z3

C;2
PC //

� _

��

Psd.Cop;SCG/� _

��
Z3

C;1
PC // Psd.Cop;BCG/

Below is our key result in the matter here, from which the various later results about
the homotopy classification for braided and symmetric fibred categorical groups and
their homomorphisms are derived.

Theorem 7.2 For any given small category C , both realization 2–functors PC in (111)
are biequivalences. Therefore, they induce equivalences of homotopy categories

HoZ3
C;1

� // Ho Psd.Cop;BCG/; HoZ3
C;2

� // Ho Psd.Cop;SCG/:

Proof When C D 1, the trivial point category, both 2–functors P D P1W Z3
2 ! SCG

and P D P1W Z3
1 ! BCG , are plainly recognized to be biequivalences from the results

by Sinh in [54, Section 1], about the classification of symmetric categorical groups
(where they are called Picard categories), and Joyal and Street in [41, Section 3], about
the classification of braided categorical groups. Then, for the general case where C
is any small category, the theorem follows since there are commutative triangles of
2–functors

Z3
C;1

PC !!

Š // Psd.Cop;Z3
1 /

P�xx
Psd.Cop;BCG/

Z3
C;2

PC !!

Š // Psd.Cop;Z3
2 /

P�xx
Psd.Cop;SCG/

where the horizontal isomorphisms are those in (96).
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7.3 Classification of braided and symmetric C–fibred categorical groups

Recall, from (53) and (54), that BCG#C
and SCG#C

denote the 2–categories of
braided and symmetric C–fibred categorical groups, respectively. Theorem 6.15 and
Theorem 7.2 above jointly give the following main result.

Theorem 7.3 For any given small category C , both composite 2–functors
R

C PC in
the commutative diagram

(112)
Z3

C;2

R
C PC //

� _

��

SCG#C� _

��
Z3

C;1

R
C PC // BCG#C

are biequivalences. Therefore, they induce equivalences between the corresponding
homotopy categories

(113)
HoZ3

C;2
� //

� _

��

HoSCG#C� _

��
HoZ3

C;1
� // HoBCG#C

:

It follows that, for any braided C–fibred categorical group P D .P ;P;˝; I; a; r; l ; c/,
there is an object

(114) .�0P ; �1P ; hP / 2 HoZ3
C;1;

that is, two C–modules �0P ; �1P W Cop! Ab, and a first-level 3–cocycle

(115) hP
2Z3

C;1.�0P ; �1P /

such that there is a braided C–fibred equivalence

(116)
R

C PC.�0P ; �1P ; hP / //� P :

Such an object .�0P ; �1P ; hP / is unique up to isomorphism in HoZ3
C;1 , and, more-

over, it belongs to HoZ3
C;2 if and only if P is actually a symmetric C–fibred categorical

group.

For completeness, we shall next show how this complete invariant (114) can be built
from any given braided C–fibred categorical group P . We start by choosing a cleavage
for the fibration P W P ! C , say fx� W ��x ! xg, where specifically we choose
x1u
D 1x W x! x and, for any arrow � W v! u in C , .Iu/� D I� W Iv! Iu.
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Then, for any object u of C ,

� �0Pu is the abelian group of u–isomorphism classes of u–objects of P , where
addition is induced by the tensor product, that is, Œx�C Œy�D Œx˝y�,

� �1Pu is the abelian group of u–automorphisms in P of Iu, where the operation
is composition.

If � W v! u is any morphism in C , then the homomorphism ��W �0Pu! �0Pv is
given by ��Œx�D Œ��x�, whereas the homomorphism ��W �1Pu! �1Pv carries any
aW Iu! Iu to ��aW Iv! Iv , the (unique) v–morphism in P making commutative
the square

Iv
��a //

I� ��

Iv

I���
Iu

a // Iu:

Now, in order to build the 3–cocycle hP , we additionally select

� a representative u–object Fu.x/ 2 x for each object u of C and any x 2 �0Pu ,

� a morphism 'u.x; y/W Fu.x/˝Fu.y/! Fu.xC y/ in Pu , for each pair x; y 2
�0Pu ,

� a morphism in Pv , '� .x/W Fv.��x/! ��Fu.x/, for each arrow � W v! u and
x 2 �0Pu ,

where, particularly, we take

Fu.0/D Iu; 'u.x; 0/D rFu.x/; 'u.0; x/D lFu.x/; '1u
.x/D 1Fu.x/; '� .0/D 1Iv:

Then, by using the group isomorphisms by Saavedra [53, Section 1, (1.3.3.3)]

ı D ıxW �1Pu
Š // AutPu

.Fu.x//; u 2 ObC; x 2 �0Pu;

which carry any aW Iu! Iu to the dotted arrow in the commutative square

Fu.x/˝ Iu
1˝a //

r
��

Fu.x/˝ Iu

r
��

Fu.x/
ı.a/ // Fu.x/;

the first-level 3–cocycle hP 2 Z3
C;1.�0P ; �1P / is canonically deduced from the

associativity constraint, the braiding, the tensor product, and the composition in P , as
follows:
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� for each object u of C and x; y; z 2 �0Pu , the (unique) element hP
u .x; y; z/ 2

�1Pu making commutative the diagram

.Fu.x/˝Fu.y//˝Fu.z/
'u.x;y/˝1//

aFu.x/;Fu.y/;Fu.z/

��

Fu.xC y/˝Fu.z/
'u.xCy;z/// Fu.xC yC z/

ı.hP
u .x;y;z//

��
Fu.x/˝ .Fu.y/˝Fu.z//

1˝'u.y;z/// Fu.x/˝Fu.yC z/
'u.x;yCz/// Fu.xC yC z/;

� for each object u of C and x; y 2 �0Pu , the element hP
u .x j y/ 2 �1Pu making

commutative the diagram

Fu.x/˝Fu.y/
'u.x;y/ //

cFu.x/;Fu.y/

��

Fu.xC y/

ı.hP
u .x j y//

��
Fu.y/˝Fu.x/

'u.y;x/// Fu.yC x/D Fu.xC y/;

� for each arrow v
�
! u of C and x; y 2 �0Pu , the element hP

� .x; y/ 2 �1Pu

making commutative the diagram

Fv.�
�x/˝Fv.�

�y/

'v.�
�x;��y/

��

'� .x/˝'� .y/ // ��Fu.x/˝��Fu.y/
.Fu.x//�˝.Fu.y//�// Fu.x/˝Fu.y/

'u.x;y/
��

Fv.�
�xC��y/ Fu.xCy/

ı.hP
� .x;y//

��
Fv.�

�.xCy//
'� .xCy/ // ��Fu.xCy/

.Fu.xCy//� // Fu.xCy/;

� for each pair of arrows w
�
! v

�
! u of C and x 2 �0Pu , the element hP

�;� .x/ 2
�1Pu making commutative the diagram

Fw.�
���x/

'� .�
�x/
��

Fw..��/
�x/

'�� .x/ // .��/�Fu.x/
.Fu.x//�� // Fu.x/

ı.hP
�;� .x//

��
��Fv.�

�x/
.Fv.�

�x//� // Fv.�
�x/

'� .x/ // ��Fu.x/
.Fu.x//� // Fu.x/:

Since the composition and tensor in P are unitary and I is a functor, the normalization
of hP follows from the naturality of the unit constraints, coherent condition (47),
and (51). The cocycle condition @3hP D 0 in (31) follows from the associativity law
for morphisms in P . That @3hP D 0 in (33) is a consequence of the fibred tensor
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product ˝W P �C P ! P being functorial. The equality @3hP D 0 in (27) holds
because of the coherence pentagons (46), and @3hP D 0 in (31) follows from the
naturality of the associativity constraints. The cocycle condition @3hP D 0 in (28) and
(29) are verified owing to the coherence conditions (48) and (49). And, finally, the
naturality of the braiding implies that @3hP D 0 in (32). If P is symmetric, then the
cocycle condition @3hP D 0 in (30) follows from the symmetry equation (50). Hence
hP 2Z3

C;1.�0P ; �1P /, and hP 2Z3
C;2.�0P ; �1P / if P is symmetric.

The braided C–fibred equivalence (116) is then realized by the normal braided C–fibred
functor

R
CPC.�0P ; �1P ; hP /!P carrying an object .x;u/ of

R
CPC.�0P ; �1P ; hP /

to Fu.x/ and a morphism .a; �/W .y; v/! .x;u/ to the composite in P of the morphisms

Fv.y/
ı.a/ // Fv.y/D Fv.�

�x/
'� .x/ // ��Fu.x/

.Fu.x//� // Fu.x/;

with the structure u–isomorphisms 'u.x; y/W Fu.x/˝Fu.y/! Fu.xC y/.

Closely related to the categories of 3–cocycles HoZ3
C;1 and HoZ3

C;2 are the categories
of 3–cohomology classes, H3

C;1 and H3
C;2 respectively, which play a fundamental role

in stating our classification theorem below. These categories are defined as follows:

Definition 7.4 Let C be any small category. The category H3
C;1 of first-level 3–

cohomology classes of C–modules has objects triples .B;A; k/, where B;AW Cop!

Ab are C–modules and k 2H 3
C;1.B;A/. An arrow .p; q/W .B;A; k/! .B0;A0; k 0/

consists of C–module homomorphisms pW B! B0 and qW A!A0 , such that

p�.k 0/D q�.k/ 2H 3
C;1.B;A

0/:

The composition of arrows is given by componentwise composition of C–module
homomorphisms, that is, .p0; q0/.p; q/D .p0p; q0q/.

The category of second-level 3–cohomology classes of C–modules,

H3
C;2 �H3

C;1;

is the full subcategory given by the objects .B;A; k/ with k 2H 3
C;2.B;A/:

We are now ready to state the following theorem, where we summarize the classification
results for braided and symmetric C–fibred categorical groups (cf Joyal and Street [41,
Theorem 3.3], and Cegarra and Khmaladze [15, Theorems 22, 24: 16, Theorem 3.12]:
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Theorem 7.5 For any small category C , there is a commutative diagram of classifying
functors

(117)
HoSCG#C

cl //
� _

��

H3
C;2� _

��
HoBCG#C

cl // H3
C;1

P 7! .�0P ; �1P ; k3P /;

ŒF � 7! .�0F; �1F /;

where k3P denotes the cohomology class of the 3–cocycle hP in (115), which have
the following properties:

(i) For any object .B;A; k/ of H3
C;1 (resp. H3

C;2 ), there is a braided (resp. symmet-
ric) C–fibred categorical group P with an isomorphism .�0P ; �1P ; k3P / Š
.B;A; k/.

(ii) For any isomorphism .p; q/W .�0P ; �1P ; k3P /Š .�0P 0; �1P 0; k3P 0/, there is
an isomorphism ŒF �W P Š P 0 such that .�0F; �1F /D .p; q/.

(iii) .�0F; �1F / is an isomorphism if and only if ŒF � is an isomorphism.

(iv) For any .p; q/W .�0P ; �1P ; k3P /! .�0P 0; �1P 0; k3P 0/, there is a bijection˚
ŒF �W P ! P 0 j �0F D p; �1F D q

	
Š ExtModC .�0P ; �1P 0/:

Proof The diagram of classifying functors (117) is obtained from the diagram of equiv-
alences of categories (113), by composing with the following diagram of cohomology
class functors

HoZ3
C;2

//
� _

��

H3
C;2� _

��
HoZ3

C;1
// H3

C;1

.B;A; h/ 7! .B;A; Œh�/;

.p; q;g/ 7! .p; q/;

where Œh� denotes the cohomology class of h. Then, it suffices to prove the correspond-
ing statements to (i)–(iv) in the theorem for these cohomology class functors. Now, it is
quite obvious to see that both are full, surjective on objects, and reflecting isomorphism
functors. However, these cohomology class functors are not faithful. In fact, for any
given morphism .p; q/W .B;A; Œh�/! .B0;A0; Œh0�/, there is a bijection˚

Œp; q;g�W .B;A; h/! .B0;A0; h0/
	
Š ExtModC .B;A

0/:

To see this, fix any .p; q;g/W .B;A; h/! .B0;A0; h0/. Then, each 2–cocycle g0 2

Z2
C;1.B;A

0/ gives rise to a morphism .p; q;gCg0/W .B;A; h/! .B0A0; h0/, and any
other morphism with the same p and q is necessarily written in such a form for some
2–cocycle g0 . Moreover, both .p; q;g/ and .p; q;gCg0/ are homotopic if and only
if g0 D @1f for some f 2 C 1

C;1.B;A
0/. This proves the bijection above, since, by

Theorem 5.3, H 2
C;1.B;A

0/D ExtModC .B;A
0/.
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If, for any C–modules B;AW Cop! Ab, we denote by

BCG#C
ŒB;A�

the set of isomorphism classes in HoBCG#C
of those braided C–fibred categorical

groups P with �0P D B and �1P DA, and

SCG#C
ŒB;A�

the set of isomorphism classes in HoSCG#C
of those symmetric C–fibred categorical

groups P with �0P D B and �1P DA, then, as consequence of Theorem 7.5 above
and Corollary 4.1, we have the theorem below.

Theorem 7.6 For any C–modules B; A, and any integer r � 2, there are natural
identifications

H 3
C;1.B;A/D BCG#C

ŒB;A�;

H 3
C;2.B;A/DH 3

C;r.B;A/D SCG#C
ŒB;A�:

A symmetric C–fibred categorical group P D .P ;P;˝; I; a; r; l ; c/ is called a strictly
commutative Picard C–fibred category by Deligne [21, Definition 1.4.2] whenever its
symmetry constraint satisfies

cx;x D 1x˝x

for any object x of P . If, for any C–modules B;AW Cop! Ab,

Pic#C
ŒB;A�� SCG#C

ŒB;A�

denotes the subset defined by those strictly commutative Picard C–fibred categories P
with �0P D B and �1P DA, then a well-known result by Deligne [21, Proposition
1.4.15] states that there is a natural identification

Pic#C
ŒB;A�D Ext2ModC

.B;A/:

Hence, in this way, one achieves natural inclusions

Ext2ModC
.B;A/�H 3

C;2.B;A/�H 3
C;1.B;A/:

We shall end by remarking that these inclusions are, in general, strict despite the
equalities H 1

C;r.B;A/D HomModC .B;A/ and H 2
C;r.B;A/D ExtModC .B;A/, stated

in Theorem 5.1 and Theorem 5.3, respectively.

In effect, let us take CD 1, the trivial category with only one arrow. Then, the category
of C–modules is simply Ab, the category of abelian groups. In the case where B

is the cyclic group Z2 of order 2 and A is the cyclic group Z4 of order 4, we have
Ext2Ab.Z2;Z4/D 0 since, in the category of abelian groups, all groups ExtnAb.B;A/
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vanish for n� 2, while H 3
2
.Z2;Z4/DZ2 , by Eilenberg and Mac Lane, [29, Theorem

27.1], and H 3
1
.Z2;Z4/D Z4 , by [29, Theorem 26.1 and (13.6)].
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