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On the product in negative Tate cohomology for finite groups

HAGGAI TENE

Our aim in this paper is to give a geometric description of the cup product in negative
degrees of Tate cohomology of a finite group with integral coefficients. By duality it
corresponds to a product in the integral homology of BG :

Hn.BG;Z/˝Hm.BG;Z/!HnCmC1.BG;Z/

for n;m> 0 . We describe this product as join of cycles, which explains the shift in
dimensions. Our motivation came from the product defined by Kreck using stratifold
homology. We then prove that for finite groups the cup product in negative Tate
cohomology and the Kreck product coincide. The Kreck product also applies to the
case where G is a compact Lie group (with an additional dimension shift).

20J06, 55R40

1 Introduction

For a finite group G one defines Tate cohomology with coefficients in a ZŒG� mod-
ule M , denoted by yH�.G;M /. This is a multiplicative theory:

yH n.G;M /˝ yH m.G;M 0/! yH nCm.G;M ˝M 0/

and the product is called cup product. For n > 0 there is a natural isomorphism
H n.G;M /! yH n.G;M /, and for n<�1 there is a natural isomorphism yH n.G;M /!

H�n�1.G;M /. We restrict ourselves to coefficients in the trivial module Z. In
this case, yH�.G;Z/ is a graded ring. Also, in this case the group cohomology
and homology are actually the cohomology and homology of a topological space,
namely BG , the classifying space of principal G bundles: H n.G;Z/ŠH n.BG;Z/
and Hn.G;Z/ŠHn.BG;Z/. Combining this with the isomorphism we had before
yH n.G;Z/!H�n�1.G;Z/ for n<�1 we get a product Hn.BG;Z/˝Hm.BG;Z/!

HnCmC1.BG;Z/ for n;m > 0. Note the dimension shift. This product, with coef-
ficients in a field of characteristics p rather than Z, was studied by Benson and
Carlson [1]. Our aim in this paper is to give a geometric description of this product.
We give a rather concrete description in singular homology that involves the join of
cycles, and that explains the shift in dimension.
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494 Haggai Tene

Our motivation came from a geometric description of H�.G;Z/ given by Kreck in [6]
and the product he defined using stratifold homology. We then prove that the cup
product in negative Tate cohomology and the Kreck product coincide. An advantage in
Kreck theory is that it holds also for compact Lie groups giving a product:

Hn.BG;Z/˝Hm.BG;Z/!HnCmC1Cdim.G/.BG;Z/:
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2 Tate cohomology

Remark In this paper R is assumed to be a ring with unit, not necessarily commutative,
and all modules are assumed to be left R–modules unless stated otherwise. The group G

is assumed to be finite unless stated otherwise.

We start by defining Tate cohomology and the cup product as appears in Carlson et al [3].
To do so we introduce the language taken from the stable module category. We will
not get into details, for a formal treatment the reader is referred to the appendix.

Let M;N be two R–modules, denote by HomR.M;N / the quotient of HomR.M;N /

by the maps that factor through some projective module.

Definition 2.1 Given an R–module M , denote by �kM the following module:

Take any partial projective resolution of M ,

Pk�1

dk�1
���! Pk�2! � � � ! P1! P0!M

then �kM D ker.dk�1W Pk�1 �! Pk�2/. If k D 1 then we simply denote it by �M .
This module clearly depends on the choice of the resolution. Nevertheless, as proved
in the appendix, the modules HomR.�

kM; �lN / do not depend on the choice of
resolutions, ie, they are well defined up to canonical isomorphisms. If we would like
to stress the dependency on P then we would use the notation �k

P
M .

Note that there is a natural map ‰W HomR.M;N /! HomR.�M; �N /.
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Definition 2.2 The Tate cohomology of G with coefficients in a ZŒG� module M is
given by

yH n.G;M /DbExt
n

ZŒG�.Z;M /D lim
�!
m

HomZŒG�.�
nCmZ; �mM /

where Z is the trivial ZŒG�–module (if n<0 then we start this sequence from mD�n).

In our case, where G is finite, we have the following proposition which is proved in
the appendix:

Proposition 2.3 If G is a finite group and M is a ZŒG�–module which is projective as
a Z–module then the homomorphism ‰W HomZŒG�.M;N /! HomZŒG�.�M; �N /

is an isomorphism.

Therefore, since Z and �kZ are projective as Z–modules this limit equals

yH n.G;M /D HomZŒG�.�
nZ;M /

if n� 0 or
yH n.G;M /D HomZŒG�.Z; �

�nM /

if n< 0. Our main interest will be the second case, especially when M D Z.

Example 2.4 yH�1.G;Z/D HomZŒG�.Z; �Z/. Take the exact sequence

0! I ! ZŒG�
f
�! Z! 0;

where the map f is the augmentation map and I is the augmentation ideal, so I D�Z.
Therefore HomZŒG�.Z; �Z/Š HomZŒG�.Z; I/D f0g so yH�1.G;Z/D f0g.

Let G be a finite group. We construct a natural isomorphism yH�n�1.G;Z/ !
Hn.G;Z/ for n� 1. Before that we prove a small lemma.

Lemma 2.5 Let G be a finite group and P a projective ZŒG�–module, then for every
element x 2 P we have:

(1) x 2 PG,9y 2 P; x DNy ,

(2) y˝ 1D y0˝ 1 2 P ˝ZŒG�Z,Ny DNy0 ,

where PG are the invariants of P under the action of G , N is the norm homomorphism
defined by multiplication by the element N D

P
g2Gg 2 ZŒG�.
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496 Haggai Tene

Proof For every ZŒG�–module M the following sequence is exact:

0! yH�1.G;M /!H0.G;M /!H 0.G;M /! yH 0.G;M /! 0;

where the map H0.G;M /!H 0.G;M / is the norm map N W M ˝Z!M G given
by (N.x˝k/D kN x ) (see Brown [2, VI,4]). If M is projective then yH m.G;M /D 0

for all m 2 Z, hence N is an isomorphism. We conclude:

(1) Surjectivity of N implies that x 2 PG,9y 2 P;x DNy .

(2) Injectivity of N implies that y˝1D y0˝1 , NyDNy0 for all y;y0 2P .

Proposition 2.6 Let G be a finite group then there is an isomorphism between
yH�n�1.G;Z/ and Hn.G;Z/ for n� 1.

Proof Take a projective resolution of Z

� � � ! Pn
dn
�! Pn�1 � � � ! P0! Z:

Taking the tensor of it with Z gives us the chain complex for the homology of G which
we denote by C�.G/. We define a map ˆ from HomZŒG�.Z; �

nC1Z/ to Cn.G/ the
following way: Given a homomorphism f W Z!�nC1Z, f .1/D x is an invariant
element in Pn . By the lemma, since Pn is projective and x is invariant, there is some
y 2 Pn such that x D Ny . We define ˆ.f / D y ˝ 1. This doesn’t depend on the
choice of y since Ny DNy0, y˝ 1D y0˝ 1 by the lemma above. We know that
Ndn.y/ D dn.Ny/ D dn.x/ D 0 and by the lemma this implies that dn.y/˝ 1 D 0

(Pn�1 is projective and here we use the fact that n�1). We deduce that y˝12Zn.G/.
The map described now HomZŒG�.Z; �

nC1Z/!Zn.G/ is surjective since given an
element y˝ 1 2 Cn.G/ such that dn.y/˝ 1D 0 this implies that Ndn.y/D 0, so we
define f .k/D kNy , this is well defined since Ny is invariant and in the kernel of dn .

We now have a surjective homomorphism ˆW HomZŒG�.Z; �
nC1Z/!Hn.G;Z/. If

f 2 ker.ˆ/ then there exist s 2 PnC1 such that ˆ.f /D y˝ 1D dnC1.s/˝ 1. This
implies that the map f W Z!�nC1Z factors as a ZŒG� map through PnC1 , which is
projective, by 1 7!N s . On the other hand if f factors through a projective module,
without loss of generality, PnC1 , then Ny D f .1/ D dnC1.N s/ (every invariant
element in PnC1 is of the form N s by the lemma). This implies that NdnC1.s/DNy

if and only if dnC1.s˝ 1/D dnC1.s/˝ 1D y˝ 1.

We conclude that the induced map

ˆW yH�n�1.G;Z/D HomZŒG�.Z; �
nC1Z/!Hn.G;Z/

is an isomorphism for all n� 1.
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Remark Since yH�1.G;Z/D f0g we conclude that yH�n�1.G;Z/Š zHn.G;Z/ for
n� 0 where zHn.G;Z/ is the reduced homology.

3 The product structure

The cup product in Tate cohomology yH�n.G;Z/˝ yH�m.G;Z/! yH�n�m.G;Z/ is
given by composition (this is also called the Yoneda composition product). Given

Œf � 2 yH�n.G;Z/ D HomZŒG�.Z; �
nZ/;

Œg� 2 yH�m.G;Z/D HomZŒG�.Z; �
mZ/Š HomZŒG�.�

nZ; �nCmZ/;

we compose them to get a map

Œf �[ Œg�D Œg ıf � 2 HomZŒG�.Z; �
nCmZ/:

Since for n;m� 2 we have yH�n.G;Z/ŠHn�1.G;Z/; yH
�m.G;Z/ŠHm�1.G;Z/

we have a product Hn�1.G;Z/˝Hm�1.G;Z/!HnCm�1.G;Z/. We would like to
have a description of the isomorphism HomZŒG�.Z; �

mZ/ŠHomZŒG�.�
nZ; �nCmZ/

which is concrete. To do so we use the following construction.

The join of augmented chain complexes

Let G be a finite group and let P and Q be the following augmented chain complexes
over ZŒG�: � � � ! P2 ! P1 ! P0 ! Z and � � � ! Q2 ! Q1 ! Q0 ! Z. We
define the join of those two chain complexes to be P �QD†.P ˝Z Q/ that is the
suspension of the tensor product over Z (with a diagonal G action). To be more
specific .P �Q/n D

L
0�k�nC1 Pk�1˝Z Qn�k :

� � � ! P1˝Z Z˚P0˝Z Q0˚Z˝Z Q1! P0˝Z Z˚Z˝Z Q0! Z˝Z Z:

P �Q is an augmented ZŒG� chain complex in a natural way.

Lemma 3.1 If both P and Q are projective and acyclic augmented ZŒG� chain
complexes then P �Q is a projective and acyclic augmented ZŒG� chain complex.

Proof P and Q are projective acyclic chain complexes over Z so the same is true
for their tensor product, by the Künneth formula. .P �Q/n is projective over ZŒG�
for n� 0 since each of the modules Pk�1˝Z Qn�k is projective.

Lemma 3.2 Let P and Q be two resolutions of Z over ZŒG�, and let s 2Qn�1 be
an element, n> 1. Define a map s�W Pk�1! .P �Q/kCn�1 by s�.x/D x˝ s called
the join with s . Then we have:
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(1) s� is a group homomorphism.

(2) If s is G –invariant then s� is a homomorphism over ZŒG�.

(3) If s 2 ker.Qn�1!Qn�2/ then s� is a chain map of degree n.

Proof (1) This follows from the properties of the tensor product.

(2) For every g2G we have g.s�.x//Dg.x˝s/Dg.x/˝g.s/Dg.x/˝sDs�.g.x//.

(3) @.s�.x//D @.x˝ s/D @.x/˝ sC .�1/jxjC1x˝ @s D @.x/˝ s D s�.@.x//.

This implies the following:

Theorem 3.3 Let n;m> 0. Then the product

yH�n.G;Z/˝ yH�m.G;Z/! yH�n�m.G;Z/

is given by Œf �[ Œg�D Œf �g� where .f �g/.k/D k �f .1/˝g.1/ 2�mCn
P�P

Z for all
k 2 Z.

Proof Take a projective resolution P for Z over ZŒG�. Let

Œf � 2 yH�n.G;Z/D HomZŒG�.Z; �
nZ/;

Œg� 2 yH�m.G;Z/D HomZŒG�.Z; �
mZ/Š HomZŒG�.�

nZ; �nCmZ/:

Choose representatives f;g and define a degree m map P!P �P by x 7! x˝g.1/.
Since g.1/ is invariant and in the kernel of dm�1 , this map is a chain map of ZŒG�
chain complexes of degree m. This gives us a concrete construction of the isomorphism
HomZŒG�.Z; �

mZ/ Š HomZŒG�.�
nZ; �nCmZ/. The composition is therefore g ı

f .1/D f .1/˝g.1/.

A description of the product by joins of cycles

We now consider resolutions which come from singular chains of spaces. Let G be a
finite group. Recall that a contractible G –CW–complex with a free G action is denoted
by EG , the quotient space EG=G is the classifying space of principal G bundles and
is denoted by BG .

We consider now the augmented singular chain complex of EG denoted by C�.EG/.
The action on EG is free so C�.EG/ is projective (n� 0) and EG is contractible so
C�.EG/ is acyclic.

As we saw before in Proposition 2.6 every element of Hn.G;Z/ can be considered
as an invariant cycle in Cn.EG/ (modulo invariant boundary). We will show that the
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product can be considered as the join of the two such cycles, which is naturally an
invariant cycle in C�.EG �EG/ where EG �EG is the join of two copies of EG .
Note that since the join of contractible spaces is contractible, EG �EG is contractible,
and it has a natural G action, given by g.x;y; t/D .gx;gy; t/, which is free since it
is free on both copies of EG . This implies that its augmented singular chain complex
is a projective resolution of Z over ZŒG�.

We now associate the join of chain complexes to the join of spaces.

Lemma 3.4 Let A and B be two spaces and let C�.A/ and C�.B/ be their augmented
singular chain complexes, then there is a natural chain map

hW C�.A/�C�.B/! C�.A�B/:

If G acts on A and B then it also acts on A�B and the chain complexes are complexes
over ZŒG� and h is a map of ZŒG� chain complexes.

Proof We first note that for n;m � 0, for every two singular simplices � 2 Cn.A/

and � 2 Cm.B/ there is a canonical singular chain � � � 2 CnCmC1.A�B/ and this
definition can be extended in a bilinear way to chains. Define h the following way:

Given an element s˝t 2Cn.A/˝Cm.B/, if n;m�0 then h.s˝t/D s�t , else nD�1

(or mD�1) then s is an integer, denote it by k then h.s˝ t/D h.k˝ t/D k � t where
t is the chain induced by the inclusion of B in A�B (and similarly for mD�1).

We have to show that h is a chain map. For two simplices of positive dimension we
have the formula @.� � �/D @.�/� �C .�1/dim.�/C1� �@.�/. The formula extends to
chains, so we have

@h.s˝ t/D @.s � t/D @.s/� t C .�1/jsjC1s � @.t/

D h.@.s/˝ t C .�1/jsjC1s˝ @.t//D h.@.s˝ t//:

For � , a simplex of dimension 0 (a point), � � � is the cone over � and its boundary is
given by @.� � �/D � C .�1/dim.�/C1� � @.�/. Since the boundary map C0.A/! Z
is the augmentation map we see indeed that also in this case h commutes with the
boundary (with respect to the way we have defined h.k˝ t/).

The boundary formula is not true when one of the simplices is zero dimensional due
to the nonsymmetric way we define the faces of a zero simplex (the n simplex has
nC 1 faces while the zero simplex has no faces). If we wanted to be consistent with
the boundaries of the higher simplices then we should have used only augmented chain
complexes. More in this direction appears in [4].
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When there is a G action on both spaces then clearly all the complexes are complexes
over ZŒG�. h is a ZŒG� chain map since for every g 2G we have

h.g.s˝ t//D h.gs˝gt//D gs �gt D g.s � t/D g.h.s˝ t//:

Theorem 3.5 The cup product in negative Tate cohomology gives a product

Hn.G;Z/˝Hm.G;Z/!HnCmC1.G;Z/

for n;m> 0. Each homology class in Hn.G;Z/ is represented by an invariant cycle
in EG . The product of two classes is given by the join of those cycles, which is an
invariant cycle in EG �EG .

Proof We already saw that the product can be described by the join of resolutions.
By the proposition above there is a degree zero chain map C�.EG/ � C�.EG/!

C�.EG�EG/. The image of f .1/˝g.1/ under this map is the join of f .1/ with g.1/.
This gives a more concrete model where the cycles are actual invariant singular cycles
of the space EG �EG .

Corollary 3.6 The product in zH�.G;Z/ comes from the chain map

.P ˝ZŒG�Z/˝Z .P ˝ZŒG�Z/! .P �P /˝ZŒG�Z

given by .x˝ 1/˝ .y˝ 1/! ..N x/˝y/˝ 1, where P is an augmented projective
resolution.

This map is equal to the composition of two maps. The first one

.P ˝ZŒG�Z/˝Z .P ˝ZŒG�Z/! .P �P /˝ZŒG�G�Z

is given by .x˝1/˝.y˝1/! .x˝y/˝1. This is an exterior product, which is injective
(in homology) by the Künneth theorem. Note that the homology of .P �P /˝ZŒG�G�Z

need not be equal to zH�.G �G;Z/ since P � P is not projective over ZŒG �G�.
.P �P /˝ZŒG�G�Z is the chain complex of BG �BG , and this is the join product

zHn.BG;Z/˝ zHm.BG;Z/! zHmCnC1.BG �BG;Z/:

The second map, .P �P /˝ZŒG�G�Z! .P �P /˝ZŒG�Z is given by .x˝y/˝1!

..N x/˝y/˝ 1, which is a transfer map.

Algebraic & Geometric Topology, Volume 12 (2012)



On the product in negative Tate cohomology for finite groups 501

4 Comparing Kreck’s product and the cup product in Tate
cohomology

The Kreck product is defined using stratifolds and stratifold homology. Stratifolds are
generalization of manifolds. They were introduced by Kreck [7] and used in order to
define a bordism theory, denoted by SH� , which is naturally isomorphic to singular
homology. We will use them to describe group homology with integral coefficients and
the Kreck product.

Stratifolds

Kreck defined stratifolds as spaces with a sheaf of functions, called the smooth functions,
fulfilling certain properties but for our purpose the following definition is enough (these
stratifolds are also called p-stratifolds):

A stratifold is a pair consisting of a topological space and a subsheaf of the sheaf of
real continuous functions, which is constructed inductively in a similar way to the way
we construct CW–complexes. We start with a discrete set of points denoted by X 0

and define inductively the set of smooth functions which in the case of X 0 are all real
functions.

Suppose X k�1 together with a smooth set of functions is given. Let W be a n

dimensional smooth manifold “the n strata” with boundary and a collar c , and f
a continuous proper map from the boundary of W to X n�1 . We require that f is
smooth which means that its composition with every smooth map from X n�1 is smooth.
Define X n D X n�1 [f W . The smooth maps on X n are defined to be those maps
gW X n!R which are smooth when restricted to X n�1 and to W and such that for
some 0< ı we have gc.x; t/D gf .x/ for all x 2 @W and t < ı .

Among the examples of stratifolds are manifolds, real and complex algebraic varieties
(see Grinberg [5]), the cone over a stratifold and the product of two stratifolds.

We can also define stratifolds with boundary which are analogous to manifolds with
boundary. A main difference is that every stratifold is the boundary of its cone, which
is a stratifold with boundary.

Given two stratifolds with boundary .T 0;S 0/ and .T 00;S 00/ and an isomorphism
f W S 0! S 00 there is a well defined stratifold structure on the space T 0[f T 00 which
is called the gluing. On the other hand, given a smooth map gW T ! R such that
there is a neighborhood of 0 which consists only of regular values then the preimages
g�1..�1; 0�/ D T 0 and g�1.Œ0;1// D T 00 are stratifolds with boundary and T is
isomorphic to the gluing T 0[Id T 00 .
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To obtain singular homology we specialize our stratifolds in the following way: We use
compact stratifolds, require that their top stratum will be oriented and the codimension
one stratum will be empty.

Remark Regarding regularity, a condition often required, see a note by Kreck [8].

Stratifold homology

Stratifold homology was defined by Kreck in [7]. We will describe here a variant of
this theory called parametrized stratifold homology, which is naturally isomorphic to it
for CW–complexes. In this paper we will refer to parametrized stratifold homology
just as stratifold homology and use the same notation for it.

Stratifold homology is a homology theory, denoted by SH� . It is naturally isomorphic
to integral homology and gives a new geometric point of view on it.

Definition 4.1 Let X be a topological space and n � 0, define SHn.X / to be
fgW S !X g =�, ie, bordism classes of maps gW S ! X where S is a compact
oriented stratifold of dimension n and g is a continuous map. We often denote the
class ŒgW S ! X � by ŒS;g� or by ŒS ! X �. SHn.X / has a natural structure of an
Abelian group, where addition is given by disjoint union of maps and the inverse is
given by reversing the orientation. If f W X ! Y is a continuous map then we can
define an induced map by composition f�W SHn.X /! SHn.Y /.

One constructs a boundary operator and prove the following:

Theorem 4.2 (Mayer–Vietoris) The following sequence is exact:

� � � ! SHn.U \V /! SHn.U /˚SHn.V /! SHn.U [V /
@
�! SHn�1.U \V /! � � �

where, as usual, the first map is induced by inclusions and the second is the difference
of the maps induced by inclusions.

SH� with the boundary operator is a homology theory.

Theorem 4.3 There is a natural isomorphism of homology theories ˆW SH�!H� .

Proof See for example Tene [9]. ˆ is given by ˆn.ŒS; f �/D f�.ŒS �/ where ŒS � 2
Hn.S;Z/ is the fundamental class of S .
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Stratifold group homology

One defines the group homology of a group G with coefficients in a ZŒG� module M

to be H�.BG;M / where M is considered as a local coefficients system. Our main
interest is when M DZ with the trivial action, then this reduces to the integral homology
H�.BG;Z/. These groups are naturally isomorphic to the groups SH�.BG;Z/ by the
theorem above.

Let G be a compact Lie group of dimension d . Denote by SHn.G;Z/ the set of
compact oriented stratifolds of dimension n with a free and orientation preserving G

action modulo G –cobordism, ie a cobordism with a free G action extending the given
action on the boundary (all actions on the stratifolds are assumed to be smooth). We
denote the class of the stratifold and the action by ŒS; ��.

Remark By an “orientation preserving action” we mean that the induced action of
G=G0 on S=G0 is orientation preserving, where G0 is the component of the identity.

The following lemma and proposition are an easy exercise:

Lemma 4.4 (1) Let S be a compact oriented stratifold of dimension n and zS! S

a covering space then zS can be given a unique structure of an oriented stratifold
such that the covering map is an orientation preserving local isomorphism. If S

is compact and the fibers are finite then zS is compact.

(2) Let S be a compact oriented stratifold of dimension n with an orientation
preserving free action of a finite group G then S=G can be given a unique
structure of a compact oriented stratifold such that the projection will be an
orientation preserving local isomorphism.

Proposition 4.5 Let G be a finite group, the map ‰W SHn.G;Z/ ! SHn.BG;Z/
given be ŒS; �� 7! Œf W S=G�!BG�, where f is the classifying map, is an isomorphism.

The map ‰�1W SHn.BG;Z/! SHn.G;Z/ is given by Œf W S �!BG� 7! Œ zS ; �� where
zS! S is the pull back of the universal bundle EG!BG and � is the induced action.

Remark Similarly, an isomorphism ‰W SHnCd .G;Z/! SHn.BG;Z/ can be con-
structed for a compact Lie group G of dimension d .

There is a natural product structure SHn.G;Z/˝SHm.G;Z/! SHnCm.G;Z/ given
by the Cartesian product with the diagonal action

ŒS; ��˝ ŒS 0; �0�! ŒS �S 0; ��:
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This product vanishes whenever n;m> 0 since it is the boundary of ŒCS�S 0; z�� where
z� is the obvious extension of the action �, but it is also the boundary of ŒS �CS 0; y��

where y� is the obvious extension of the action �.

The Kreck product is a secondary product defined by gluing .CS�S 0; z�/ and .S�CS 0; y�/

along their common boundary .S �S 0; �/

ŒS; ��˝ ŒS 0; �0�! ŒS �S 0; � � �0�

(note that after the gluing what we get is the join of the two stratifolds).

The product SHn.G;Z/˝SHm.G;Z/! SHnCmC1.G;Z/ does not vanish in general.
When G is finite cyclic then SHn.G;Z/ is infinite cyclic when nD 0, zero when n

is even and isomorphic to G when n is odd. The generators can be taken to be odd
dimensional spheres with the action induced by the complex multiplication, when the
sphere is considered as the unit sphere in a complex space. In this case the product of
generators is again a generator. A similar construction will hold for G D S1 and S3 .
This implies that the product is nontrivial for every group with a free and orientation
preserving smooth action on a sphere.

There is an isomorphism ‰W SHn.G;Z/ ! yH�n�1.G;Z/ for n > 0 given by the
composition

SHn.G;Z/! SHn.BG;Z/!Hn.BG;Z/! yH�n�1.G;Z/:

One might show that this isomorphism is given the following way: Take some model
for EG . Its singular chain complex C�.EG/ is a projective resolution for Z over ZŒG�.
Let Œ.S; �/� be an element in SHn.G;Z/. There is a map f W S!EG that commutes
with the action of G . This map is unique up to G homotopy (f is called the classifying
map), any two such maps are G homotopic. Since f commute with the action of G it
induces a map of the singular chain complexes which are complexes of ZŒG� modules:
f�W C.S/ �! C.EG/. As shown in [9], S has a fundamental class, we take some
representative of it which is G invariant (we can do that by lifting a fundamental cycle
of S=G ) and denote it by s . We get an element f�.s/2C.EG/n which is both invariant
and a cycle thus we get an element in Hom.Z; �nC1/. As before different choices of S

and f will give elements that differ by a map which factors through a projective (the
fundamental class of the cobordism is mapped into C.EG/nC1 which is projective),
hence gives a homomorphism SHn.G;Z/! HomZŒG�.Z; �

nC1Z/D yH�n�1.G;Z/
which is exactly the isomorphism above.

Now we would like to show that the Kreck product is the same as the cup product. We
show that the join of two fundamental classes is equal to the fundamental class of their
join.
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Lemma 4.6 Let S and S 0 be two compact oriented stratifolds of dimension n

and m (m; n > 0) respectively. Denote the fundamental classes of S;S 0;S � S 0

by aS ; aS 0 ; aS�S 0 then aS � aS 0 D aS�S 0 .

Proof Let U Df.s; s0; t/ 2 S �S 0 j t < 1g, V Df.s; s0; t/ 2 S �S 0 j 0< tg then U '

S;V ' S 0;U \V ' S �S 0;U [V D S �S 0 . By Mayer–Vietoris the boundary map
@W HnCmC1.S � S 0;Z/! HnCm.S � S 0;Z/ is injective (an isomorphism actually)
and by the definition of the boundary we have @.aS�S 0/D aS�S 0 . It will be enough
to show that @.aS � aS 0/ D aS�S 0 . We do know that @.aS � aS 0/ D aS � aS 0 , this
follows from the definition of the boundary after taking the suitable representative for
aS � aS 0 . So we reduced the problem to proving that aS � aS 0 D aS�S 0 . This fact
follows from the following commutative diagram:

Hn.S;Z/˝Hm.S
0;Z/

�
�! HnCm.S �S 0;Z/

# #

Hn.S j s;Z/˝Hm.S
0 j s0;Z/

�
�! HnCm.S �S 0 j s � s0;Z/

where Hk.X j x;Z/ stands for Hk.X;X= fxg ;Z/. In order to show that aS � aS 0 D

aS�S 0 we have to show that for every .s; s0/ 2 S �S 0 aS �aS 0 is mapped by the right
vertical map to the generator of HnCm.S�S 0 js�s0/. By definition aS ˝ aS 0 is mapped
by the left vertical map to the tensor of the generators for Hn.S j s;Z/˝Hm.S

0 j s0;Z/.
Also by definition the element aS ˝ aS 0 is mapped by the upper arrow to aS � aS 0 .
By the commutativity of the diagram it is enough to show that the lower arrow maps
the tensor of generators to the generator of the product. By excision, this can be
rephrased that the same holds for the map �W Hn.Rn j 0;Z/˝Hm.Rm j 0;Z/ �!
HnCm.RnCm j 0;Z/ which is the case if we make the right choice of orientations.

We have thus proved the following theorem:

Theorem 4.7 Let G be a finite group, then there is a natural isomorphism between
SHn.G;Z/ and yH�n�1.G;Z/ and this isomorphism respects the product.

In other words, the product in group homology defined by Kreck using stratifold
homology and the join agrees with the cup product in negative Tate cohomology.

Appendix A The stable module category

In this appendix we give the background needed for the construction we used for Tate
cohomology.

Again R is a ring with unit, not necessarily commutative, and all modules are assumed
to be left R–modules.
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The stable category St-mod.R/

Let M and N be two R–modules, denote by PHomR.M;N / the set of R–homo-
morphisms f W M �!N that factors through a projective R–module, ie there exists a
projective R–module P and two maps f1W M �!P; f2W P �!N such that f Df2ıf1 .
The following proposition is left as an easy exercise:

Proposition A.1 PHomR.M;N / is a submodule of HomR.M;N / and the composi-
tion of two homomorphisms such that one of them factors through a projective module
also factors through a projective module.

By the proposition above we can define

HomR.M;N /D HomR.M;N /=PHomR.M;N /

which is an R–module, and a composition

HomR.N;K/�HomR.M;N /! HomR.M;K/

which is R–bilinear.

Definition A.2 Let R be a ring, denote by St-mod.R/ the category whose objects
are all R–modules and the morphisms between each M and N are HomR.M;N /.
This category is called the stable module category.

The functor �

For every R–module M choose (once and for all) a projective cover, that is a surjective
map �M W PM !M where PM is a projective R–module (for example the canonical
free cover).

Define a functor �W St-mod.R/! St-mod.R/ the following way: For an object M

define �.M /D ker.�M /. For a morphism Œf � 2 HomR.M;N / choose some repre-
sentative f W M !N , use the fact that PM is projective and �N is surjective to define
a map zf W PM ! PN such that the following diagram become commutative:

0 �! �.M / �! PM �! M �! 0

# zf j�.M / # zf # f

0 �! �.N / �! PN �! N �! 0:

Now take �.f / to be the class of the induced map zf j�.f /W �.M /!�.N /. This is
well defined by the following lemma:
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Lemma A.3 (1) In the previous notation, if zf1 and zf2 are two lifts of f ı�M then
zf1j�.M / and zf2j�.M / represent the same element in HomR.�M; �N /.

(2) The map HomR.M;N /! HomR.�M; �N / is a homomorphism.

(3) If f factors through a projective then also zf j�.f / does, thus we get a homomor-
phism HomR.M;N /! HomR.�M; �N /.

Proof (1) Assume we have two such lifts zf1 and zf2 then the following diagram is
commutative (where hD zf1j�.M /�

zf2j�.M / ):

0 �! �.M / �! PM �! M �! 0

# h # zf1�
zf2 # 0

0 �! �.N / �! PN �! N �! 0:

It will be enough to show that h factors through PM which is projective. This
follows from the fact that the image of the map zf1�

zf2 is contained in �.N / by the
commutativity of the diagram.

(2) Choose the lifting of a �f C b �g to be a � zf C b � zg .

(3) Assume f factors through a projective module P . We have the following diagram:

0 �! �.M / �! PM �! M �! 0

# # #

0 �! 0 �! P �! P �! 0

# # s #

0 �! �.N / �! PN �! N �! 0:

The map sW P ! PN can be defined using the fact that P is projective and the map
PN !N is surjective. Thus the induced map �.M /!�.N / is the zero map.

The following is important for the definition of Tate cohomology:

Proposition A.4 Let G be a finite group and RDZŒG�. If M is a ZŒG� module which
is projective as an Abelian group then the map HomR.M;N /! HomR.�M; �N / is
an isomorphism.

Proof Before we start recall [2, VI 2] that a ZŒG�–module Q is called relatively
injective if for every injection A ,! B of ZŒG�–modules which splits as an injection
of Abelian groups and every ZŒG� homomorphism A!Q there exists an extension
to a ZŒG� homomorphism B ! Q, and that if G is a finite group every projective
module is relatively injective.

Algebraic & Geometric Topology, Volume 12 (2012)



508 Haggai Tene

We construct an inverse to this map. Given a map f W �M ! �N . We have the
following diagram:

0 �! �.M / �! PM �! M �! 0

# f

0 �! �.N / �! PN �! N �! 0:

Since M is projective as an Abelian group the upper row splits as Abelian groups. This
means that �.M /�!PM is a split injection as Abelian groups. PN is projective and
hence relatively injective therefore we can extend the homomorphism �.M /! PN

to a homomorphism zf W PM ! PN such that the diagram will commute. This in-
duces a homomorphism xf W M ! N . Of course xf depends on the choice of zf .
Suppose that zf1; zf2 are two extensions then zf1 �

zf2 vanishes on �.M / hence the
map xf1�

xf2W M !N factors through PN which is projective. This gives a well de-
fined homomorphism HomR.�M; �N /! HomR.M;N /. Assume f W �M !�N

factors through a projective P then we can choose zf to factor through P again since
it is relatively injective and get that xf is the zero map:

0 �! �.M / �! PM �! M �! 0

# # #

0 �! P �! P �! 0 �! 0

# # s #

0 �! �.N / �! PN �! N �! 0:

Hence we get a homomorphism HomR.�M; �N /! HomR.M;N / which is easily
seen to be the inverse of the homomorphism HomR.M;N /! HomR.�M; �N /.

We have defined the endofunctor �. We define �n by induction: �0 D Id and
�n D� ı�n�1 .

Proposition A.5 Let M be an R–module and let � � � !Qn�1! � � �!Q0!M be
any projective resolution of M , then�n.M / can be identified with ker.Qn�1!Qn�2/,
that is there is a canonical map ker.Qn�1!Qn�2/! �n.M / which is an isomor-
phism in the category St-mod.R/.

Proof Given an R–module M we construct a canonical projective resolution of it
using the projective covers we have chosen before. We do it by induction where Pn

is defined to be the projective cover of ker.Pn�1 ! Pn�2/ with the induced map
Pn! Pn�1 , which clearly make this into a projective resolution. Notice that by the
definition of � we have �n.M /D ker.Pn�1!Pn�2/, and for a map f W M !N the
map �n.f / can be constructed by extending the map f to a chain map between the
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two resolutions. In order to prove the proposition it will suffice to show that given two
projective resolutions of M � � �!Qn�1!� � �!Q0!M and � � �!Pn�1!� � �!

P0!M there is a canonical isomorphism ker.Qn�1!Qn�2/! ker.Pn�1!Pn�2/.
This follows directly by induction from what we have already showed in the case of a
the projective cover of M .

Remark By similar reasons we can compute the induced maps �n.f / for any map
f W M !N by taking any two resolutions for M and for N and extending f into a
chain map between the two resolutions.
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